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In both parametric and certain nonparametric statistical models, the em-
pirical likelihood ratio satisfies a nonparametric version of Wilks’ theorem.
For many semiparametric models, however, the commonly used two-step
(plug-in) empirical likelihood ratio is not asymptotically distribution-free,
that is, its asymptotic distribution contains unknown quantities, and hence
Wilks’ theorem breaks down. This article suggests a general approach to re-
store Wilks’ phenomenon in two-step semiparametric empirical likelihood
inferences. The main insight consists in using as the moment function in the
estimating equation the influence function of the plug-in sample moment.
The proposed method is general; it leads to a chi-squared limiting distribu-
tion with known degrees of freedom; it is efficient; it does not require under-
smoothing; and it is less sensitive to the first-step than alternative methods,
which is particularly appealing for high-dimensional settings. Several exam-
ples and simulation studies illustrate the general applicability of the proce-
dure and its excellent finite sample performance relative to competing meth-
ods.

1. Introduction. Since its introduction as a nonparametric likelihood alternative to
likelihood-type bootstrap methods for constructing confidence regions, Owen’s [48–50] em-
pirical likelihood (EL henceforth) has been used extensively in both statistics and econo-
metrics. Such popularity is justified by the appealing theoretical properties of EL confidence
regions: they tend to be more concentrated in places where the density of the parameter esti-
mator is greatest; they can be Bartlett corrected ([18] for the so-called smooth function model,
[7] for exactly identified estimating equations models, [11] for exactly identified estimating
equations models with nuisance parameters and [12] for over-identified estimating equations
models); they do not require estimation of scale (internal studentization) and skewness; and
finally, they are range preserving and transformation respecting. Furthermore, [19] show that
in linear exponential families empirical and parametric likelihood surfaces are quite close in
terms of their asymptotic distribution. Specifically, the chi-squared approximations to the dis-
tributions of the empirical and likelihood ratios, as well as the asymptotic normality of their
signed squared root differ in terms of order O(n−1), where n is the sample size. See [50]
for a comprehensive review of these properties and a number of applications geared mainly
towards finite-dimensional statistical models.

More recently, the EL method has been used in nonparametric and semiparametric mod-
els. For nonparametric models, Fan and Zhang [22] considered sieve empirical likelihood
for testing nonparametric hypotheses about nonparametric functions, and showed that an ap-
propriately rescaled sieve EL ratio test has an asymptotic chi-squared calibration, with the
scaling constant and degrees of freedom being independent of nuisance parameters, in other
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words the so-called Wilks’ phenomenon [71] (i.e., the likelihood ratio statistic is asymptoti-
cally distribution-free and converges to a chi-squared distribution) holds for the EL. In semi-
parametric models, [4] has shown that Wilks’ theorem also holds in certain “highly smooth”
cases; see Remark 2.3 in [29] for discussion.

For semiparametric models, the most popular method uses a two-step (plug-in) procedure
in which the first-step estimator replaces the infinite-dimensional nuisance parameter, while
in the second step the plug-in EL ratio is used to obtain inferences for the finite-dimensional
parameter of interest. This two-step semiparametric EL approach has been considered by a
number of authors, including [70] for partially linear models, [78] for single-index models,
[27, 72, 80] for various censored regression problems, [60, 65–69] for various missing data
problems and [4, 8, 9, 42, 43] for other semiparametric problems. [13, 77] provide recent
surveys on EL inference in the context of semiparametric regression models.

In general, the two-step semiparametric plug-in method does not yield asymptotically piv-
otal test statistics. Indeed, as shown in a general setting by [29], the asymptotic distribution
of the resulting plug-in EL ratio is generally a weighted sum of chi-squared random variables
with the weights depending (often in a complicated way) on the distribution of the data. Thus,
in most situations the Wilks’ phenomenon does not hold for the two-step EL ratio, so to ob-
tain asymptotically valid EL inferences three main proposals have been put forward in the
literature. The first and most common proposal is the bootstrap, as suggested, for example,
by [29, 65]. The proposed bootstrap methods are general in nature, but they require reesti-
mating the semiparametric model in each bootstrap iteration, and thus are computationally
very expensive. The second proposal consists in adjusting the EL by a scale factor such that
the adjusted (or rescaled) EL ratio is asymptotically pivotal. [66] proposed a specific scale
factor; more general adjustments have been proposed by [9, 74, 78]. Although sometimes
effective, these adjustments typically involve explicit estimation of various covariance matri-
ces, which can be very complicated to be carried out in practice. Furthermore, the internal
studentization property of EL is not exploited and this can negatively affect the finite sample
performance of the resulting EL statistic. The third proposal exploits that in some specific
cases it is possible to modify the original estimating equation in such a way that the effect
of the first-step estimation is removed. This approach has been called in the EL literature
“bias-reduced or bias-corrected EL”. A review of papers using this approach is provided in
Section 2.3. As shown first by [82] in the context of a partially linear single-index model,
this approach has the additional advantage of not requiring undersmoothing (the bias of the
first-step going to zero faster than its standard deviation), much in contrast to bootstrap and
adjusted based methods, but it is not clear how the method works, that is, how the modified
estimating equations were obtained in the first place for the specific models considered, and
how similar estimating equations could be built for other semiparametric models.

This leads us to the main contribution of this article, which is to propose a theoretical jus-
tification of “bias-corrected EL” methods in general semiparametric models. This theoretical
justification includes a general construction of the method, proving Wilks’ theorem and es-
tablishing the efficiency of the procedure. The main insight consists in using as the moment
function in the estimating equation the influence function of the plug-in sample moment. This
entails correcting the original estimating equations based on the pathwise derivative with re-
spect to the infinite-dimensional parameter. Pathwise differentiation arises naturally in the
context of semiparametric models, and has been used extensively both in the statistical and
econometric literatures; see, for example, [5, 36, 45, 51, 62]. Our method does not require
bootstrap and preserves the internal studentization property of the EL ratio. Thus, confidence
regions can be computed with critical values from a standard chi-squared distribution.

There are a number of additional benefits that result from our method. The proposed mod-
ified tests are efficient (asymptotically maximin and asymptotically uniformly most powerful
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and invariant; see Section 3.3). To our knowledge, this is the first article establishing effi-
ciency in a two-step semiparametric testing setting for EL. We also find that, in general, with
the modified test there is no need for undersmoothing, which means that, in contrast to alter-
native methods, the proposed inference method is asymptotically valid with a cross-validated
bandwidth for the first-step. Confidence intervals based on the new method tend to have a
more accurate coverage than alternative procedures that is also less sensitive to bandwidths.
These advantages of efficiency and robustness to high-dimensional first steps do not gen-
erally hold for alternative procedures without the correction (e.g., bootstrap methods). The
theoretical results above are confirmed by two Monte Carlo simulations; one in the context
of average treatment effects in observational studies, and one in the context of nonlinear
estimating equations with missing data.

The rest of the article is organized as follows: the next section introduces the statistical
model, the method and provides some heuristic explanation as to why the proposed method
works, while Section 3 presents the main results. The main results include establishing Wilks’
theorem and the efficiency for our modified estimating equation approach. Sections 4 and 5
contain, respectively, all the examples and the results of the simulations that are used to il-
lustrate the theory and the finite sample performance of the proposed method. Section 6 is a
discussion section. Section 7 contains the proofs of the main results. The Supplementary Ma-
terial [10] consists of four appendices that are organized as follows. Appendix A gathers all
the proofs for the examples. Appendix B proves the validity of a general numerical algorithm
for estimating the pathwise derivative, Appendix C extends the main result of the paper to the
case of over-identified models, and Appendix D shows an auxiliary result regarding Donsker
and Glivenko–Cantelli classes. All these results are of independent interest.

2. The statistical model and method.

2.1. Two-step semiparametric inference. Let Z be a random vector defined on a proba-
bility space (�,B,P) and with values on SZ ⊆ R

dz , and let {Zi}ni=1 be independent copies
of Z. Assume Z satisfies the estimating equations

(2.1) E
[
g(Z, θ0, η0)

] = 0,

where g(·) : SZ × � × E →R
p is a vector-valued measurable known function, θ0 ∈ � ⊂ R

p

denotes the finite-dimensional parameter of interest, and η0 ∈ E denotes the possibly infinite-
dimensional nuisance parameter, taking values in a semimetric space E . The statistical model
(2.1) is rather general, as it does not require the full specification of the distribution of Z,
albeit it does also include models that can be estimated with semiparametric maximum and
quasi maximum likelihood methods, for which (2.1) may represent, respectively, the score
and quasi score vector. We consider just-identified models for simplicity of notation, but our
theory can be equally applied to over-identified models (i.e., number of equations larger than
p, thereby extending [53] to the semiparametric case, where possibly infinite-dimensional
nuisance parameters η0 ∈ E are present in (2.1). Details can be found in Appendix C in the
Supplementary Material, Theorem C.1.)

Under this setting, we aim to construct EL based tests or confidence regions for θ0 using
the sample {Zi}ni=1. If η0 ∈ E is known, the standard EL (1 − α)-confidence region is{

θ ∈ � : −2 log ELn(θ, η0) < χ2
p,1−α

}
,

where ELn(θ, η0) is the likelihood ratio function

ELn(θ, η0) := max

{
n∏

i=1

npi : pi > 0,

n∑
i=1

pi = 1,

n∑
i=1

pig(Zi, θ, η0) = 0

}
,
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and χ2
p,α is the α-quantile of the chi-squared distribution with p degrees of freedom,

α ∈ (0,1). In practice, η0 is unknown and the standard two-step (plug-in) approach defines
confidence regions of the form {θ ∈ � : −2 log ELn(θ, η̂) < c}, for a suitable constant c to be
determined and a first-step consistent estimator η̂ for η0. [29] have investigated this two-step
method in a general setting, and have shown that if

1√
n

n∑
i=1

g(Zi, θ0, η̂)
d→ U,(2.2)

1

n

n∑
i=1

g(Zi, θ0, η̂)g′(Zi, θ0, η̂)
P→ V,(2.3)

for a nonsingular matrix V (for any matrix A, A′ denotes the transpose of A), then

(2.4) −2 log ELn(θ0, η̂)
d→ U ′V −1U,

provided some further regularity conditions hold. This convergence result is a generalization
of the classical result by [48, 49]. The asymptotic distribution of the quadratic form U ′V −1U

is typically not chi-squared, but rather a weighted sum of chi-square random variables. To
explain the discrepancy between one-step and two-step settings, notice that a “functional”
Taylor argument leads to the expansion

(2.5)
1√
n

n∑
i=1

g(Zi, θ0, η̂) = 1√
n

n∑
i=1

{
g(Zi, θ0, η0) + φ(Zi, θ0, h0)

} + oP(1),

where φ(Zi, θ0, h0) is the so-called pathwise derivative of η → E[g(Zi, θ0, η)], well ex-
plained in [45, 62], which accounts for the asymptotic impact of the first-step estimate η̂

on the sample analog of the moment E[g(Zi, θ0, η)], and where h0 may include η0 and other
nonparametric objects that may appear in the influence function as a result of “functional
differentiation”. Hence, if (2.5) and certain finite moment conditions hold, an application of

the standard central limit theorem (CLT) yields U
d= N(0,	) in (2.2), where d= stands for

equality in distribution, and

(2.6) 	 := E
[(

g(Z, θ0, η0) + φ(Z, θ0, h0)
)(

g(Z, θ0, η0) + φ(Z, θ0, h0)
)′];

whereas a uniform law of large numbers (ULLN) yields (2.3) with V = E[g(Z, θ0, η0) ×
g′(Z, θ0, η0)]. These results imply that the limiting distribution in (2.4) is in general a
weighted chi-squared distribution when φ �= 0; see [54], page 171.

2.2. A new method: Heuristics. Let m denote the modified moment function (cf. (2.5))

m(Z, θ0, h0) := g(Z, θ0, η0) + φ(Z, θ0, h0),

and define the bias-corrected or modified EL ratio function as

MELn(θ, h) := max

{
n∏

i=1

npi : pi > 0,

n∑
i=1

pi = 1,

n∑
i=1

pim(Zi, θ, h) = 0

}
.

Let ĥ be a consistent estimate of h0 satisfying some conditions below. One of the main results
of this article shows that under certain regularity conditions

R1−α := {
θ ∈ � : −2 log MELn(θ, ĥ) < χ2

p,1−α

}
,

forms an asymptotically valid (1 − α)-confidence region for θ0. This follows from the fact
that the test that rejects H0 : θ = θ0 against H1 : θ �= θ0 when −2 log MELn(θ0, ĥ) > χ2

p,1−α

has an asymptotic level α ∈ (0,1).
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To show these results, we prove in Theorem 3.1 below

1√
n

n∑
i=1

m(Zi, θ0, ĥ)
d→ N(0,	),(2.7)

1

n

n∑
i=1

m(Zi, θ0, ĥ)m′(Zi, θ0, ĥ)
P→ 	,(2.8)

where 	 is defined in (2.6). The key asymptotic results (2.7) and (2.8) established in this arti-
cle, and the general convergence theorem in [29], imply that Wilks’ phenomenon is restored,
that is,

−2 log MELn(θ0, ĥ)
d→ χ2

p.

We provide now some heuristics on the validity of (2.7), and refer to Section 3 below for
a formal discussion. Under certain regularity conditions, the influence function m(Zi, θ, h0)

belongs to the ortho-complement of the tangent space of nuisance parameters; see [5]. This
implies that, modulo some regularity conditions, the following invariance property holds:

(2.9)
1√
n

n∑
i=1

m(Zi, θ0, ĥ) = 1√
n

n∑
i=1

m(Zi, θ0, h0) + oP(1).

Intuitively, m is a projection of g, say m = 
g, and projection operators are idempotent, that
is, they satisfy 
2 = 
. In particular, 
m = m, which explains (2.9), and hence (2.7). The
projection operator 
 projects onto the ortho-complement of the tangent space of nuisance
parameters, but its actual form depends on the limit of the estimator ĥ and the model.

2.3. Identifying pathwise derivatives. The pathwise derivative φ(·) in (2.5) plays a fun-
damental role in our method, as it is used to construct m. This section discusses the identi-
fication of φ(·) in a general setting. Let F0 denote the distribution of Z. Let L0

2 be the sub-
space of measurable real-valued functions d(Z) such that E(d(Z)) = 0 and E(d2(Z)) < ∞,
where all expectations, unless otherwise stated, are with respect to F0. Following [45], we
denote by η(F ) the probabilistic limit of the first-step estimator η̂ when the distribution of
Z is F ∈ F , where F is a class of distributions that is unrestricted, except for regularity
conditions. The precise generality of F is defined as follows. Let {Ft } be a regular paramet-
ric (one-dimensional) submodel, t ∈ (0, ε) → Ft ∈ F , satisfying the classical mean-squared
differentiability assumption with score s, that is, as t ↓ 0,∫ [

dFt
1/2 − dF

1/2
0

t
− 1

2
dF

1/2
0 s

]2
= o(1).

The generality of F is that the set of scores {s} of regular paths in F is linear and dense in
L0

2. Define the functional μ : F −→ R
p

(2.10) μ(F):= E
[
g
(
Z,θ0, η(F )

)]
, F ∈F .

If μ is differentiable at F0 in the sense of [62], then for any regular path {Ft } with score s(·)
there exists a function φ(·, θ0, η(F0)) ∈ L0

2 such that

(2.11)
∂μ(Ft )

∂t

∣∣∣∣
t=0

= E
[
φ

(
Z,θ0, η(F0)

)
s(Z)

]
.

Moreover, since the set of scores {s} is linear and dense in L0
2, then φ(·, θ0, η(F0)) is uniquely

determined from (2.11) and φ(·, θ0, η(F0)) ∈ L0
2. That is, φ(·, θ0, η(F0)) is the influence

function of the functional μ(·), an observation that was first made by [45], page 1357.
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Equation (2.11) is a functional equation in φ. [45] used this equation to provide expressions
for φ when η0 ≡ η(F0) is a regression function or a density. The literature contains numerous
examples where φ has been explicitly computed; see [5] for a comprehensive review of many
of these examples. [33] have recently suggested a smoothed version of Hampel’s [25, 26]
characterization of influence functions as Gateaux derivatives, which can be applied to μ(F)

to characterize φ. For cases where computing φ explicitly is difficult, either from [45] or from
[33], we propose a fully automatic numerical method to estimate φ and prove the validity of
our bias-corrected EL with the numerically estimated influence function. See Theorem A.1
in Appendix B in the Supplementary Material, which is a new result of independent interest.

2.4. Bias-corrected EL: A review. The bias-corrected EL ratio was first introduced in
[82] for a semiparametric partially linear single-index model. Since then, this approach has
been used in other semiparametric settings, including in [76] for semiparametric regressions
with longitudinal data, in [60, 73, 75] for models with missing data and in [40, 61, 79, 81] for
other semiparametric problems. Explicit recognition of the benefits of using influence func-
tions as estimating equations to obtain chi-squared limiting distributions for EL ratio tests
is given in [27, 80]. [80] considered finite dimensional nuisance parameters, and although
they discussed two applications in semiparametric models, no theoretical results were given
for infinite dimensional nuisance parameters. [27] proposed using a special influence func-
tion for a scalar parameter defined through an estimating equation with right censored data.
Relative to this literature, the main contribution of this article is to provide a general theory
of bias-corrected EL in semiparametric models. This theory involves giving a new general
construction of a bias-corrected EL, including a result with a numerically estimated influence
function (Appendix B in the Supplementary Material), proving Wilks’ theorem in a general
setting (Section 3.2) and establishing the efficiency of the method (Section 3.3). Some exam-
ples in Section 4 illustrate the application of the general theory. Further applications of the
general theory of this article are provided in [42, 43].

3. Main results.

3.1. Notation. We first elaborate further on the model introduced in (2.1). Notice that,
though we do not make it explicit in (2.1), the nuisance function h0(·) may contain θ0 as
an additional argument. In what follows, we suppress θ0 in the nuisance function h0 to save
space, but it should be understood conformably, that is, (θ, h) := (θ, h (·, θ)). We assume
that a first-step nonparametric estimator ĥ(·) for h0(·) is available with certain convergence
properties as specified in Assumption A below. Let | · | denote the Euclidean norm, that is,
|A| := (tr(A′A))1/2, where tr(A) is the trace of the matrix A. For a measurable function g of
Z, define ‖g‖∞ := supz∈SZ

|g(z)| and ‖g‖r := (E[|g(Z)|r ])1/r , where SZ is the support of
Z. The function space H, where h0 belongs to, is endowed with a semi-metric ‖ · ‖H. For
example, ‖ · ‖H = ‖ · ‖∞ or ‖ · ‖H = ‖ · ‖r . Since we assume consistency of ĥ with respect to
‖ · ‖H, we can redefine H as Hδ := {h ∈ H : ‖h − h0‖H ≤ δ}, for an arbitrarily small δ > 0.
For a measurable function f , we denote Pf := ∫

f dP,

Pnf := 1

n

n∑
i=1

f (Zi) and Gnf := √
n(Pnf − Pf ).

Henceforth, we will use the concepts of P-Glivenko–Cantelli and P-Donsker classes; see,
for example, [64] for definitions. For a generic random vector Z with absolute continuous
distribution, we denote by fZ its (Lebesgue) density.
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3.2. Regularity conditions and Wilk’s theorem. This section presents the main results in
a formal way under a set of “high-level” assumptions. The motivation for these high-level
assumptions is to widen the applicability of the approach, while avoiding repetition. The mo-
ment function g satisfies (2.1). Having discussed methods to identify the pathwise derivative
φ of g, we now provide regularity conditions for the validity of our results assuming knowl-
edge of φ. Appendix B in the Supplementary Material relaxes this assumption and proves
Wilks’ theorem with a numerically estimated influence function.

We introduce the following regularity conditions.

ASSUMPTION A. The measurable function m(·, θ0, h) is such that:

(i) Stochastic equi-continuity in h: for all sequences of numbers δn ↓ 0,

sup
‖h−h0‖H≤δn

∣∣Gnm(·, θ0, h) −Gnm(·, θ0, h0)
∣∣ = oP(1).

(ii) Asymptotic “no bias” condition:

P
[
m(·, θ0, ĥ) − m(·, θ0, h0)

] = oP
(
n−1/2)

.

(iii) P(ĥ ∈ Hδ) → 1, for δ > 0, and ‖ĥ − h0‖H = oP(1).
(iv) Uniform consistency: for all δn ↓ 0 and for ν = gg′, ν = gφ′ and ν = φφ′,

sup
‖h−h0‖H≤δn

∣∣Pnν(·, θ0, h) − Pnν(·, θ0, h0)
∣∣ = oP(1).

Moreover, the matrix 	 = E[m(Z, θ0, h0)m
′(Z, θ0, h0)] is positive definite and finite.

(v) P(MELn(θ0, ĥ) = 0) → 0 and max1≤i≤n |m(Zi, θ0, ĥ)| = oP(
√

n).

Assumption A is a high-level condition that suffices for the validity of our method. The
conditions in A(i)–(ii) are standard in the literature; see, for example, [15]. Assumption A(i)
is implied by the P-Donsker property of the function class F := {m(·, θ0, h) : h ∈ Hδ}; see
Appendix D in the Supplementary Material for primitive conditions for this. Related high-
level assumptions to the asymptotic “no bias” condition have been considered extensively in
the literature; see, for example, [5] page 396, Theorem 6.1(i) in [30], page 557, Section 25.8
in [63], Assumption H2 in [4] or Condition M2 in [6]. Assumptions A(iii) and A(iv) are
standard in the literature on semiparametric inference. Assumption A(v) is required in [29],
who discussed sufficient conditions for it to hold. Next result shows that with our method
Wilk’s theorem is restored.

THEOREM 3.1. If Assumption A holds, then

−2 log MELn(θ0, ĥ)
d→ χ2

p.

The verification of the asymptotic “no bias” condition A(ii) may be easy due to the special
properties of the model (e.g., in certain convex models with the efficient score as moment
function), but more generally it may also require considerable effort. The following assump-
tion suffices for A(ii) to hold.

ASSUMPTION B. For some δ > 0:

(i) The map h → M(h) = E[m(Z, θ0, h)] from Hδ to R
p satisfies, for all h ∈ Hδ ,

|M(h) − M(h0)| ≤ c‖h − h0‖τ
H for constants c > 0 and τ > 1.

(ii) P(ĥ ∈ Hδ) → 1 and ‖ĥ − h0‖H = oP(n
−1/2τ ).
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Assumption B(i) requires sufficient smoothness in the model. This condition holds if M(h)

is Frechet differentiable with a zero derivative and a Hölder continuous second derivative.
Frechet differentiability is often satisfied in this context, see [23]. The proof of the following
lemma is trivial, and hence omitted.

LEMMA 3.2. Assumption B implies A(ii).

REMARK 3.1. Undersmoothing is not required in the conditions on the first-step ĥ. This
is shown in our examples below using kernel estimators for ĥ. This is important, as cross-
validation and related methods that choose the optimal bandwidth for estimation of the first-
step are commonly used in practice. These bandwidths are ruled out by alternative methods
that do not use our correction (e.g., bootstrap methods).

REMARK 3.2. An extension of Theorem 3.1 to the case of a numerically estimated in-
fluence function φ is given in Theorem B.1 of Appendix B in the Supplementary Material.
This result is convenient for situations where computing φ directly is too involved.

3.3. Efficiency. In this section, we prove the efficiency, in the sense introduced below, of
the modified EL procedure. Let us denote by ψn the test that rejects H0 : θ = θ0 against H1 :
θ �= θ0 when −2 log MELn(θ0, ĥ) > χ2

p,1−α . Consider the local alternatives H1n : θn = θ0 +
τ/

√
n, where τ �= 0. To investigate the asymptotic behavior of ψn under the local alternatives

H1n, we need the following assumption.

ASSUMPTION C. The measurable function m(·, θ, h) satisfies:

(i) Stochastic equi-continuity in θ : for all sequences of numbers δn ↓ 0,

sup
|θ−θ0|≤δn

∣∣Gnm(·, θ, h0) −Gnm(·, θ0, h0)
∣∣ = oP(1).

(ii) θ0 ∈ �, with � ⊂R
p open, and E[m(Z, θ,h0)] is continuously differentiable at θ0,

with a nonsingular derivative.
(iii) E[m(Z, θ,h0)m

′(Z, θ,h0)] is continuous at θ0 and, for some δ > 0,

E

[
sup
θ∈N0

∣∣m(Z, θ,h0)
∣∣2+δ

]
< ∞,

where N0 is a neighborhood of θ0.

Assumption C is standard. Note this condition allows for nonsmooth moment functions m

as a function of θ and h. Under Assumption C(ii), we can define G0 = (∂/∂θ ′)E[m(Z, θ0,

h0)]. The following matrix will play a fundamental role in efficiency considerations, B∗ =
G′

0	
−1G0. The first concept of efficiency used here is that of an asymptotic maximin test.

We give a basic introduction to this concept as follows. Let X follow a p dimensional normal
distribution with mean μ and identity variance, and let a denote a positive fixed number.
A maximin test for testing μ = 0 against the alternative μ′μ ≥ a is one that maximizes the
minimum power infμ∈Rp :μ′μ≥a Eμ[ϕ(X)] over the set of all level α tests ϕ(·). It is well known
(see, e.g., [38], page 55) that the maximin test has critical region X′X ≥ χ2

p,1−α . For further
details on maximin tests, see [38, 58]. A test for H0 : θ = θ0 against H1n : θn = θ0 + τ/

√
n is

asymptotic maximin when its asymptotic local power function is that of the maximin test in
the limiting experiment. Our first efficiency result shows that ψn is asymptotic maximin.

THEOREM 3.3. Let Assumptions A and C hold under H1n. Then the test ψn is asymptotic
maximin for testing H0 : τ = 0 against H1 : τ ′B∗τ ≥ a, for any a > 0.
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We establish now an efficiency result for the modified test in a semiparametric setting.
Efficient tests for restrictions on a finite-dimensional parameter in regular semiparametric
models have been formally defined in [17]. For multivariate null hypotheses, these authors
introduce the efficiency concept of Asymptotically Uniformly Most Powerful and Invariant
test of level α, in short AUMPI(α), see [17], Section 5. Of course, when p = 1, alternative
definitions of efficiency, which do not require invariance, are typically used. We refer to [17]
for a comprehensive discussion of these efficiency concepts. See also [34] for an illuminating
application in a regression context.

Recall the moment function g(Z, θ0, η0) satisfies (2.1) with first-steps given by η0. To
establish the optimality of the bias-corrected procedure, we need to be specific about the
nature of the first-steps. We follow [1] and assume the first-steps η0 = (η′

01, . . . , η
′
0J )′ are

identified by the conditional moments E[ρj (Z,η0j (Xj ))|Xj ] = 0, for some functions ρj ,
j = 1, . . . , J . This setting includes many example applications as special cases. Here, Z =
(Y ′,X′)′ and X is the union of distinct elements of Xj , 1 ≤ j ≤ J . Suppose that there is
γ0j (Xj ) in the mean square closure of the set of derivatives ∂E[ρj (Z,η0j (Ft ))|Xj ]/∂t |t=0
as Ft varies over regular parametric models such that

∂E[g(Z, θ0, η0j (Ft ), η0,−j )]
∂t

∣∣∣∣
t=0

= −E
[
γ0j (Xj )∂E

[
ρj

(
Z,η0j (Ft )

)|Xj

]
/∂t |t=0

]
,(3.1)

where η0,−j includes all elements of η0 but η0j . Then, from [1] the adjustment term is given
by φ(z, θ, h0) = −∑J

j=1 γ0j (Xj )ρj (Z,η0j (Xj )). The efficiency for the modified EL proce-
dure with pathwise derivative φ is shown next.

THEOREM 3.4. Let the conditions of Theorem 3.3 in this paper and Condition 1 in [1]
hold. Then the modified EL test ψn is AUMPI(α).

4. Examples. This section illustrates the general theory above with several examples.
In all the examples below, we assume that the corresponding variance-covariance matrix 	

in (2.6) is finite and positive definite. For any random vectors U , V and W , the notation
U ⊥ V |W will be used to indicate that U is independent of V given W . Also, fU |V denotes
the conditional Lebesgue density of U given V .

The following notation on smooth classes of functions is used throughout the examples.
Let Cq(X ) be a set of smooth continuous functions on X endowed with the sup-norm ‖ · ‖∞,
as defined in [64], page 154. That is, if X is a convex, bounded subset of Rd , with nonempty
interior, then for any smooth function h : X ⊂ R

d → R and some q > 0, let q be the largest
integer smaller than q , and

‖h‖∞,q := max|a|1≤q
sup
x∈X

∣∣∂a
x h(x)

∣∣ + max|a|1=η
sup
x �=y

|∂a
x h(x) − ∂a

x h(y)|
|x − y|q−q ,

where |a|1 = ∑
i ai and ∂a

x = ∂
|a|1
x

∂x
a1
1 ...∂x

ad
d

. Further, let C
q
M(X ) be the set of all continuous

functions h : X ⊂ R
d → R with ‖h‖∞,q ≤ M . Let Cq

M,ε(X ) be the set of functions f ∈
Cq

M(X ) such that f > ε, for some ε > 0.

4.1. Mean of interval censored data. Suppose we observe Z = (Y,X′)′, X = (X1,X
′
2)

′,
X1 is a positive random variable, X2 is a d2-dimensional vector of covariates and Y = 1(W >

X1). The variable W is unobserved. We are interested in inference on θ0 = E[W ]. The ran-
dom variables W and X1 are conditionally independent given X2, in short W ⊥ X1|X2, and
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the support of W is SW = [0,M], M ≤ ∞. This is the so-called current status model; see
[2, 24, 31, 35, 59] for surveys on this model. For applications in economics, see [39]. Let
η0(w,x2) := P(W > w|X2 = x2) denote the conditional survival function and note that

θ0 = −E

[∫ M

0
w dη0(w,X2)

]
= E

[∫ M

0
η0(w,X2) dw

]
.

Thus, we can write the previous equality as our estimating equation with g(X2, θ0, η0) =
θ0 − ∫ M

0 η0(w,X2) dw. By the conditional independence assumption, η0(x) = E[Y |X = x],
provided the support of W is contained in the support of X1. Therefore, any consistent non-
parametric estimator for a conditional mean can be used as a first-step estimator for η0, for
example, a Nadaraya–Watson (NW) kernel estimator.

Applying the pathwise derivative computation suggested in [46], page 1361, we obtain
φ(z, θ0, η(F0)) = −(y − η0(x))fX2(x2)/fX(x). Hence, our method leads to the estimating
equation

E

[
θ0 −

∫ M

0
η0(w,X2) dw − (

Y − η0(X)
)fX2(X2)

fX(X)

]
= 0.

That is, in this example, m(Z, θ0, h0) = θ0 − ∫ M
0 η0(w,X2) dw − (Y − η0(X))fX2(X2)/

fX(X), where h0 = (η0, fX) ∈ H := Cq
1 (SX) × Cq

M(SX), q > dx/2, dx = d2 + 1, and
‖h0‖H = ‖η0‖∞ + ‖fX‖∞. The nuisance parameter h0 is estimated by a NW estimator,

η̂(x) := n−1∑n
i=1YiKb(Xi − x)

f̂X(x)
, f̂X(x) := n−1

n∑
i=1

Kb(Xi − x),

where x ∈ SX := SX1 × SX2 ⊂ R
dx , Kb(x) := b−dx

∏dx

l=1k(xl/b), for some univariate
bounded kernel k(·) with compact support, and a bandwidth parameter b ↓ 0. We verify our
conditions under the following assumption.

ASSUMPTION E1. (i) We observe Z = (1(W > X1),X1,X
′
2)

′, where W ⊥ X1|X2 and
SW = [0,M] ⊂ SX1 .

(ii) fX(x), fX2(x2)/fX(x) and η0(x) are r times continuously differentiable in x =
(x1, x2), with uniformly bounded derivatives (including zero derivatives), where r is as
in (iii) below. Moreover, infx∈SX

fX(x) > 0, E[|fX2(X2)/fX(X)|2+δ] < ∞, h0 ∈ Hδ and
P(ĥ ∈ Hδ) → 1, for some δ > 0.

(iii) The kernel function k : R → R is bounded, symmetric and satisfies the following
conditions:

∫
k(t) dt = 1,

∫
t lk(t) dt = 0 for l = 1, . . . , r − 1, and

∫ |t rk(t)|dt < ∞ for some
r ≥ 2; and for some v > 1, |k(t)| ≤ C|t |−v for |t | > L, 0 < L < ∞.

(iv) The deterministic sequence of positive numbers b ≡ bn satisfies: (a) bn → 0 and
b

2dx
n n/ logn → ∞; and (b) nb4r

n → 0.

Primitive conditions for P(ĥ ∈ Hδ) → 1 have been given in [21, 44]. Note that under-
smoothing is not required, that is, we require nb4r

n → 0 rather than the typical nb2r
n → 0.

Assumption E1 is sufficient for Assumptions A, B and C, as the following proposition shows.

PROPOSITION E1. Under Assumption E1, the conclusions of Theorem 3.1, Theorem 3.3
and Theorem 3.4 hold for this example.
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4.2. Average treatment effect. There is an extensive literature on the measurement and
evaluation of treatment effects in observational studies. We use the potential outcome nota-
tion of [56]. Let D be the treatment indicator, Y1 be the outcome under treatment and Y0 be the
outcome without treatment. We only observe Z = (Y,D,X′)′, where Y = Y1 ·D+Y0 ·(1−D)

and X is a dx -dimensional vector of covariates. We assume the treatment is unconfounded,
that is, (Y1, Y0) is independent of D, conditional on X. One parameter of interest is the aver-
age treatment effect (ATE) θ0 = E[Y1 − Y0]. Define the propensity score η0(X) := E[D|X],
which is assumed to be bounded away from zero and one. Then it is known that under un-
confoundedness the ATE is given by θ0 = E[YD/η0(X) − Y(1 − D)/{1 − η0(X)}]; see [55].
This representation suggests the two-step estimator

θ̂ = 1

n

n∑
i=1

[
YiDi

η̂(Xi)
− Yi(1 − Di)

1 − η̂(Xi)

]
,

where η̂ is a consistent estimator of the propensity score. citer29 derived the influence func-
tion for θ̂ and provided sufficient conditions for the asymptotic normality of

√
n(θ̂ − θ0)

when η̂ is a series Logit estimator. In particular, they showed that, with μj(X) = E[Y(j)|X]
(j = 0,1) denoting the conditional mean for potential outcomes, the pathwise derivative due
to the estimation of the propensity score η0 is given by

(4.1) φ(Z, θ0, h0) = (
D − η0(X)

)(μ1(X)

η0(X)
+ μ0(X)

1 − η0(X)

)
,

where h0 = (η0,μ0,μ1) ∈ H := C̄q
1,ε(SX) × Cq

M(SX) × Cq
M(SX), and C̄q

1,ε(SX) is the sub-
space of functions f ∈ Cq

1 (SX) such that ε < f < 1 − ε, for some ε, 0 < ε < 1 and
‖h0‖H = ‖η0‖∞ + ‖μ0‖∞ + ‖μ1‖∞. The extra nuisance parameters μ0 and μ1 can
also be estimated by suitable kernel estimators, after noticing that by unconfoundedness,
μ1(X) = E[YD|X]/η0(X) and similarly μ0(X) = E[Y(1 − D)|X]/(1 − η0(X)). Therefore,
our method suggests inference based on the modified estimating equation

E

[
θ0 − YD

η0(X)
+ Y(1 − D)

1 − η0(X)
+ (

D − η0(X)
)
ι(X)

]
= 0,

where ι(x) := μ1(x)/η0(x) + μ0(x)/[1 − η0(x)]. We verify here our conditions for this ex-
ample when ĥ = (η̂, μ̂0, μ̂1), where

η̂(x) := n−1∑n
i=1DiKb(Xi − x)

n−1∑n
i=1Kb(Xi − x)

,

μ̂1(x) := n−1∑n
i=1YiDiKb(Xi − x)

n−1∑n
i=1DiKb(Xi − x)

,

μ̂0(x) := n−1∑n
i=1Yi(1 − Di)Kb(Xi − x)

n−1∑n
i=1(1 − Di)Kb(Xi − x)

.

We require the following assumption.

ASSUMPTION E2. (i) We observe Z = (Y,D,X′)′, where Y = Y1 ·D +Y0 · (1 −D) and
(Y1, Y0)⊥ D|X.

(ii) fX(x), ι(x) and η0(x) are r times continuously differentiable in x, with uni-
formly bounded derivatives (including zero derivatives), where r is as in E1(iii). Moreover,
infx∈SX

fX(x) > 0, E[|Y |2+δ] < ∞, E[|ι(X)|2+δ] < ∞, h0 ∈ Hδ and P(ĥ ∈ Hδ) → 1, for
some δ > 0.

PROPOSITION E2. Under Assumptions E1(iii)–(iv) and E2, the conclusions of Theo-
rem 3.1, Theorem 3.3 and Theorem 3.4 hold for this example.
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4.3. Estimating equations with missing data. Consider inference based on the p estimat-
ing equations E[s(X,W,θ0)] = 0, where X is a dx -dimensional random vector that is al-
ways observed and W is a dw-dimensional random vector that is only observed when D = 1
and not observed otherwise (D = 0). That is, the data we observe is a random sample of
Z = (X′,W ′D,D)′. We assume missingness at random, that is, W is independent of D,
conditional on X. Wang and Chen [65] proposed EL inference based on nonparametric im-
putation in this general setting. See also [14] for semiparametric efficiency calculations. The
nonparametric imputation has an impact on the asymptotic distribution of the EL ratio test,
and its limiting distribution is a weighted chi-squared; cf. [65]. Here, we apply our method to
obtain a version of Wilks’ theorem in this general setting for missing data.

We modify the approach of [65] and consider the estimating equation

(4.2) g(Z, θ, η0) = Ds(X,W,θ) + (1 − D)
q0(X, θ)

p0(X)
,

where η0 = (q ′
0,p0)

′, q0(X, θ) := E[Ds(X,W,θ)|X] and p0(X) := E[D|X] are the nui-
sance parameters. This approach is slightly different from the one in [60, 65], who proposed
a nonparametric imputation method by sampling from a smoothed nonparametric estimator
of the distribution of W given X and D = 0. Inference with this nonparametric imputation
may be sensitive to the number of draws performed. Our approach overcomes this problem by
imputing directly s and treating the imputation as a nuisance parameter in our semiparametric
model. As shown in [65], our method is strictly more efficient than that based on imputing
W with a finite number of draws, with the efficiency gap between these two procedures go-
ing to zero as the number of draws goes to infinity. Nevertheless, our main contribution in
this example is not the nonparametric imputation of s, but rather obtaining distribution-free
semiparametric EL inference without undersmoothing.

[65], Lemma 1, provided sufficient conditions under which (2.5) holds with

φ(Z, θ0, h0) = D

(
s(X,W,θ0) − q0(X, θ0)

p0(X)

)
1 − p0(X)

p0(X)
.

Therefore, our method suggests doing inference with the estimating moment

m(Z, θ0, h0) = D

p0(X)
s(X,W,θ0) +

(
1 − D

p0(X)

)
q0(X, θ0)

p0(X)
.

We propose to estimate h0 = η0 = (q ′
0,p0)

′ ∈ H := Cq
M(SX) × · · · × Cq

M(SX) × Cq
1,ε(SX), by

the NW kernel estimators

q̂(x, θ) := 1

n

n∑
i=1

Dis(Xi,Wi, θ)Kb(Xi − x)

n−1∑n
j=1Kb(Xj − x)

,

(4.3)

p̂(x) := 1

n

n∑
i=1

DiKb(Xi − x)

n−1∑n
j=1Kb(Xj − x)

.

The following assumption is sufficient for Theorem 3.1 in this example. Sufficient condi-
tions for Theorem 3.3 and Theorem 3.4 to hold for this example can be straightforwardly
established, but we do not consider them for the sake of space.

ASSUMPTION E3. (i) We observe Z := (X′,W ′D,D)′ with W⊥ D|X.
(ii) fX(x), q0(x, θ) and p0(x) are r times continuously differentiable in x, with uni-

formly bounded derivatives (including zero derivatives), where r is as in E1(iii). Moreover,
infx∈SX

fX(x) > 0, h0 ∈ Hδ and P(ĥ ∈ Hδ) → 1, for some δ > 0.

PROPOSITION E3. Under Assumptions E1(iii)–(iv) and E3, the conclusion of Theo-
rem 3.1 holds for this example.
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4.4. Censored quantile regression. Consider a censored quantile regression model
QT |X(τ |X) = inf{t : P(T ≤ t |X) ≥ τ } = X′θ0, where T is (a possible monotone transfor-
mation of) the survival time, X is a vector of covariates and X′θ0 contains an intercept.

The data consist of Zi = (Yi,X
′
i ,�i)

′, which are i.i.d. copies of the vector Z = (Y,X′,�)′,
where Y = T ∧C is the observed survival time, � = I (T ≤ C) is the censoring indicator and
C is the censoring time, which is assumed to be conditionally independent of T given X. As
in [37], we take X one-dimensional, and we consider the estimating equation

g(Z, θ0, η0) = X

[
I (Y − X′θ0 ≥ 0)

η0(X′θ0|X)
− (1 − τ)

]
,

where η0(·|X) = P(C > ·|X) is the unknown conditional survival function of the censor-
ing variable C given X. The nuisance parameter η0 is estimated by the conditional (local)
Kaplan–Meier estimator [3]

η̂(t |x) = ∏
Yi≤t,�i=0

(
1 − Wi(x, bn)∑n

j=1 I (Yj ≥ Yi)Wj (x, bn)

)
,

where Wi(x, bn) = kb(Xi −x)/
∑n

j=1 kb(Xj −x) is the standard Nadaraya–Watson kernel, k

is a one-dimensional density function, kb(·) = k(·/b)/b and b ≡ bn is a bandwidth. It follows
from Theorem 3.2 in [20] that

η̂(t |x) − η0(t |x)

= −η0(t |x)

fX(x)

1

n

n∑
i=1

kb(Xi − x)ξ(Yi,�i, t |x) + Rn(t |x),(4.4)

where supx supt≤τx
|Rn(t |x)| = OP((nbn)

−3/4(logn)3/4) = oP(n
−1/2) provided n ×

b3
n(logn)−3 → ∞, τx < inf{t : H(t |x) = 1} and

ξ(y, δ, t |x) = −
∫ y∧t

−∞
dHc(s|x)

(1 − H(s|x))2 + I (y ≤ t, δ = 0)

1 − H(y|x)
,

with H(t |x) = P(Y ≤ t |X = x) and Hc(t |x) = P(Y ≤ t,� = 0|X = x). We will assume that
infx(1 − H(x′θ0|x)) > 0, and hence we can choose τx = x′θ0.

Using the Hajek projection for U -statistics with kernel depending on n (see, e.g.,
Lemma 3.1 in [52]), it can be easily shown that

n−1
n∑

i=1

{
g(Zi, θ0, η̂) − g(Zi, θ0, η0)

}

= (1 − τ)n−1
n∑

i=1

Xiξ
(
Yi,�i,X

′
iθ0|Xi

) + oP
(
n−1/2)

.

This suggests that the pathwise derivative is given by φ(Z, θ0, h0) = (1 − τ)Xξ(Y,�,

X′θ0|X), where h0(t |x) = (H(t |x),Hc(t |x), η0(t |x))′, or for general θ and h = (h1, h2, h3)
′,

φ(Z, θ,h) = (1 − τ)X

[
−

∫ Y∧X′θ

−∞
dh2(s|X)

(1 − h1(s|X))2 + I (Y ≤ X′θ,� = 0)

1 − h1(Y |X)

]
,

and hence

m(Z, θ,h) = X

[
I (Y − X′θ ≥ 0)

h3(X′θ |X)
− (1 − τ)

+ (1 − τ)

{
−

∫ Y∧X′θ

−∞
dh2(s|X)

(1 − h1(s|X))2 + I (Y ≤ X′θ,� = 0)

1 − h1(Y |X)

}]
.
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The functions h1, h2, h3 are supposed to belong to the space G, defined by

G = {
g : SX ×R → [0,1] : g(x, ·) ∈ BM for all x ∈ SX,

and g(·, t) ∈ Cq
M(SX,t ), for all t ∈ R

}
,

where q ≥ 1 + δ for some small δ > 0, BM = {f : R → [0,1] : f has variation bounded by
M}, and SX,t = {x ∈ SX : t ≤ x′θ0}. Define H = {(h1, h2, h3)

′ : hj ∈ G, j = 1, . . . ,3}. We
equip H with the seminorm

‖h‖H =
3∑

j=1

sup
x∈SX

sup
t≤x′θ0

∣∣hj (t |x)
∣∣

for h = (h1, h2, h3)
′. Finally, let

Ĥ (t |x) =
n∑

i=1

Wi(x, bn)I (Yi ≤ t), Ĥc(t |x) =
n∑

i=1

Wi(x, bn)I (Yi ≤ t,�i = 0).

The following assumption is sufficient for Theorem 3.1 in this example.

ASSUMPTION E4. (i) We observe Z = (Y,X′,�)′, where Y = T ∧ C, � = I (T ≤ C),
and C ⊥ T |X.

(ii) The distribution function FX of X is three times continuously differentiable on the
interior of SX , and infx∈SX

fX(x) > 0.
(iii) The distribution functions H(t |x) and Hc(t |x) are continuous in (x, t), their first and

second partial derivatives with respect to x exist, and they are continuous and uniformly
bounded in (x, t). Moreover, infx∈SX

(1 − H(x′θ0|x)) > 0, and there exist continuous and
nondecreasing functions L1,L2 and L3 with Lj(−∞) = 0 and Lj(∞) < ∞ (j = 1,2,3),
such that for all x ∈ SX and for all t1, t2 ∈ (−∞,∞),∣∣H(t1|x) − H(t2|x)

∣∣ ≤ ∣∣L1(t1) − L1(t2)
∣∣,∣∣∣∣ ∂

∂x
H(t1|x) − ∂

∂x
H(t2|x)

∣∣∣∣ ≤ ∣∣L2(t1) − L2(t2)
∣∣,∣∣∣∣ ∂

∂x
Hc(t1|x) − ∂

∂x
Hc(t2|x)

∣∣∣∣ ≤ ∣∣L3(t1) − L3(t2)
∣∣.

(iv) The kernel function k is a symmetric probability density function with compact sup-
port, satisfying

∫
t lk(t) dt = 0 for l = 1, . . . , r − 1 and

∫ |t rk(t)|dt < ∞ for some r ≥ 2.
Moreover, k is twice continuously differentiable.

(v) The deterministic sequence of positive numbers b ≡ bn satisfies nb3+2δ
n (logn)−1 →

∞ and nb5
n(logn)−1 = O(1), where δ > 0 is as in the definition of the class G.

PROPOSITION E4. Under Assumption E4, the conclusion of Theorem 3.1 holds for this
example.

5. Monte Carlo results. In this section, we illustrate the finite sample properties of the
proposed method using the average treatment effect (ATE) and the missing data examples.

5.1. Average treatment effect. We consider testing and constructing confidence intervals
for the ATE parameter θ0 = E[Y1 − Y0], using the same design as that used by [32], where
Y0 = 2X + η, Y1=Y0+θ0, and D = I (Xβ0 + ε > 0) with both η and ε independent N(0,1),
and X is a U [−1/2,1/2] random variable. Notice that β0 controls the range of the propensity
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score and it affects considerably the asymptotic variance of the ATE estimator. In the simula-
tions, we specify θ0 ∈ {−2,0}, β0 ∈ {1,2,3}, the sample sizes are n = 100 and n = 300, and
η0(·), μ0(·) and μ1(·) are estimated with a leave-one-out kernel estimator with bandwidths b

chosen as the design’s theoretical optimal ones; see [32] for details.1 The tables and figures
below are based on 1000 replications. The tables report the finite sample size (at the 5% and
10% significance level) of the test for the null hypothesis H0 : θ = θ0 using a Wald statistic
based on the estimator of [28] (Wald), its bootstrapped version (Boot), the adjusted EL ratio
(AEL), the modified EL ratio based on the pathwise derivative (4.1) (MEL) and modified EL
ratio (MELN) based on the numerical approximation of φ(·) using (B.8) in Appendix B in
the Supplementary Material, which is given by φ̂i = δ̂i − n−1 ∑n

j=1 δ̂j , where

δ̂i := −1

nt

n∑
j=1

[
YjDj

η̂b
ti(Xj )

− Yj (1 − Dj)

1 − η̂b
ti(Xj )

− YjDj

η̂(Xj )
+ Yj (1 − Dj)

1 − η̂(Xj )

]
,

η̂b
ti(x) = η̂b

2t i (x)/η̂b
1t i (x), η̂b

1t i (x) = f̂X(x) + tKb(x − Xi),(5.1)

η̂b
2t i (x) = η̂(x)f̂X(x) + tDiKb(x − Xi).

The value of t used in these simulations for the numerical approximation is 0.08. Unreported
results with other values of t show that inferences are not sensitive to t (we have experi-
mented with several values of t between 0.01 and 0.3 and the obtained results are qualita-
tively the same). The bootstrap estimator is computed as in [41] using 500 replications and
using the design’s optimal bandwidths, whereas the adjusted EL ratio is based on the statistic

−2ρ̂ log ELn(θ0, ĥ)
d→ χ2

1 , with the estimated adjustment

ρ̂ =
∑n

i=1(
YiDi

η̂(Xi)
− Yi(1−Di)

1−η̂(Xi)
)2∑n

i=1(
YiDi

η̂(Xi)
− Yi(1−Di)

1−η̂(Xi)
− (Di − η̂(Xi))(

μ̂1(Xi)
η̂(Xi)

+ μ̂0(Xi)
1−η̂(Xi)

))2
.

Tables 1–2 illustrate that the modified EL ratio based on the pathwise derivative results in a
test statistic characterized by good finite sample properties, typically better than those based
on the other competing test statistics. The tables also illustrate that the approximation to the
pathwise derivative given in (5.1) yields also a test statistic with good finite sample properties.
To further investigate this result, we conduct some sensitivity analysis and compute the finite
sample size for the five statistics using as bandwidths the values kb/4, k = 1,2, . . . ,10 for
n = 100. Figure 1 is based on θ0 ∈ {−2,0}, β0 ∈ {1,3} and shows how both modified EL
ratio based on the pathwise derivative (MEL) and on its numerical approximation (MELN)

TABLE 1
Finite sample size (5% left column, 10% right column) of the test for θ0 in the ATE example for n = 100

θ0 β0 Wald Boot AEL MEL MELN

−2 1 0.091 0.134 0.060 0.112 0.088 0.124 0.059 0.115 0.061 0.117
−2 2 0.089 0.132 0.059 0.110 0.090 0.123 0.058 0.112 0.062 0.117
−2 3 0.093 0.132 0.061 0.110 0.090 0.120 0.058 0.113 0.060 0.115

0 1 0.083 0.121 0.058 0.108 0.085 0.121 0.057 0.110 0.058 0.112
0 2 0.081 0.119 0.057 0.108 0.086 0.122 0.058 0.109 0.058 0.110
0 3 0.082 0.120 0.057 0.109 0.087 0.122 0.057 0.109 0.058 0.111

1We have also considered bandwidths chosen with least squares cross-validation. The results of the simulations
are qualitatively very similar to those reported below, hence are not reported.
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TABLE 2
Finite sample size (5% left column, 10% right column) of the test for θ0 in the ATE example for n = 300

θ0 β0 Wald Boot AEL MEL MELN

−2 1 0.078 0.120 0.057 0.108 0.075 0.117 0.055 0.108 0.057 0.109
−2 2 0.077 0.119 0.055 0.107 0.074 0.115 0.054 0.107 0.055 0.110
−2 3 0.075 0.115 0.055 0.106 0.073 0.112 0.073 0.112 0.055 0.106

0 1 0.077 0.116 0.054 0.105 0.076 0.114 0.056 0.105 0.056 0.105
0 2 0.075 0.114 0.055 0.106 0.077 0.110 0.056 0.105 0.055 0.109
0 3 0.076 0.118 0.053 0.103 0.074 0.108 0.055 0.106 0.056 0.110

are clearly less sensitive to the choice of the bandwidth than the other competing statistics. To
further support this result, Figure 2 reports the sensitivity to different bandwidths of the finite
sample coverage and average length of the confidence intervals (at the 95% nominal level) for
θ0 and based on the Wald statistic (Wald), its bootstrapped version (Boot) and the same AEL,
MEL and MELN statistics described above. The coverage of the confidence interval based on
the modified test is both more accurate and less sensitive to the bandwidth parameter, while
having a shorter length than those based on alternative tests.

We also report power results. Figure 3 shows the size adjusted finite sample power of the
tests based on the alternative hypotheses Hδ = θ0 + δ with δ ∈ {−1.5,−1.4, . . . ,−0.1,0,0.1,

. . . ,1.5} for θ0 = −2 and β0 = 1 and n = 100; those for the other values of θ0, β0 and
n = 300 are similar, and hence are not shown. The figure shows that both MEL and MELN
have superior finite sample power compared to all the other competing statistics, which is
consistent with our theoretical results in Theorems 3.3 and 3.4.

5.2. Estimating equations with missing data. We consider a logit model with missing
covariates, similar to the model considered by [65]. The estimating equation is s(X,W,θ) =
X(Y −�(X′θ)), where X = (1,X1,X2)

′, θ0 = (−1,1,2)′, �(·) is the cumulative logistic dis-
tribution, X1 and X2 are, respectively, independent N(0,0.25) and U(0,3). In this case, the

FIG. 1. Finite sample size for MEL (solid curve), MELN (two dashed curve), AEL (long dashed curve), Wald
(dashed curve) and Boot (dot dashed curve) in the ATE example for n = 100.
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FIG. 2. Finite sample coverage at 95% (left) and average length (right) for MEL (solid curve), MELN (two
dashed curve), AEL (long dashed curve), Wald (dashed curve) and Boot (dot dashed curve) in the ATE example
for n = 100.

variables that are always observed are X = (Y,X1)
′, while the missing variable is W = X2

with probability of missingness (the propensity score) given by logit(P(X2 is missing)) =
0.5 − X1 − 2Y (corresponding to approximately 30% of missing covariates). In the simula-
tions, the sample sizes are n = 100 and n = 300, and q0(·) and p0(·) are estimated with a
leave-one-out kernel estimator with bandwidths chosen using least squares cross-validation.
The statistics we consider are the adjusted EL ratio (AEL), a bootstrap version of it (AEL-

FIG. 3. Finite sample power for MEL (solid curve), MELN (two dashed curve), AEL (long dashed curve), Wald
(dashed curve) and Boot (dot dashed curve) in the ATE example for n = 100.
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boot), the modified EL ratio based on the pathwise derivative (MEL), a Wald statistic based
on (4.2) (Wald) and the modified EL ratio based the analytical approximation (B.7) in Ap-
pendix B in the Supplementary Material (MELN) with V (Z, θ0) = (Ds(X,W, θ0),D), and
the analytical derivative

(5.2) δ̂i = 1

n

n∑
j=1

[
1 − Dj

p̂(Xj )

(
Si − q̂(Xj )

p̂(Xj )

)
DiKb(Xj − Xi)

]
,

where Si = s(Xi,Wi, θ0).
The adjusted EL ratio is based on the feasible version of (4.2), namely s̃(Z, θ) =

Ds(X,W,θ) + (1 − D)q̂(X, θ)/p̂(X). In this case, the estimated adjustment is ρ̂ =
tr(	̂−1Q̂)/ tr(V̂ −1Q̂), where

	̂ = 1

n

n∑
i=1

(
σ̂ 2(Xi)

p̂(Xi)
+ q̂(Xi, θ̂)q̂(Xi, θ̂)′

)
,

σ̂ 2(x) = 1

n

∑n
i=1 Dis(Xi,Wi, θ̂)s(Xi,Wi, θ̂)′Kb(Xi − x)

n−1∑n
i=1DiKb(Xi − x)

− q̂(x, θ̂)q̂(x, θ̂)′,

V̂ = 1

n

n∑
i=1

s̃(Zi, θ̂ )̃s(Zi, θ̂)′, Q̂ = 1

n

(
n∑

i=1

s̃(Zi, θ̂ )

)( n∑
i=1

s̃(Zi, θ̂ )

)′
,

and q̂(x, θ) and p̂(x) are defined in (4.4). Then it can be shown that −2ρ̂ log ELn(θ0, ĥ)
d→

χ2
3 . The bootstrap version of the EL ratio follows the procedure suggested by [57] for imputed

(survey) data: (1) for Di = 1 a resample {Z∗
i }ni=1 from {Zi}ni=1 and for Di = 0 a resample

{q̂∗(X∗
i , θ)/p̂∗(X∗

i )}ni=1 from the imputed values {q̂(Xi, θ)/p̂(Xi)}ni=1 are drawn to form the
bootstrap analogue s̃∗(Z∗

i , θ) of s̃(Zi, θ); (2) the bootstrap EL ratio statistic EL∗
n(θ0, ĥ

∗) is
computed using the centered version of s̃∗(Z∗

i , θ0); (3) steps (1)–(2) are repeated B times.
The consistency of this bootstrap procedure follows by standard arguments (see, e.g., those
used by [65]). Finally, the Wald statistic is

W = n(θ̂ − θ0)
′
(

1

n

n∑
i=1

∂s̃(Zi, θ̂)

∂θ ′

)
	̂−1

(
1

n

n∑
i=1

∂s̃(Zi, θ̂)

∂θ ′

)′
(θ̂ − θ0),

where θ̂ is the maximum empirical likelihood estimator as defined in [65] (for exactly iden-
tified estimating equations).

The tables and figures below are based on 1000 replications. Tables 3 and 4 report, respec-
tively, the finite sample size (at the 5% and 10% significance level) of the tests H0 : θ1 = θ10
and H0 : θ2 = θ20 and of the test for the joint hypothesis H0 : θ1 = θ10, θ2 = θ20.

TABLE 3
Finite sample size (5% left column, 10% right column) for marginal tests for θ1 and θ2 in the missing data

example

n = 100 n = 300

θ1 θ2 θ1 θ2

AEL 0.090 0.123 0.085 0.118 0.075 0.112 0.071 0.111
AELboot 0.059 0.109 0.058 0.107 0.055 0.103 0.056 0.102
MEL 0.057 0.108 0.057 0.106 0.054 0.103 0.054 0.102
MELN 0.058 0.109 0.059 0.108 0.055 0.105 0.055 0.104
Wald 0.104 0.148 0.105 0.135 0.087 0.129 0.080 0.115
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TABLE 4
Finite sample size (5% left column, 10% right column) for joint test

for (θ1, θ2) in the missing data example

n = 100 n = 300

AEL 0.085 0.122 0.079 0.115
AELboot 0.060 0.115 0.057 0.106
MEL 0.056 0.108 0.052 0.103
MELN 0.059 0.110 0.055 0.107
Wald 0.106 0.140 0.092 0.119

Figure 4 shows the sensitivity of the finite sample size of the tests H0 : θ1 = θ10, H0 : θ2 =
θ20 and H0 : θ1 = θ10, θ2 = θ20 to the bandwidth choice, using the following values: b/4, b/2,
3b/4, 5b/4, 2b where b is the cross-validated bandwidth. Figure 5 shows the sensitivity of
the finite sample coverage and average length of the confidence intervals (at the 95% nominal
level) for the unknown slopes θ10 and θ20 to the bandwidth choice using the same values as
those used for the finite sample size.

Figure 6 shows the size adjusted finite sample power of the test based on the alterna-
tive hypotheses Hδ = θ10 + δ for δ ∈ {−1,−0.9, . . . ,−0.1,0,0.1, . . . ,1} for θ10 = 1 and
n = 100—those for the other values of θ10, θ20 and n = 300 are similar, and hence are not
shown—and the contour plots of the size adjusted finite sample power curves for the test of
Hδ = θ1 = θ10 + δ1, θ2 = θ20 + δ2 over the grid (δ1, δ2) ∈ {−1,−0.75, . . . ,0, . . . ,0.75,1} ×
{−1,−0.75, . . . ,0, . . . ,0.75,1} at the contour level of 0.4. Smaller contour plots indicate
higher finite sample power.

Tables 3–4 and Figures 4–6 confirm and strengthen the results of the ATE example, as they
indicate that the modified EL proposed in this paper yields test statistics characterized by

FIG. 4. Finite sample size for MEL (solid curve), MELN (two dashed curve), AEL (long dashed curve), Wald
(dashed curve) and AELboot (dot dashed curve) in the missing data example for n = 100.
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FIG. 5. Finite sample coverage at 95% (left) and average length (right) for MEL (solid curve), MELN (two
dashed curve), AEL (long dashed curve), Wald (dashed curve) and AELboot (dot dashed curve) in the missing
data example for n = 100.

finite sample properties typically better than those based on other asymptotically equivalent
test statistics. As with the ATE example, both modified EL ratios are clearly less sensitive to
the bandwidth choice than the other competing statistics and more powerful, confirming the
theoretical results of Theorems 3.3 and 3.4.

FIG. 6. Finite power (left panel) and finite power contour (right panel) for MEL (solid curve), MELN (two
dashed curve), AEL (long dashed curve), Wald (dashed curve) and AELboot (dot dashed curve) in the missing
data example for n = 100.
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6. Conclusions. In this article, we have presented a new way to conduct empirical likeli-
hood two-step inference in semiparametric models. The new method is presented in a general
setting, and its major advantage is that, although the estimation procedure is in two steps,
Wilks’ phenomenon is preserved. This is achieved by using as moment function in the es-
timating equation the (uniquely defined) influence function of the plug-in sample moment.
It is also shown that the limit of this “modified” empirical likelihood is the same as in the
case where the nuisance functions would be known. Therefore, it is expected that the way the
nuisance parameters are estimated (through, e.g., the way a bandwidth parameter is chosen)
does not have a major impact on the behavior of the modified empirical likelihood statistic.
This might be particularly appealing in situations where first-steps are hard to estimate pre-
cisely (such as in high-dimensional settings). Additionally, the proposed modified EL test is
efficient (in a Maximin and semiparametric sense). These theoretical results are confirmed
by finite sample simulations, which further show that the new method performs favorably
compared to competitors.

The ideas of this article can be extended to the problem of estimation of θ0. An EL esti-
mator based on the modified moments is expected to possess good bias properties; see [47]
for linear functionals of densities. [16] have recently investigated the properties of related
estimators in a generalized method of moments framework, allowing for machine learning
methods as first-steps by virtue of the modified moment functions.

7. Proofs of the main results.

PROOF OF THEOREM 3.1. We check the conditions of Theorem 2.1 in [29] (taking in
their notation an = 1 and mn = m/

√
n). (A0) and (A3) correspond to our Assumption A(v).

We check their condition (A1), which corresponds to (2.7). By Assumption A, and the stan-
dard central limit theorem,

1√
n

n∑
i=1

m(Zi, θ0, ĥ) = 1√
n

n∑
i=1

m(Zi, θ0, h0) + oP(1)
d→ N(0,	).

This verifies their assumption (A1) with U
d= N(0,	), where d= stands for equality in distri-

bution. Finally, their assumption (A2) (which corresponds to (2.8)) holds by our Assumption
A(iv) and the consistency of ĥ. �

PROOF OF THEOREM 3.3. We follow a similar proof strategy as in Theorem 3.1. By
Assumption A, under the local alternatives H1n,

1√
n

n∑
i=1

m(Zi, θ0, ĥ) = 1√
n

n∑
i=1

m(Zi, θ0, h0) + oP(1).

By Assumption C, and with θn = θ0 + τ/
√

n,

1√
n

n∑
i=1

m(Zi, θ0, h0)

= 1√
n

n∑
i=1

m(Zi, θn, h0) + 1√
n

n∑
i=1

[
m(Zi, θ0, h0) − m(Zi, θn, h0)

]

= 1√
n

n∑
i=1

m(Zi, θn, h0) + √
nP

[
m(Zi, θ0, h0) − m(Zi, θn, h0)

] + oP(1)

= 1√
n

n∑
i=1

m(Zi, θn, h0) − G0τ + oP(1).
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Define Xin = m(Zi, θn, h0). We check the conditions of Lyapunov’s central limit theorem.
Note {Xin}ni=1 are i.i.d., with zero mean,

lim
n→∞E

[
XinX

′
in

] = E
[
m(Z, θ0, h0)m

′(Z, θ0, h0)
]
< ∞

and

lim
n→∞

E[|Xin|2+δ]
nδ/2 = 0,

by Assumption C(iii). This verifies A1 in [29] with U
d= N(−G0τ,	). Thus, by Assumption

A and Theorem 2.1 in [29], under the local alternatives H1n,

−2 log MELn(θ0, ĥ)
d→ U ′	−1U

d= Z′Z,

where Z
d= N(−	−1/2G0τ, I ). This allows us to apply existing maximin theory; see [58].

�

PROOF OF THEOREM 3.4. From the proof of Theorem 3.3, we obtain

−2 log MELn(θ0, ĥ) = T ′
nTn + oP (1),

where

Tn = 1√
n

n∑
i=1

−	−1/2m(Zi, θ0, h0).

By Corollary 3 in [17], the optimality will follow if we prove Tn = ξn(h0) + oP (1), where
ξn(h0) := (nB∗)−1/2 ∑n

i=1 S∗
θ (Zi, h0), S∗

θ (Zi, h0) is the so-called efficient score and B∗ :=
Var(S∗

θ ) the efficient information; see [17] for details. By Lemma 1 in [1] (see page 940
(A.33)),

S∗
θ = −G′

0	
−1m.

Hence, B∗ = G′
0	

−1G0 and B∗−1/2S∗
θ = −(G′

0	
−1/2)−1G′

0	
−1m = −	−1/2m. Thus,

Tn = ξn(h0) + oP (1) and the optimality follows. �
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(DOI: 10.1214/18-AOS1788SUPP; .pdf). The supplement contains four appendices: Ap-
pendix A gathers all the proofs for the examples, Appendix B proves the validity of a general
numerical algorithm for estimating the pathwise derivative, Appendix C extends the main
result of the paper to the case of over-identified models and Appendix D shows an auxiliary
result regarding Donsker and Glivenko–Cantelli classes.
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