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We study the problem of learning a tree Ising model from samples such
that subsequent predictions made using the model are accurate. The predic-
tion task considered in this paper is that of predicting the values of a subset
of variables given values of some other subset of variables. Virtually all pre-
vious work on graphical model learning has focused on recovering the true
underlying graph. We define a distance (“small set TV” or ssTV) between dis-
tributions P and Q by taking the maximum, over all subsets S of a given size,
of the total variation between the marginals of P and Q on S; this distance
captures the accuracy of the prediction task of interest. We derive nonasymp-
totic bounds on the number of samples needed to get a distribution (from the
same class) with small ssTV relative to the one generating the samples. One
of the main messages of this paper is that far fewer samples are needed than
for recovering the underlying tree, which means that accurate predictions are
possible using the wrong tree.

1. Introduction. Markov random fields, or undirected graphical models, are a useful
way to represent high-dimensional probability distributions [24, 44]. A Markov random field
is a probability distribution described by a graph: each node in the graph corresponds to a
random variable, and the variables are required to satisfy the Markov property whereby a
variable is conditionally independent of all other variables given its neighbors.

The practical utility of Markov random fields is in large part due to (1) edges between
variables capture direct interactions, which make the model interpretable and (2) the graph
structure facilitates efficient approximate inference from partial observations, for example,
using loopy belief propagation or variational methods. A prediction for Xi based on observed
values XS = xS for a subset of variables S can be easily obtained from the conditional prob-
ability P(Xi = xi |XS = xS). The inference task relevant to this paper is therefore evaluation
of conditional probabilities or marginals.

In applications, it is often necessary to learn the model from data, and it makes sense to
measure accuracy of the learned model in a manner corresponding to the intended use. While
in some applications it is of interest to learn the graph itself, in many machine learning prob-
lems the focus is on making predictions. In the literature, learning the graph is called structure
learning; this problem has been studied extensively in recent years; see, for example, [1, 11,
28, 29, 34, 43]. In contrast, we consider in this paper the problem of learning a good model
for the purpose of performing subsequent prediction from partial observations. For instance,
one might wish to use the learned model to predict the preference of a user for an item in a
recommendation system based on ratings obtained for a few items. This objective has been
called “inferning” (inference + learning) [21], and has received significantly less attention.
This paper contains, to the best of our knowledge, the first results on estimating graphical
models with a prediction-centric loss that are applicable to the high-dimensional setting.
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Structure learning becomes statistically more challenging, meaning more data is required,
when interactions between variables are very weak or very strong [8, 37, 41]. It is intuitively
clear that very weak edges are difficult to detect, leading to nonidentifiability of the model.
The goal of this paper is to show that learning a model that makes accurate predictions is
possible even when structure learning is not.

With the goal of making predictions in mind, we introduce a loss function to evaluate
learning algorithms based on the accuracy of low-order marginals. The small-set total varia-
tion between true distribution P and learned distribution Q is defined to be

L(k)(P ,Q) � max
S:|S|=k

dTV(PS ,QS),

where PS denotes the marginal on set S . The small-set total variation is inherently far less
stringent than the total variation over the entire joint distribution and this makes a crucial
difference in high-dimensional models. This same local total variation metric was used by
Rebeschini and van Handel in a somewhat different context [35] and has appeared earlier
in Dobrushin’s work on Gibbs measures [20]. As discussed in Section 3.2, small loss L(k)

guarantees accurate posterior distributions conditioned on sets of size k − 1.
Tree-structured graphical models have been particularly well studied. Aside from their

theoretical appeal, there are two reasons for the practical utility of tree models: (1) The max-
imum likelihood tree can be easily computed, and the correct graph can be recovered with
smaller sample and time complexity as compared to loopy graphs, and (2) Efficient exact
inference (computation of marginals or maximum probability assignments) is possible using
belief propagation. Sum-product or max-product algorithms are two well-studied examples
[25, 32, 44, 45] of inference algorithms on trees. Hence, we focus on tree-structured models.

In this paper, we (further) restrict attention to tree-structured Ising models with no external
field, defined as follows. For tree T = (V,E) on p nodes and edge parameters θij for each
edge (i, j) ∈ E , each configuration x ∈ {−1,+1}p is assigned probability

(1.1) P(x) = exp
( ∑

(i,j)∈E
θij xixj − �(θ)

)
,

where �(θ) is the normalizing constant. We assume throughout that α ≤ |θij | ≤ β for some
α,β ≥ 0 for each edge (i, j) ∈ E . Due to the tree structure, it turns out that the variables
Yij = XiXj for (i, j) ∈ E are jointly independent (as shown in Lemma 8.6), a fact that is
useful in the analysis. As a consequence, the correlation between a pair of variables is equal
to the product of the correlations E[XiXj ] on the edges (i, j) in the path connecting them.

In general, we could have an external field term
∑

i∈V θixi in the exponent of (1.1). The
assumption of no external field (θi = 0) implies uniform singleton marginals, that is, P(xi =
+1) = 1/2 for all i. This assumption helps to make the analysis tractable and at the same
time captures the central features of the problem.

Suppose we observe i.i.d. samples, generated from a tree-structured Ising model. The main
question we address is how many samples are required in order to learn a model with a
guarantee on the accuracy of subsequent predictions computed using the learned model. Since
computation of marginals for a given tree model is easy, the crux of the task is in learning
a model with marginals that are close to those of the original model. One of the take-home
messages is that learning for the purpose of making predictions requires dramatically fewer
samples than is necessary for correctly recovering the underlying tree. The central technical
challenge is that our analysis must therefore also apply when it is impossible to learn the true
tree, and this requires careful control of the sorts of errors that can occur.

Our main result gives lower and upper bounds on the number of samples needed to learn
a tree Ising model to ensure small L(2) loss, which in this setting is equivalent to accurate
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pairwise marginals. We emphasize that the task is to learn a model from the same class
(tree-structured Ising) with these guarantees; this is sometimes called proper learning. The
main result concerns the maximum likelihood tree (also called Chow–Liu tree), defined in
Section 3.

THEOREM 1.1. Fix η > 0. Given n > C max{η−2, e2β} log p
δ

samples generated accord-
ing to a tree Ising model P defined in (1.1) with |θij | ≤ β , denote the Chow–Liu tree by
TCL. The Ising model Q on TCL obtained by matching correlations on the edges satisfies
L(2)(P ,Q) ≤ η with probability at least 1 − δ. Conversely, if tanhα + 2η ≤ min{tanhβ,1/2}
and n ≤ C ′η−2 logp, then no algorithm can find a tree model Q such that L(2)(P ,Q) ≤ η

with probability greater than half.

The result shows that the Chow–Liu tree, which can be found in time O(p2 logp), gives
small L(2) error. We remark that the Chow–Liu algorithm uses only pairwise marginals of
the empirical distribution and can therefore be implemented with missing data as long as the
pairwise marginals can be estimated.

In Section 3.3, we discuss the assumption tanhα + 2η ≤ min{tanhβ,1/2} made in the
theorem, which captures the fact that the learner does not know the magnitude of the edge
parameters a priori.

It turns out that for trees, accuracy of pairwise marginals translates to accuracy of higher
order marginals, and a bound to this effect is proved in Appendix H. We believe that the
dependence on k can be improved.

COROLLARY 1.2. Let T and T′ be two (possibly distinct) trees. Let P and Q be proba-
bility distributions represented according to T and T′ using (1.1) such that L(2)(P ,Q) < η.
Then for all k, we have L(k)(P ,Q) < k2kη.

Numerical simulations in Section 9 show the dependence of the loss on number of samples
for different values of α and β , supporting Theorem 1.1. There are a few important issues that
are not addressed by Theorem 1.1, which we also investigate via simulations in Appendix I.
These include robustness of the results to model misspecification, that is, samples are not
from a tree-structured Ising model; external field in the Ising model (1.1) generating the data;
accurate marginals of size k ≥ 3.

We next place the result in the context of related work.

1.1. Related work. Tree-structured graphical models have applications in image process-
ing and computer vision [18, 33, 36, 47], artificial intelligence [32], coding theory [19] and
statistical physics [7].

Structure learning in general graphical models has been studied extensively. Information-
theoretic bounds on the number of samples have been derived [8, 9, 27, 37, 41, 48]. Structure
learning of trees has been studied by [12, 39]. Learning of generalizations of tree-structured
models has been studied, including: forest approximations [26, 40], polytrees [15], bounded
treewidth graphs [31, 38], loopy graphs with correlation decay [5, 6] and mixtures of trees
[4, 28].

Loopy belief propagation yields accurate marginals in high girth (locally tree-like) graphs
with correlation decay. This fact was used by Heinemann and Globerson [21] to justify an
algorithm that recovers all the edges of a model from this family, given sufficiently many
samples. The output of their algorithm can have extra edges, which are proved to be weak.
Given the number of samples at least linear in p, they show that the learned distribution is at
most constant Kullback–Leibler divergence from the true one.
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Narasimhan and Bilmes [31] found an algorithm with polynomial runtime that uses a poly-
nomial number of samples to learn bounded tree-width graphical models with respect to KL-
divergence. They use ideas from submodular optimization and the specific factorization of
the distribution over bounded tree-width graphs.

Structure learning of latent tree models has been well studied in the phylogenetic recon-
struction literature. Erdős et al. [17] studied sample and time complexity of tree metric based
algorithms to reconstruct phylogenetic trees. Daskalakis et al. [16] and Mossel [30] use dis-
torted tree metrics to get approximations of phylogenetic trees when exact reconstruction
of the tree is impossible. In [30], a forest approximation of the latent tree is recovered.
The maximum number of connected components in this forest is a function of the edge
strengths, maximum distance between the leaves and the number of leaves. Daskalakis et
al.[16] removed the prior assumptions on the phylogenetic tree and instead a forest structure
is recovered that contains all edges that are sufficiently strong and sufficiently close to the
leaves.

A tree metric over p nodes is associated with a weighted spanning tree such that the dis-
tance between every pair of nodes is the sum of weights of the edges along the path between
the nodes in the tree. Agarwala et al. [2], approximate a pairwise distance matrix D over p

nodes by a tree metric with induced distance matrix T . Let ε = minT {‖T − D‖∞} where T

is a tree metric. They propose an O(p2) algorithm which produces T̂ with ‖T̂ − D‖∞ ≤ 3ε.
They prove that finding a T with ‖T − D‖∞ ≤ 9/8ε is NP-hard. Ambainis et al. in [3]
studied the leaf variational distance between the original distribution on a latent tree under
the Cavender–Faris (CF) model and the learned latent tree. Let tree T with p leaves V be
a CF-tree with the property that all its edges are of length at least 1/

√
n (this is translated

as log tanhα < 1/
√

n in our model). Then, given n observations, their proposed algorithm

produces a distribution Q on a tree T′ with leaves V such that L(2)(PV ,QV) = O(
√

pe2β/n)

(PV and QV are marginals of P and Q on leaves V). We will further discuss these results and
compare them with our setup in detail in Appendix J.

Wainwright [46] was motivated by the same general problem of learning a graphical model
to be subsequently used for making predictions, but his focus was on computational rather
than statistical limits. For loopy graphs, both estimation of parameters and prediction based
on partial observations are computationally challenging tasks. Hence, for both, approximate
heuristic methods are often used. For given model parameters, one such heuristic for pre-
diction is reweighted sum-product (a convex relaxation). Intriguingly, when using such ap-
proximate prediction algorithms, an inconsistent procedure for estimation of parameters can
give better predictions. The results elucidate asymptotic performance, but the analysis does
not apply to the high-dimensional setting of interest, with dimension p larger than number of
samples n.

1.2. Outline of paper. The next section contains background on the Ising model, tree
models and graphical model learning. Section 3.1 introduces the problem of learning tree-
structured Ising models and records the sample complexity of exact recovery. Then, in Sec-
tion 3.2 we define the small-set TV loss function motivated by prediction computations and
state our main result in Section 3.3. Section 4.1 analyzes an illustrative example that gives
intuition for the main result. Section 4.2 introduces a natural forest approximation algorithm
and analyzes its performance in terms of ssTV. Section 5 sketches the proof of the main result
and Section 6 fills in the details. Sections 7 and 8 contain further proofs. Numerical simu-
lations addressing the theorems in the paper are in Section 9. Appendices contain additional
proofs, numerical simulations and discussions on related work, available in the Supplemen-
tary Material [10].
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2. Preliminaries.

2.1. Notation. For a given tree T = (V,E) and positive numbers α and β , let PT(α,β)

be the set of Ising models (1.1) with the restriction α ≤ |θij | ≤ β for each edge (i, j) ∈ E
and θij = 0 for (i, j) /∈ E . Denote by PT = PT(0,∞) the set of Ising models on T with no
restrictions on parameter strength.

Denote by μij = EP XiXj the correlation between the variables corresponding to i, j ∈ V .
For an edge e = (i, j), we write μe = μij and for a set of edges A ⊆ E , μA =∏

e∈A μe. Given
n i.i.d. samples X(1:n) = X(1), . . . ,X(n), the empirical distribution is denoted by P̂ (x) =
1
n

∑n
l=1 1{X(l)=x} and μ̂ij = EP̂ XiXj is the empirical correlation between nodes i and j .

2.2. Tree models. A probability measure P on X V is Markov with respect to a graph
G = (V,E) if for all i ∈ V , we have P(xi |xV\{i}) = P(xi |x∂i), where ∂i is the neighborhood
of i in G. In this paper, we are interested in distributions P that are Markov with respect to a
tree T = (V,E), and a consequence (see [25]) is that P(x) factorizes as

(2.1) P(x) = ∏
i∈V

P(xi)
∏

(i,j)∈E

P(xi, xj )

P (xi)P (xj )
.

2.3. Information projection. Denote by D(Q ‖ P) the Kullback–Leiber divergence be-
tween probability measures Q and P defined as D(Q ‖ P) =∑

x∈X Q(x) log Q(x)
P (x)

. For an
arbitrary distribution P and tree T, the distribution

P̃ (x) = arg min
Q is factorized as (2.1)

according toT

D(P ‖ Q)

is the best approximation to P within the set of distributions Markov with respect to the
tree T. It was observed by Chow and Liu in [12] that P̃ is obtained by matching the first and
second order marginals to those of P , that is, for all (i, j) ∈ E , and all xi, xj ∈ X , P̃ (xi, xj ) =
P(xi, xj ).

Let

(2.2) 
T(P ) = arg min
Q∈PT

D(P ‖ Q)

be the reverse information projection of P onto the class of Ising models on T with no external
field. It follows from the definition of PT that P̃ = 
T(P ) can be represented as equation (1.1)
for some θ̃ supported on T. It is shown in Appendix A in the Supplementary Material that
P̃ = 
T(P ) has edge weights θ̃ij for each (i, j) ∈ ET satisfying tanh θ̃ij = μij � EP XiXj

(and θ̃ij = 0 if (i, j) /∈ ET).

2.4. Tree structure learning. Denote the set of all trees on p nodes by T . For some
tree T and distribution P ∈ PT, one observes n independent samples (configurations)
X(1), . . . ,X(n) ∈ {−,+}p from the Ising model (1.1). In this context, a structure learn-
ing algorithm is a (possibly randomized) map φ : {−1,+1}p×n → T taking n samples
X(1:n) = X(1), . . . ,X(n) to a tree φ(X(1:n)).

The maximum likelihood tree or Chow–Liu tree plays a central role in tree structure learn-
ing. Chow and Liu [12] observed that the maximum likelihood tree is the max-weight span-
ning tree in the complete graph, where each edge has weight equal to the empirical mutual
information between the variables at its endpoints. The tree can thus be found greedily via
Kruskal’s algorithm [12, 14], and the run-time is dominated by computing empirical mutual
information between all pairs of nodes.
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In order to support the following definition, we analyzed zero-field Ising models on trees
in Lemma 2 in Appendix A. This analysis is similar to [12].

DEFINITION 2.1 (Chow–Liu tree). Given n i.i.d. samples X(1:n) from distribution P ∈
PT, we define the Chow–Liu tree to be the maximum likelihood tree:

TCL = argmax
T∈T

max
P∈PT

P
(
X(1:n)).

This definition is slightly abusing the conventional terminology, as the Chow–Liu tree is
classically the maximum likelihood tree assuming that the generative distribution is tree-
structured [12], whereas in our definition we assume that the original distribution P ∈ PT

can be described by (1.1). Thus, it is not only tree-structured, but also has uniform singleton
marginals.

Note that maximizing the likelihood of i.i.d. samples corresponds to minimizing the KL
divergence. Given the samples with empirical distribution P̂ ,

TCL = arg min
T∈T

min
P∈PT

D(P̂ ‖ P).

It is shown in Lemma 1 in Appendix A that

(2.3) TCL = argmax
{spanning trees T′}

∑
e∈ET′

|μ̂e|,

where for e = (i, j), μ̂e = EP̂ XiXj is the empirical correlation between variables Xi and
Xj .

Chow and Wagner [13] showed that the maximum likelihood tree is consistent for structure
learning of general discrete tree models, that is, in the limit of large sample size the correct
graph structure is found. More recently, detailed analysis of error exponents was carried out
by Tan et al. [39, 40]. A variety of other results and generalizations have appeared, including
for example Liu et al.’s work on forest estimation with nonparametric potentials [26] (we will
not address general potentials in this paper).

3. Learning trees to make predictions. In order to place the learning for predictions
problem into context, we first discuss the problem of exact structure learning and give tight
(up to a constant factor) sample complexity for that problem. Then, in Section 3.2 we define
the ssTV distance L(k), explain how it relates to prediction and in Section 3.3 we state our
results.

3.1. Exact recovery of trees. The statistical performance of a structure learning algorithm
is often measured using the zero–one loss,

(3.1) L0–1(T,T′)= 1{T�=T′},

meaning that the exact underlying graph must be learned (see, e.g., [11, 26, 37, 40]). The
risk, or expected loss, of algorithm φ under some distribution P ∈ PT(α,β) is then given
by the probability of reconstruction error, EPL0–1(T, φ(X(1:n))) = P(φ(X(1:n)) �= T), and the
maximum risk is sup{P(φ(X(1:n)) �= T) : T ∈ T ,P ∈PT(α,β)} for given α, β , p and n.

The sample complexity of learning the correct tree underlying the distribution increases
as edges become weaker, that is, as α → 0, because weak edges are harder to detect. As
the bound on maximum edge parameter β increases, there is a similar increase in sample
complexity (as shown by [37, 41] for Ising models on general bounded degree graphs). In the
context of tree-structured Ising models, we have the following theorem.
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THEOREM 3.1 (Samples necessary for structure learning). Given n < 1
8e2β/(α tanhα) ×

logp samples, the worst-case probability of error over trees T ∈ T and distributions P ∈
PT(α,β) is at least half for any algorithm, that is,

inf
φ

sup
T∈T

P∈PT(α,β)

P
[
φ
(
X(1:n)) �= T

]
> 1/2.

The proof, given in Section 7.1, applies Fano’s inequality (Lemma 6.2) to a large set of
trees that are difficult to distinguish. The next theorem gives an essentially matching sufficient
condition.

THEOREM 3.2 (Samples sufficient for structure learning). Fix an arbitrary tree T and
Ising model P ∈ PT(α,β). If the number of samples is n > Ce2β tanh−2(α) log(p/δ), then
with probability at least 1−δ the Chow–Liu algorithm recovers the true tree, that is, TCL = T.

The proof is presented in Section 7.2. Assuming that α is bounded above by a constant
(which is the interesting regime), Theorems 3.1 and 3.2 give matching bounds (up to numer-
ical constant) for the sample complexity of learning the tree structure of an Ising model with
zero external field. The necessary number of samples increases as the minimum edge weight
α decreases, so if edges can be arbitrarily weak, it is impossible to learn the tree given any
bounded number of samples. Figures 3(a) and 3(c) in Section 9 present numerical simulation
results supporting this observation.

If the goal is merely to make accurate predictions, it is natural to seek a less stringent,
approximate notion of learning. Several papers consider learning a model that is close in
KL-divergence, for example, [1, 21, 23, 26, 40]. The sample complexity of learning a model
to within constant KL-divergence ε scales at least linearly with the number of variables p,
an unrealistic requirement in the high-dimensional setting of interest. Using a number of
samples scaling logarithmically in dimension requires relaxing the KL-divergence to scale
linearly in p, but this does not imply a nontrivial guarantee on the quality of approximation
for marginals of few variables (as done in this paper). The same observation is true for the
total variation as the measure of distance. The sample complexity of learning a model to
within constant TV distance between the learned model and the original joint distribution
over p variables scales at least linearly with p.

In the next section, we study estimation with respect to the small-set TV loss, which cap-
tures accuracy of prediction based on few observations. We will see that the associated sample
complexity is independent of the edge strength lower bound α in the original model.

3.2. Small set total variation. For a subset of nodes S ⊆ [p], we denote by PS the
marginal distribution PS(xS) =∑

xV\S P(x).
Given two distributions P and Q on the same space, for each k ≥ 1 the small-set total

variation distance is the maximum total variation over all size k marginals, and is denoted by

L(k)(P ,Q) � max
S:|S|=k

dTV(PS ,QS).

Note that L(k) is nondecreasing in k. One can check that L(k) satisfies the triangle inequality:
for any three distributions P , R, Q,

(3.2) L(k)(P ,R) +L(k)(R,Q) ≥ L(k)(P ,Q).

Closeness of P and Q in L(k) implies that the respective posteriors conditioned on sub-
sets of variables of size k − 1 are close on average. To see this, suppose that we wish to
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compute P(Xi = +|XS). We measure performance of the approximation Q by the expected
magnitude of error |P(xi = +|XS) − Q(xi = +|XS)| averaged over XS :

EXS
∣∣P(Xi = +|XS) − Q(Xi = +|XS)

∣∣
=∑

xS

∣∣P(Xi = +,XS = xS) − Q(Xi = +|XS = xS)P (XS = xS)
∣∣

≤∑
xS

∣∣P(Xi = +,XS = xS) − Q(Xi = +,XS = xS)
∣∣+∑

xS

∣∣Q(xS) − P(xS)
∣∣

≤ 2L(|S|+1)(P ,Q).

The last inequality is a consequence of monotonicity of L(k) in k.
In this paper, we focus mostly on L(2). Implications for k ≥ 3 are stated in Corollary 1.2,

and discussed in Appendix H. For trees T, T̃ ∈ T and distributions P ∈ PT and P̃ ∈ PT̃, let
e = (i, j) ∈ ET, μe = EP XiXj and for e′ = (i, j) ∈ ET̃, μ̃e′ = EP̃ XiXj . It will be useful to
express L(2) as

(3.3)

L(2)(P , P̃ ) = max
w,w̃∈V

1

2

∑
xw,xw̃∈{−,+}2

∣∣P(xw, xw̃) − P̃ (xw, xw̃)
∣∣

= max
w,w̃∈V

1

2

∣∣∣∣ ∏
e∈pathT(w,w̃)

μe − ∏
e′∈pathT̃(w,w̃)

μ̃e′
∣∣∣∣.

The second equality is derived by noting that P(xi = +) = 1/2, P(xw, xw̃) = [1 +
xwxw̃EP [XwXw̃]]/4 and analogously for P̃ . Also, as noted above after (1.1), it is imme-
diate from Lemma 8.6 that EP XwXw̃ =∏

e∈pathT(w,w̃) μe. The same holds for P̃ ∈ PT̃, which
gives (3.3).

3.3. Main result. Our main contribution is to prove upper and lower bounds on the num-
ber of samples required to estimate a tree close in L(2) to the true one. An upper bound on
the number of samples is obtained for the Chow–Liu algorithm by bounding the expression
in (3.3). The Chow–Liu algorithm produces the maximum likelihood tree, which minimizes
the expected zero–one loss in (3.1). As shown in Theorem 3.3, the maximum likelihood tree
also performs well in terms of accuracy of pairwise marginals.

Recall from (2.2) that 
T(P ) is the reverse information projection of the distribution P

onto the set of zero-field Ising models on tree T.

THEOREM 3.3 (Learning for predictions using Chow–Liu algorithm). For T ∈ T , let the
distribution P ∈ PT(0, β). Given n > C max{e2β, η−2} log p

δ
samples, if TCL is the Chow–Liu

tree as defined in (2.3), then with probability at least 1 − δ we have L(2)(P ,
TCL(P̂ )) < η.

The main challenge is that the number of samples assumed to be available in Theorem 3.3
is not sufficient for structure learning, as can be seen by comparing with Theorem 3.1. This
means that accurate marginals must be computed using possibly the wrong tree. The proof is
sketched in Section 5.

We also lower bound the number of samples necessary for small L(2) loss. Let the learning
algorithm be � : {−1,+1}p×n → P where P = ⋃

T PT is the set of tree-structured Ising
models with no external field defined in (1.1).

THEOREM 3.4 (Samples necessary for small ssTV). Fix η > 0. Suppose tanh(β) >

tanh(α) + 4η and n < C[1 − (tanh(α) + 4η)2]η−2 logp. The worst-case probability of L(2)
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loss greater than η, taken over trees T ∈ T and distributions P ∈PT(α,β), is at least half for
any algorithm, that is,

inf
�

sup
T∈T

P∈PT(α,β)

P
[
L(2)(P,�

(
X(1:n)))> η

]
> 1/2.

Theorem 3.4 is proved in Section 6.3. As noted earlier, the assumption tanh(β) >

tanh(α) + 2η captures the scenario that the precise values of the edge parameters are not
known a priori. In the extreme where α = β , the entire problem is quite different (and we
believe less realistic). We state a lower bound for this setting in Appendix B, which is not
directly comparable to the above theorems.

If α is bounded above by a constant, then Theorems 3.3 and 3.4 have the same dependence
on η. The theorems imply the following bounds on risk.

COROLLARY 3.5 (Upper bound for risk). For T ∈ T , let the distribution P ∈ PT(0, β).
Given n samples with empirical distribution P̂ , if the tree TCL is the Chow–Liu tree as defined
in (2.3), then

E
[
L(2)(P,
TCL(P̂ )

)]
< C′p exp

(−Cne−2β)+ C′′
√

logp

n
.

COROLLARY 3.6 (Lower bound for risk). Suppose tanh(β) − tanh(α) > 1/2 and one
observes n samples. Then the minimax risk over trees T ∈ T and distributions P ∈ PT(α,β)

is lower bounded by

inf
�

sup
T∈T

P∈PT(α,β)

E
[
L(2)(P,�

(
X(1:n)))]> min

{
1

24

√
logp

n
,

1

12

}
.

Corollary 3.5 is proved in Appendix G. Proof of Corollary 3.6 is immediate from the
statement of Theorem 3.4. The upper bound in Corollary 3.5 has an extra term that depends
on β compared to the lower bound of Corollary 3.6. We conjecture that the lower bound is
tight.

4. Illustrative example and algorithm comparison.

4.1. Three node Markov chain. A Markov chain with three nodes captures a few of the
key ideas developed in this paper. Let P(X1,X2,X3) be represented by the tree T1 in Figure 1
in which X1 ↔ X2 ↔ X3 form a Markov chain with correlations μ12, μ23 and μ13 = μ12μ23.
Without loss of generality, we assume μ12,μ23 > 0. Suppose that for some small value ε,
μ12 = 1 − μ23 = ε.

Given n samples from P , the empirical correlations μ̂12, μ̂23 and μ̂13 are concentrated
around μ12 = ε, μ23 = 1 − ε and μ13 = μ12μ23 = ε(1 − ε). Let μ̂12 = μ12 + z12, μ̂23 =
μ23 + z23 and μ̂13 = μ12μ23 + z13, where the fluctuations of z12, z23 and z13 shrink as n

grows. It is useful to imagine the typical fluctuations of zij to be on the order ε/10.
Since max{μ12,μ13} = max{ε, ε(1 − ε)} = ε 
 μ23, concentration bounds guarantee that

with high probability μ̂23 > max{μ̂12, μ̂13} and the (greedy implementation of) Chow–Liu
algorithm described in (2.3) adds the edge (2,3) to TCL. However, because μ12 −μ13 = ε2 is
smaller than the fluctuations of z12 and z13 there is no guarantee that μ̂12 > μ̂13: if z13 −z12 >

ε2, then edge (1,3) is added and TCL = T3 �= T1.
The preceding discussion provides the intuition underlying a statistical characterization of

the possible errors made by the Chow–Liu algorithm. To make this quantitative, later on in
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FIG. 1. The original distribution factors according to T1. The width of the edges corresponds to their strength.
The forest approximation algorithm (defined in Section 4.2) recovers T̂ = T2 since the correlation between X1
and each of the other variables is not strong enough to confidently recover any edge to node 1. The Chow–Liu
tree TCL is either T1 or T3, depending on the realization of the samples.

the proof, we determine a value τ := τ(n,β, δ) so that any (strong) edge e with |μe| ≥ τ is
recovered by the Chow–Liu algorithm with probability at least 1 − δ. Equivalently, if there is
a mistake made by the Chow–Liu algorithm such that e ∈ ET but e /∈ ETCL , then |μe| ≤ τ (i.e.,
missed edges are weak). This is going to play a key role in bounding the ssTV L(2) for TCL,
whether or not it is equal to T.

In the regime where n is not large enough to guarantee the correct recovery of all the edges
in the tree, there are two natural strategies:

I. Forest approximation algorithm. This algorithm attempts to recover a forest F, a good
approximation of the original tree T in the sense that EF ⊆ ET. This is accomplished by find-
ing a forest consisting of sufficiently strong edges, that is, having weight at least τ for an
appropriate value of τ . As shown by Tan et al. in [40], such a forest can be obtained by run-
ning the Chow–Liu algorithm and removing the edges with weight below τ . The details of
this algorithm and its sample complexity will be discussed in Section 4.2.

II. Chow–Liu algorithm. We can use the Chow–Liu tree as our estimated structure despite
the fact that it may well be incorrect.

For our three-node example, the forest approximation algorithm would return T̂ = T2 in
Figure 1, whereas Chow–Liu would give T̂ = T1 or T̂ = T3. To focus on the implication of
graph structure estimation (as opposed to parameter estimation), we compare the loss due to
graph estimation error, defined as L(2)(P ,
T̂(P )), for the above cases:

T̂ = T1 → L(2)(P,
T̂(P )
)= 0,

T̂ = T2 → L(2)(P,
T̂(P )
)= |μ12| = ε,

T̂ = T3 → L(2)(P,
T̂(P )
)= |μ12|(1 − μ2

23
)= ε2(2 − ε).

Evidently, the loss due to graph estimation error in the forest approximation algorithm is
bigger than the Chow–Liu algorithm, whether or not the latter recovers the true tree. This is
because the Chow–Liu algorithm does not make arbitrary errors in estimating the tree: errors
happen when both the original tree and the estimated tree describe the original distribution
rather well. Theorem 3.3 makes this formal.

4.2. Forest approximation. In the regime where exact recovery of the tree is impossible,
a reasonable goal is to instead find a forest approximation to the tree. In this section, we
analyze a natural truncation algorithm, which thresholds to zero edges with correlation below
a specified value τ(ε).

There is extensive literature on estimating forests in the fully observed setting of this paper,
including [26, 40]. Mossel in [30] studied the problem of learning phylogenetic forests, where
samples are only observed at the leaves of the tree. They quantified the idea that most edges
of phylogenies are easy to reconstruct. In the regime that the sample complexity of structure
learning is too high, they instead estimate a forest. An upper bound on the number of edges
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necessary to glue together the forest to get the original tree is provided as a function of the
number of leaves, the minimum edge weight, and the metric distortion bounds. Our results in
this section are consistent with the asymptotic conditions on the thresholds given in [40] by
Tan et al. for forest approximation of general distributions over trees.

The forest approximation algorithm considered in this section thresholds to zero the edges

with correlations below τ(ε) = 4ε√
1−tanhβ

for ε =
√

2/n log(2p2/δ). This is equivalent to

finding the maximum-weight spanning forest over the complete graph with edge weights
|μ̂e| − τ(ε) − ε. The output T̂ = (V,ET̂) is a truncated version of TCL such that the empirical
correlation between any pair of nodes (i, j) ∈ ET̂ satisfies |μ̂ij | ≥ τ(ε) + ε.

PROPOSITION 4.1. Given n > Ce2βη−2 log p
δ

samples, the forest approximation algo-
rithm guarantees that ET̂ ⊆ ET and L(2)(P ,
T̂(P̂ )) < η with probability at least 1 − δ.

The proof is presented in Appendix C in the Supplementary Material. The forest approx-
imation algorithm is trying to avoid adding incorrect edges and we then measure its perfor-
mance according to L(2). Given this objective, it is natural to consider the loss

(4.1) d̃(P ,Q) = max
{
L(2)(P ,Q),1[EF � ET]},

which is one if the learned forest is not a subgraph of the original tree, and otherwise is equal
to L(2).

It turns out that the forest approximation algorithm is optimal (up to constant factor) for
this loss, as shown in the following proposition.

PROPOSITION 4.2. Fix η > 0. Let � be an estimator that takes n samples generated
from PT(0, β) and recovers a forest F and a distribution Q ∈ PF(0, β). Let the (asymmetric)
distance d̃ be defined in (4.1). If n < C min{p, e2β}/[η atanhη)] logp, then the worst-case
probability of d̃ loss greater than η, taken over trees T ∈ T and distributions P ∈ PT(α,β),
is at least half for any algorithm, that is,

inf
�

sup
T∈T

P∈PT(α,β)

P
[
d̃
(
P,�

(
X(1:n)))> η

]
> 1/2.

Comparison with Theorem 3.3 shows that avoiding adding wrong edges (as forced by the
loss function (4.1)) entails a degradation in performance.

5. Outline of proof. We now sketch the argument for the main result, Theorem 3.3,
guaranteeing accurate pairwise marginals in the Chow–Liu tree. The starting point is an ap-
plication of the triangle inequality (3.2):

(5.1) L(2)(P,
TCL(P̂ )
)≤ L(2)(P,
TCL(P )

)+L(2)(
TCL(P ),
TCL(P̂ )
)
.

The first term on the right-hand side of equation (5.1) represents the error due to the difference
in the structure of T and TCL, so we call this first term the loss due to graph estimation error.
Equation (3.3) tells us that for each pair of nodes u, v ∈ V , pathT(u, v) and pathTCL(u, v) must
be compared.

The second term on the right-hand side of equation (5.1) represents the propagation of
error due to inaccuracy in estimated parameters. Recall that the estimated parameters on the
Chow–Liu tree are obtained by matching correlations to the empirical values.

Theorem 3.3 follows by separately bounding each term on the right-hand side of equation
(5.1).
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PROPOSITION 5.1 (Loss due to parameter estimation error). Given n > C max{e2β,

η−2} log p
δ

samples, with probability at least 1 − δ we have L(2)(
TCL(P ),
TCL(P̂ ) ≤ η.

PROPOSITION 5.2 (Loss due to graph estimation error). Given n > C′ max{e2β,

η−2} log p
δ

samples, with probability at least 1 − δ we have L(2)(P ,
TCL(P )) ≤ η.

These two propositions are proved in full detail in Sections 6.1 and 6.2. In the remainder
of this section, we define probabilistic events of interest and sketch the proofs of the proposi-
tions.

We define three highly probable events Ecorr(ε), Estrong(ε) and Ecascade(ε) as follows. Let
Ecorr(ε) be the event that all empirical correlations are within ε of population values:

(5.2) Ecorr(ε) =
{

max
w,w̃∈V |μw,w̃ − μ̂w,w̃| ≤ ε

}
.

Let

(5.3) τ(ε) = 4ε√
1 − tanhβ

and E strong
T (ε) = {

(i, j) ∈ ET : |μij | > τ(ε)
}

consist of the set of strong edges in tree T. Let TCL be the Chow–Liu tree defined in equation
(2.3). Weak edges are those that are not strong, that is, ET \ E strong

T (ε). Let Estrong(ε) be the
event that all strong edges in T as defined in (5.3) are recovered by the Chow–Liu tree:

(5.4) Estrong(ε) = {
E strong

T (ε) ⊂ ETCL
}
.

Finally, define the event

(5.5) Ecascade(ε) = {
L(2)(P,
T(P̂ )

)≤ ε
}
.

Recall that P factorizes according to T and P̂ is the empirical distribution which does not fac-
torize according to any tree. This event controls cascades of errors in correlations computed
along paths in T.

Since we are interested in the situation that all three events hold, let E(ε, γ ) := Ecorr(ε) ∩
Estrong(ε) ∩ Ecascade(γ ). Lemmas 8.1, 8.5 and 8.7 prove that for

(5.6) ε0 = min
{
e−β/24, η/16

}
and γ0 = η/3,

if n > max{1152e2β,512η−2} log(6p3/δ) := n0, then

(5.7) P
[
E(ε0, γ0)

]≥ 1 − δ.

Sketch of proof of Proposition 5.1. The proof entails showing that on the event E(ε0, γ0)

for ε0 and γ0 defined in (5.6) we have the desired inequality L(2)(
TCL(P ),
TCL(P̂ )) ≤ η.
The result then follows from (5.7).

To bound L(2)(
TCL(P ),
TCL(P̂ )) on event E(ε0, γ0), we consider parameter estimation
errors along paths in TCL. First, observe that on event Ecascade(γ0) defined in (5.5), the end-
to-end error for each path in ETCL ∩ET is bounded by γ0. Next, we study parameter estimation
error in paths containing (falsely added) edges in ETCL \ ET.

For any pair of nodes w, w̃, denote by t = |pathTCL(w, w̃)\ET| the number of falsely added
edges in the path connecting them in TCL. As discussed in the proof, these edges correspond
to missed edges in T, and thus Estrong(ε0) guarantees that these edges are weak (as defined
after (5.3)). These t weak edges break up the pathTCL(w, w̃) into at most t + 1 contiguous
segments F0,F1, . . . ,Ft , each entirely within ETCL ∩ ET.

On event Ecascade(γ0) the error on each segment Fi , is bounded by γ0, but now there are
t + 1 such segments and the errors may add up. This effect is counterbalanced by the fact that
the falsely added edges are weak and hence scale down the error in a multiplicative fashion.
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Sketch of proof of Proposition 5.2. We want to show that L(2)(P ,
TCL(P )) ≤ η on the
event Ecorr(ε0) ∩ Estrong(ε0) ⊇ E(ε0, γ0) for ε0 defined in (5.6).

The proof of the proposition sets up a careful induction on the distance between nodes
(computed in TCL) for which we wish to bound the error in correlation. One of the ingredients
is Lemma 8.8, a combinatorial statement relating trees T and TCL. The lemma states that for
any two spanning trees on p nodes, and for any two nodes w, w̃ ∈ [p], there exists at least
one pair of edges f ∈ pathT(w, w̃) and g ∈ pathTCL(w, w̃) satisfying a collection of properties
illustrated in Figure 2 (and specified in the lemma).

A consequence is that the true correlation across g according to P can be expressed in
terms of the correlation on f as μg = μf μAμCμÃμC̃ , hence |μg| ≤ |μf |. But |μ̂g| ≥ |μ̂f |,
since the Chow–Liu algorithm chose g in TCL instead of f . Tight control on the relationship
between |μ̂g| and |μ̂f | yields a recurrence for �(d), where �(d) is an upper bound on the
error due to graph estimation error for any pair of nodes w, w̃ with |pathTCL(w, w̃)| = d .

6. Proof of main result. As observed in Section 5, Theorem 3.3 is a direct consequence
of Propositions 5.1 and 5.2, which we prove in Sections 6.1 and 6.2. We prove Theorem 3.4
in Section 6.3.

6.1. Loss due to parameter estimation (proof of Proposition 5.1). We will prove that
on the event E(ε0, γ0) for ε0 and γ0 defined in (5.6) the desired inequality L(2)(
TCL(P ),


TCL(P̂ )) ≤ η holds. Equation (5.7) gives the result.
Let τ(ε0) (defined in (5.3)) be the threshold to define E strong

T (ε0), the set of strong edges in
T. For any pair of nodes w, w̃, consider pathTCL(w, w̃). Let 0 ≤ t < p be the number of weak
edges e1, . . . , et ∈ pathTCL(w, w̃) such that |μei

| ≤ τ(ε0). There are at most t + 1 contiguous
subpaths in pathTCL(w, w̃) consisting of strong edges. We call these segments F0,F1, . . . ,Ft .
If two weak edges ei and ei+1 are adjacent in pathTCL(w, w̃), then Fi = ∅, in which case we
define μFi

= μ̂Fi
= 1. By definition of Fi , all edges f ∈ Fi are strong.

According to (5.4), under the event Estrong(ε0) all strong edges in T are recovered in TCL.
Thus, Fi ⊆ ET is a path not only in TCL but also in T, which guarantees |μ̂Fi

− μFi
| ≤ γ0

under the event Ecascade(γ0).
Note that if t = 0 then pathTCL(w, w̃) consists of all strong edges for which Lemma 8.7

gives the desired bound. For t ≥ 1, we have:∣∣∣∣ ∏
e∈pathTCL (w,w̃)

μ̂e − ∏
e∈pathTCL (w,w̃)

μe

∣∣∣∣
(a)=
∣∣∣∣∣μ̂F0

t∏
i=1

μ̂Fi
μ̂ei

− μF0

t∏
i=1

μFi
μei

∣∣∣∣∣
(b)≤ |μ̂F0 − μF0 |

t∏
j=1

|μFj
μej

|

+
t∑

i=1

|μ̂Fi
μ̂ei

− μFi
μei

| · |μ̂F0 |
i−1∏
j=1

|μ̂Fj
μ̂ej

|
t∏

k=i+1

|μFk
μek

|

(c)≤ γ0
[
τ(ε0)

]t + (
τ(ε0) + ε0

)t−1
t∑

i=1

|μ̂Fi
μ̂ei

− μFi
μei

|

(d)≤ γ0
[
τ(ε0)

]t + (τ(ε0) + ε0
)t−1

[
t∑

i=1

∣∣μFi
(μ̂ei

− μei
)
∣∣+ ∣∣μ̂ei

(μ̂Fi
− μFi

)
∣∣]
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(e)≤ (
τ(ε0) + ε0

)t−1
(2t + 1)max{γ0, ε0}

(f )≤ 2t + 1

4t−1

η

3

(g)≤ η.

In (a), we use pathTCL(w, w̃) = {F0, e1, . . . ,Ft , et ,Ft }. (b) uses the bound |∏t
i=1 ai −∏t

i=1 bi | ≤∑t
i=1 |ai − bi |∏i−1

j=1 |aj |∏t
k=i+1 |bk| obtained via telescoping sum and triangle

inequality. In (c), we use |μFi
|, |μ̂Fi

| ≤ 1, |μei
| ≤ τ(ε0), |μ̂ei

| ≤ τ(ε0) + ε0 on Ecorr(ε0) and
|μ̂F0 −μF0 | ≤ γ0 on Ecascade(γ0). (d) uses triangle inequality. In (e), we use |μ̂Fi

−μFi
| ≤ γ0

on the event Ecascade(γ0) and |μ̂ei
− μei

| ≤ ε0 on the event Ecorr(ε0). (f) is true since
γ0, ε0 ≤ η/3 (as in (5.6)). Also, 1 − tanhβ ≥ e−2β and the definition of τ(ε0) in (5.3) gives
τ(ε0) ≤ 4ε0e

β . Hence, τ(ε0) + ε0 ≤ 5ε0e
β ≤ 1/4 where the last inequality uses ε0 ≤ e−β/20

(according to (5.6)). (g) holds for all t ≥ 1.

6.2. Loss due to graph estimation error (proof of Proposition 5.2). The following lemma,
proved in Section 8 for completeness, is a well-known consequence of a spanning tree being
max-weight [14]. We use Lemma 6.1 to bound the loss due to graph estimation error by the
Chow–Liu algorithm.

LEMMA 6.1 (Error characterization in the Chow–Liu tree). Consider the complete graph
on p nodes with weights |μ̂ij | on each edge (i, j). Let TCL be the maximum weight spanning
tree of this graph. If edge (u, ũ) /∈ ETCL , then |μ̂uũ| ≤ |μ̂ij | for all (i, j) ∈ pathTCL(u, ũ).

Recall that P factorizes according to T. The error in correlation between any two variables
Xw and Xw̃ computed along the pathT(w, w̃) as compared to pathTCL(w, w̃) is

errorP,TCL(w, w̃) = 1

2
· |EP XwXw̃ −E
TCL (P )XwXw̃|

= 1

2
·
∣∣∣∣ ∏
e∈pathT(w,w̃)

μe − ∏
e∈pathTCL (w,w̃)

μe

∣∣∣∣.
Our goal is to bound L(2)(P ,
TCL(P )) = maxw,w̃∈V errorP,TCL(w, w̃). We will prove that on
the event Ecorr(ε0) ∩ Estrong(ε0) ⊇ E(ε0, γ0) for ε0 defined in (5.6), L(2)(P ,
TCL(P )) < η

holds. The result then follows from (5.7).
The core of the argument uses induction to derive a recurrence on the maximum of

errorP,TCL(w, w̃) in terms of the distance (as measured in TCL) between the nodes w, w̃.
Define

�(d) � max
w,w̃∈V

|pathTCL (w,w̃)|=d

errorP,TCL(w, w̃).

For nodes at distance one in TCL, that is, |pathTCL(w, w̃)| = 1, it follows that errorP,TCL(w,

w̃) = 0 from the definition of the projected distribution 
TCL(P ) (matching pairwise
marginals on edges) in Section 2.3. Hence, �(1) = 0 ≤ η. We define �(0) = 0. For d > 1, we
bound �(d) in terms of �(k) for k < d: we will show that on the event Ecorr(ε0)∩Estrong(ε0)

with ε0 defined in (5.6), if �(k) ≤ η for all k < d , then �(d) ≤ η which gives the result.
Note that if pathTCL(w, w̃) = pathT(w, w̃), then errorP,TCL(w, w̃) = 0 (again because cor-

relations are matched on edges). Thus, we assume pathTCL(w, w̃) �= pathT(w, w̃). Lemma 8.8
shows the existence of a pair of edges f = (u, ũ) ∈ ET \ ETCL and g = (v, ṽ) ∈ ETCL \ ET such
that (see Figure 2):

• f ∈ pathT(w, w̃) ∩ pathT(v, ṽ) and g ∈ pathTCL(w, w̃) ∩ pathTCL(u, ũ).
• f /∈ pathTCL(w, w̃) and g /∈ pathT(w, w̃).
• u, v ∈ SubTreeT,f (w) and ũ, ṽ ∈ SubTreeT,f (w̃).
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FIG. 2. Schematic for the proof of Proposition 5.2. The solid lines represent paths in T and the dashed lines
represent paths in TCL. The sets of edges D and D̃ may overlap with A∪B and Ã∪ B̃.

Here, SubTreeT,f (w) = {i ∈ V;f /∈ pathT(w, i)} is the set of nodes connected to w in T after
removing edge f (see Figure 2). We define several subpaths:

A= pathT(u,w) ∩ pathT(u, v), B = pathT(u,w) \ pathT(u, v),

C = pathT(u, v) \ pathT(u,w), D = pathTCL(w, v).

Recall that for set of edges S , we defined μS = ∏
e∈S μe. Since pathT(w, v) = B ∪ C and

B ∩ C = ∅, we have μw,v = μBμC . Similarly, in SubTreeT,f (w̃) we define

Ã= pathT(ũ, w̃) ∩ pathT(ũ, ṽ), B̃ = pathT(ũ, w̃) \ pathT(ũ, ṽ),

C̃ = pathT(ũ, ṽ) \ pathT(ũ, w̃), D̃ = pathTCL(w̃, ṽ).

The sets are defined so that pathT(v, ṽ) = C ∪ A ∪ {f } ∪ C̃ ∪ Ã where f = (u, ũ) and g =
(v, ṽ) ∈ ETCL . Thus, μg = μf μAμCμÃμC̃ . Since pathT(w, w̃) = A ∪ B ∪ {f } ∪ Ã ∪ B̃ and
pathTCL(w, w̃) = D ∪ {g} ∪ D̃, our goal amounts to finding an upper bound for the quantity
|μDμgμD̃ − μAμBμf μÃμB̃|.

Lemma 6.1 applied to f = (u, ũ) /∈ ETCL and g = (v, ṽ) ∈ pathTCL(u, ũ) gives |μ̂f | ≤ |μ̂g|.
Also, f ∈ pathT(v, ṽ), hence |μg| ≤ |μf |. On the event Ecorr(ε0), |μf | − 2ε0 ≤ |μ̂f | ≤
|μ̂g| ≤ |μg| + 2ε0 ≤ |μf | + 2ε0 which gives |μf | − 4ε0 ≤ |μf μAμCμÃμC̃| ≤ |μf |. Also,
|μAμCμÃμC̃| ≤ |μCμC̃| ≤ 1. Thus,

(6.1)
|μf |(1 − μ2

Cμ
2
C̃
)≤ 2|μf |(1 − |μCμC̃|

)
≤ 2|μf |(1 − |μAμCμÃμC̃|

)≤ 8ε0.

Since f ∈ ET \ETCL , under the event Estrong(ε0), f cannot be a strong edge as defined in (5.3).
It follows that |μf | ≤ τ(ε0) for τ(ε0) defined in (5.3).

Let k = |D| = |pathTCL(w, v)| and k̃ = |D̃| = |pathTCL(w̃, ṽ)|, so d = k + k̃ + 1. By defini-
tion of �(·),

(6.2)
errorP,TCL(w, v) = |μD − μBμC| ≤ �(k),

errorP,TCL(w̃, ṽ) = |μD̃ − μB̃μC̃| ≤ �(k̃).

We now prove errorP,TCL(w, w̃) ≤ η assuming inductively errorP,TCL(i, j) ≤ η for all pairs
i, j such that distTCL(i, j) + 1 ≤ d = distTCL(w, w̃) (where distTCL(w, w̃) denotes the graph
distance in TCL). Using μg = μAμCμf μÃμC̃ ,

errorP,TCL(w, w̃)

= |μDμgμD̃ − μAμBμf μÃμB̃|
= |μDμAμCμf μÃμC̃μD̃ − μAμBμf μÃμB̃|
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= |μAμf μÃ| · ∣∣μCμC̃(μD − μBμC + μBμC)(μD̃ − μB̃μC̃ + μB̃μC̃) − μBμB̃
∣∣

≤ |μAμf μÃ| · [|μCμC̃μBμCμB̃μC̃ − μBμB̃|
+ ∣∣μCμC̃(μD − μBμC)(μD − μBμC)

∣∣
+ ∣∣μCμC̃μB̃μC̃(μD − μBμC)

∣∣+ ∣∣μCμC̃μBμC(μD̃ − μB̃μC̃)
∣∣]

(a)≤ |μf μAμÃμBμB̃|∣∣μ2
Cμ

2
C̃ − 1

∣∣+ |μf |(�(k)�(k̃) + �(k) + �(k̃)
)

(b)≤ 8ε0 + τ(ε0)
(
�(k) + �(k̃) + �(k)�(k̃)

) (c)≤ 8ε0 + 4ε0e
β(2η + η2)≤ η.

Inequality (a) follows from (6.2). (b) uses Equation (6.1) and |μf | ≤ τ(ε0) ≤ 4ε0e
β . We

showed that �(1) = 0. In (c) we use the inductive assumption �(k) ≤ η for all k < d and
the assumption ε0 defined in (5.6). Since w and w̃ were arbitrary, this proves �(d) ≤ η, and
moreover, this holds for all d .

6.3. Necessary samples for accurate pairwise marginals (proof of Theorem 3.4). We
construct a family of trees that are difficult to distinguish from one another. Applying the
version of Fano’s inequality below in Lemma 6.2, gives a lower bound on the error probabil-
ity. The bound on the sample complexity is in terms of the KL-divergence between pairs of
points in the parameter space. The symmetrized KL-divergence between two zero-field Ising
models with parameters θ and θ ′ has the convenient form

(6.3) J
(
θ ‖ θ ′)� D

(
θ ‖ θ ′)+ D

(
θ ′ ‖ θ

)=∑
i<j

(
θij − θ ′

ij

)(
μij − μ′

ij

)
.

Here, μij and μ′
ij are the pairwise correlations between nodes i and j computed according

to θ and θ ′, respectively.

LEMMA 6.2 (Fano’s inequality, Corollary 2.6 in [42]). Assume that M ≥ 2 and that �

is a family of models θ0, θ1, . . . , θM . Let Qθj denote the probability law of the observation
X under model θj . Let � : {−1,+1}p×n → {0,1, . . . ,M} denote an estimator using n i.i.d.
samples X(1:n). If

(6.4) n < (1 − δ)
logM

1
M+1

∑M
j=1 J (Qθj ‖ Qθ0)

,

then the probability of error of any algorithm is bounded as

inf
�

max
0≤j≤M

Qθj

[
�
(
X(1:n)) �= j

]≥ δ − 1

logM
.

The following corollary is a restatement of equation (2.9) in [42] using the above lemma
and tailored to our setup.

COROLLARY 6.3. Let d be a distance (i.e., a metric). Suppose there are M different
parameter vectors θ0, . . . , θM such that d(θk, θj ) ≥ 2η for all j �= k. If n satisfies (6.4), then
any estimator � : X(1:n) → � mapping n samples to a set of parameters associated with a
tree T and a distribution on P ∈ PT incurs a loss greater than η with probability at least 1/2:

inf
�

sup
T∈T

P∈PT(α,β)

P
[
d
(
�
(
X(1:n)), θ)≥ η

]≥ 1

2
.
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PROOF OF THEOREM 3.4. We consider a fixed tree structure given by a path, or in other
words a Markov chain X1 − X2 − · · · − Xp . We choose M different parameter vectors θm,
0 ≤ m ≤ M − 1, for M = p.

Let θ0
i,i+1 = α for i = 1, . . . , p − 1. In the mth model, we have θm

m,m+1 = atanh(tanhα +
4η) and the remaining edge weights θm

i,i+1 = α for i �= m. For m′ �= m,

max
i,j

∣∣E
θm′ [XiXj ] −Eθm[XiXj ]

∣∣≥ 4η.

Also, using (6.3)

J
(
θm ‖ θm′)≤ 4η

[
atanh(tanhα + 4η) − α

]≤ 4η
4η

1 − [tanhα + 4η]2 ,

where we used d
dx

atanh(x) = 1
1−x2 to get the last inequality. Fano’s inequality (Corollary 6.3)

with the distance L(2) gives the bound. �

7. Sample complexities of structure learning and forest approximation.

7.1. Samples necessary for structure learning.

PROOF OF THEOREM 3.1. Suppose that p is odd (for simplicity) and let the graph T0 be
a path with associated parameters θ0 given by θ0

i,i+1 = α for odd values of i and θ0
i,i+1 = β

for even values of i. For each odd value of m ≤ p − 2, we let θm be equal to θ0 everywhere
except θm

m,m+1 = 0 and θm
m,m+2 = α. There are (p + 1)/2 models in total (including θ0).

A small calculation using (6.3) leads to

J
(
θm ‖ θ0)= α tanhα[1 − tanhβ] ≤ 2α2e−2β.

Here, we used tanhα ≤ α and 1 − tanhβ ≤ 2e−2β for α,β ≥ 0. Plugging the last display into
Fano’s inequality (Lemma 6.2) completes the proof. �

7.2. Samples sufficient for structure learning (proof of Theorem 3.2). Consider the orig-
inal tree T with parameters α ≤ |θij | ≤ β for (i, j) ∈ ET. Using Definition 5.4, the Chow–Liu
algorithm recovers strong edges on the event Estrong(ε), where edge (i, j) is strong if its pa-
rameter θij satisfies | tanh θij > τ . Thus, if the edge strength lower bound α in the original
tree T satisfies tanhα > τ , on event Estrong(ε) we have TCL = T. Note that by Lemma 8.5, the

event Estrong(ε) (defined in (5.4)) with ε =
√

2/n log(2p2/δ) occurs with probability at least
1 − δ. The bound

n >
16

tanh2(α)(1 − tanhβ)
log

2p2

δ

on the number of samples guarantees tanhα > τ and TCL = T with probability at least 1 − δ.
Using 1 − tanhβ ≥ e−2β gives the statement of Theorem 3.2.

7.3. Lower bounding sample complexity of forest approximation algorithm, proof of
Proposition 4.2. Since the loss function d̃(P ,Q) defined in (4.1) is not symmetric and
hence not a distance, one cannot use Corollary 6.3 to lower bound the sample complexity
of the forest approximation algorithm.

Define a class of M = p − 1 models � as follows: Let θ1 be a model in which θ1
12 = 0,

θ1
2i = β for 3 ≤ i ≤ p, and θ1

ij = 0 for all other edges so that μ1i = 0 for all i ≥ 2 in this
model. For 2 ≤ m ≤ M , define θm (mth model) such that θm

12 = 0, θm
2i = β for 3 ≤ i ≤ p and
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θm
1,m+1 = atanh(η). Using (6.3), since μ1,m+1 = η and μ1i = η tanh2(β) for i ≥ 3 in model

m ≥ 2,

(7.1)

1

M

M∑
m=1

J
(
θm ‖ θM)≤ η atanh(η)

[
1

M
+
(

1 − 1

M

)
8e−2β

]

≤ 16η atanh(η)max
{

1

p
, e−2β

}
.

It will be useful to decompose an estimator into an estimator for the neighborhood of
node 1, and an estimator for the rest of the model with neighborhood of node 1 fixed. Let
� : {−1,+1}p×n → {0,1}V\{1} be an estimator for the neighborhood of node 1, and let � ′

�

be an estimator that generates a forest F, constrained to have the same neighborhood for node
1 that the estimator � recovers, and a distribution Q ∈ PF(0, β). Any estimator � can be
decomposed in this way to � and � ′

�. It follows that

inf
�

sup
T∈T

P∈PT(α,β)

P
[
d̃
(
P,�

(
X(1:n)))≥ η

] (a)≥ inf
�

inf
� ′

�

max
m

Pθm

[
d̃
(
P,�

(
X(1:n)))≥ η

]
(b)≥ inf

�
max

m
inf
� ′

�

Pθm

[
d̃
(
P,�

(
X(1:n)))≥ η

]
(c)≥ inf

�
max

m
Pθm

[
�
(
X(1:n)) �= ∂θm(1)

]
.

(a) holds since {Pθm}Mm=1 ⊆⋃
T∈T PT(0, β). (b) holds since we swapped the order of infimum

and max operations. (c) is justified as follows: If the data is generated from Pθ , θ ∈ �, in-
correct recovery of the neighborhood of node 1 by the estimator implies that d̃ ≥ η. This is
because d̃ = 1 if any extra edges are added and otherwise, if there are no extra edges and an
edge incident to node 1 is missing, then d̃ ≥ η due to the true correlation η on the edge being
zero in the estimated model.

Now, the final quantity in the last display can be lower bounded by a standard application
of Fano’s inequality (Corollary 6.3) on the family � introduced in the beginning of the proof.
The main ingredient is the average symmetric KL from (7.1) and specifying the distance. Let
∂F(1) be the neighborhood of node 1 in forest F. For P defined on forest F and Q defined
on F′, we use the distance d̃ ′(P,Q) = 1[∂F(1) �= ∂F′(1)] (zero–one loss on neighborhood of
node 1).

8. Control of events Ecorr, Estrong and Ecascade. We state a standard form of Hoeffding’s
inequality [22] in Appendix D and use it here.

LEMMA 8.1. The event Ecorr(ε) defined in (5.2) occurs with probability at least 1 −
2p2 exp(−nε2/2).

PROOF. For a given pair of nodes w, w̃, let Z(i) = X
(i)
w X

(i)
w̃ and apply Hoeffding’s in-

equality (Lemma 5 in Appendix D) to get P[|μw,w̃ − μ̂w,w̃| > ε] ≤ 2 exp(−nε2/2). Applying
the union bound over

(p

2

)
pairs w, w̃ ∈ V of nodes completes the proof. �

We next prove Lemma 6.1 for completeness.

PROOF OF LEMMA 6.1. For edge (u, ũ) /∈ ETCL , if there is an edge (i, j) ∈ pathTCL(u, ũ)

such that |μ̂uũ| > |μ̂ij |, then TCL cannot be the maximum weight spanning tree. To show
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that, consider the tree T′ identical to TCL except (u, ũ) ∈ ET′ and (i, j) /∈ ET′ (i.e., ET′ =
(ETCL \ {(i, j)}) ∪ {(u, ũ)}.) Note that T′ is a spanning tree and observe that weight(T′) �∑

e∈ET′ |μ̂e| =∑
e∈ETCL

|μ̂e| + |μ̂uũ| − |μ̂ij | > weight(TCL). �

We define a pair of random variables that will help to characterize the mistakes made by
the Chow–Liu algorithm. For a given pair of nodes v, ṽ and edge f = (u, ũ) ∈ pathT(v, ṽ),
let

Zf,v,ṽ = XuXũ − XvXṽ = XuXũ(1 − XuXvXṽXũ),(8.1)

Yf,v,ṽ = XuXũ + XvXṽ = XuXũ(1 + XuXvXṽXũ).(8.2)

LEMMA 8.2. If there exists a pair of edges f = (u, ũ) and g = (v, ṽ) such that f ∈
ET \ ETCL , g ∈ ETCL \ ET and additionally f ∈ pathT(v, ṽ) and g ∈ pathTCL(u, ũ), then(

n∑
i=1

Z
(i)
f,v,ṽ

)(
n∑

i=1

Y
(i)
f,v,ṽ

)
≤ 0.

PROOF. Using Lemma 6.1, f = (u, ũ) /∈ ETCL and g = (v, ṽ) ∈ pathTCL(u, ũ) implies that
|μ̂g| ≥ |μ̂f |. Hence μ̂2

g ≥ μ̂2
f and

0 ≥ μ̂2
f − μ̂2

g = (μ̂f − μ̂g)(μ̂f + μ̂g)

= 1

n2

(
n∑

i=1

X(i)
u X

(i)
ũ − X(i)

v X
(i)
ṽ

)(
n∑

i=1

X(i)
u X

(i)
ũ + X(i)

v X
(i)
ṽ

)

= 1

n2

(
n∑

i=1

Z
(i)
f,v,ṽ

)(
n∑

i=1

Y
(i)
f,v,ṽ

)
,

where in the last step we used f ∈ pathT(v, ṽ) and the definition of Zf,w,w̃ and Yf,w,w̃ in
(8.1) and (8.2). �

Later we will bound the probability of the event in Lemma 8.2. To this end, we will de-
rive deviation bounds on Zf,v,ṽ and Yf,v,ṽ in Lemma 8.3. We use the standard Bernstein’s
inequality as quoted from [42] in Appendix D.

LEMMA 8.3. For all pairs of nodes v, ṽ ∈ V and edges f = (u, ũ) ∈ pathT(v, ṽ),
let Af,v,ṽ = pathT(v, ṽ) \ {f } such that μvṽ = μf μAf,v,ṽ

. Given n i.i.d. samples let

Z
(1)
f,v,ṽ, . . . ,Z

(n)
f,v,ṽ be defined in (8.1), and Y

(1)
f,v,ṽ, . . . , Y

(n)
f,v,ṽ be defined in (8.2). Let ε =√

2/n log(2p2/δ). Then, with probability at least 1 − δ∣∣∣∣∣1n
n∑

i=1

Z
(i)
f,v,ṽ − μf (1 − μAf,v,ṽ

)

∣∣∣∣∣≤ max
{
4ε2,4ε

√
1 − μAf,v,ṽ

}
and(8.3)

∣∣∣∣∣1n
n∑

i=1

Y
(i)
f,v,ṽ − μf (1 + μAf,v,ṽ

)

∣∣∣∣∣≤ max
{
4ε2,4ε

√
1 + μAf,v,ṽ

}
.(8.4)

PROOF. We prove that (8.3) holds with probability at least 1 − δ/2. The proof of (8.4) is
analogous.

We use the abbreviation A instead of Af,v,ṽ and Z instead of Zf,v,ṽ in this proof.
Applying Lemma 8.6, it follows from the fact that P is Markov with respect to T and
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f = (u, ũ) ∈ pathT(v, ṽ) that XuXũ and XuXvXũXṽ are independent random variables. Note
that P(XuXũ = 1) = (1 + μf )/2 and P(XuXũ = −1) = (1 − μf )/2. Similarly, the distribu-
tion of XuXvXũXṽ is a function of μA. As a result, the random variable Zf,v,ṽ ∈ {−2,0,2}
defined in (8.1) has the following distribution:

Z =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−2 w.p.

1 − μf

2

1 − μA
2

,

0 w.p.
1 + μA

2
,

+2 w.p.
1 + μf

2

1 − μA
2

.

The first and second moments of Z are E[Z] = μf (1 − μA) and Var[Z] = (1 − μA)[2 −
μ2

f (1 − μA)] ≤ 2(1 − μA). By Bernstein’s inequality (Lemma 6 in Appendix D), with prob-
ability at least 1 − δ/2,∣∣∣∣∣

n∑
i=1

Z(i) − nE[Z]
∣∣∣∣∣≤ nmax

{
8

3n
log

4

δ
,

√
4 Var[Zf,v,ṽ]

n
log

4

δ

}
.

Using a union bound, we show that for any pair of nodes v, ṽ and any edge f = (u, ũ) ∈
pathT(v, ṽ),∣∣∣∣∣

n∑
i=1

Z(i) − nμf (1 − μA)

∣∣∣∣∣≤ nmax
{

8

3n
log

4p3

δ
,

√
8(1 − μA)

n
log

4p3

δ

}
.

The definition of ε gives 8
3n

log 4p3

δ
≤ 4ε2 and

√
8(1−μA)

n
log 4p3

δ
≤ 4ε

√
1 − μA which gives

the lemma. �

Event Estrong(ε) in (5.4) occurs if all of the strong edges in T (defined in (5.3)) are recov-
ered in TCL. Lemma 8.4 shows that the deviation bounds for the variables Zf,v,ṽ and Yf,v,ṽ

stated in (8.3) and (8.4) imply Estrong(ε).

LEMMA 8.4. Under the events described in Lemma 8.3, if there is an edge f ∈ ET miss-
ing from the Chow–Liu tree, f /∈ ETCL , then |μf | ≤ τ(ε) = 4ε√

1−tanhβ
(i.e., Estrong(ε) defined

in equation (5.4) holds).

PROOF. Applying Lemma 8.8 to f = (u, ũ) shows that for the edge f ∈ ET \ ETCL , there
exists an edge g = (v, ṽ) ∈ ETCL \ ET such that, f ∈ pathT(v, ṽ) and g ∈ pathTCL(u, ũ) (Fig-
ure 2). Let Z = Zf,v,ṽ defined in 8.1 and Y = Yf,v,ṽ defined in 8.2 in the scope of this
proof. Applying Lemma 8.2, this implies that (

∑n
i=1 Z(i))(

∑n
i=1 Y (i)) ≤ 0. Note that EZ =

μf (1 − μA) and EY = μf (1 + μA) using the definition A = Af,v,ṽ = pathT(v, ṽ) \ {f }.
Hence (EZ)(EY) = μ2

f (1 − μ2
A) ≥ 0. Thus, (

∑n
i=1 Z(i))(

∑n
i=1 Y (i)) < 0 holds only if either

one of the following inequalities holds:∣∣∣∣∣
n∑

i=1

Z(i) − nEZ

∣∣∣∣∣≥ n|EZ| or

∣∣∣∣∣
n∑

i=1

Y (i) − nEY

∣∣∣∣∣≥ n|EY |.

On the events described in Lemma 8.3, there is an upper bound on |∑n
i=1 Z(i) − nEZ| and

|∑n
i=1 Y (i) −nEY |. Hence, on these events, the property in above display holds only if either

one of these inequalities holds:∣∣μf (1 − μA)
∣∣≤ max

{
4ε2,4ε

√
1 − μA

}
or∣∣μf (1 + μA)

∣∣≤ max
{
4ε2,4ε

√
1 + μA

}
,
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which is true if

|μf | ≤ max
{

4ε√
1 − μA

,
4ε2

1 − μA
,

4ε√
1 + μA

,
4ε2

1 + μA

}
≤ max

{
τ(ε), τ 2(ε)

}
,

where τ(ε) is defined in (5.3). Note that if τ(ε) ≥ 1 then the bound on |μf | ≤ 1 ≤ τ(ε) is
trivial. If τ(ε) < 1, then τ 2(ε) < τ(ε) which gives |μf | ≤ τ(ε). �

LEMMA 8.5. With ε =
√

2/n log(2p2/δ), event Estrong(ε) defined in (5.4) occurs with
probability at least 1 − δ.

PROOF. Lemma 8.4 shows that, under the events described in Lemma 8.3, the event
Estrong(ε) defined in equation (5.4) holds. Using Lemma 8.3, with probability at least 1 − δ,
all edges e ∈ T such that |μe| > τ(ε) are recovered by the Chow–Liu algorithm e ∈ TCL. �

LEMMA 8.6. Let the distribution P(x) ∈ P(T) be a zero-field Ising model on the tree
T = (V,E). For all e = (i, j) ∈ E , let Ye = XiXj . Then the random variables {Ye}e∈T are
jointly independent.

This follows from the factorization of distribution P(x) ∈P(T) in (1.1).
Next, we prove an upper bound on the end-to-end error on paths in the tree T. Interestingly,

the bound is dimension-free: the error is independent of the length of path. Appendix E
contains the proof of Lemma 8.7.

LEMMA 8.7. Suppose γ < 1. If n > max{25/γ 2 log(4p2/δ),108e2β log(2p3/δ)}, then
the event Ecascade(γ ) defined in (5.5) occurs with probability at least 1 − δ.

LEMMA 8.8. Let T1 and T2 be two spanning trees on a set of nodes V . Let w, w̃ be
a pair of nodes such that pathT1

(w, w̃) �= pathT2
(w, w̃). Then there exists a pair of edges

f � (u, ũ) ∈ pathT1
(w, w̃) and g � (v, ṽ) ∈ pathT2

(w, w̃) such that:

(i) f /∈ pathT2
(w, w̃) and g /∈ pathT1

(w, w̃)

(ii) f ∈ pathT1
(v, ṽ) and g ∈ pathT2

(u, ũ).

Since f ∈ pathT1
(w, w̃) ∩ pathT1

(v, ṽ), w and w̃ (and, resp., v and ṽ) are in different sub-
trees of T1 after removing edge f , one can label the end points of the edges f = (u, ũ)

and g = (v, ṽ) such that u, v ∈ SubTreeT1,f (w) and ũ, ṽ ∈ SubTreeT1,f (w̃) (Figure 2).
Lemma 8.8 is proved in Appendix F.

9. Numerical simulations. We use numerical simulations to demonstrate the perfor-
mance of the Chow–Liu algorithm in terms of both the probability of incorrect recovery of
underlying structure (zero–one loss defined in (3.1)) and the L(2) loss defined in (3.3). We
are specifically interested in the regime in which the number of samples is not large enough
to guarantee the correct recovery of the underlying tree.

In these simulations, the generative probability distributions of the samples are factorized
according to (1.1) for a randomly chosen tree uniform over the set of trees on p nodes. To
observe the effect of upper and lower bounds on the edge parameters, for each edge (i, j) ∈ E ,
the edge parameter θij takes one of the values α or β with equal probability.

In Figure 3(a), we plot P[TCL �= T] as a function of the number of samples with p = 31,
β = 2 and different values of α. One can observe that the probability of error is higher for
smaller values of α (it increases to one as α decays to zero for any value of n). Figure 3(b)
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FIG. 3. The performance of the Chow–Liu algorithm as a function of the number of samples for generative
distribution factorized according to (1.1) with p = 31. Figures (a) and (b) use β = 2 and different values of α.
Figures (c) and (d) use α = .8 and different values of β . Figures (a) and (c) depict the probability of error and
Figures (b) and (d) show the small set TV L2 as the performance metric.

illustrates the L(2) loss in the same setup. This plot shows that as α decays, the loss remains
bounded (although not necessarily monotonic in α), consistent with Theorem 3.3.

Figures 3(c) and 3(d) plot the probability of error and the L(2) loss as a function of n

with p = 31, α = 0.8, and different values of β . As β increases, Figure 3(c) shows that the
probability of error in learning the tree increases (for any n, the probability of error goes to
one as β grows large enough). Figure 3(d) is consistent with the statement of Theorem 3.3,
which states that expected L(2) loss decays as C′p exp(−Cne−2β) + C′′√logp/n.

Appendix I contains numerical simulations on implementation of forest approximation
algorithm and its comparison with the Chow–Liu algorithm. It also contains the simulation
results depicting the performance of Chow–Liu algorithm with misspecified models. A tree-
structured Ising model is changed isotropically on the space of distributions by a small offset
to construct the generative distribution. This suggests that the the output of the Chow–Liu
algorithm is robust to misspecification in the model and close to the generative distribution
with respect to L(2) loss. The performance of the Chow–Liu algorithm in term of L(k) loss
for general value of k and for generative tree-structured Ising models in presence of external
field are also studied in Appendix I.

Discussion. In this paper, we prove guarantees on accuracy of prediction for a learned
tree-structured Ising model. There is a large literature on learning tree-structured Markov
random fields, and it is useful to carefully compare the guarantees obtained by each when
applied to our setting. In the Supplementary Material, we review different approaches that
could be taken toward learning a tree-structured distribution. We also review some known
algorithms and their sample complexity.

There are many interesting questions remaining, including those mentioned in the Intro-
duction: model misspecification, how to close the gap between the upper and lower bound
on sample complexity, Ising models with external field, and obtaining tight guarantees for
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L(k) (marginals of order k) for k > 2. Of course, it is also of great interest to go beyond tree
models and study other classes of models.
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SUPPLEMENTARY MATERIAL

Supplement to “Learning a tree-structured Ising model in order to make predictions”
(DOI: 10.1214/19-AOS1808SUPP; .pdf). Appendices contain additional proofs, numerical
simulations and discussions on related work, available as a Supplementary Material [10].
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