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MINIMAX POSTERIOR CONVERGENCE RATES AND MODEL
SELECTION CONSISTENCY IN HIGH-DIMENSIONAL DAG
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In this paper we study the high-dimensional sparse directed acyclic graph
(DAG) models under the empirical sparse Cholesky prior. Among our results,
strong model selection consistency or graph selection consistency is obtained
under more general conditions than those in the existing literature. Compared
to Cao, Khare and Ghosh [Ann. Statist. (2019) 47 319–348], the required
conditions are weakened in terms of the dimensionality, sparsity and lower
bound of the nonzero elements in the Cholesky factor. Furthermore, our result
does not require the irrepresentable condition, which is necessary for Lasso-
type methods. We also derive the posterior convergence rates for precision
matrices and Cholesky factors with respect to various matrix norms. The ob-
tained posterior convergence rates are the fastest among those of the existing
Bayesian approaches. In particular, we prove that our posterior convergence
rates for Cholesky factors are the minimax or at least nearly minimax de-
pending on the relative size of true sparseness for the entire dimension. The
simulation study confirms that the proposed method outperforms the compet-
ing methods.

1. Introduction. Detecting the dependence structure of multivariate data is
one of important and challenging tasks, especially when the number of variables
is much larger than the sample size. Due to advancements in technology, such
data are routinely collected in a wide range of areas including genomics, climatol-
ogy, proteomics and neuroimaging. The estimation of the covariance (or precision)
matrix is crucial to reveal the dependence structure. Under the high-dimensional
setting, however, the traditional sample covariance matrix is no longer a consistent
estimator of the true covariance matrix [Johnstone and Lu (2009)]. For the consis-
tent estimation of the high-dimensional covariance or precision matrices, various
restrictive matrix classes have been proposed to reduce the number of effective pa-
rameters. They include the bandable matrices [Banerjee and Ghosal (2014), Bickel
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and Levina (2008), Cai and Yuan (2012), Cai, Zhang and Zhou (2010)], sparse
matrices [Banerjee and Ghosal (2015), Cai and Zhou (2012a, 2012b)] and low-
dimensional structural matrices such as the sparse spiked covariance [Cai, Ma and
Wu (2015), Gao and Zhou (2015)] and sparse factor models [Fan, Fan and Lv
(2008), Pati et al. (2014)]. When the class of sparse matrices is of interest, the
sparsity pattern can be encoded in many different ways. Sparsity can be imposed
on the covariance matrix, precision matrix or Cholesky factor, which lead to dif-
ferent graph models. In this paper we focus on imposing sparsity on the Cholesky
factor of the precision matrix.

Consider a sample of data X1, . . . ,Xn
i.i.d.∼ Np(0,�n), where Np(μ,�) is the

p-dimensional normal distribution with the mean vector μ ∈ R
p and covariance

matrix � ∈ R
p×p . For every positive definite matrix �n = �−1

n , the modified
Cholesky decomposition (MCD) guarantees the existence of unique Cholesky fac-
tor An and diagonal matrix Dn such that �n = (Ip − An)

T D−1
n (Ip − An). The

sparsity of a Gaussian directed acyclic graph (DAG) can be uniquely encoded by
the Cholesky factor An through the structure of the graph. In this paper we assume
that the parent ordering of the variables is known, which is a common assumption
used in the literature such as in Ben-David et al. (2015), Khare et al. (2016), Yu and
Bien (2017) and Cao, Khare and Ghosh (2019). The details on this concept will
be provided in Section 2.2. For the estimation of Cholesky factor An, the banded
assumption and the sparsity assumption are two popular assumptions. Under the
banded assumption, the elements of the matrix far from the diagonal are assumed
to be all zero, while under the sparsity assumption, there is no constraint on the
zero-pattern other than assuming most of the entries are zero. In recent years, vari-
ous penalized likelihood estimators have been proposed with the sparsity assump-
tion on An [Huang et al. (2006), Khare et al. (2016), Rothman, Levina and Zhu
(2010), Shojaie and Michailidis (2010), van de Geer and Bühlmann (2013)] and
banded assumption on An [Yu and Bien (2017)].

On the Bayesian side, relatively few works have dealt with asymptotic proper-
ties of the posteriors of high-dimensional Gaussian DAG models. Posterior con-
vergence rates for the precision matrices with G-Wishart priors [Roverato (2000)]
were derived by Banerjee and Ghosal (2014) and Xiang, Khare and Ghosh (2015),
where G is a decomposable graph. Note that a decomposable graph can be con-
verted to a perfect DAG, a special case of the DAGs, by ignoring directions.
Lee and Lee (2017) obtained the posterior convergence rates and minimax lower
bounds for the precision matrices, but only bandable Cholesky factors were consid-
ered. Posterior convergence rates for the precision matrices as well as strong model
selection consistency were recently derived by Cao, Khare and Ghosh (2019) for
sparse DAG models. However, their results are not adaptive to the unknown spar-
sity s0, and the conditions required for obtaining such results are somewhat restric-
tive.

In this paper we consider high-dimensional sparse Gaussian DAG models where
sparsity is imposed via the sparse Cholesky factor. We adopt an empirical Bayes
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approach with a fractional likelihood. The empirical Bayes approach is justified
by showing desirable asymptotic properties of the induced posterior such as strong
model selection consistency and optimal posterior convergence rates. In addition,
our theoretical results are adaptive to the unknown sparsity s0.

There are four main contributions of this work. First we show strong model
selection consistency under much more general conditions than those in the litera-
ture. Specifically, the required conditions on the dimensionality, sparsity, structure
of the Cholesky factor An and the lower bound of the nonzero elements in An

(the beta-min condition, which will be described later) are significantly weakened.
Second, we derive the minimax or nearly minimax posterior convergence rates for
the Cholesky factors under two scenarios: with or without the beta-min condition
for the true Cholesky factor. We show that at least one of the posterior convergence
rates is minimax depending on the relative size of true sparseness for the entire di-
mension. To the best of our knowledge, this is the first result on minimax posterior
convergence rates in high-dimensional DAG models. Third, we obtain the pos-
terior convergence rates for precision matrices with respect to the spectral norm
and matrix �∞ norm, which is the fastest among those of existing Bayesian ap-
proaches. Compared to Cao, Khare and Ghosh (2019), we achieve faster posterior
convergence rate under more general conditions, except the bounded eigenvalue
condition. Furthermore, their results depend on the unknown sparsity s0, whereas
ours do not. Fourth, our method significantly improves the model selection perfor-
mance in practice. In particular, our method outperforms the other state-of-the-art
methods in a simulation study. The theoretical choice of hyperparameters provided
good guidelines for practical performance. Note that the choice of the hyperpa-
rameter, the individual edge probability qn, in the hierarchical DAG-Wishart prior
[Cao, Khare and Ghosh (2019)] can be problematic in practice, as the posterior
with the theoretical choice of qn tends to be stuck at very small size models.

The rest of paper is organized as follows. In Section 2, we introduce notation,
Gaussian DAG models, the empirical sparse Cholesky prior, the fractional poste-
rior and the parameter class for the precision matrices. In Section 3, strong model
selection consistency, posterior convergence rates and minimax lower bounds for
the Cholesky factor and posterior convergence rates for the precision matrices are
established. A simulation study focusing on the model selection property are repre-
sented in Section 4. The proofs of the main results are provided in the supplemental
article [Lee, Lee and Lin (2018)].

2. Preliminaries.

2.1. Norms and notation. For any a, b ∈ R, we denote a ∨ b and a ∧ b as the
maximum and minimum of a and b, respectively. For any a ∈ R, we denote �a	
as the largest integer equal to or smaller than a. For any sequences an and bn,
an = o(bn) denotes an/bn → 0 as n → ∞. We denote an = O(bn), or equivalently
an � bn, if an ≤ Cbn for some constant C > 0, where C is an universal constant.
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We denote the indicator function for a set A as I (· ∈ A) or IA(·). For a given
p-dimensional vector u = (u1, . . . , up)T and set S ⊆ {1, . . . , p}, we define uS =
(uj )

T
j∈S ∈ R

|S|, where |S| is the cardinality of S. For given index sets S, S′ ⊆
{1, . . . , p} and real matrix B ∈ R

p×p , we denote B(S,S′) as the |S|× |S′| submatrix
consisting only of Sth columns and S′th rows of B , and let BS = B(S,S). For a
real matrix B , we denote SB as the index set for nonzero elements of B and call
SB the support of B . We define Cp as the class of all p × p dimensional positive
definite matrices. For any p × p symmetric matrix B , λmin(B) and λmax(B) are
the minimum and maximum eigenvalues of B , respectively.

For any p-dimensional vector u = (u1, . . . , up)T , we define vector norms
‖u‖1 = ∑p

j=1 |uj |, ‖u‖2 = (
∑p

j=1 u2
j )

1/2 and ‖u‖max = max1≤j≤p |uj |. For any
p × p matrix B = (bij ), we define the spectral norm, matrix �1 norm, matrix �∞
norm and Frobenius norm by

‖B‖ = sup
x∈Rp

‖x‖2=1

‖Bx‖2 = (
λmax

(
BT B

))1/2
,

‖B‖1 = sup
x∈Rp

‖x‖1=1

‖Bx‖1 = max
1≤j≤p

p∑
i=1

|bij |,

‖B‖∞ = sup
x∈Rp

‖x‖max=1

‖Bx‖max = max
1≤i≤p

p∑
j=1

|bij |, and

‖B‖F =
( p∑

i=1

p∑
j=1

b2
ij

)1/2

,

respectively.
For a given positive integer m, we denote χ2

m as the chi-square distribution with

degrees of freedom m. For any random variables Y1, Y2 and Y3, we denote Y1
d≡

Y2 ⊕ Y3 if the distribution of Y1 is equal to that of Y2 + Y3, and Y2 and Y3 are
independent. For given positive numbers a and b, Gamma(a, b) and IG(a, b) are
the gamma distribution and inverse-gamma distribution with shape parameter a

and rate parameter b, respectively. Beta(a, b) is the beta distribution whose density
function at x ∈ (0,1) is proportional to xa−1(1 − x)b−1. We denote Np(X | μ,�)

as the density function of Np(μ,�) at X ∈ R
p . We denote the inverse-Wishart

distribution by IWp(ν,�), where the degree of freedom and scale matrix are ν >

p − 1 and � ∈ Cp , respectively.

2.2. Gaussian DAG models. We consider the model

(1) X1, . . . ,Xn | �n
i.i.d.∼ Np

(
0,�−1

n

)
,
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where �n = �−1
n is a p × p precision matrix and Xi = (Xi1, . . . ,Xip)T ∈ R

p

for all i = 1, . . . , n. The MCD guarantees that there exists unique lower triangular
matrix An = (ajl) and diagonal matrix Dn = diag(dj ) such that

(2) �n = (Ip − An)
T D−1

n (Ip − An),

where ajj = 0 and dj > 0 for all j = 1, . . . , p. Let SAn be the support of the
Cholesky factor An, and Sj be the support of the j th row of An. Let P�n and
E�n be the probability measure and expectation corresponding to the model (1),
respectively.

The model (1) can be interpreted as a Gaussian DAG model depending on the
sparsity pattern of An. For a set of vertices V = {1, . . . , p} and a set of directed
edges E, a graph D = (V ,E) is said to be a DAG if there is no directed cycles. It
is also called the Bayesian network or belief network. In this paper we assume that
the variables have a known natural ordering in which no edges exist from larger
vertices to smaller vertices. It has been commonly assumed in literature includ-
ing Shojaie and Michailidis (2010), Ben-David et al. (2015), Khare et al. (2016),
Yu and Bien (2017) and Cao, Khare and Ghosh (2019). There are relatively few
works on DAG models when the ordering of variables is unknown [Kalisch and
Bühlmann (2007), Rütimann and Bühlmann (2009), van de Geer and Bühlmann
(2013)]. As discussed in van de Geer and Bühlmann (2013), when the ordering is
unknown, a very different technique is needed relative to the known ordering case.

For i ∈ V , define the set of all i’s parents as the subset of V smaller than i

and sharing an edge with i and denote it as pai (D). Any multivariate Gaussian
distribution that obeys the directed Markov property with respect to a DAG D is
said to be a Gaussian DAG model over D. To be specific, if X = (X1, . . . ,Xp)T ∼
Np(0,�−1) and Np(0,�−1) belongs to a Gaussian DAG model over D, then

Xj ⊥ {Xj ′ }j ′<j,j ′ /∈paj (D)|(X)paj (D),

for each j = 1, . . . , p. Furthermore, if we adopt the MCD as in (2), with the known
ordering of variables, Np(0,�−1) belongs to a Gaussian DAG model over D if
and only if ajl = 0 whenever l /∈ paj (D) [Cao, Khare and Ghosh (2019)]. In other
words, the support of A uniquely determines a DAG D under the known ordering
assumption. The model X = (X1, . . . ,Xp)T ∼ Np(0,�−1) given SA is equivalent
to a Gaussian DAG model, and it can be represented as a linear autoregressive
model,

X1 | d1 ∼ N(0, d1),

Xj | aSj
, dj , Sj

ind∼ N

(∑
l∈Sj

Xlajl, dj

)
, j = 2, . . . , p,

(3)

where aSj
= aj,Sj

= (ajj ′)Tj ′∈Sj
. For more details on the expression (3), refer to

Bickel and Levina (2008) and Ben-David et al. (2015). The autoregressive model
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interpretation enables us to adopt the priors introduced in the linear regression liter-
ature. Since aSj

corresponds to nonzero elements among aj = (aj1, . . . , aj,j−1)
T ,

one can use a prior designed for sparse regression coefficient vectors for aj , which
is our strategy introduced in Section 2.3.

In this paper we consider the high-dimensional setting where p = pn is a func-
tion of n increasing to infinity as n → ∞ and p ≥ n. We assume that the data
were generated from a true precision matrix �0n, where �0n = �−1

0n is the true
covariance matrix. Denote the MCD (2) of the true precision matrix by �0n =
(Ip − A0n)

T D−1
0n (Ip − A0n), where A0n = (a0,j l), a0j = (a0,j1, . . . , a0,j,j−1)

T

and D0n = diag(d0j ). For notational convenience, let P0 = P�0n
and E0 =

E�0n
.

We now define some notation related to the data set. Let Xn = (X1, . . . ,Xn)
T

∈ R
n×p be the data of size n, and X̃j = (X1j , . . . ,Xnj )

T ∈ R
n be the j th column

of Xn. For a given index set S ⊆ {1, . . . , p}, let XS = (X̃j )j∈S ∈ R
n×|S| be the

data matrix consisting only of Sth columns of Xn. Let Zij = (Xi1, . . . ,Xi,j−1)
T ∈

R
j−1 and Z̃j = (Z1j , . . . ,Znj )

T ∈ R
n×(j−1) for all j = 2, . . . , p.

For a given positive integer 1 ≤ s ≤ p, we define 	max(s)
2 =

supS:0<|S|≤s λmax(XT
S XS) and 	min(s)

2 = infS:0<|S|≤s λmin(XT
S XS), where the

supremum and infimum are taken over all index sets S ⊆ {1, . . . , p}. We say that
the restricted eigenvalue condition is met for some integer s if n−1	min(s)

2 is
bounded away from zero uniformly for all large n. This condition has been used
in the high-dimensional regression literature to control the behavior of the design
matrix. The autoregressive model representation (3) connects the eigenvalues of
the precision matrix �0n with those of the design matrix in (3) because the quan-
tity XSj

corresponds to the design matrix based on the representation. Thus, the
bounded eigenvalue assumption (A1) in Section 2.5 essentially corresponds to the
restricted eigenvalue condition.

2.3. Empirical sparse Cholesky prior. In this paper we suggest the following
prior distribution for our model:

aSj
| dj , Sj

ind∼ N|Sj |
(
âSj

,
dj

γ

(
XT

Sj
XSj

)−1
)
, j = 2, . . . , p,

π(dj )
i.i.d.∝ d

−ν0/2−1
j , j = 1, . . . , p,

πj

(
Sj = S′

j

) ∝
(
j − 1∣∣S′

j

∣∣
)−1

fnj

(∣∣S′
j

∣∣), j = 2, . . . , p,S′
j ⊆ {1, . . . , j − 1},

fnj

(∣∣S′
j

∣∣) ∝ c
−|S′

j |
1 p

−c2|S′
j |
I
(
0 ≤ ∣∣S′

j

∣∣ ≤ Rj ∧ (j − 1)
)
, j = 2, . . . , p,

(4)

for some positive constants ν0, c1, c2,R2, . . . ,Rp and γ , where fnj is a probabil-
ity mass function on {0,1, . . . ,Rj ∧ (j − 1)} and âSj

= (XT
Sj

XSj
)−1XT

Sj
X̃j . The
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proposed prior is empirical in the sense that it depends on the data, so we call the
prior (4) the empirical sparse Cholesky (ESC) prior. To obtain the desired asymp-
totic properties, appropriate conditions for hyperparameters in (4) will be intro-
duced in Section 3. Note that the prior for dj can be generalized to the proper prior
IG(ν0/2, ν′

0) for some constant ν′
0 > 0 and the results in Section 3 also hold for

this prior choice. However, for computational convenience, we describe and prove
the main results with the improper prior π(dj ) ∝ d

−ν0/2−1
j .

For the conditional prior of aj given dj , we first introduce zero components
through the prior πj and impose the Zellner’s g-prior [Zellner (1986)] on the
nonzero components, aSj

. The use of Zellner’s g-prior simplifies the calculation
of the marginal posterior for Sj . Martin, Mess and Walker (2017) suggested a sim-
ilar prior in the high-dimensional linear regression model. Also note that the ESC
prior has a connection to the DAG-Wishart prior [Ben-David et al. (2015), Cao,
Khare and Ghosh (2019)]. Theorem 7.3 in Ben-David et al. (2015) shows that the
DAG-Wishart prior on (An,Dn) given a DAG implies the inverse-gamma distri-
bution on dj and multivariate normal distribution on the nonzero elements of aj

given dj , where (aj , dj ) are mutually independent for all j = 1, . . . , p. Thus, the
ESC prior (4) is quite close to the DAG-Wishart prior when the support of An is
given.

Cao, Khare and Ghosh (2019) used the DAG-Wishart prior to recover the sparse
DAG and estimate the precision matrix in high-dimensional settings. Thus, their
prior on (An,Dn) is quite close to ours, and can be viewed as a set of priors for
autoregressive model (3) as discussed in the previous paragraph. For the support of
DAGs, they imposed the elementwise sparsity using independent Bernoulli distri-
butions with the hyperparameter qn, which has a nice interpretation as the individ-
ual edge probability. Based on the hierarchical DAG-Wishart prior, they obtained
the strong model selection consistency for the DAG and the posterior convergence
rate for the precision matrix with respect to the spectral norm. However, they did
not directly adopt the autoregressive model interpretation as in (3), which is differ-
ent from our approach. By using the ESC prior, we can adopt state-of-the-art tech-
niques on selection consistency for the regression coefficient [Martin, Mess and
Walker (2017)] and achieve the strong model selection consistency under much
weaker conditions than those in Cao, Khare and Ghosh (2019). Furthermore, com-
pared to the existing literature, we obtain faster posterior convergence rates for
precision matrices and Cholesky factors under weaker conditions using the tech-
niques introduced by Lee and Lee (2017), Lee and Lee (2018) and Martin, Mess
and Walker (2017). Indeed, the posterior convergence rates for Cholesky factors
are nearly or exactly optimal depending on the relative size of true sparseness for
the entire dimension.
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2.4. α-posterior distribution. We suggest adopting the fractional likelihood
with power α ∈ (0,1),

(5) Ln(An,Dn)
α =

n∏
i=1

{
Np

(
Xi | 0, (Ip − An)

−1Dn

(
(Ip − An)

T )−1)}α
.

The use of fractional likelihood has received increased attention in recent years
[Martin and Walker (2014), Syring and Martin (2016), Miller and Dunson (2018)].
In this paper we use the fractional likelihood mainly because of its appealing the-
oretical properties under relatively weaker conditions compared to the actual pos-
terior [Bhattacharya, Pati and Yang (2019)]. In the proof of the main results of this
paper, the use of the fractional likelihood enables us to effectively deal with the
ratio of estimated residual variances d̂Sj

(the proof of Theorem 3.1) and the ratio
of likelihood Lnj (aj , dj ) (the proof of Lemma 7.2), where d̂Sj

and Lnj (aj , dj )

will be defined later.
Here we give a more detailed justification of using the fractional likelihood.

The proposed conditional prior for aSj
in (4) tracks the data closely because it is

centered at the least square estimate. It may cause the unexpected inconsistency
[Walker and Hjort (2001)]. The fractional likelihood approach can prohibit it by
preventing the posterior from following the data too closely. To be more specific,
the use of fractional likelihood can be interpreted as an empirical Bayes procedure
by considering

Ln(An,Dn)
απ(An,Dn) = Ln(An,Dn)

π(An,Dn)

Ln(An,Dn)1−α
.

Hence, the resulting posterior consists of an ordinary likelihood function and
a data-dependent prior π(An,Dn)/Ln(An,Dn)

1−α . Note that the power α only
appears in the prior. From this point of view, the prior is rescaled by a frac-
tional likelihood which has an effect of penalizing parameter values that track
the data too closely, while the penalty effect is controlled by the hyperparame-
ter α.

The choice of α can be important from a practitioner’s point of view even though
theoretical results in this paper hold for any choice of 0 < α < 1. In practice, we
suggest using α close to 1 to mimic the usual likelihood in finite sample scenario
if there is no suspect of model failure, that is, misspecification. As long as one
chooses α sufficiently close to 1, for example, α = 0.999 or α = 0.9999, our expe-
rience confirms that the α-posterior can be hardly distinguishable from the “usual”
posterior even in a finite sample scenario.

REMARK 2.1. Grünwald and van Ommen (2017) suggested using I -log-
SafeBayes (or R-log-SafeBayes) to determine α, which gives the minimizer α̂ of
the posterior-expected posterior-randomized loss of prediction (or its variant). The
induced posterior is robust to model misspecification in some cases [Grünwald and
van Ommen (2017)].
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The prior (4) and fractional likelihood (5) lead to the following joint posterior
distribution:

aSj
| dj , Sj ,Xn

ind∼ N|Sj |
(
âSj

,
dj

(α + γ )

(
XT

Sj
XSj

)−1
)
, j = 2, . . . , p,

dj | Sj ,Xn
ind∼ IG

(
αn + ν0

2
,
αn

2
d̂Sj

)
, j = 1, . . . , p,

πα(Sj | Xn) ∝ πj (Sj )

(
1 + α

γ

)−|Sj |
2

(d̂Sj
)−

αn+ν0
2 , j = 2, . . . , p,

(6)

where d̂Sj
= n−1X̃T

j (In − P̃Sj
)X̃j and P̃Sj

= XSj
(XT

Sj
XSj

)−1XT
Sj

. We refer to the
posterior (6) as the α-posterior and denote it by πα(· | Xn) to clarify that we con-
sider the α-fractional likelihood. Throughout the paper, α ∈ (0,1) is a fixed con-
stant.

2.5. Parameter class. For given positive constants 0 < α < 1, 0 < ε0 < 1/2,
Cbm and a sequence of positive integers s0, we introduce conditions (A1)–(A4) for
the true precision matrix:

(A1) ε0 ≤ λmin(�0n) ≤ λmax(�0n) ≤ ε−1
0 .

(A2) max1≤j≤p

∑p
l=1 I (a0,j l �= 0) ≤ s0.

(A3)

min
(j,l):a0,j l �=0

|a0,j l|2 ≥ 16

α(1 − α)ε2
0(1 − 2ε0)2

Cbm
logp

n
.

(A4) max1≤l≤p

∑p
j=2 I (a0,j l �= 0) ≤ s0.

Condition (A1) ensures that the eigenvalues of �0n are bounded by fixed con-
stants, which has been commonly used for the estimation of the high-dimensional
precision matrices [Banerjee and Ghosal (2015), Cai, Liu and Zhou (2016), Ren
et al. (2015)] as well as the high-dimensional DAGs [Khare et al. (2016), Yu and
Bien (2017)]. In this paper condition (A1) is mainly used to get upper bounds of
d0j , d−1

0j and ‖A0n‖.
Condition (A2) restricts the number of nonzero elements in each row of A0n to

be smaller than s0. Note that s0 may increase to infinity as n gets larger. In our
setting, it is equivalent to say that the cardinality of paj (D0) is less than s0 for any
j = 2, . . . , p, where D0 is the DAG corresponding to A0n.

Condition (A3) is the well-known beta-min condition, which determines the
lower bound for the nonzero signals. The beta-min condition has been used for
the exact support recovery of the high-dimensional linear regression coefficients
[Bühlmann and van de Geer (2011), Castillo, Schmidt-Hieber and van der Vaart
(2015), Martin, Mess and Walker (2017), Wainwright (2009a), Yang, Wainwright
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and Jordan (2016)] as well as the high-dimensional DAGs [Cao, Khare and Ghosh
(2019), Khare et al. (2016), Yu and Bien (2017)].

Condition (A4) restricts the number of nonzero elements in each column of A0n

to be smaller than s0. In other words, the number of edges directed from any vertex
is less than s0. This assumption is required to deal with the posterior probability of
‖An − A0n‖1. Note that if we consider only the banded structure for the Cholesky
factor as in Yu and Bien (2017), conditions (A2) and (A4) automatically hold for
some s0.

Now we define a class of precision matrices

Up = Up(ε0, s0, α,Cbm) = {
� ∈ Cp : � satisfies (A1)–(A3)

}
.

In Section 3, we show that one can achieve the strong model selection consistency
for any �0n ∈ Up . Furthermore, we derive the posterior convergence rates for A0n

and show that these are optimal or nearly optimal for the class Up (or Up without
condition (A3)).

REMARK 2.2. Cao, Khare and Ghosh (2019) weakened the bounded eigen-
value condition (A1) by replacing a constant ε0 with a sequence ε0,n, which can
go to zero at certain rate. Our results also still hold under the similar weakened
bounded eigenvalue condition with ε0,n, but it will sacrifice the other conditions.
For example, by using a sequence ε0,n in place of a fixed ε0 in the proof of The-
orem 3.1, one can see that s0 logp ≤ Cnε2

0,n for some C > 0 and the beta-min
condition (A3) with ε0,n in place of ε0 are required.

3. Main results. We introduce Condition (P) on the hyperparameters in the
ESC prior (4), which is necessary for the results in this section. Note that this
condition is for the hyperparameters of the prior distribution, which does not affect
the true parameter space.

CONDITION (P). Assume that ν0 = o(n), c1 = O(1), c2 ≥ 2 and γ = O(1).
For given positive constants 0 < α < 1 and 0 < ε0 < 1/2 used in conditions (A1)
and (A3), assume that Rj = �n(logp)−1{(logn)−1 ∨c3}	 for any j = 2, . . . , p and
some small constant 0 < c3 < (ε′)2ε2

0/{128(1 + 2ε0)
2}, where ε′ = {(1 −α)/10}2.

The condition c2 ≥ 2 is similar to the condition κ ≥ 2 in Yang, Wainwright
and Jordan (2016). Note that the constants c1 and c2 in the ESC prior control
the row-wise sparsity of the Cholesky factor An: large values of them make the
posterior prefer small values for |Sj |. Thus, the above condition means that we
need certain amount of penalty on |Sj | to achieve desirable asymptotic prop-
erties. The condition on Rj means that Rj is of order n(logp)−1 and smaller
than n(logp)−1(ε′)2ε2

0/{128(1 + 2ε0)
2}, so it can be replaced by the condition

Rj = �n(logp)−1(ε′)2ε2
0/{128(1 + 2ε0)

2}	. To assure s0 ≤ Rn, we will assume
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that s0 ≤ n(logp)−1c3/2 later. In general, assuming s0 = O(n(logp)−1) or even
s0 = o(n(logp)−1) is essential to prove theoretical properties such as selection
consistency and convergence rates. However, it can be unrealistically small for
some finite sample size n. More importantly, the quantity ε0 is unknown in typical
applications, so it is desirable to make the prior work for any choice of ε0. Condi-
tion (P) argues that there is such a prior. We suggest choosing a small enough c3
so that Rj can be regarded as Rj = �n(logp · logn)−1	 for finite samples.

REMARK 3.1. Yang, Wainwright and Jordan (2016) suggested a prior for
the linear model similar to the ESC prior but for the mean vector of the prior
π(aSj

| dj , Sj ), they used zero mean vector while we used âSj
. There are two con-

sequences from the use of the data-dependent mean âSj
. First, we do not need an

upper bound condition for ‖XS0j
a0,S0j

‖2 or ‖a0,S0j
‖2, while Yang, Wainwright and

Jordan (2016) assumed ‖XS0j
a0,S0j

‖2 ≤ gd0j logp, where g = γ −1 in this paper. It
is known that this type of condition is required if we use the Zellner’s g-prior with
zero mean [Shang and Clayton (2011)]. Second, to prove model selection consis-
tency, Yang, Wainwright and Jordan (2016) assumed g = p2c for some c ≥ 1/2
corresponding to γ = p−2c in our notation. This is the so-called information para-
dox of Zellner’s g-priors [Liang et al. (2008)]. We do not require this condition
and just assume γ = O(1).

3.1. Strong model selection consistency. When the recovery of the DAG is
of interest, it is desirable to use a Bayesian procedure that guarantees the strong
model selection consistency. We show that the α-posterior warrants this property
under mild conditions. As mentioned earlier, the Gaussian DAG model has an in-
terpretation as a sequence of autoregressive model (3), which enables us to adopt
the state-of-the-art techniques for the selection consistency of the regression coef-
ficient in Martin, Mess and Walker (2017).

To use the results in Martin, Mess and Walker (2017), there are two main is-
sues that need to be addressed. The first is the restricted eigenvalue condition for
the design matrix. In our setting, the design matrices consist of columns of data
matrix Xn, thus each row follows a multivariate normal distribution. We show that
under the bounded eigenvalue condition (A1), the restricted eigenvalue condition
for any integer R = o(n) automatically holds on some large set Nc having P0-
probability tending to 1 (Lemma 6.1 in the Supplementary Material). A similar
result appears in Narisetty and He (2014). The second issue is more challenging
than the first. Martin, Mess and Walker (2017) considered only the known (fixed)
residual variance case, which corresponds to the known d0j case in our setting.
The assumption on the known residual variance results in a relatively straightfor-
ward proof for selection consistency. We extended their techniques to the unknown
residual variance case by applying (noncentral) chi-square concentration inequal-
ities for the estimated residual variances d̂Sj

for some index set Sj , which is mo-
tivated by Shin, Bhattacharya and Johnson (2018). It reveals that the ratio of the
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marginal posteriors πα(Sj | Xn)/πα(S0j | Xn) actually behaves like the ratio of
the conditional posteriors given d0j , πα(Sj | d0j ,Xn)/πα(S0j | d0j ,Xn), with P0-
probability tending to 1, where S0j is the index set for the nonzero elements in the
j th row of A0n.

We also note here that unlike the Lasso type (or its variants) of results with
the random design matrix [Wainwright (2009b)], our theory does not require the
irrepresentable condition on the true covariance matrix. For example, Yu and
Bien (2017) and Khare et al. (2016) require the irrepresentable condition for the
asymptotic properties of estimators in DAG models. See Section IV of Wainwright
(2009b) for more details on the irrepresentable condition.

THEOREM 3.1 (Strong model selection consistency). For given positive con-
stants 0 < α < 1, 0 < ε0 < 1/2, Cbm > c2 + 2 and an integer s0, assume that �0n

satisfies conditions (A1), (A2) and (A3), that is, �0n ∈ Up . Consider model (1) and
the ESC prior (4) with Condition (P). If s0 logp ≤ nc3/2,

sup
�0n∈Up

E0
[
πα(SAn �= SA0n

| Xn)
] = o(1).

The assumption s0 logp = o(n) or s0 logp ≤ cn for some constant c > 0 is
widely used in the high-dimensional sparse covariance or precision matrix esti-
mation literature. In Theorem 3.1, we assume less restrictive condition s0 logp ≤
nc3/2, which automatically guarantees s0 ≤ Rj for all j = 2, . . . , p. Note that the
constant c3 is defined in Condition (P).

It is worthwhile to compare our result to those of Cao, Khare and Ghosh
(2019), Yu and Bien (2017) and Khare et al. (2016). Note that in these works
it is also assumed that the ordering of variables is known. Cao, Khare and
Ghosh (2019) showed the strong model selection consistency using the hier-
archical DAG-Wishart prior. They assumed variants of conditions (A1), (A2)
and (A3). First, they relaxed condition (A1) by letting ε0,n → 0 such that
(logp/n)1/2−1/(2+k) = o(ε4

0,n) for some k > 0, instead of a fixed ε0 > 0. Second,

they assumed the same condition (A2) but further assumed s2+k
0

√
logp/n = o(1)

and (logp/n)k/(4k+8) logn = o(1) and considered only the DAGs with the to-
tal number of edges at most 8−1s0(n/ logp)(1+k)/(2+k), which can be restric-
tive. Note that, when p ≥ n, it does not include the banded Cholesky factor
having s0 nonzero elements for each row. Third, they assumed somewhat strong
beta-min condition compared with (A3), which requires minj,l:a0,j l �=0 |a0,j l |2 ≥
M2

ns2
0ε−1

0,n(logp/n)1/(2+k) for some k > 0 and some sequence Mn → ∞. Thus,
their assumptions on the tuple (n,p, s0) as well as the parameter class are much
more restrictive than ours, except for the bounded eigenvalue condition. Further-
more, the choice of hyperparameter in the hierarchical DAG-Wishart prior depends
on the unknown sparsity parameter s0, thus it is not adaptive to the unknown pa-
rameter. More specifically, the hyperparameter qn in the hierarchical DAG-Wishart
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prior should be set at qn = s0(logp/n)1/(2+k) for some k > 0 to achieve the strong
model selection consistency.

Yu and Bien (2017) suggested a penalized maximum likelihood estimation for
the Cholesky factor of the precision matrix and proved the exact signed support
recovery under the condition ρ−2‖D0n‖ε−1

0 (12π2s0 + 32) logp < n. They con-
sidered the class of precision matrices satisfying condition (A1) and having a
banded structure with the row-specific bandwidths s0j = |S0j | such that a0,j l = 0
for all 1 ≤ l < j − s0j and 2 ≤ j ≤ p. Thus, by taking s0 = maxj s0j , their class
satisfies conditions (A2) and (A4). They also assumed the beta-min condition,
minj,l:a0,j l �=0 |d−1/2

0j a0,j l| ≥ 8ρ−1√2‖D0n‖ logp/n(4 maxj ‖�−1
0n,S0j

‖∞ + 5ε−1
0 ).

In general, it holds that ‖�−1
0n,S0j

‖∞ = O(s
1/2
0j ) without further assumption, thus

the above condition implies that the minimum nonzero |d−1/2
0j a0,j l| is bounded

below by
√

s0 logp/n with respect to a constant multiple, thus stronger than con-
dition (A3). Furthermore, they assumed the irrepresentable condition

max
2≤j≤p

max
1≤l≤j

l∈Sc
0j

∥∥(�0n)(l,S0j )(�0n,S0j
)−1∥∥

1 ≤ 6(1 − ρ)

π2

for some constant ρ ∈ (0,1]. Therefore, they only considered the banded Cholesky
factor and used somewhat strong beta-min condition as well as the irrepresentable
condition. However, the comparison with our result (Theorem 3.1) is not straight-
forward because their exact signed support recovery property is stronger than the
selection consistency proved in Theorem 3.1.

Khare et al. (2016) proved the signed support recovery property of the con-
vex sparse Cholesky selection (CSCS) method when the data vectors X1, . . . ,Xn

are random sample from a sub-Gaussian distribution. They assumed condition
(A1) as well as the (stronger) variants of conditions (A2) and (A3): they as-
sumed

∑p
j=2 s0j = o(n/ logn) (which is stronger than s0 logp ≤ nc3/2) and

minj,l:a0,j l �=0 |a0,j l|2 ≥ Mns
2
0 logn/n for some Mn → ∞. Furthermore, they con-

sidered only the moderate high-dimensional setting, that is, p = O(nc) for some
constant c > 0. They also required the irrepresentable condition similar to those in
Yu and Bien (2017).

3.2. Posterior convergence rates for Cholesky factors. In this subsection, we
derive the posterior convergence rates for the Cholesky factors in two different
scenarios depending on the existence of the beta-min condition (A3). At first, un-
der the beta-min condition, we show the posterior convergence rates and minimax
lower bounds with respect to the matrix �∞ norm and Frobenius norm. The ob-
tained posterior convergence rates are nearly minimax, and become exactly mini-
max if logp = O(s0) and log j = O(s0j ) for all j = 2, . . . , p. We also derive the
posterior convergence rate and minimax lower bound with respect to the matrix
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FIG. 1. For a given 0 < β < 1, it describes the range for s0 in which the minimax rate for the
Cholesky factor can be obtained. (A3) means the beta-min condition.

�∞ norm without the beta-min condition. The obtained posterior convergence rate
turns out to be nearly minimax, and it will be exactly minimax if s0 ≤ pβ for some
0 < β < 1. Note that regardless of the relation between s0 and p, at least one of
the scenarios achieves the minimax rate. Especially, we attain the minimax rate for
both scenarios if C logp ≤ s0 ≤ pβ for some constant C > 0. Figure 1 describes
the range for s0 in which the minimax rate can be obtained.

3.2.1. Posterior convergence rates for Cholesky factors under Beta-min condi-
tion. Define Ân = (âj l), where (âj l)l∈S0j

= âS0j
and (âj l)l∈Sc

0j
= 0. Thus, Ân is

the empirical estimates of A0n with true support SA0n
. To obtain the posterior con-

vergence rate for the Cholesky factor, we use a divide and conquer strategy that is
similar to Lee and Lee (2017), Lee and Lee (2018). Specifically, we decompose
the posterior contraction probability into two parts as follows:

πα

(‖An − A0n‖ ≥ 2ε′
n | Xn

)
≤ πα

(‖An − Ân‖ ≥ ε′
n | Xn

) + πα

(‖Ân − A0n‖ ≥ ε′
n | Xn

)
(7)

for some positive sequence ε′
n. As in Section 3.1, we concentrate on a large set

Nc allowing us to handle the posterior contraction probability easily. The first part
of the right-hand side of (7) describes how the posterior distribution concentrates
around the empirical estimate Ân. We use the selection consistency result in The-
orem 3.1, and we focus only on the set SAn = SA0n

. It enables us to deal with the
posterior distribution for An easily, but with a cost of the beta-min condition (A3)
which is usually not essential for the convergence rate results. Through the poste-
rior distribution (6) given SAn = SA0n

, we can obtain the contraction probability for
‖An − Ân‖ using the concentration inequality for the chi-square random variables.
By taking expectation to the second part of the right-hand side of (7), it gives the
contraction probability of Ân, P0[‖Ân − A0n‖ ≥ ε′

n].

THEOREM 3.2 (Posterior convergence rates for A0n with beta-min condition).
For given positive constants 0 < α < 1, 0 < ε0 < 1/2, Cbm > c2 +2 and an integer
s0, assume that �0n satisfies conditions (A1), (A2) and (A3), that is, �0n ∈ Up .



CONVERGENCE RATE AND SELECTION CONSISTENCY FOR DAG MODEL 3427

Consider model (1) and the ESC prior (4) with Condition (P). If s0 logp = o(n),

sup
�0n∈Up

E0

[
πα

(
‖An − A0n‖∞ ≥ Kchol

√
s0

(
s0 + logp

n

)1/2∣∣∣∣Xn

)]
= o(1),

sup
�0n∈Up

E0

[
πα

(
‖An − A0n‖2

F ≥ Kchol

∑p
j=2(s0j + log j)

n

∣∣∣∣Xn

)]
= o(1)

for some constant Kchol > 0.

Khare et al. (2016) obtained the convergence rate
∑p

j=2 s0jλn for estimating
the Cholesky factor under the spectral norm in a moderately high-dimensional
setting, that is, p = O(nc) for some constant c > 0, where λn is the tuning
parameter in CSCS method. They also assumed condition (A1) as well as the
(stronger) variants of conditions (A2) and (A3) as described in Section 3.1. Be-

cause they assumed
√∑p

j=2 s0j logp/n = o(λn),
∑p

j=2 s0jλn is strictly slower

than (
∑p

j=2 s0j )
3/2√logp/n in term of the rate, which implies that their conver-

gence rate is slower than the posterior convergence rate obtained in this paper.
In fact, it turns out that the posterior convergence rates in Theorem 3.2 are nearly

optimal. Theorem 3.3 describes that the rates of the frequentist minimax lower
bounds for the class Up , which are of independent interests. Note that the rates
of Theorem 3.2 are exactly optimal if logp = O(s0) and log j = O(s0j ) for all
j = 2, . . . , p matching the minimax rates of Theorem 3.3. The key idea for proving
the minimax lower bounds is to break down the model (1) into a set of linear
regression models.

THEOREM 3.3 (Minimax lower bounds for A0n with beta-min condition). For
given positive constants 0 < α < 1, ε0, Cbm and an integer s0, assume that �0n

satisfies conditions (A1), (A2) and (A3), that is, �0n ∈ Up . Consider model (1).
Then

inf
Ân

sup
�0n∈Up

E0‖Ân − A0n‖∞ ≥ c · s0√
n
,

inf
Ân

sup
�0n∈Up

E0‖Ân − A0n‖2
F ≥ c

∑p
j=2 s0j

n

for some constant c > 0, where the infimum is taken over all possible estima-
tors Ân.

3.2.2. Posterior convergence rates for Cholesky factors without Beta-min con-
dition. For a given positive constant ε0 and a sequence of positive integers s0, we
define a class of precision matrices,

U0
p = U0

p(ε0, s0) = {
� ∈ Cp : � satisfies (A1) and (A2)

}
.
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Note that in the definition of U0
p , we do not require the beta-min condition. Theo-

rem 3.4 gives the posterior convergence rate for the class U0
p . For the Theorem 3.4,

we use the ESC prior (4) but let dj ∼ IG(ν0/2, ν′
0) for some constant ν′

0 > 0 instead

of π(dj ) ∝ d
−ν0/2−1
j . We call this the modified ESC (MESC) prior. As mentioned

before, Theorems 3.1, 3.2 and 3.6 in Section 3 also hold for the MESC prior, but
we describe Theorems 3.1, 3.2 and 3.6 with the ESC prior for the computational
convenience.

We consider the denominator and numerator of the posterior probability
πα(‖An − A0n‖∞ ≥ ε′

n) separately, for some positive sequence ε′
n. For any

j = 2, . . . , p, let Rnj (aj , dj ) = Lnj (aj , dj )/Lnj (a0j , d0j ) be the likelihood ratio,
where

Lnj (aj , dj ) = (2πdj )
−n/2 exp

{−‖X̃j − Z̃j aj‖2
2/(2dj )

}
.

Dealing with the likelihood ratio Rnj (aj , dj ) is one of the main tasks for prov-
ing Theorem 3.4. Lemma 7.1, Lemma 7.2 and Lemma 7.3 in the Supplementary
Material describe how we can deal with the likelihood ratio Rnj (aj , dj ) in the
denominator and numerator.

THEOREM 3.4 (Posterior convergence rate for A0n without beta-min condition).
For a given positive constant 0 < α < 1, 0 < ε0 < 1/2 and an integer s0, assume
that �0n satisfies conditions (A1) and (A2), that is, �0n ∈ U0

p . Consider model (1)
with the MESC prior with Condition (P). If s0 logp = o(n) and ν0 = O(1), then

sup
�0n∈U0

p

E0

[
πα

(
‖An − A0n‖∞ ≥ K ′

chols0

(
logp

n

)1/2∣∣∣∣Xn

)]
= o(1)

for some constant K ′
chol > 0.

Yu and Bien (2017) obtained the convergence rate maxj ‖�−1
0n,S0j

‖∞ ·
‖A0n‖∞s0

√
logp/n + maxj ‖�−1

0n,S0j
‖2∞s2

0 logp/n for the Cholesky factor with
respect to the matrix �∞ norm. As stated before, they assumed condition (A1),
the banded Cholesky factor structure (which corresponds to conditions (A2) and
(A4) in this paper) and the irrepresentable condition. Note that their convergence
rate coincides with ours only if ‖A0n‖∞ and maxj ‖�−1

0n,S0j
‖∞ are bounded and

s2
0 logp = O(n).

To the best of our knowledge, it is the first result on the posterior convergence
rate for the high-dimensional sparse Cholesky factor without the beta-min con-
dition. Interestingly, the obtained posterior convergence rate is the same with the
minimax convergence rate for the s0-sparse coefficient vector in the regression
models when s0 ≤ pβ for some 0 < β < 1. Note that the condition s0 ≤ pβ is not
restrictive in the high-dimensional setting, because this condition is met if n ≤ pβ .
Theorem 3.5 confirms that the above posterior convergence rate is nearly minimax
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for any �0n ∈ U0
p . Similar to Theorem 3.3, the key idea for proving Theorem 3.5

is to break down the model into a set of linear regression models.

THEOREM 3.5 (Minimax lower bound for A0n without beta-min condition).
For a given constant ε0 and an integer s0, assume that �0n satisfies conditions
(A1) and (A2), that is, �0n ∈ U0

p . Consider model (1). Then

inf
Ân

sup
�0n∈U0

p

E0‖Ân − A0n‖∞ ≥ c · s0

(
log(p/s0)

n

)1/2

for some constant c > 0.

REMARK 3.2. If we assume s0 ≤ pβ for some 0 < β < 1, then log(p/s0) has
the same rate with logp, and the rate of the mininax lower bound in Theorem 3.5
becomes s0

√
logp/n. This assumption is reasonable in the high-dimensional set-

ting.

3.3. Posterior convergence rates for precision matrices. In this subsection,
we derive the posterior convergence rates for the precision matrices with respect to
various matrix norms. Define �̂n = (Ip −Ân)

T D̂−1
n (Ip −Ân), where Ân and D̂n =

diag(d̂S0j
) are the empirical estimates of A0n and D0n with the true support SA0n

.
Similar to the previous subsection, we use the divide and conquer strategy to deal
with the posterior probability. For the recovery of �0n = (Ip − A0n)

T D−1
0n (Ip −

A0n), we further assume condition (A4). For given positive constants ε0, Cbm and
a sequence of positive integers s0, define the parameter class as follows:

U∗
p = U∗

p(ε0, s0, α,Cbm) = {
� ∈ Cp : � satisfies (A1)–(A4)

}
.

Theorem 3.6 shows the posterior convergence rates for the precision matrix with
respect to the spectral norm and matrix �∞ norm.

THEOREM 3.6 (Posterior convergence rates for �0n). For given positive con-
stants 0 < α < 1, 0 < ε0 < 1/2, Cbm > c2 + 2 and an integer s0, assume that �0n

satisfies conditions (A1)–(A4), that is, �0n ∈ U∗
p . Consider model (1) and the ESC

prior (4) with Condition (P) and ν2
0 = O(n logp). If s

3/2
0 (s0 + logp) = o(n), then

sup
�0n∈U∗

p

E0

[
πα

(
‖�n − �0n‖ ≥ Kconvs

3/4
0

(
s0 + logp

n

)1/2
|Xn

)]
= o(1),

and, if s0(s0 + logp) = o(n), then

sup
�0n∈U∗

p

E0

[
πα

(
‖�n − �0n‖∞ ≥ Kconv · ‖Ip − A0n‖∞s0

(
s0 + logp

n

)1/2∣∣∣∣Xn

)]
= o(1)

for some constant Kconv > 0.
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It is worthwhile to compare our result to other existing results. Cao, Khare and
Ghosh (2019) obtained the posterior convergence rate, s2

0ε−2
0,n

√
logp/n, for the

precision matrix with respect to the spectral norm. As discussed in Section 3.1,
they assumed variants of conditions (A1), (A2) and (A3). They further assumed
the condition (A4). Although they did not state clearly that condition (A4) was
used, this condition is necessary to use Lemma 3.1 of Xiang, Khare and Ghosh
(2015) in their proof. If we assume the bounded eigenvalue condition (A1), their
convergence rate becomes s2

0
√

logp/n, which is slower than the convergence rate
in Theorem 3.6. Note that they assumed s2+k

0
√

logp/n = o(1) for some constant

k > 0, which is stronger than our assumption s
3/2
0 (s0 + logp) = o(n). Thus, we

obtain the faster posterior convergence rates under more general condition on
the tuple (n,p, s0) and parameter class, except for the bounded eigenvalue con-
dition.

Yu and Bien (2017) considered the parameter class they used to prove the strong
model selection consistency, but dropped the beta-min condition. They derived the
convergence rate

max
j

∥∥(�0n,S0j
)−1∥∥∞

∥∥D−1/2
0n (Ip − A0n)

∥∥∞s0

(
logp

n

)1/2

for the precision matrix with respect to the matrix �∞ norm. Note that this conver-
gence rate depends on the rate of maxj ‖(�0n,S0j

)−1‖∞‖D−1/2
0n (Ip − A0n)‖∞.

In general, it holds that maxj ‖(�0n,S0j
)−1‖∞ = O(s

1/2
0j ). Thus, their con-

vergence rate is slower than the posterior convergence rate in Theorem 3.6,
without a further assumption on �0n guaranteeing maxj ‖(�0n,S0j

)−1‖∞ =
O(

√
(s0/ logp) + 1).

4. Numerical results. The use of the ESC prior not only guarantees optimal
or near optimal asymptotic properties but also allows us to conduct the posterior
inference easily. In this section, we carry out simulation studies to illustrate the
model selection performance of our method. For the comparison, we chose state-
of-the-art methods for high-dimensional sparse DAG models and measured the
performance of each method. The simulation study confirms that our ESC prior
outperforms the other existing methods.

4.1. Metropolis–Hastings algorithm. Recall that, by (6), the marginal poste-
rior distribution for Sj ⊆ {1, . . . , j − 1} can be derived analytically as

(8) πα(Sj | Xn) ∝ πj (Sj )

(
1 + α

γ

)−|Sj |
2

(d̂Sj
)−

αn+ν0
2

for all j = 2, . . . , p, up to some normalizing constants. Thus, we can run the Rao–
Blackwellized Metropolis–Hastings algorithm for each j = 2, . . . , p in parallel.
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Here we briefly summarize the algorithm used for the inference, where L is the
number of posterior samples:

Run the following steps for j = 2, . . . , p:
(a) Set the initial value S

(1)
j .

(b) For each l = 2, . . . ,L,

i. sample Snew
j ∼ q(· | S(l−1)

j );
ii. compute the acceptance probability

pacc = min
{

1,
πα(Snew

j | Xn)q(S
(l−1)
j | Snew

j )

πα(S
(l−1)
j | Xn)q(Snew

j | S(l−1)
j )

}
,

and set S
(l)
j = Snew

j with probability pacc; otherwise, set S
(l)
j = S

(l−1)
j .

We chose the kernel q(S′ | S) which forms a new set S′ by changing a randomly
selected nonzero component to 0 with probability 0.5 or by changing a randomly
selected zero component to 1 with probability 0.5.

The marginal posterior for Sj is controlled by the prior πj (Sj ), the penalty term
(1 + α/γ )−|Sj |/2 and the estimated residual variance d̂Sj

. The data favor to mini-
mize the estimated residual while the prior and penalty term give more weight to
the simpler models. The marginal posterior of Sj will find the model that balances
data tracking and model complexity.

To use the Metropolis–Hastings algorithm, we need to choose the tuning param-
eters. Apart from the impact on theoretical results, the choice of tuning parameters
also influences the practical performance. As Martin, Mess and Walker (2017)
suggested, we set α = 0.999 to mimic the Bayesian model with the ordinary likeli-
hood. In the simulation study, as long as 1−α is close to zero, the performance was
not dependent on the choice of α. The hyperparameters were chosen as γ = 0.1,
ν0 = 0, c1 = 0.0005 and c2 = 2 to satisfy Condition (P).

4.2. Simulation setting. For the simulation study, we considered the sparse
Cholesky settings similar to those used in Khare et al. (2016). We randomly
chose 3% or 4% of the lower triangular entries of the Cholesky factor A0n and
sampled their values from a uniform distribution on [−0.7,−0.3] ∪ [0.3,0.7].
The remaining entries were set to zero. The entries of the diagonal matrix D0n

were sampled from a uniform distribution on [2,5]. Given the precision ma-
trix �0n = (Ip − A0n)

T D−1
0n (Ip − A0n), the data sets were generated from the

multivariate normal distribution Np(0,�−1
0n ) with (n = 100,p = 300) and (n =

200,p = 500).

4.3. Other competing methods. We compared the model selection perfor-
mance of our method with those of other existing methods: the empirical Bayes
(EB) procedure in Martin, Mess and Walker (2017), which we will denote as
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EB.M, hierarchical DAG-Wishart (DAG-W) prior [Cao, Khare and Ghosh (2019)]
and convex sparse Cholesky selection (CSCS) [Khare et al. (2016)].

1. (EB.M): Because EB.M is originally proposed for the regression coeffi-
cient estimation, it can be applied independently to estimate each a0j for j =
2, . . . , p. We set the hyperparameters α, γ , c1 and c2 to be the same as those in
our setting for a fair comparison. Note that Martin, Mess and Walker (2017) used
γ = 0.001, c1 = 1 and c2 = 0.05 in their simulation study, but in our simulations,
these choices did not yield better results: they tended to make unacceptably large
FDR values. The key difference between our method and EB.M is on how to infer
the diagonal matrix Dn. Martin, Mess and Walker (2017) suggested plugging in
the cross-validation based Lasso residual sum of squares estimate [Reid, Tibshi-
rani and Friedman (2016)] of d0j , while we impose a prior on dj and integrate it
out to obtain the marginal posterior for Sj . Thus, EB.M ignores the uncertainty of
dj and replaces it with a plug-in estimate.

2. (DAG-W): The hierarchical DAG-Wishart prior [Cao, Khare and Ghosh
(2019)] enables one to calculate the marginal posterior for the DAG analytically.
Note that, in Cao, Khare and Ghosh (2019), they conducted log-posterior score
search algorithm instead of Markov chain Monte Carlo (MCMC) algorithm. Ba-
sically, they generated sets of candidate graphs by using frequentist approaches
and thresholding the modified Cholesky factor of (n−1XT

n Xn + 0.5Ip)−1, and the
graph which maximizes the log-posterior was chosen as the final estimate. In our
simulation study, we implemented the log-posterior score search algorithm as well
as Metropolis–Hastings algorithm, using the marginal posterior for the DAG, for
a comprehensive comparison. For the implementation, we set the shape param-
eters at αj (D) = Sj + 10 and the scale matrix at Un = Ip as they suggested,
where D is the DAG corresponding to {Sj }pj=2. The critical part is the choice
of the hyperparameter qn, which is the individual edge probability. It was shown
that the choice of qn = e−ηnn leads to strong model selection consistency, where
ηn = s0(logp/n)1/(2+k) for some k > 0. Thus, the theoretical choice of qn de-
pends on the unknown parameter s0 and constant k > 0. Furthermore, even with
s0 = 1 and k = 0, the resulting qn is too small, which does not allow the posterior
to explore the model space efficiently. We observed that the choice qn = e−ηnn

makes the posterior stuck in very small size models and not able to detect the true
model. For example, for the setting (n = 100,p = 300) with the sparsity 3%, the
corresponding posterior with qn = e−ηnn concluded that the true Cholesky factor
is a zero matrix, that is, it never selected any nonzero variable. Thus, in our sim-
ulation study, we conducted the simulation only for two choices, qn = 0.01 and
qn = 0.001, although they might not guarantee the strong model selection consis-
tency. For the log-posterior score search, we chose qn = e−ηnn as in Cao, Khare
and Ghosh (2019).

3. (CSCS): We chose the CSCS method [Khare et al. (2016)] as a state-of-
the-art frequentist competitor. The tuning parameter λn in the CSCS method was
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selected by the Bayesian Information Criterion (BIC)-like measure which is de-
fined in Section 2.3 of Khare et al. (2016). We calculated the values of BIC-like
measure for λn from 0.1 to 5.1 with an increment of 0.1. The value of λn minimiz-
ing the BIC-like measure was chosen for the estimation.

4.4. Results. We ran the Metropolis–Hastings algorithm for each data set to
conduct posterior inferences. Every MCMC chain ran for 24,000 iterations with a
burn-in period of 4000, so we obtained 20,000 posterior samples. We used the
models selected by the CSCS method as the initial states for MCMC chains.
We constructed the final model by collecting indices with inclusion probabilities,
π(ajl �= 0 | Xn), exceeding 0.5.

To measure the model selection performance, the number of errors, false discov-
ery rate (FDR), true positive rate (TPR) and inclusion probabilities were reported.
We calculated the mean inclusion probability for zero entries in A0n and denote
it by p̄0. Similarly, the mean inclusion probability for nonzero entries in A0n is
denoted by p̄1. More specifically, we calculated

p̄0 = 1∑p
j=2(j − 1 − s0j )

p∑
j=2

∑
l /∈S0j

π(ajl �= 0 | Xn),

p̄1 = 1∑p
j=2 s0j

p∑
j=2

∑
l∈S0j

π(ajl �= 0 | Xn).

The simulation results are summarized in Table 1. The ESC prior performs gen-
erally better than the other competing methods. The EB.M works reasonably well,
but the overall performance is worse than that of ESC prior. The DAG-Wishart
prior tends to have low TPR and mean inclusion probability p̄1 when qn = 0.001.
Note that when qn = 0.01, which is chosen to be close to the unknown true spar-
sity level, the DAG-Wishart prior performs reasonably well, but the ESC prior still
works better. However, the true sparsity is in general unknown, so fitting qn close
to the true sparsity is a challenging task in practice. The log-posterior score search
algorithm for DAG-Wishart is computationally efficient even for large p, but tends
to have low FDR as well as TPR in our settings. The CSCS method has high TPR
values, but at the same time, it has high FDR values. Thus, from the simulation
study, we confirm that our ESC prior not only has nice theoretical properties but
also practically outperforms the other existing methods.
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TABLE 1
ESC, EB.M, DAG-W and CSCS denote our method (empirical sparse Cholesky prior), the empirical

Bayes procedure proposed by Martin, Mess and Walker (2017), the hierarchical Bayesian model
using DAG-Wishart prior (Cao, Khare and Ghosh (2019)) and Convex Sparse Cholesky Selection
(Khare et al. (2016)), respectively. Sp: sparsity; FDR: false discovery rate; TPR: true positive rate;
p̄0: the mean inclusion probability for zero entries in A0n; p̄1: the mean inclusion probability for

nonzero entries in A0n

(n,p,Sp) Method # of errors FDR TPR p̄0 p̄1

(100, 300, 3%) ESC 264 0.0361 0.8349 0.0071 0.8321
EB.M 419 0.1083 0.7836 0.0041 0.7828

DAG-W(qn = 0.01) 285 0.0208 0.8052 0.0024 0.8036
DAG-W(qn = 0.001) 462 0.0122 0.6647 0.0006 0.6688
DAG-W(log-score) 1194 0.0065 0.1130 · ·

CSCS 2188 0.6433 0.7799 · ·
(100, 300, 4%) ESC 389 0.0494 0.8261 0.0084 0.8194

EB.M 325 0.0347 0.7866 0.0020 0.7815
DAG-W(qn = 0.01) 422 0.0295 0.7887 0.0032 0.7873

DAG-W(qn = 0.001) 644 0.0216 0.6555 0.0011 0.6556
DAG-W(log-score) 1619 0.0056 0.0981 · ·

CSCS 4025 0.7766 0.8045 · ·
(200, 500, 3%) ESC 103 0.0118 0.9842 0.0039 0.9796

EB.M 212 0.0075 0.9506 0.0005 0.9509
DAG-W(qn = 0.01) 98 0.0049 0.9786 0.0010 0.9773

DAG-W(qn = 0.001) 182 0.0022 0.9535 0.0002 0.9519
DAG-W(log-score) 4285 0.0000 0.1412 · ·

CSCS 10,214 0.7397 0.9388 · ·
(200, 500, 4%) ESC 153 0.0061 0.9754 0.0043 0.9650

EB.M 281 0.0038 0.9473 0.0005 0.9457
DAG-W(qn = 0.01) 163 0.0041 0.9713 0.0011 0.9684

DAG-W(qn = 0.001) 295 0.0017 0.9425 0.0002 0.9416
DAG-W(log-score) 4341 0.0000 0.1301 · ·

CSCS 14,632 0.7550 0.9285 · ·

SUPPLEMENTARY MATERIAL

Minimax Posterior Convergence Rates and Model Selection Consistency
in High-dimensional DAG Models based on Sparse Cholesky Factors (DOI:
10.1214/18-AOS1783SUPP; .pdf). We present the proofs for the main results and
other auxiliary results.
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