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PREDICTION ERROR AFTER MODEL SEARCH

BY XIAOYING TIAN

Department of Statistics, Stanford University, xtian@alumni.stanford.edu

Estimation of the prediction error of a linear estimation rule is difficult
if the data analyst also uses data to select a set of variables and constructs
the estimation rule using only the selected variables. In this work, we pro-
pose an asymptotically unbiased estimator for the prediction error after model
search. Under some additional mild assumptions, we show that our estimator
converges to the true prediction error in L2 at the rate of O(n−1/2), with n

being the number of data points. Our estimator applies to general selection
procedures, not requiring analytical forms for the selection. The number of
variables to select from can grow as an exponential factor of n, allowing ap-
plications in high-dimensional data. It also allows model misspecifications,
not requiring linear underlying models. One application of our method is that
it provides an estimator for the degrees of freedom for many discontinuous
estimation rules like best subset selection or relaxed Lasso. Connection to
Stein’s Unbiased Risk Estimator is discussed. We consider in-sample pre-
diction errors in this work, with some extension to out-of-sample errors in
low-dimensional, linear models. Examples such as best subset selection and
relaxed Lasso are considered in simulations, where our estimator outperforms
both Cp and cross validation in various settings.

1. Introduction. In this paper, we consider a homoscedastic model with Gaussian errors.
In particular,

(1.1) y = μ(X) + ε, ε ∼ N
(
0, σ 2I

)
,

where the feature matrix X ∈ R
n×p is considered fixed, y ∈ R

n is the response, and the
noise level σ 2 is considered known and fixed. Note the mean function μ :Rn×p →R

n is not
necessarily linear in X.

Prediction problems involve finding an estimator μ̂ which fits the data well. We naturally
are interested in its performance in predicting a future response vector that is generated from
the same mechanism as y. Mallows (1973) provided an unbiased estimator for the prediction
error when the estimator is linear

μ̂ = Hy,

where H is an n×n matrix independent of the data y. H is often referred to as the hat matrix.
But in recent context, it is more and more unrealistic that the data analyst will not use the data
to build a linear estimation rule. H , in other words, depends on y. In this case, is there still
hope to get an unbiased estimator for the prediction error? In this article, we seek to address
this problem.

The following are some examples of applications. In the context of model selection, the
data analyst might use some techniques to select a subset of predictors M to build the lin-
ear estimation rules. Such techniques can include the more principled methods like LASSO
(Tibshirani (1996)), best subset selection, forward stepwise regression and Least Angle Re-
gression (Efron et al. (2004)) or some heuristics or even the combination of both. After the

Received November 2016; revised January 2019.
MSC2010 subject classifications. Primary 62H12, 62F12; secondary 62J07, 62F07.
Key words and phrases. Prediction error, model search, degrees of freedom, SURE.

763

http://www.imstat.org/aos/
https://doi.org/10.1214/19-AOS1818
http://www.imstat.org
mailto:xtian@alumni.stanford.edu
http://www.ams.org/mathscinet/msc/msc2010.html


764 X. TIAN

selection step, we simply project the data onto the column space of XM , the submatrix of X

that consists of M columns, and use that as our estimation rule. Specifically,

μ̂(y;X) = HM · y, HM = PM = XM

(
XT

MXM

)−1
XT

M,

M = M̂(y),
(1.2)

where M̂ can be any selection rule and PM is the projection matrix onto the column space of
XM . In the case when M is selected by the LASSO, μ̂ = XMβ̄M(y), and β̄M(y) is known as
the relaxed LASSO solution (Meinshausen (2007)).

We assume the hat matrix H
M̂

depends on the data y only through M̂ . In this sense, M̂ is
the abstraction of the data-driven part in H . This paper will study the prediction error of

μ̂ = H
M̂

· y.

In this paper, we want to estimate the prediction error for μ̂,

(1.3) Err = E
[‖ynew − H

M̂
· y‖2

2
]
, ynew ∼ N

(
μ(X),σ 2I

) ⊥ y.

There are several major methods for estimating (1.3) (Efron (2004)).

Penalty methods such as Cp or Akaike’s information criterion (AIC) add a penalty
term to the loss in training data. The penalty is usually twice the degrees of freedom times
σ 2.

Stein’s Unbiased Risk Estimator (Stein (1981)) provides an unbiased estimator for
any estimator that is smooth in the data. For nonsmooth estimation rules, Ye (1998) use
perturbation techniques to approximate the covariance term for general estimators.

Nonparametric methods like cross validation or related bootstrap techniques provide
risk estimators without any model assumption.

Methods like Cp assume a fixed model. Or specifically, the degrees of freedom is defined
as df = tr(H) for fixed H . Stein’s Unbiased Risk Estimator (SURE) only allows risk estima-
tion for almost differentiable estimators. In addition, computing the SURE estimate usually
involves calculating the divergence of μ̂(y). This is difficult when μ̂(y) does not have an ex-
plicit form. Some special cases have been considered. Works by Tibshirani and Taylor (2012),
Zou, Hastie and Tibshirani (2007) have computed the “degrees of freedom” for the LASSO
estimator, which is Lipschitz. But for general estimators of the form μ̂ = H

M̂
y, where H

M̂
depends on y, μ̂ might not even be continuous in the data y. Thus, analytical forms of the
prediction error are very difficult to derive (Mikkelsen and Hansen (2018), Tibshirani (2015)).

Nonparametric methods like cross validation are probably the most ubiquitous in prac-
tice. Cross validation has the advantage of assuming almost no model assumptions. However,
Klement, Mamlouk and Martinetz (2008) shows that cross validation is inconsistent for es-
timating prediction error in high-dimensional scenarios. Moreover, cross validation also in-
cludes extra variation from having a different X for the validation set, which is different from
the fixed X setup of this work. Efron (2004) also points out that the model-based methods
like Cp , AIC, SURE offer substantially better accuracy compared with cross validation, given
the model is believable.

In this work, we introduce a method for estimating prediction errors that is applicable
to general model selection procedures. Examples include best subset selection for which
prediction errors are difficult to estimate beyond X being orthogonal matrices (Tibshirani
(2015)). In general, we do not require H

M̂
to have any analytical forms. The main approach

is to apply the selection algorithm M̂ to a slightly randomized response vector y∗. This is
similar to holding out the validation set in cross validation, with the distinction that we do
not have to split the feature matrix X. We can then construct an unbiased estimator for the
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prediction error using the holdout information that is analogous to the validation set in cross
validation. Note that since y∗ would select a different model from y, this estimator will
not be unbiased for the prediction error of μ̂. However, If the perturbation in y∗ is small
and we repeat this process multiple times so the randomization averages out, we will get
an asymptotically unbiased and consistent estimator for the prediction error of μ̂ = H

M̂(y)
y,

which is the original target of our estimation.
Furthermore, we prove that under mild conditions on the selection procedure, our estimator

converges to the true prediction error as in (1.3) in L2 at the rate of n− 1
2 . This automatically

implies consistency of our estimator. Moreover, Li (1989) proves that in general, n− 1
2 is a

lower bound for the estimation of the average squared error. Thus our estimator achieves the
lower bound established by Li (1989). The Cp estimator, on the other hand, converges in L2

at the rate of n−1 for fixed hat matrix H . So compared with Cp , our estimator pays a price of

n
1
2 for the protection against any “data-driven” manipulations in choosing the hat matrix H

M̂
for the linear estimation rules.

1.1. Organization. The rest of the paper is organized as follows. In Section 2, we intro-
duce our procedure for unbiased estimation for a slightly different target. This is achieved by
first randomizing the data and then constructing an unbiased estimator for the prediction error
of this slightly different estimation rule. We then address the question of how randomization
affects the accuracy of our estimator for estimating the true prediction error. There is a clear
bias-variance tradeoff with respect to the amount of randomization. We derive upper bounds
for the bias and the variance in Section 3 and propose an “optimal” scale of randomization
that would make our estimator converge to the true prediction error in L2. Since the unbiased
estimator constructed in Section 2 only uses one instance of randomization. We can further
reduce the variance of our estimator by averaging over different randomizations. In Section 4,
we propose a simple algorithm to compute the estimator after averaging over different ran-
domizations. We also discuss the condition under which our estimator is equal to the SURE
estimator. While SURE is difficult to compute both in terms of analytical formula and simu-
lation, our estimator is easy to compute. Using the relationship between prediction error and
degrees of freedom, we also discuss how to compute the “search degrees of freedom,” a term
used in Tibshirani (2015) to refer to the degrees of freedom of estimators after model search.
Finally, we include some simulation results in Section 5 and conclude with some discussions
in Section 6.

2. Method of estimation. First, we assume the homoscedastic Gaussian model in (1.1),
y ∼ N(μ(X),σ 2I ), and we have a model selection algorithm M̂ ,

M̂ : R
n ×R

n×p → M, (y,X) �→ M.

As we assume X is fixed, we often use the shorthand M̂(y), and assume

M̂ : R
n → M, y �→ M,

where M is a finite collection of models we are potentially interested in. The definition
of models here is quite general. It can refer to any information we extract from the data.
A common model as described in the Introduction can be a subset of predictors of particular
interest. In such case, M̂ takes a value of the observation y and maps it to a set of selected
variables. Note also the inverse image of M̂−1 induces a partition on the space of Rn. We will
discuss this partition further in Section 3.

However, instead of using the original response variable y for selection, we use its ran-
domized version y∗,

(2.1) y∗ = y + ω, ω ∼ N
(
0, ασ 2I

) ⊥ y.
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For a fixed α > 0, after using y∗ to select a model M , we can define prediction errors
analogous to that defined in (1.3),

(2.2) Errα = E
[‖ynew − H

M̂(y+ω)
y‖2

2
]
, ynew ∼ N

(
μ(X),σ 2I

) ⊥ (y,ω).

The subscript α denotes the amount of randomization added to y. Note that although ran-
domization noise ω is added to selection, Errα integrates over such randomization and thus
are not random. The prediction error Err as defined in (1.3) corresponds to the case where
we set α = 0. In this section, we show that can get an unbiased estimator for Errα for any
α > 0. Before we introduce the unbiased estimator, we first introduce some background on
randomization.

2.1. Randomized selection. It might seem unusual to use y∗ for model selection. But
actually, using randomization for model selection and fitting is quite common—the common
practice of splitting the data into a training set and a test set is a form of randomization.
Although not stressed, the split is usually random and thus we are using a random subset of
the data instead of the data itself for model selection and training.

The idea of randomization for model selection is not new. The field of differential privacy
uses randomized data for database queries to preserve information (Dwork (2008)). This
particular additive randomization scheme, y∗ = y +ω is discussed in Tian and Taylor (2018).
In this work, we discover that the additive randomization in (2.1) allows us to construct
a vector independent of the model selection. This independent vector is analogous to the
validation set in data splitting.

To address the question of the effect of randomization, we prove that Err and Errα are
close for small α > 0 under mild conditions on the selection procedures. In other words,
since we have an unbiased estimator for Errα for any α > 0, when α goes to 0, its bias for Err
will diminish as well. For details, see Section 3. In addition, Section 5 also provides some
evidence in simulations.

2.2. Unbiased estimation. To construct an unbiased estimator for Errα , we first construct
the following vector that is independent of y∗,

(2.3) y− = y − 1

α
ω.

Note this construction is also mentioned in Tian and Taylor (2018). Using the property of
Gaussian distributions and calculating the covariance between y− and y∗ = y + ω, it is easy
to see y− is independent of y∗, and thus independent of the selection event {M̂(y∗) = M}.
Now we state our first result that constructs an unbiased estimator for Errα for any α > 0.

THEOREM 2.1 (Unbiased estimator). Suppose y ∼ N(μ(X),σ 2I ) is from the ho-
moscedastic Gaussian model (1.1), then

(2.4) Êrrα = ∥∥y− − H
M̂(y∗)y

∥∥2
2 + 2 tr(H

M̂(y∗))σ
2 − 1

α
nσ 2

is unbiased for Errα for any α > 0.

Before we prove the theorem, note that we need knowledge of σ 2 to compute the correction
term nσ 2/α in Êrrα (see (2.4)). In practice, we often need to estimate σ 2. If we choose

α = n− 1
4 as suggested in Section 3.3, we need the variance estimate σ̂ 2 to be at least n− 1

4

consistent to get a consistent estimator for Errα .
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PROOF OF THEOREM 2.1. First notice

y = 1

1 + α
y∗ + α

1 + α
y−, y = μ(X) + ε,

if we let ε∗ = y∗ − μ(X) and ε− = y− − μ(X), then

(2.5) ε = 1

1 + α
ε∗ + α

1 + α
ε−.

Note ε∗ ⊥ ε− and ε∗ ∼ N(0, (1 + α)σ 2I ), and ε− ∼ N(0, 1+α
α

σ 2I ).
With this, we first define the following estimator for any α > 0 and any M ∈ M:

(2.6) êrrα(M) = ∥∥y− − HMy
∥∥2

2 + 2 tr(HM)σ 2 − 1

α
nσ 2.

We claim that êrrα(M) is unbiased for the prediction error conditional on {M̂(y∗) = M}
for any M ∈ M and any α > 0. Formally, we prove

(2.7) E
[
êrrα(M) | M̂(

y∗) = M
] = E

[‖ynew − HM · y‖2 | M̂(
y∗) = M

]
.

To see (2.7), we first rewrite

E
[‖ynew − HMy‖2

2 | M̂(
y∗) = M

]
= E

[‖μ − HMy‖2 | M̂(
y∗) = M

] + nσ 2.
(2.8)

Now we consider the conditional expectation of êrrα(M). Note

E
[∥∥y− − HMy

∥∥2
2 | M̂(

y∗) = M
]

= E
[‖μ − HMy‖2 | M̂(

y∗) = M
]

+ 1 + α

α
nσ 2 − 2E

[(
ε−)T

HMy | M̂(
y∗) = M

]
= E

[‖μ − HMy‖2 | M̂(
y∗) = M

] + 1 + α

α
nσ 2 − 2α

1 + α
tr

[
HME

[
y−(

ε−)T ]]

= E
[‖μ − HMy‖2 | M̂(

y∗) = M
] + 1 + α

α
nσ 2 − 2 tr(HM)σ 2.

The equalities use the decomposition (2.5) as well as the fact that y∗ ⊥ ε−.
Comparing this with (2.8), it is easy to see (2.7). Moreover, marginalizing over M̂(y∗), it

is easy to see Êrrα in (2.4) is unbiased for Errα . �

In fact, using the proof for Theorem 2.1, we have a even stronger result than the unbiased-
ness of Êrrα .

REMARK 2.2. Êrrα is not only unbiased for the prediction error marginally, but condi-
tional on any selected event {M̂(y∗) = M}, Êrrα is also unbiased for the prediction error.
Formally,

E
[
Êrrα | M̂(

y∗) = M
] = E

[‖ynew − HM · y‖2 | M̂(
y∗) = M

]
.

This is easy to see with (2.7) and

E
[
Êrrα | M̂(

y∗) = M
] = E

[
êrrα(M) | M̂(

y∗) = M
]
.

The simple form of Êrrα in (2.6) has some resemblance to the usual Cp formula for predic-
tion error estimation, with 2 tr(H

M̂
)σ 2 being the usual correction term for degrees of freedom

in the Cp estimator. The additional term nσ 2/α helps offset the larger variance in y−.
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3. Randomization and the bias-variance tradeoff. We investigate the effect of ran-
domization in this section. In particular, we are interested in the bias term

Bn
def= Errα −Err

n

and the variance term

B ′
n

def= Var
[

Êrrα
n

]

for small α > 0.
There is a simple intuition for the effects of randomization on estimation of prediction

error. Since y∗ = y + ω, ω ∼ N(0, ασ 2), the randomized response vector y∗ which we use
for model selection will be close to y when the randomization scale α is small. Intuitively,
Errα should be closer to Err when α decreases. On the other hand, the independent vector
y− = y −ω/α which we use to construct the estimator for the prediction error is more variant
when α is small. We seek to find the optimal scale of α for this tradeoff.

Formally, we denote M̂ to be a selection procedure that selects an “important” subset of
variables. That is

M̂ :Rn → M ⊆ 2{1,...,p}.

Without loss of generality, we assume M̂ is surjective. Thus, the number of potential models
to choose from is |M| which is finite. Moreover, the map M̂ induces a partition of the space
of Rn. In particular, we assume

(3.1) Ui = M̂−1(Mi) ⊆R
n, i = 1, . . . , |M|,

where M = {M1, . . . ,M|M|} are different models to choose from. It is easy to see that

|M|∐
i=1

Ui =R
n,

and we further assume int(Ui) �= ∅ and ∂Ui has measure 0 under the Lebesgue measure on
R

n.
Now we assume the hat matrix is a constant matrix in each of the partition Ui . In particular,

(3.2) H
M̂(y)

=
|M|∑
i=1

HMi
I(y ∈ Ui).

The most common matrix is probably the projection matrix onto the column space spanned
by a subset of variables. Formally, we assume the following.

ASSUMPTION 3.1. For any M ∈M, we assume HM = XM(XT
MXM)−1XT

M , where XM

is the submatrix of X with M as the selected columns. It is easy to see, HM is symmetric and

H 2
M = HM ∀M ∈ M.

Moreover, we also assume that M̂ does not select too many variables to include in a model.
Specifically, we have the following.

ASSUMPTION 3.2. For any M ∈ M,

rank(HM) ≤ |M| ≤ K.
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We will see in Section 3.2 that under Assumption 3.2, K and p enter the upper bound for

Var[Êrrα] as O(
(K logp)2

n2 ). Thus, so long as K logp = o(n), this term will vanish as n tends
to infinity.

Finally, we also assume the model selection procedure M̂ and the resulting solution H
M̂

y

are stable. Specifically, we assume M̂ satisfies the following assumption.

ASSUMPTION 3.3.

(3.3) Var
[∥∥H

M̂(y′)y
′ − μ

∥∥2
2

] = O
(
nσ 4)

, y′ ∼ N(μ, τ),

where σ 2 ≤ τ ≤ (1 + δ)σ 2 for some small constant δ > 0.

Under the above assumption, the estimation error of H
M̂

y cannot be too variable. As an
example, we show in the following lemma that the relaxed Lasso estimator satisfies Assump-
tion 3.3 under the setup commonly used in the Lasso literature.

LEMMA 3.4. We assume a sparse linear model setting where

y ∼ N
(
Xβ0, σ 2I

)
,

∥∥β0∥∥
0 = s,

and suppose X satisfies the restricted eigenvalue condition with constant φ0 as proposed in
Bickel, Ritov and Tsybakov (2009). Then the relaxed Lasso estimator satisfies Assumption 3.3
if we choose the regularization parameter λ as

λ = κσE
[∥∥XT ε′∥∥∞

]
, ε′ ∼ N(0, I ),

for κ > 1 and s logp = O(
√

n).

With these conditions above, we show in the following that the bias Bn = O(α) (Theo-

rem 3.5) and the variance B ′
n = O( 1

nα2 + (K logp)2

n2 ) (Theorem 3.7). The proofs of the theorems
use some lemmas whose proofs we defer to Section 7.

3.1. Bias. The bias Bn is introduced by the fact that selection is performed with y∗, the
randomized version of y. However, for small perturbations, the resulting bias will be small
as well. Formally, we have the following theorem.

THEOREM 3.5. Suppose Assumptions 3.1, 3.2 and 3.3 are satisfied, then the bias

Bn ≤ C · ασ 2 for α < δ,

where C is a universal constant and δ > 0 is a small constant defined in Assumption 3.3.

Essential to the proof of Theorem 3.5 is that the estimation error for

μ̂(y) = H
M̂(y)

y

is robust to small perturbations on y. This is true under the assumptions introduced at the
beginning of Section 3. Formally, we get the following lemma.

LEMMA 3.6. Under Assumptions 3.1–3.3, we have

1

n

∣∣E[∥∥μ̂(y + ω) − μ
∥∥2] −E

[∥∥μ̂(y) − μ
∥∥2]∣∣ ≤ C1 · ασ 2, ω ∼ N

(
0, ασ 2I

)
,

where C1 is a universal constant. The inequality holds for all α < δ, where δ is the small
constant defined in Assumption 3.3. The first expectation is taken over (y,ω) and the second
expectation is taken over y.
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With Lemma 3.6, it is easy to prove Theorem 3.5.

PROOF. First, notice that

H
M̂(y∗)y = H

M̂(y∗)y
∗ − H

M̂(y∗)ω = μ̂(y + ω) − H
M̂(y+ω)

ω.

Thus, we have

Bn = 1

n
|Errα −Err|

= 1

n

∣∣E[‖H
M̂(y+ω)

y − μ‖2] −E
[‖H

M̂(y)
y − μ‖2]∣∣

≤ 1

n

∣∣E[∥∥μ̂(y + ω) − μ
∥∥2] −E

[∥∥μ̂(y) − μ
∥∥2]∣∣ + 1

n
E

[‖H
M̂(y+ω)

ω‖2] + 2ασ 2

≤ 1

n

∣∣E[∥∥μ̂(y + ω) − μ
∥∥2] −E

[∥∥μ̂(y) − μ
∥∥2]∣∣ + 1

n
E

[‖ω‖2] + 2ασ 2

≤ (C1 + 3)ασ 2.

To see the first inequality, we use the notation as in (2.5) and note that the cross term

E
[
ωT H

M̂(y∗)
(
H

M̂(y∗)y
∗ − μ

)]
= E

[
ωT H

M̂(y∗)ε
∗]

= E

[
α

1 + α

(
ε∗ − ε−)

H
M̂(y∗)ε

∗
]

≤ α

1 + α
E

[∥∥ε∗∥∥] = ασ 2
�

3.2. Variance. In this section, we discuss the variance of our estimator B ′
n. As previously

discussed at the beginning of the section, it is intuitive that B ′
n will increase as α decreases.

Before we establish quantitative results about B ′
n with respect to α, recall that the variance

of the Cp estimators is of order O(n) when the hat matrix H
M̂

= H is independent of data.
In the following, we show that when we allow model selection, the variance of our estimator
Êrrα will increase as a function of α. When the optimal α is chosen, it converges to the

average error at a rate of O(n− 1
2 ), which is the lower bound established in Li (1989).

In the following, we seek to establish how inflated the variance B ′
n is compared to Cp .

Theorem 3.7 gives an explicit upper bound for B ′
n with respect to α, K and p.

THEOREM 3.7. Suppose Assumptions 3.1, 3.2, 3.3 are satisfied and ‖μ‖2 = O(n), then

B ′
n = σ 4 · O

(
1

nα2 + (K logp)2

n2

)
.

PROOF. The key to bounding the variance of Êrrα is to bound the variance

Var
[∥∥y− − H

M̂(y∗)y
∥∥2]

.

First, noting y− = y − 1
α
ω, y∗ = y + ω, we have∥∥y− − H

M̂(y∗)y
∥∥2

= ∥∥y− − H
M̂(y∗)y

∗∥∥2 + ‖H
M̂(y∗)ω‖2 − 2ωT H

M̂(y∗)
(
y− − y∗)

= ∥∥y− − H
M̂(y∗)y

∗∥∥2 +
(

2

α
+ 3

)
‖H

M̂(y∗)ω‖2.
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The variance of the first term is bounded by

Var
[∥∥y− − H

M̂(y∗)y
∗∥∥2]

= E
[
Var

[∥∥y− − H
M̂(y∗)y

∗∥∥2|y∗]] + Var
[
E

[∥∥y− − H
M̂(y∗)y

∗∥∥2|y∗]]
= 2n

(
1 + 1

α

)2
σ 4 + 4

(
1 + 1

α

)
σ 2

E
[∥∥H

M̂(y∗)y
∗ − μ

∥∥2]
+ Var

[∥∥H
M̂(y∗)y

∗ − μ
∥∥2]

≤ 2n

(
1 + 1

α

)2
σ 4 + 4

(
1 + 1

α

)
σ 2[

(1 + α)n + 2‖μ‖2]
+ Var

[∥∥H
M̂(y∗)y

∗ − μ
∥∥2]

.

The second equality uses the independence of y∗ and y− as well as the variance for a non-
central χ2 distribution.

The variance of the second term is bounded by

Var
[(

2

α
+ 3

)
‖H

M̂(y∗)ω‖2
]

≤
(

2

α
+ 3

)2
E

[‖H
M̂(y∗)ω‖2]2

≤
(

2

α
+ 3

)2
· α2σ 4 · O(

K2 + (
log |M|)2) = O

(
(K logp)2σ 4)

.

The last inequality uses the tail property of χ2 random variables, which are summarized in
Lemma 7.1 in Section 7.

Combining the two terms, and using Assumption 3.3 and ‖μ‖2 = O(n), we have

Var
[

Êrrα
n

]
= σ 4 · O

(
1

nα2 + (K log)2

n2

)
. �

Recall the variance of Cp

n
is of order O(n−1). In comparison, we pay a price of α−2 plus

O(
(K logp)2

n2 ), but allows our hat matrix to be dependent on the data y.

3.3. Bias-variance tradeoff and the choice of α. Combining Theorem 3.5 and Theo-
rem 3.7, we have the following convergence rate:

E

[(
Êrrα
n

− Err

n

)2]
= σ 4 · O

(
α2 + 1

nα2 + (K logp)2

n2

)
.

COROLLARY 3.8. If we choose α = n− 1
4 and assume K logp = O(n

3
4 ), then

E

[(
Êrrα
n

− Err

n

)2]
= O

(
n− 1

2
)
.

It is easy to see that α = n− 1
4 achieves the optimal rate for convergence. This should offer

some guidance about the choice of α in practice.
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Algorithm 1 Algorithm for computing Êrr(I )
α for any α > 0

1: Input: X, y

2: Initialize: Êrr(I )
α ← 0, N ∈ Z+

3: for i in 1 : N do
4: Draw ω(i) ∼ N(0, ασ 2I )

5: Compute y∗ = y + ω(i), y− = y − 1
α
ω(i)

6: Compute M̂∗ = M̂(y∗)
7: Use Equation (2.4) to compute Êrr(i)α from y, y−, M̂∗.

8: Êrr(I )
α = Êrr(I )

α + Êrr(i)α /N

return Êrr(I )
α

4. Further properties and applications. In Section 3.3, we show that Êrrα will have
diminishing variances if α is chosen properly. However, since Êrrα is computed using only
one instance of the randomization ω, its variance can be further reduced if we aggregate
over different randomizations ω. Furthermore, in the following section, we will show that
after such marginalization over ω, Êrrα is uniform minimum variance unbiased (UMVU)
estimators for the prediction error Errα under some conditions.

4.1. Variance reduction techniques and UMVU estimators. We first introduce the fol-
lowing lemma that shows the variance of Êrrα can be reduced at no further assumption.

LEMMA 4.1. The following estimator is unbiased for Errα ,

(4.1) Êrr(I )
α = Eω[Êrrα | y].

Furthermore, it has smaller variance,

Var
[
Êrr(I )

α

] ≤ Var[Êrrα].
The lemma can be easily proved using basic properties of conditional expectation. In prac-

tice, we approximate the integration over ω by repeatedly sampling ω and taking the averages.
Specifically, Algorithm 1 provides an algorithm for computing Êrr(I )

α for any α > 0.

Since Êrr(I )
α has the same expectation as Êrrα with smaller variances, it is easy to deduce

from Corollary 3.8 that Êrr(I )
α also converges to Err in L2 at a rate of at least O(n− 1

2 ) (after
a proper scaling of n−1). Furthermore, we show that such estimators are UMVU estimators
for any α > 0 when the parameter space μ(X) contains a ball in R

n.

LEMMA 4.2. If parameter space of μ(X) contains a ball in R
n, then Êrr(I )

α are UMVU
estimators for Errα for any α > 0.

PROOF. Without loss of generality, assume ω has density g with respect to the Lebesgue
measure on R

n, then the density of (y,ω) with respect to the Lebesgue measure on R
n ×R

n

is proportional to

(4.2) exp
[
μ(X)T y

σ 2

]
g(ω).

We note that (4.2) is an exponential family with sufficient statistics y. Moreover, when the
parameter space of μ(X) contains a ball in R

n, then we have y is sufficient and complete.
Thus, taking an unbiased estimator Êrrα and integrating over ω conditional on y, the complete
and sufficient statistics, we have the UMVU estimators. �
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4.2. Relation to the SURE estimator. In this section, we reveal that our estimator Êrrα
is equal to the SURE estimator for the prediction error Errα if the parameter space of μ(X)

contains a ball in R
n.

First, we notice that for any α > 0, Errα is the prediction error for

μ̂α(y) = E[H
M̂(y+ω)

y | y], ω ∼ N
(
0, ασ 2I

)
.

Although μ̂(y) might be discontinuous in y, μ̂α(y) is actually smooth in the data. To see that,
note

(4.3) μ̂α(y) =
|M|∑
i=1

Hiy

∫
Ui

φα(z + y)dz,

where φα is the p.d.f for N(0, ασ 2I ). Due to the smoothness of φα and the summation being
a finite sum, we have μ̂α(y) is smooth in y. Therefore, in theory we can use Stein’s formula
to compute an estimate for the prediction error of μ̂α(y). Note such estimator would only
depend on y, the complete and sufficient statistics for the exponential family in (4.2) when
the parameter space of μ(X) contains a ball in R

n. Thus it is also the UMVU estimator for
Errα . By Lemma 4.2 and the uniqueness of UMVU estimators, we conclude Êrrα is the same
as the SURE estimator.

However, the SURE estimator is quite difficult to compute as the regions Ui ’s may have
complex geometry and explicit formulas are hard to derive (Mikkelsen and Hansen (2018)).
Moreover, it is difficult to even use Monte Carlo samplers to approximate the integrals in
(4.3) since the sets Ui ’s might be hard to describe and there are |M| integrals to evaluate,
making it computationally expensive.

In contrast, Êrrα provides an unbiased estimator for Errα at a much lower computational
cost. That is, we only need to sample ω’s from N(0, ασ 2I ) and compute Êrrα at each time and
average over them. The major computation involved is reselecting the model with y∗ = y+ω.
In practice, we choose the number of samples for ω’s to be less than the number of data points,
so the computation involved will be even less than Leave-One-Out cross validation.

4.3. Prediction error after model selection. One key message of this work is that we
can estimate the prediction error of the estimation rule μ̂ even if we have used some model
selection procedure to construct the hat matrix H

M̂
in μ̂. In practice, however, we need a

priori information on σ 2 to compute Êrrα . There are several methods for consistent estimation
of σ 2. In the low dimensional setting, we can simply use the residual sum of squares divided
by the degrees of freedom to estimate σ 2. In the high-dimensional setting, the problem is
more challenging, but various methods are derived (Reid, Tibshirani and Friedman (2016),
Sun and Zhang (2012), Tian, Loftus and Taylor (2018)).

We also want to stress that the prediction error defined in this work is the in-sample pre-
diction error that assumes fixed X. This is the same setup as in Cp (Mallows (1973)), SURE
(Stein (1981)) and the prediction errors discussed in Efron (2004). A good estimator for the
in-sample prediction error will allow us to evaluate and compare the predictive power of
different estimation rules.

However, in other cases, we might be interested in out-of-sample prediction errors. That is,
the prediction errors are measured on a new dataset (Xnew, ynew), Xnew ∈ R

n×p, ynew ∈ R
n

where Xnew �= X. In this case, assuming we observe some new feature matrix Xnew, and we
are interested in the out-of-sample prediction error,

(4.4) Errout = E
[∥∥μ(Xnew) − Xnewβ̄(y)

∥∥2] + nσ 2,

where

β̄(y) = (
XT

MXM

)−1
XT

My, M̂(y) = M,
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where M̂ is the model selection procedure that depends on the data. Analogous to Errα , we
define

(4.5) Errout,α = E
[∥∥μ(Xnew) − Xnewβ̄∗(y)

∥∥2] + nσ 2,

where

β̄∗(y) = (
XT

MXM

)−1
XT

My, M̂
(
y∗) = M.

We want to point out that we do not place any assumption on how the feature matrix is
sampled. Specifically, we do not need to assume Xnew is sampled from the same distribution
as X. Rather, we condition on the newly observed matrix Xnew. This is a distinction from
cross validation which assumes the rows of the feature matrix X are i.i.d samples from some
distribution. Such assumption may not be satisfied in practice.

Then in the low dimensional setting where p < n, we are able to construct an unbiased
estimator for Errout,α .

LEMMA 4.3. Suppose X ∈ R
n×p and rank(X) = p. Then if we further assume a linear

model where

μ(X) = Xβ0,

where β0 is the underlying coefficients. Assuming the homoscedastic model in (1.1), we have

Êrrout,α = ∥∥H0y
− − H

M̂(y∗)y
∥∥2 + 2 tr

(
HT

0 H
M̂(y∗)

)
σ 2 + nσ 2

− 2 tr
(
HT

0 H0
)(

1 + 1

α

)
σ 2(4.6)

is unbiased for Errout,α , where

H0 = Xnew
(
XT X

)−1
XT , H

M̂(y∗) = Xnew,M̂(y∗)
(
XT

M̂(y∗)XM̂(y∗)
)−1

XT

M̂(y∗).

The proof of the lemma is analogous to that of Theorem 2.1 noticing that

H0μ(X) = Xnew
(
XT X

)−1
XT Xβ0 = Xnewβ0 = μ(Xnew).

Lemma 4.3 provides an unbiased estimator for Errout,α for p < n and μ(X) being a linear
function of X. To bound the difference Errout,α −Errout, we might need to assume condi-
tions similar to those introduced at the beginning of Section 3. In the case where p < n, we
might still hope that the matrices H0, H

M̂
will be close to projection matrices, and almost

satisfy Assumptions 3.1. Thus, intuitively, Errout,α and Errout will be close and the estimator
Êrrout,α will be a good estimator of Errout when p < n. In simulations, we see that in the
low-dimensional setting, the performance of Errout,α is comparable to that of cross valida-
tion. However, in the high-dimensional setting where n < p, the estimation of out-of-sample
errors remains a very challenging problem that we do not seek to address in the scope of this
work.

4.4. Search degrees of freedom. There is a close relationship between (in-sample) pre-
diction error and the degrees of freedom of an estimator. In fact, with a consistent estimator
for the prediction error Err, we get a consistent estimator for the degrees of freedom.

Under the framework of Stein’s unbiased risk estimator, for any estimation rule μ̂, we have

(4.7) Err = E
[∥∥y − μ̂(y)

∥∥2] + 2
n∑

i=1

Cov
[
μ̂i(y), yi

]
,
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where μ̂i is the ith coordinate of μ̂. For almost differentiable μ̂’s, Stein (1981) showed the
covariance term is equal to

(4.8) Cov
[
μ̂i(y), yi

] = σ 2
E

[
∂μ̂i

∂yi

]
.

The sum of the covariance terms, properly scaled, is also called the degrees of freedom:

(4.9) df = σ−2
n∑

i=1

Cov
[
μ̂i(y), yi

] =
n∑

i=1

E

[
∂μ̂i

∂yi

]
.

However, in many cases, the analytical forms of μ̂ are very hard to compute or there is none.
In such cases, the computation of its divergence is only feasible for very special μ̂’s (Zou,
Hastie and Tibshirani (2007)). Moreover, for discontinuous μ̂’s which are under considera-
tion in this work, Mikkelsen and Hansen (2018) showed that there are further correction terms
for (4.8) to account for the discontinuities. In general, these correction terms do not have an-
alytical forms and are hard to compute. Intuitively, due to the search involved in constructing
μ̂ = H

M̂
y, it will have larger degrees of freedom than tr(H

M̂
) which treats the hat matrix as

fixed. We adopt the name used in Tibshirani (2015) to call it “search degrees of freedom.”
We circumvent the difficulty in computing ∂μ̂i/∂yi by providing an asymptotically unbi-

ased estimator for Err. Formally,

(4.10) d̂f = 1

σ 2

[
Êrr(I )

α − ‖y − μ̂‖2
2
]
,

where Êrr(I )
α is defined as in (4.1). Using the discussion in Section 3.3, we choose α = n−1/4.

Notice that such approach as above is not specific to any particular model search procedures
involved in constructing μ̂. Thus it offers a unified approach to compute degrees of freedom
for any μ̂ = H

M̂(y)
y satisfying the appropriate assumptions in Section 3. We illustrate this

flexibility by computing the search degrees of freedom for the best subset selection where
there has been no explicitly computable formula.

Prediction error estimates may also be used for tuning parameters. For example, if the
model selection procedure M̂ is associated with some regularization parameter λ, we find the
optimal λ that minimizes the prediction error of μ̂λ

(4.11) λoptimal = min
λ

E
[‖ynew − H

M̂λ(y)
· y‖2

2
]
,

where the expectation is taken over both ynew and y. Shen and Ye (2002) shows that this
model tuning criterion will yield an adaptively optimal model which achieves the optimal
prediction error as if the tuning parameter were given in advance.

Using the relationship in (4.7) and (4.9), we easily see that the Cp type criterion (4.11) is
equivalent to the AIC criterion using the definition of degrees of freedom (4.9). Analogously,
we can also propose the BIC criterion as

BIC = ‖y − μ̂‖2
2

nσ 2 + logn

n
d̂f.

Yang (2005) points out that compared with the Cp or AIC criterion, BIC tends to recover the
true underlying sparse model and recommends it if sparsity is the major concern.

5. Simulations. In this work, we propose a method for risk estimation for a class of
“select and estimate” estimators. One remarkable feature of our method is that it provides
a consistent estimator of the prediction error for a large class of selection procedures under
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general, mild conditions. To demonstrate this strength, we provide simulations for two selec-
tion procedure under various setups and datasets. The two estimators are the OLS estimator
after best subset selection and relaxed Lasso, which we denote as μ̂best and μ̂RL. In particular,

μ̂(y) = X
M̂

(
XT

M̂
X

M̂

)−1
XT

M̂
y,

where M̂ is selected by the best subset selection and Lasso at a fixed λ respectively using the
original data y. In their Lagrangian forms, best subset selection and Lasso at fixed λ can be
written as

min
β

1

2
‖y − Xβ‖2

2 + λ‖β‖k,

where k = 0 for best subset selection and k = 1 for Lasso. Thus, by showing the good per-
formances (in simulation) of our estimator at both k = 0 and k = 1, we believe the good per-
formance would persist for all the nonconvex optimization problems with 0 ≤ k < 1. In the
simulation, we always marginalize over different randomizations to reduce variance. Specif-
ically, we use Algorithm 1 to compute Êrr(I )

α which we use in all of the comparisons below.
In the following simulations, we compare both the bias and variances of our estimator

Êrr(I )
α with the Cp estimator, cross validation as well as the parametric bootstrap method pro-

posed in Efron (2004). In particular, to ensure fairness of comparison, we use Leave-One-Out
cross validation in all of our simulations. Most of our simulations are for in-sample prediction
errors with some exceptions of comparing the out-of-sample estimator Êrr(I )

out,α in Section 4.3
to cross validation for estimating out-of-sample prediction errors. To establish a “known”
truth to compare to, we use mostly synthetic data, with some of the synthetic datasets gen-
erated from a diabetes dataset. In the following simulations, we call our estimator “additive”
due to the additive randomization used in the estimation. Cross validation is abbreviated as
“CV.” The true prediction error is evaluated through Monte Carlo sampling since we have
access to the “true” underlying distribution. We assume the variance σ 2 is unknown and es-
timate it with the OLS residuals when p < n. In the high-dimensional setting, we use the
methods in Reid, Tibshirani and Friedman (2016) to estimate σ 2.

5.1. Relaxed Lasso estimator. We perform simulation studies for the prediction error and
degrees of freedom estimation for the relaxed Lasso estimator. Unless stated otherwise, the
target of prediction error estimation is the in-sample prediction error

Err = E
[∥∥ynew − μ̂RL(y)

∥∥2
2

]
, ynew ∼ N

(
μ(X),σ 2I

) ⊥ y.

According to the framework of SURE (Stein (1981)), the degrees of freedom of the estimator
μ̂RL can be defined as

df =
n∑

i=1

Cov[μ̂RL,i , yi]
σ 2 ,

which is the target of our estimation. We first study the performance of the prediction error
estimation.

5.1.1. Prediction error estimation. In the following, we describe our data generating dis-
tribution as well as the parameters used in the simulation.

• The feature matrix X ∈ R
n×p is simulated from an equi-correlated covariance matrix with

normal entries. The correlation is ρ = 0.3.
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• y is generated from a sparse linear model,

y = Xβ0 + ε, ε ∼ N
(
0, σ 2I

)
,

where

β0 = (snr, . . . , snr︸ ︷︷ ︸
s

,0, . . . ,0)

and snr is the signal-to-noise ratio and s is the sparsity of β0.
• We fit a Lasso problem with λ = κλ0, where

λmin = E
[∥∥XT ε′∥∥∞

]
, ε′ ∼ N

(
0, σ 2I

)
,

is the level where noise below which noise starts to enter the Lasso path (Negahban et al.
(2009)) and we choose κ > 1.

• The parameter α as defined in (2.1) is taken to be approximately n− 1
4 .

We compare the performances of the estimators for different settings. We take n = 100,

and p = 50,200,400 and sparsity to be s = 10,20. Since n− 1
2 = 10, s = 20 is the more dense

signal situation. We take κ to be 1.1 for the low-dimensional setting and 1.5 for the high-
dimensional setting. The randomization parameter α = 0.25 ≈ n−1/4. We see in Figure 1
that in all settings Êrr(I )

α provides an unbiased estimator that has small variance. Remarkably,
notice that the variance of our estimator is comparable to the dotted the black lines are the
standard error of the true prediction error estimated from Monte Carlo sampling, which is
probably the best one can hope for. Êrr(I )

α clearly outperforms both Cp and cross validation.
Its performance is comparable to the parametric bootstrap estimator in the sparse scenario al-
though parametric bootstrap seems to have more extreme values. Our estimator also performs
slightly better in the more dense scenario s = 20 in panel 3 of Figure 1. In the dense signal
situation, the model selected by Lasso is often misspecified. We suspect that in this situation,
that parametric bootstrap overfits the data in this situation, causing a slight bias downwards.
The Cp estimator is always biased down because it does not take into account the “degrees
of freedom” used for model search. On the other hand, cross validation has an upward bias
for in-sample prediction error. However, this bias is twofold. First, the extra randomness in
the new feature matrix will cause the out-of-sample prediction error to be higher. However,
comparing panels 3 and 4 of Figure 1, we see that when the signal is more dense s = 20 in
panel 3, cross validation has a much larger bias than when the dimension is higher p = 400 in
panel 4. This suggests that cross validation might be susceptible to model misspecifications
as well. With less sparse signals, the model selected by Lasso is not stable or consistent, caus-
ing cross validation to behave wildly even when we only leave out one observation at a time.
In contrast, in all of the four settings, our estimator Êrr(I )

α provides an unbiased estimator
with small variance.

This phenomenon persists when we vary the penalty parameter λ. For a grid of λ’s with
varying κ’s from [0.2,1.6], we see from Figure 2 that cross validation error is always overesti-
mates the in-sample prediction error. Moreover, the amount of over estimation highly depends
on the data generating distribution. In both panels of Figure 2, n = 100, p = 200, snr = 7,
and the only difference is the sparsity is s = 10 for Figure 2(a) and s = 20 for Figure 2(b).
Using the same dimensions for X, we seek to control the extra randomness by using a differ-
ent X for the validation set. However, the change in the sparsity level alone has huge impact
for the cross validation estimates of the prediction error. The curve by cross validation is
also more kinky due to its bigger variance. However, in both scenarios, Êrr(I )

α hugs the true
prediction error.
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FIG. 1. Comparison of different estimators for different n,p, s, snr. The red horizontal line is the true prediction
error estimated by Monte Carlo simulation with the dashed black lines denoting its standard deviation.

5.1.2. Degrees of freedom. In this section, we carry out a simulation study for our esti-
mate of the degrees of freedom of the relaxed Lasso estimator μ̂RL. We take the 64 predictors
in the diabetes dataset (Efron et al. (2004)) to be our feature matrix X, which include the
interaction terms of the original ten predictors. The positive cone condition is violated on the
64 predictors (Efron et al. (2004), Zou, Hastie and Tibshirani (2007)). We use the response
vectors y to compute the OLS estimator β̂ols and σ̂ols and then synthetic data is generated
through

y = Xβ̂ols + ε, ε ∼ N
(
0, σ 2

olsI
)
.

We choose λ’s to have different ratios κ ∈ {0.05,0.1,0.15,0.2,0.25}. Figure 3 shows
the estimates of degrees of freedoms by our method as in (4.10) and the naive estimate
d̂fnaive = |M̂| compared with the truth computed by Monte Carlo sampling. The naive Cp

estimator always underestimate the degrees of freedom, not taking into account the inflation

FIG. 2. Estimation of prediction errors for different λ’s. Cross validation is always biased upwards. However,
the bias depends on the data generating distribution.
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FIG. 3. Comparison of estimates of degrees of freedom by cross validation, d̂f in (4.10) and d̂fnaive = |M̂| at
different λ’s. α = 0.25 ≈ n−1/4.

in degrees of freedom after model search. However, our estimator as defined in (4.9) provides
an unbiased estimation for the true degrees of freedom for the relaxed Lasso estimator μ̂RL.

5.1.3. Out-of-sample prediction errors. Finally, we test the unbiasedness of the proposed
estimator in Section 4.3 for out-of-sample prediction error. We compare with cross validation
in the low-dimensional setting where p = 20 and p = 50, respectively. In this section only,
our target is the out-of-sample prediction error

Errout = E
[∥∥Xnewβ0 − Xnew,M̂(y)

β̄(y)
∥∥2] + nσ 2,

where β̄ is the relaxed Lasso estimator and M̂(y) is the nonzero set of the Lasso solution at λ.
We still abbreviate our estimator as “additive” and compare with the out-of-sample prediction
error by cross validation.

We see in Figure 4 that the estimator proposed in Section 4.3 is roughly unbiased for
out-of-sample prediction error. Its performance is comparable with cross validation in both
settings, with a slightly larger variance. However, as pointed in Section 4.3, our estimator
does not assume any assumptions on the underlying distribution of the feature matrix X.

5.2. Best subset selection. The Cp estimator was originally proposed for picking the
model size in best subset selection. One aspect that often gets neglected is that for any k < p,
where p is the number of features to choose from, there are more than one models of size k to
choose from. And the best subset of size k already includes a selection procedure that needs
to be adjusted for. To illustrate this problem, we generate a feature matrix X of dimension
100 × 6 with i.i.d. standard normal entries, and y is generated from a linear model of X:

y = Xβ + N(0,1), β = (1,2,3,4,5,6).

For each subset of size k = 1, . . . ,6, we estimate the prediction error of the best subset
of size k using both Cp and Êrr(I )

α . The true prediction error is evaluated using Monte Carlo
sampling. From Figure 5, we see that Cp is indeed an under estimate for the prediction error
for best subset selection. The bias is bigger when k = 2,3,4 when there are more potential
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FIG. 4. Out of sample prediction error by Êrr(I )
out,α and cross validation, respectively.

submodels to select from. In contrast, Êrr(I )
α hugs the true prediction error at every subset

size k.

6. Discussion. In this work, we propose a method for estimating the prediction error
after some data snooping in selecting a model. Remarkably, our estimation is not specific to
any particular model selection procedures so long as it does not select too many variables
to include in the model and it picks up some signals in the data. Different examples are
considered.

In the following, we propose two more aspects of the problem that deserve attention but
we do not seek to address in this work.

FIG. 5. Comparison of different estimates of prediction errors.
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• We mainly focus on “in-sample” prediction errors, with the exception of Section 4.3. But
as pointed in Section 4.3, although we can provide a consistent estimator of the (in-sample)
prediction error in high dimensions, the same is not true for out-of-sample errors. Klement,
Mamlouk and Martinetz (2008) points out that the same difficulty exists for cross valida-
tion as well. Under what assumptions can we provide a good estimator for out-of-sample
prediction error in high dimensions remains a very interesting question.

• Throughout the work, we assume that the data comes from a homoscedastic normal model
(1.1). Some simulations show that the performance of our estimator persists when the noise
in the data is sub-Gaussian. The authors of Tian and Taylor (2018) pointed out that it is
important that the tail of the randomization noise is heavier than that of the data. Since we
add Gaussian noise for randomization, we suspect that the normal assumption on the data
can be replaced by a sub-Gaussian assumption. Alternatively, we may investigate what
other randomization noise we may add to the data when we have heavier-tailed data.

7. Proof of the lemmas.

7.1. Proof of Lemma 3.6. First notice that for hat matrix of the form in (3.2), we have

E
[∥∥μ̂(y) − μ

∥∥2] =
|M|∑
i=1

∫
Ui

‖Hiy − μ‖2φ
(
y;μ,σ 2)

dy,

where Hi is short for HMi
and φ(·;μ,σ 2) is the density for N(μ,σ 2I ). Let σ 2 ≤ τ ≤ (1 +

δ)σ 2, where δ is defined in Assumption 3.3, and we define

g(τ) = E
[∥∥μ̂(u) − μ

∥∥2]
, u ∼ N(μ, τI).

We note that g is differentiable with respect to τ and

1

n

∣∣E[∥∥μ̂(y + ω) − μ
∥∥2] −E

[∥∥μ̂(y) − μ
∥∥2]∣∣

= 1

n

∣∣g(
(1 + α)σ 2) − g

(
σ 2)∣∣,

0 < α ≤ δ.

(7.1)

Moreover, we have

∂τg(τ ) =
|M|∑
i=1

∫
Ui

‖Hiu − μ‖2∂τ

[
1

(
√

2πτ)n
exp

(
−‖u − μ‖2

2

2τ

)]
du

= 1

2τ

|M|∑
i=1

∫
Ui

‖Hiu − μ‖2
[‖u − μ‖2

τ
− n

]
φ(u;μ,τ) du

= 1

2τ
E

[
‖H

M̂(u)
u − μ‖2

[‖u − μ‖2

τ
− n

]]
,

∣∣∂τg(τ )
∣∣ ≤ 1

2τ
Var

[‖H
M̂(u)

u − μ‖2] 1
2E

[[‖u − μ‖2

τ
− n

]2] 1
2
.

(7.2)

The last inequality holds because E[ ‖u−μ‖2

τ
− n] = 0 and the expectations are taken over

u ∼ N(μ, τI). Per Assumption 3.3,

Var
[‖H

M̂(u)
u − μ‖2] 1

2 = O
(√

nσ 2)
.
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Moreover, note that ‖u − μ‖2/τ is a χ2
n distribution with mean n, thus

E

[[‖u − μ‖2

τ
− n

]2]
= Var

[
χ2

n

] = 2n.

Combining the above inequalities with (7.2) and we have

∣∣∂τ g(τ )
∣∣ = O

(
nσ 2) ∀τ ∈ [

σ 2, (1 + δ)σ 2]
.

Therefore, for any 0 < α ≤ δ, we have

1

n

∣∣E[∥∥μ̂(y + ω) − μ
∥∥2] −E

[∥∥μ̂(y) − μ
∥∥2]∣∣

= 1

n

∣∣g(
(1 + α)σ 2) − g

(
σ 2)∣∣ = O

(
ασ 2)

.

7.2. Lemma 7.1 and its proof.

LEMMA 7.1. If Z1,Z2, . . . ,Zm ∼ χ2
k , not necessarily independently distributed, then

E

[
max
i≤m

Z2
i

]
= O

[
k2 + (logm)2]

.

PROOF. Using union bound, we have

P

(
max
i≤m

Zi > t
)

= mP(Zi > t).

Using the following bound for χ2 random variables derived in Laurent and Massart (2000)

P(Zi ≤ k + 2
√

kx + 2x) ≤ exp(−x) ∀x > 0,

we take x = logm + t for any t > 0, and have

P

(
max
i≤m

Zi > k + 2
√

k logm + kt + 2 logm + 2t
)

≤ m × P(Zi > k + 2
√

k logm + kt + 2 logm + 2t)

≤ m exp(− logm − t) = exp(−t).

Thus it is easy to see that maxi≤m Zi is stochastically dominated by

k + 2
√

k logn + 2 logn + ξ,

where ξ ≥ 0 and has exponential tails satisfying

P(ξ > 2t + 2
√

kt) ≤ exp(−t), ∀t > 0.

Since Xi ≥ 0, we have

E

[
max
i≤m

X2
i

]
≤ E

[
(2 logm + 2

√
k logm + k + ξ)2] = O

[
(logm)2 + k2]

. �



PREDICTION ERROR AFTER MODEL SEARCH 783

7.3. Proof of Lemma 3.4. We denote μ̂RL = H
M̂

y to be the relaxed Lasso solution where

M̂ is the subset of variables selected by Lasso with regularization parameter λ, and μ̂lasso to
be the Lasso solution. Then the variance can be upper bounded by

(7.3) Var
[‖μ̂RL − μ‖2] ≤ 2 Var

[‖μ̂RL − μ̂lasso‖2] + 2 Var
[‖μ̂lasso − μ‖2]

Using the Karush–Kuhn–Tucker conditions outlined in Tibshirani and Taylor (2012), we
have

μ̂lasso = H
M̂

y − λX
M̂

(
XT

M̂
X

M̂

)−1
z
M̂

= μ̂RL − λX
M̂

(
XT

M̂
X

M̂

)−1
z
M̂

,

where z
M̂

is the signs of the active variables.
Without the loss of generality, we assume that the columns of X are of length

√
n. Then

the regularization parameter will be chosen as

λ = κσ
√

2n logp,

for some κ > 1. Therefore the first term in (7.3) can be bounded by

Var
[‖μ̂RL − μ̂lasso‖2]
≤ Var

[∥∥λX
M̂

(
XT

M̂
X

M̂

)−1
z
M̂

∥∥2]
≤ λ4 · 1

n2φ4
0

K2 = O
(
K2(logp)2)

,

where the last inequality uses the restricted eigenvalue condition with parameter φ0.
To bound the second term in (7.3), we use the well-known results on the variance of normal

distributions derived in Chen (1982), Chernoff (1981) and the fact that the Lasso solution is
continuous and almost differentiable,

Var
[‖μ̂lasso − μ‖2]
≤ E

[∥∥H
M̂

(μ̂lasso − μ)
∥∥2] ≤ E

[‖μ̂lasso − μ‖2]
≤ 2σ

√
2n logp

∥∥β̂lasso − β0∥∥
1 + 2λ

[∥∥β0∥∥
1 − ‖β̂lasso‖1

]
≤ 2λ

∥∥β0∥∥
1 = O(s

√
n logp).

The first inequality uses the fact that ∇yμ̂lasso is H
M̂

almost everywhere and the last inequality
is the standard consistency result for the Lasso solutions.

Finally, Tian and Taylor (2017) showed that under the restrictive eigenvalue conditions,
the number of selected variables K is a multiple of s and thus we get the conclusion of the
lemma.
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