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ON TESTING FOR HIGH-DIMENSIONAL WHITE NOISE
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Testing for white noise is a classical yet important problem in statistics,
especially for diagnostic checks in time series modeling and linear regres-
sion. For high-dimensional time series in the sense that the dimension p is
large in relation to the sample size T , the popular omnibus tests including
the multivariate Hosking and Li–McLeod tests are extremely conservative,
leading to substantial power loss. To develop more relevant tests for high-
dimensional cases, we propose a portmanteau-type test statistic which is the
sum of squared singular values of the first q lagged sample autocovariance
matrices. It, therefore, encapsulates all the serial correlations (up to the time
lag q) within and across all component series. Using the tools from ran-
dom matrix theory and assuming both p and T diverge to infinity, we de-
rive the asymptotic normality of the test statistic under both the null and a
specific VMA(1) alternative hypothesis. As the actual implementation of the
test requires the knowledge of three characteristic constants of the popula-
tion cross-sectional covariance matrix and the value of the fourth moment
of the standardized innovations, nontrivial estimations are proposed for these
parameters and their integration leads to a practically usable test. Extensive
simulation confirms the excellent finite-sample performance of the new test
with accurate size and satisfactory power for a large range of finite (p,T )

combinations, therefore, ensuring wide applicability in practice. In partic-
ular, the new tests are consistently superior to the traditional Hosking and
Li–McLeod tests.

1. Introduction. Testing for white noise is an important problem in statis-
tics. It is indispensable in diagnostic checking for linear regression and linear
time series modeling in particular. The surge of recent interests in modeling high-
dimensional time series adds a further challenge: diagnostic checking demands
the testing for high-dimensional white noise in the sense that the dimension of
time series is comparable to or even greater than the sample size (i.e., the ob-
served length of the time series). One prominent example showing the need for
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diagnostic checking in high-dimensional time series concerns the vector autore-
gressive model, which has a large literature. When the dimension is large, most
existing works regularize the fitted models by Lasso (Basu and Michailidis (2015),
Haufe et al. (2009), Hsu, Hung and Chang (2008), Shojaie and Michailidis (2010)),
Dantzig penalization (Han, Lu and Liu (2015)), banded autocovariances (Bickel
and Gel (2011)) or banded auto-coefficient matrices (Guo, Wang and Yao (2016)).
However, none of them have developed any residual-based diagnostic tools. An-
other popular approach is to represent high-dimensional time series by lower-
dimensional factors; see, for example, Stock and Watson (1989, 1998, 1999), Forni
et al. (2000, 2005), Bai and Ng (2002), Lam and Yao (2012) and Chang, Guo
and Yao (2015). Again, there is a pertinent need to develop appropriate tools for
checking the validity of the fitted factor models through careful examination of the
residuals.

There are several well-established white noise tests for univariate time series (Li
(2004)). Some of them have been extended for testing vector time series (Hosking
(1980), Li and McLeod (1981), Lütkepohl (2005)). However, these methods are
designed for the cases where the dimension of the time series is small or relatively
small compared to the sample size. For the purpose of model diagnostic checking,
the so-called omnibus tests are often adopted which are designed to detect any
forms of departure from white noise. The celebrated Box–Pierce portmanteau test
and its variations are the most popular omnibus tests. The fact that the Box–Pierce
test and its variations are asymptotically distribution-free and χ2-distributed under
the null hypothesis makes them particularly easy to use in practice. However, it
is well known in the literature that the slow convergence to their asymptotic null
distributions is particularly pronounced in multivariate cases. On the other hand,
testing for high-dimensional time series is still in an infancy stage. To our best
knowledge, the only available methods are Chang, Yao and Zhou (2017) and Tsay
(2017).

To appreciate the challenge in testing for a high-dimensional white noise, we
refer to an example reported in Section 3.1 below where, say we have to check
the residuals from a fitted multivariate volatility for a portfolio containing p = 50
stocks using their daily returns over a period of one semester. The length of the
returns time series is then approximately T = 100. Table 1 shows that the two
variants of the multivariate portmanteau test, namely the Hosking and Li–McLeod
tests, all have actual sizes around 0.1%, instead of the nominal level of 5%. These
omnibus tests are thus extremely conservative and they will not be able to detect
an eventual misfitting of the volatility model.

The above example illustrates the following fact, which is now better under-
stood: many popular tools in multivariate statistics are severely challenged by the
emergence of high-dimensional data, and they need to be reexamined or corrected.
Recent advances in high-dimensional statistics demonstrate that feasible and qual-
ity solutions to these high-dimensional challenges can be obtained by exploiting
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TABLE 1
Empirical sizes for our tests Gq and Gq,1, the Hosking test Q̃q and the Li–McLeod test Q∗

q

Gq Gq,1 Q̃q Q∗
q

p T p/T q = 1 q = 3 q = 1 q = 3 q = 1 q = 3 q = 1 q = 3

5 1000 0.005 0.0630 0.0615 0.0610 0.0645 0.0490 0.0478 0.0488 0.0476
10 2000 0.005 0.0630 0.0580 0.0615 0.0575 0.0492 0.0440 0.0492 0.0436
25 5000 0.005 0.0520 0.0470 0.0575 0.0535 0.0498 0.0528 0.0498 0.0528
40 8000 0.005 0.0565 0.0395 0.0540 0.0430 0.0508 0.0520 0.0508 0.0520

10 1000 0.01 0.0740 0.0565 0.0675 0.0570 0.0472 0.0468 0.0470 0.0464
20 2000 0.01 0.0500 0.0555 0.0540 0.0540 0.0502 0.0530 0.0502 0.0530
50 5000 0.01 0.0455 0.0555 0.0450 0.0580 0.0488 0.0498 0.0488 0.0498
80 8000 0.01 0.0500 0.0490 0.0510 0.0520 0.0464 0.0406 0.0464 0.0404

50 1000 0.05 0.0375 0.0495 0.0410 0.0475 0.0408 0.0466 0.0408 0.0466
100 2000 0.05 0.0570 0.0525 0.0560 0.0515 0.0432 0.0414 0.0432 0.0414
250 5000 0.05 0.0500 0.0480 0.0495 0.0500 0.0456 0.0436 0.0456 0.0434
400 8000 0.05 0.0410 0.0480 0.0455 0.0505 0.0418 0.0410 0.0418 0.0410

10 100 0.1 0.0570 0.0555 0.0555 0.0570 0.0300 0.0400 0.0280 0.0362
40 400 0.1 0.0560 0.0590 0.0575 0.0525 0.0362 0.0342 0.0358 0.0338
60 600 0.1 0.0465 0.0585 0.0550 0.0595 0.0340 0.0340 0.0340 0.0338

100 1000 0.1 0.0515 0.0500 0.0435 0.0480 0.0370 0.0268 0.0366 0.0264

50 100 0.5 0.0520 0.0465 0.0480 0.0520 0.0006 0.0018 0.0006 0.0018
200 400 0.5 0.0400 0.0415 0.0505 0.0545 0.0010 0.0004 0.0010 0.0004
300 600 0.5 0.0390 0.0480 0.0455 0.0480 0.0002 0.0008 0.0002 0.0008
500 1000 0.5 0.0470 0.0470 0.0430 0.0545 0 0 0 0

90 100 0.9 0.0555 0.0580 0.0460 0.0455 0 0 0 0
360 400 0.9 0.0475 0.0520 0.0535 0.0405 0 0 0 0
540 600 0.9 0.0535 0.0550 0.0550 0.0540 0 0 0 0
900 1000 0.9 0.0495 0.0505 0.0545 0.0515 0 0 0 0

tools of random matrix theory via a precise spectral analysis of large sample co-
variance or sample autocovariance matrices. For a review on such progress, we
refer to Johnstone (2007), Paul and Aue (2014) and monograph Yao, Zheng and
Bai (2015). In particular, asymptotic results found in this context using random
matrix theory exhibit fast convergence rates, and hence provide satisfactory finite
sample approximation for data analysis.

This paper proposes a new method for testing high-dimensional white noise.
The test statistic encapsulates the serial correlations within and across all com-
ponent series. Precisely, the statistic is the sum of the squared singular values
of several lagged sample autocovariance matrices. Using random matrix theory,
asymptotic normality for the test statistics under the null is established under the
Marčenko–Pastur asymptotic regime where p and T are large and comparable.
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Next, original methods are proposed for estimation of a few parameters in the lim-
iting distribution in order to get a fully implementable version of the test. The
asymptotic power of the test under a specific alternative of first-order vector mov-
ing average process (VMA(1)) has also been derived. Extensive simulation demon-
strates excellent behavior of the proposed tests for a wide array of combinations of
(p,T ), with accurate size and satisfactory power. In this paper, we also explore the
reasons why the popular multivariate Hosking and Li–McLeod tests are no longer
reliable when the dimension is large in relation to the sample size.

The rest of the paper is organized as follows. Section 2 presents the main contri-
butions of the paper. A new high-dimensional test for white noise is introduced; its
asymptotic distributions under both the null and the VMA(1) alternative hypoth-
esis are established. Section 3 reports extensive Monte Carlo experiments which
assess the finite sample behavior of the tests. Whenever possible, comparison is
made with the popular Hosking and Li–McLeod tests. Numerical evidence also
indicates that the new test is more powerful than that of Chang, Yao and Zhou
(2017). Section 4 collects all the technical proofs.

2. A test for high-dimensional white noise. Let x1, . . . ,xT be observations
from a p × 1 complex-valued linear process of the form

xt = ∑
l≥0

Alzt−l ,

where Al are p × p coefficient matrices, {zt } is a sequence of p-dimensional ran-
dom vectors such that, if the coordinates of zt are {zit }, then the two-dimensional
array {zit : 1 ≤ i ≤ p, t ≥ 1} of variables are i.i.d. satisfying the moment con-
ditions Ezit = 0, E|zit |2 = 1 and E|zit |4 = ν4 < ∞. Hence Ext = 0, and �τ ≡
Cov(xt+τ ,xt ) depends on τ only. Note that �0 = var(xt ) is the population covari-
ance matrix of the time series. The goal is to test the null hypothesis

(2.1) H0 : xt = A0zt ,

where A0 is unknown. This in fact tests the independence instead of linear in-
dependence (i.e., �τ = 0 for all τ �= 0), which is however a common practice in
the literature of white noise tests. Throughout the paper, the complex adjoint of
a matrix (or vector) A is denoted by A∗. For τ ≥ 1, let �̂τ be the lag τ sample
autocovariance matrix

�̂τ = 1

T

T∑
t=1

xtx∗
t−τ ,

where by convention xt = xT +t when t ≤ 0. Under the null hypothesis, E(�̂τ ) = 0
for τ �= 0, and a natural test statistic is the sum of squared singular values of the
first q lagged sample autocovariance matrices:

Gq =
q∑

τ=1

Tr
(
�̂∗

τ �̂τ

) =
q∑

τ=1

∑
j

α2
τ,j ,
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where {ατ,j } are the singular values of �̂τ , and Tr denotes the trace operation for
square matrices. We reject the null hypothesis H0 for large values of Gq .

Notice that the setting here allows for complex-valued observations: this is im-
portant for applications in areas such as signal processing where signal time series
are usually complex-valued. However, for the sake of presentation, we mostly fo-
cus on the real-valued case in the subsequent sections. Directions on how the tests
can be extended to accommodate complex-valued observations will be given in the
last Section 2.4.

2.1. High-dimensional asymptotics. We adopt the so-called Marčenko–Pastur
regime for asymptotic analysis, that is, we assume cp = p/T → c > 0 when
p,T → ∞. This asymptotic framework has been widely employed in the liter-
ature on high-dimensional statistics; see Johnstone (2007), Paul and Aue (2014),
also monograph Yao, Zheng and Bai (2015) and the references therein. Most of
the results in this area concern sample covariance matrices only. However, our test
statistic Gq is based on the sample autocovariance matrices, which is much less
studied; see Liu, Aue and Paul (2015) and Bhattacharjee and Bose (2016).

As a main contribution of the paper, we characterize the asymptotic distribution
of Gq in this high-dimensional setting when the observations are real-valued. We
introduce the following limits whenever they exist: for � ≥ 1,

(2.2) s� = lim
p→∞

1

p
Tr

(
��

0
)
, sd,� = lim

p→∞
1

p
Tr

(
D�(�0)

)
,

where D(A) denotes the diagonal matrix consisting of the main diagonal elements
of A (here the d in the index is a reminder of this diagonal structure).

THEOREM 2.1. Let q ≥ 1 be a fixed integer, and the following assertions
hold:

1. {zt } is a sequence of real-valued independent p × 1 random vectors with
independent components zt = (zit ) satisfying Ezit = 0, Ez2

it = 1 and Ez4
it = ν4 <

∞;
2. {�0} is a sequence of p × p semipositive definite matrices with bounded

spectral norm such that the limits {s1, s2} and {sd,2} exist;
3. (Marčenko–Pastur regime). The dimension p and the sample size T grow to

infinity in a related way such that cp := p/T → c > 0.

Then when xt = �
1/2
0 zt , the limiting distribution of the test statistic Gq is

(2.3) Gq − qT c2
ps2

1
d−→N

(
0, σ 2(c)

)
,

where

(2.4) σ 2(c) = 2qc2s2
2 + 4q2c3(ν4 − 3)s2

1sd,2 + 8q2c3s2
1s2.
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The proof of this theorem is given in Section 4. It is worth mentioning here that
in Bhattacharjee and Bose (2016), they considered a simpler case when �0 = Ip ,
q = 1 and p = T with Gaussian population distribution, which is consistent with
the results above.

Let Zα be the upper-α quantile of the standard normal distribution at level α.
Based on Theorem 2.1, we obtain a procedure for testing the null hypothesis in
(2.1) as follows:

(2.5) Reject H0 if
{
Gq − qT c2

ps2
1 > Zασ(c)

}
.

The illustration in Section 3 indicates that the test above is much more power-
ful than some classical alternatives, especially when the dimension p is growing
linearly with the sample size T . The power of this test is gained from gathering
together the serial correlations from the first q lags within and across all p com-
ponent series; see the definition of Gq . Also note that the asymptotic mean of Gq

is qT c2
ps2

1 , which grows linearly with T (and p), while its asymptotic variance
σ 2(c) is a constant. This implies that even for moderately large T , departure from
white noise in the first q lags of the autocovariance matrices is likely to result in
a large and different mean, which will be a large multiple standard deviation away
from qT c2

ps2
1 since the standard deviation σ(c) is constant.

However, the test Gq in (2.5) is not yet practically usable as it depends on (i)
three characteristic constants, s1, s2 and sd,2 of the (population) cross-sectional
covariance matrix �0 and (ii) the fourth moment ν4 of the innovations {zt }. These
issues are addressed below.

2.2. Estimation of the covariance characteristics s1 and s2. If the cross-
sectional covariance matrix �0 is known, reasonable approximations of these char-
acteristics are readily calculated from �0. By Slutsky’s theorem, these estimates
can substitute for the true ones in the asymptotic variance σ 2(c) and the centering
term qT c2

ps2
1 . The test (2.5) still applies.

However, the population covariance matrix �0 is in general unknown and the
situation becomes challenging as estimating a general �0 is somehow out of reach
without specific assumptions on its structure. Luckily, as observed previously, we
only need consistent estimates of the three characteristics. First of all, in the setting
of Theorem 2.1 and under the null, it is not difficult to find consistent estimators
for these characteristics, thus a consistent estimator of the limiting variance σ 2(c).
The situation is much more intricate for the centering term qT c2

ps2
1 . Suppose ŝ2

1 is

a consistent estimator of s2
1 . Plugging it into the centering term leads to

(2.6) Gq,1 := Gq − qT c2
pŝ2

1 = {
Gq − qT c2

ps2
1
} + qT c2

p

{
s2

1 − ŝ2
1
}

.

Because of the multiplication by T here, the asymptotic distribution would remain
the same only if the estimation error {ŝ2

1 −s2
1} is of order oP (1/T ). This is however
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not the case and in general the error is exactly of the order Op(1/T ) and T {ŝ2
1 −s2

1}
converges to some other normal distribution.

Our method is as follows. First, we establish the joint asymptotic distribution
of Gq − qT c2

ps2
1 and p{ŝ2

1 − s2
1} for a natural estimator ŝ2

1 . This result extends

Theorem 2.1 which addresses the statistic Gq −qT c2
ps2

1 only. Next, the asymptotic
null distribution of the “feasible” test statistic Gq,1 is readily obtained as a simple
consequence.

Precisely, consider the sample covariance matrix �̂0 = 1
T

∑T
t=1 xtx∗

t and define
the natural estimators of s1 and s2 as

ŝ1 = 1

p
Tr(�̂0), ŝ2 = 1

p
Tr

(
�̂2

0
)
.

THEOREM 2.2. Assume the same conditions as in Theorem 2.1, then when
xt = �

1/2
0 zt , we have(

p
(
ŝ2

1 − s2
1
)

Gq − qT c2
ps2

1

)

d−→N2

((
0
0

)
,

(
4c(ν4 − 3)s2

1sd,2 + 8cs2
1s2 4qc2(ν4 − 3)s2

1sd,2 + 8qc2s2
1s2

4qc2(ν4 − 3)s2
1sd,2 + 8qc2s2

1s2 σ 2(c)

))
,

where the variance σ 2(c) is given in (2.4).

The proof of this theorem is relegated to Section 4.
Applying Theorem 2.2 to the decomposition (2.6), the following proposition

establishes the asymptotic null distribution of the feasible statistic Gq,1. Second-
order terms of the mean and variance of Gq,1 are also provided to improve finite
sample performance.

PROPOSITION 2.1. Assume the same conditions as in Theorem 2.2 and the
observations are real-valued, we have

(2.7) Gq,1 = Gq − qT c2
pŝ2

1
d−→ N

(
0, ξ2(c)

)
,

where ξ2(c) = 2qc2s2
2 . Meanwhile,

E(Gq,1) = − q

T 2

(
2Tr

(
�2

0
) + (ν4 − 3)Tr

(
D2(�0)

))
, E(ŝ1) = 1

p
Tr(�0),

Var(Gq,1) = 2q

T 2 Tr2(
�2

0
) + q

T 3

(
2Tr

(
�2

0
) + (ν4 − 3)Tr

(
D2(�0)

))2 + o

(
1

T

)
,

E(ŝ2) = 1

p
Tr

(
�2

0
) + 1

pT
Tr2(�0) + 1

pT

(
Tr

(
�2

0
) + (ν4 − 3)Tr

(
D2(�0)

))
.
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Now we aim at consistent estimates for the unknown quantity s2 in the asymp-
totic variance ξ2(c). It is well known that almost surely (Bai, Chen and Yao
(2010)),

ŝ1 → s1, ŝ2 → s2 + cs2
1 .

Therefore, s̃2 = ŝ2 − cpŝ2
1 is a strongly consistent estimator of s2.

In summary, when �0 is unknown, we obtain a procedure for testing the null
hypothesis of white noise (2.1) as follows:

(2.8) Reject H0 if
{
Gq − qT c2

pŝ2
1 > Zαξ̃

}
,

where ξ̃2 = 2qc2
ps̃2

2 .

2.3. Finite sample correction and estimation for non-Gaussian innovations.
Although the test procedure (2.8) is already practically usable, it can be further
improved by finite sample corrections provided in Proposition 2.1 which are espe-
cially useful for non-Gaussian population where ν4 �= 3. To this goal, it remains to
obtain a consistent estimate for (i) the covariance characteristic

sd,2 = 1

p

p∑
i=1

d2
i = 1

p
Tr

(
D2(�0)

)
,

where di = �0,ii is the ith diagonal element of �0, and (ii) the fourth moment ν4
of the innovations.

(i) Estimation of sd,2. By its very definition, di can be consistently estimated
by its sample counterpart

d̃i = 1

T

T∑
t=1

x2
it .

It follows that a consistent estimator for sd,2 is simply s̃d,2 = p−1 ∑p
i=1 d̃2

i .
(ii) Estimation of ν4. This is again a nontrivial problem which has not been

touched yet in the literature (to our best knowledge). In order to get rid of the
role of the unknown cross-sectional covariance matrix �0, we adopt the following
splitting strategy: the original data {xt , t = 1, . . . , T } are split into two halves of
length T1 and T2, respectively (T = T1 +T2). Define the two corresponding sample
cross-sectional covariance matrices

(2.9) Sn,1 = 1

T1

T1∑
t=1

xtx∗
t , Sn,2 = 1

T2

T2∑
t=1

xt+T1x∗
t+T1

.

This yields the corresponding F -ratio, or Fisher matrix, Fn = S−1
n,1Sn,2. Observe

that this matrix does not depend on the value of the cross-sectional covariance �0
so that in what follows we can assume �0 = I .
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Let (λj )1≤j≤p be the eigenvalues of Fn. Define K test functions fk(x) =
log(ak + bkx) where (ak, bk)1≤k≤K are some positive constants. For each k, we
have an eigenvalue statistic of the Fisher matrix

XT,k = fk(λ1) + · · · + fk(λp) − p

∫
fk(x) dFcp,1,cp,2(x),

where cp,i = p/Ti (i = 1,2) and Fc,c′ is the limiting Wachter distribution with
index (c, c′); see the formula (3.1) in Zheng (2012). It is proved on page 452 of
the reference, when p, T1, T2 grow proportionally to infinity,

(2.10) XT,k = uT,k + vT,kν4 + εT,k,

where {uT,k, vT ,k} are constants depending on {cpi
} and (ak, bk), and {εT,k} is a

centered and asymptotically Gaussian error. Then the least squares estimator of
ν4 using the above regression model leads to a consistent estimate, say ν̂4 for the
unknown parameter.

Under the null hypothesis, the observations are independent. We may repeat
this estimation procedure, say B times, by taking B random splits of the initial
sample. The final estimate of ν4 is then taken to be the average of the estimates
{ν̂4,b}1≤b≤B .

Finally, we can implement the following test procedure with finite sample cor-
rection for the null hypothesis of white noise (2.1):

Reject H0 if{
G∗

q,1 = Gq − qT c2
pŝ2

1 + 1

T
· qcp

(
2s̃2 + (ν̂4 − 3)s̃d,2

)
> Zαξ̂

}
,(2.11)

where

ξ̂2 = 2qc2
ps̃2

2 + 1

T
· qc2

p

(
2s̃2 + (ν̂4 − 3)s̃d,2

)2

with the above estimator ν̂4 for the fourth moment. Note that the estimation pro-
cedure proposed above for ν4 is only feasible when p < T , thus we can only im-
plement test (2.11) when p < T . However, our primary test statistic is Gq,1 in
(2.8) which does not require estimation of ν4. In fact, simulation results in Sec-
tion 3.4 and 3.5 show that the statistic Gq,1 already performs well. Therefore, we
can directly use Gq,1 when p > T .

2.4. Tests when the observations are complex-valued. To proceed, we first de-
fine xt = �

1/2
0 zt where zt is a proper complex random vector, and �

1/2
0 is such

that �
1/2
0 is Hermitian with �0 = �

1/2
0 (�

1/2
0 )∗ (Properness of a complex random

vector zt means that E(ztzT
t ) = 0). We immediately have

0 = E
(
ztzT

t

) = E
(
z2
it

)
Ip,
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so that E(z2
it ) = 0 for all i = 1, . . . , p and t = 1, . . . , T . It also implies that b =

|E(z2
it )|2 = 0. Since xt = �

1/2
0 zt , we have

E
(
xtxT

t

) = E
(
�

1/2
0 ztzT

t �
T/2
0

) = 0,

so that we are also assuming an observed vector xt is proper.
From Corollary 4.1, since b = 0 from the properness of zt , the asymptotic co-

variance of Gq is then

Var(Gq) → qc2s2
2 + 4q2c3s2

1
[
(ν4 − 2)sd,2 − s′

2 + 2sr,2
]
,

where s′
2 = limp→∞ Tr(�0�

T
0 )/p, sr,2 = limp→∞ Tr(
2(�0))/p, with 
(A) =

(
(aij )), the matrix of the real parts of all entries in A.
Using Lemma 1.1 of the Supplementary Material (Li et al. (2019)) defining

�(A) = (�(aij )) to be the matrix of the imaginary parts of all entries in A, we
have

2Tr
(
2(�0)

) − Tr
(
�0�

T
0

) = 2Tr
(
�0
(�0)

) − Tr
(
�0

(
(�0) − i�(�0)
))

= Tr
(
�0

(
(�0) + i�(�0)
)) = Tr

(
�2

0
)
,

so that 2sr,2 − s′
2 = s2. The asymptotic variance for Gq is then

Var(Gq) → σ 2(c) = qc2s2
2 + 4q2c3s2

1
[
(ν4 − 2)sd,2 + s2

]
,

which can be estimated consistently using the estimators suggested in Section 2.2.

2.5. Testing power of Gq,1. In this section, we look into the power function of
the tests when an alternative hypothesis H1 is specified. Here we assume that under
H1, the observations x1, . . . ,xT follows from a p × 1 real-valued p-dimensional
first-order vector moving average process, VMA(1) in short, of the form

(2.12) H1 : xt = A0zt + A1zt−1,

where A0, A1 are p × p coefficient matrices. Now we only consider the asymp-
totic behavior of our test statistic Gq and Gq,1 when q = 1 since higher order
autocorrelations of xt are null under both H0 and H1.

Denote

�̃0 = A∗
0A0, �̃1 = A∗

1A1, �̃01 = A∗
0A1,

we characterize the joint limiting distribution of ŝ2
1 and G1 under the VMA(1)

alternative (2.12) as follows.

THEOREM 2.3. Assume that:

1. {zt } is a sequence of real-valued independent p × 1 random vectors with
independent components zt = (zit ) satisfying Ezit = 0, Ez2

it = 1 and Ez4
it = ν4 <

∞;
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2. �̃0, �̃1 and �̃01�̃
∗
01 all have bounded spectral norm and for integers i, j, k ≥

0, 1 ≤ i + j + k ≤ 4, the limits limT →∞ 1
T

Tr(�̃i
0�̃

j
1 �̃k

01) exist;
3. (Marčenko–Pastur regime). The dimension p and the sample size T grow to

infinity in a related way such that cp := p/T → c > 0.

Then under the VMA(1) alternative (2.12), the joint limiting distribution of the G1

and ŝ2
1 is (

σ 2
G σGS

σGS σ 2
S

)−1/2 (
G1 − μG

T c2
pŝ2

1 − μS

)
d−→N2(0, I2),

where

μG = 1

T
Tr2(�̃0 + �̃1) + Tr(�̃0�̃1) + 2

T
Tr2(�̃01)

+ 1

T

[
Tr(�̃0�̃1) + (ν4 − 3)Tr

(
D(�̃0)D(�̃1)

)]
,

μS = 1

T
Tr2(�̃0 + �̃1) + 4

T 2 Tr
(
�̃01�̃

∗
01

)
+ 1

T 2

[
2Tr(�̃0 + �̃1)

2 + (ν4 − 3)Tr
(
D2(�̃0 + �̃1)

)]
,

σ 2
S = 4

T 3 Tr2(�̃0 + �̃1)
[
2Tr(�̃0 + �̃1)

2 + (ν4 − 3)Tr
(
D2(�̃0 + �̃1)

)]
+ 16

T 3 Tr2(�̃0 + �̃1)Tr
(
�̃01�̃

∗
01

) + Rn

and

σ 2
G = 4

T 3 Tr2(�̃0 + �̃1)
[
2Tr(�̃0 + �̃1)

2 + (ν4 − 3)Tr
(
D2(�̃0 + �̃1)

)]
+ 8

T 2 Tr(�̃0 + �̃1)
[
2Tr

(
�̃0�̃1(�̃0 + �̃1)

)
+ (ν4 − 3)Tr

(
D(�̃0�̃1)D(�̃0 + �̃1)

)]
+ 2

T 2 Tr2(
�̃2

0 + �̃2
1
) + 6

T 2 Tr2(�̃0�̃1)

+ 4

T

[
2Tr(�̃0�̃1)

2 + (ν4 − 3)Tr
(
D2(�̃0�̃1)

)]
+ 8

T 2 Tr
(
�̃01�̃

∗
01

)
Tr

(
�̃2

0 + �̃2
1
) + 16

T 2 Tr(�̃01�̃1)Tr(�̃01�̃0)

+ 16

T 2 Tr(�̃0 + �̃1)
[
Tr

(
�̃∗

01�̃01�̃0
) + Tr

(
�̃01�̃

∗
01�̃1

)]
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+ 16

T 2 Tr(�̃01)
[
Tr

(
�̃2

0�̃∗
01

) + Tr
(
�̃2

1�̃01
) + 2Tr(�̃1�̃01�̃0)

]
+ 4

T
Tr

(
�̃∗

01�̃01�̃
2
0 + �̃01�̃

∗
01�̃

2
1 + 2�̃∗

01�̃1�̃01�̃0
)

+ 16

T 3 Tr2(�̃0 + �̃1)Tr
(
�̃01�̃

∗
01

) + 16

T 3 Tr2(�̃01)Tr(�̃0 + �̃1)
2

+ 32

T 3 Tr(�̃0 + �̃1)Tr(�̃01)Tr
(
�̃01(�̃0 + �̃1)

)
+ 4

T
Tr

(
�̃01�̃

∗
01�̃

∗
01�̃01

) + 12

T 2 Tr2(
�̃01�̃

∗
01

)
+ 16

T 2 Tr(�̃01)Tr
(
�̃01�̃

∗
01�̃

∗
01

)
+ 16

T 3 Tr2(�̃01)
[
Tr(�̃01)

2 + 2Tr
(
�̃01�̃

∗
01

) + (ν4 − 3)Tr
(
D2(�̃01)

)]
+ 8

T 2 Tr2(�̃1�̃01)

+ 16

T 3 Tr(�̃01)Tr(�̃0 + �̃1)
[
2Tr

(
�̃01(�̃0 + �̃1)

)
+ (ν4 − 3)Tr

(
D(�̃01)D(�̃0 + �̃1)

)]
+ 8

T 2 Tr2(�̃0�̃01) + 16

T 2 Tr(�̃01)
[
2Tr(�̃0�̃1�̃01)

+ (ν4 − 3)Tr
(
D(�̃0�̃1)D(�̃01)

)] + Rn,

σGS = 4

T 3 Tr2(�̃0 + �̃1)
[
2Tr(�̃0 + �̃1)

2 + (ν4 − 3)Tr
(
D2(�̃0 + �̃1)

)]
+ 4

T 2 Tr(�̃0 + �̃1)
[
2Tr

(
�̃0�̃1(�̃0 + �̃1)

)
+ (ν4 − 3)Tr

(
D(�̃0�̃1)D(�̃0 + �̃1)

)]
+ 8

T 2 Tr(�̃0 + �̃1)
[
Tr

(
�̃∗

01�̃01�̃0
) + Tr

(
�̃01�̃

∗
01�̃1

)]
+ 16

T 3 Tr2(�̃0 + �̃1)Tr
(
�̃01�̃

∗
01

)
+ 8

T 3 Tr(�̃01)Tr(�̃0 + �̃1)
[
2Tr

(
�̃01(�̃0 + �̃1)

)
+ (ν4 − 3)Tr

(
D(�̃01)D(�̃0 + �̃1)

)]
+ 16

T 3 Tr(�̃0 + �̃1)Tr(�̃01)Tr
(
�̃01(�̃0 + �̃1)

) + Rn.
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Here the Rn’s, possibly different, represent remainders which have smaller orders
than the other terms listed in σ 2

S , σ 2
G and σGS , respectively.

The proof of this theorem is relegated to Section 4. Similarly, applying The-
orem 2.3 to the decomposition (2.6), the following proposition establishes the
asymptotic distribution of our test statistic Gq,1 under the VMA(1) alterna-
tive (2.12) when q = 1.

PROPOSITION 2.2. Assume the same conditions as in Theorem 2.3, when xt =
A0zt + A1zt−1 and the observables are real-valued, we have

(2.13) σ−1
G1,1

(
G1 − T c2

pŝ2
1 − μG1,1

) d−→N(0,1),

where

μG1,1 = Tr(�̃0�̃1) + 2

T
Tr2(�̃01) + 1

T

[
Tr(�̃0�̃1) + (ν4 − 3)Tr

(
D(�̃0)D(�̃1)

)]
− 4

T 2 Tr
(
�̃01�̃

∗
01

) − 1

T 2

[
2Tr(�̃0 + �̃1)

2 + (ν4 − 3)Tr
(
D2(�̃0 + �̃1)

)]
,

σ 2
G1,1

= 2

T 2 Tr2(
�̃2

0 + �̃2
1
) + 4

T

[
2Tr(�̃0�̃1)

2 + (ν4 − 3)Tr
(
D2(�̃0�̃1)

)]
+ 6

T 2 Tr2(�̃0�̃1) + 8

T 2 Tr
(
�̃01�̃

∗
01

)
Tr

(
�̃2

0 + �̃2
1
)

+ 16

T 2 Tr(�̃01�̃1)Tr(�̃01�̃0)

+ 16

T 2 Tr(�̃01)
[
Tr

(
�̃2

0�̃∗
01

) + Tr
(
�̃2

1�̃01
) + 2Tr(�̃1�̃01�̃0)

]
+ 4

T
Tr

(
�̃∗

01�̃01�̃
2
0 + �̃01�̃

∗
01�̃

2
1 + 2�̃∗

01�̃1�̃01�̃0
)

+ 16

T 3 Tr2(�̃01)Tr(�̃0 + �̃1)
2

+ 4

T
Tr

(
�̃01�̃

∗
01�̃

∗
01�̃01

) + 12

T 2 Tr2(
�̃01�̃

∗
01

)
+ 16

T 2 Tr(�̃01)Tr
(
�̃01�̃

∗
01�̃

∗
01

)
+ 16

T 3 Tr2(�̃01)
[
Tr(�̃01)

2 + 2Tr
(
�̃01�̃

∗
01

) + (ν4 − 3)Tr
(
D2(�̃01)

)]
+ 8

T 2 Tr2(�̃1�̃01) + 8

T 2 Tr2(�̃0�̃01)

+ 16

T 2 Tr(�̃01)
[
2Tr(�̃0�̃1�̃01) + (ν4 − 3)Tr

(
D(�̃0�̃1)D(�̃01)

)] + Rn.



ON TESTING A HIGH-DIMENSIONAL WHITE NOISE 3395

Here Rn represents a remainder of smaller order than the other terms listed in
σ 2

G1,1
.

Notice that if A1 = 0, �̃1 = 0 and �̃01 = 0, then Theorem 2.3 and Proposi-
tion 2.2 reduce to Theorem 2.2 and Proposition 2.1, respectively.

Actually, under the VMA(1) alternative (2.12) with q = 1, we have almost
surely, ξ̃ = √

2cps̃2 → ξ0 as p,T → ∞, where

(2.14) ξ0 = lim
T →∞

√
2
[

1

T
Tr

(
�̃2

0 + �̃2
1
) + 2

T
Tr

(
�̃01�̃

∗
01

) + 2

T 2 Tr2(�̃01)

]
.

With Propositions 2.1 and 2.2, the power function of the test (2.8) is then easily
derived.

PROPOSITION 2.3. Assume the same conditions as in Theorem 2.3, then un-
der H1 : xt = A0zt + A1zt−1, as p,T → ∞, the power function

βα = Pr
(
G1 − T c2

pŝ2
1 > Zαξ̃ |H1

) → Pr
(
Z > Zα

ξ0

σ̃G1,1

− μ̃G1,1

σ̃G1,1

)
,

where Z represents a standard normal random variable, Zα is the upper-α quan-
tile of the standard normal distribution, μ̃G1,1 and σ̃G1,1 are limits of μG1,1 and
σG1,1 as T → ∞.

In fact, under H1, when �̃0 and �̃1 have bounded spectral norm, both σ̃G1,1 and

ξ0 are of order O(1) and 0 <
ξ0

σ̃G1,1
≤ 1, while the leading order term of μ̃G1,1 is

lim
T →∞ Tr(�̃0�̃1) = lim

T →∞ Tr
(
A1A

∗
0A0A

∗
1
)
> 0.

Consequently, we have the following:

Case 1. If Tr(�̃0�̃1) diverges as T → ∞, then the power function βα → 1;
Case 2. If Tr(�̃0�̃1) is of order 
(1) (bounded from below and above), then the

power function βα converges to the constant

β = Pr
(
Z > Zα

ξ0

σ̃G1,1

− μ̃G1,1

σ̃G1,1

)
and α ≤ β ≤ 1.

Therefore, as expected the asymptotic power of the test (2.8) under the VMA(1)
alternative (2.12) depends on the eigenstructure of the coefficient matrix A1. To
illustrate, assume that (i) A0A

∗
0 is of rank r0p ∼ rp for some constant 0 < r ≤ 1;

(ii) A0A
∗
0 is of rank 1 � r1p � p, for example, r1p ∼ r ′ logp for some constant

r ′ > 0, and that the nonnull eigenvalues of both matrices are of order 
(1). Then
Tr(�̃0�̃1) ∼ r ′′r1p → ∞ for some constant r ′′ > 0, and the asymptotic power is
equal to 1 (Case 1). If instead, r1p = 
(1), then the asymptotic power can be
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smaller than 1 (Case 2). Both situations correspond to a low-rank alternative for
A1, with exploding ranks in Case 1 and constant order ranks in Case 2.

Finally, as here the alternative is a VMA(1), one would expect that Gq,1 with
q > 1 might have smaller power than G1,1. This is indeed true because μ̃Gq,1

remains the same with μ̃G1,1 under H1, while σ̃Gq,1 is larger than σ̃G1,1 and ξ0
increases with q as well.

3. Simulation experiments. Most of the experiments of this section are de-
signed in order to compare the test procedures in (2.5) and (2.8) based on the
statistics Gq and Gq,1, with two well-known classical white noise tests, namely the
Hosking test (Hosking (1980)) and the Li–McLeod test (Li and McLeod (1981)).

To introduce the Hosking and Li–McLeod tests and using their notation, con-
sider a p-dimensional VARMA(u, v) process of the form

xt − �1xt−1 − · · · − �uxt−u = at − �1at−1 − · · · − �vat−v,

where at is a p-dimensional white noise with mean zero and variance �. Since xt

is observed, with an initial guess of u and v, by assuming at to be Gaussian, esti-
mation of parameters {�, �} is conducted by the method of maximum likelihood.
The initial estimates of u and v are further refined at the diagnostic checking stage
based on the autocovariance matrices Ĉτ of the residuals {ât }:

Ĉτ = 1

T

T∑
t=τ+1

ât â∗
t−τ , τ = 0,1,2, . . . .

Hosking (1980) proposed the portmanteau statistic

Q̃q = T 2
q∑

τ=1

1

T − τ
Tr

(
Ĉ∗

τ Ĉ−1
0 Ĉτ Ĉ

−1
0

)
,

while Li and McLeod (1981) recommended the use of the statistic

Q∗
q = T

q∑
τ=1

Tr
(
Ĉ∗

τ Ĉ−1
0 Ĉτ Ĉ

−1
0

) + p2q(q + 1)

2T
.

When {xt } follows a VARMA(u, v) model, both Q̃q and Q∗
q converge to

χ2(p2(q − u − v)) distribution as T → ∞, while the dimension p remains fixed.
To compare with our multilag q test statistics Gq and Gq,1 when �0 is either

known or unknown, we set u = v = 0. All tests use 5% significance level and the
critical regions of the three tests are as follows:

(i) Gq when all the limiting parameters are known as defined in (2.5) with
α = 5%;

(ii) Gq,1 with estimated limiting parameters as defined in (2.8) with α = 5%;
(iii) Hosking test: {Q̃q > χ2

0.05,qp2};
(iv) Li–McLeod test: {Q∗

q > χ2
0.05,qp2}.
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Here Z0.05 and χ2
0.05,m denote the upper-5% quantile of the standard normal dis-

tribution and the chi-squared distribution with degrees of freedom m, respectively.
Empirical statistics are obtained using 2000 independent replicates.

3.1. Empirical sizes. The data is generated as xt = �
1/2
0 zt , with zt , t =

1, . . . , T being independent and identically distributed. We adopt diverse settings
for zt and �0, respectively, to compare the sizes of four test statistics.

As for zt , we use two models to represent different distributions for zt :

(I) zt ∼ Np(0, Ip), i.i.d. t = 1, . . . , T ;
(II) zt with i.i.d. components zit ∼ Gamma(4,0.5) − 2, i = 1, . . . , p, t =

1, . . . , T , E(zit ) = 0, Var(zit ) = 1, ν4(zit ) = 4.5.

As for �0, we use two different models as follows:

(III) �0 = Ip;
(IV) �0 = 4

p
A0A

∗
0, A0 is p × p matrix with entries aij ∼ U(−1,1) i.i.d.

Table 1 compares the sizes of the four tests for two different q when �0 = Ip .
Cases when p > T are not considered here since Q̃q and Q∗

q are not applicable
then.

The main information from Table 1 is that classical test procedures derived us-
ing large sample scheme, namely by letting the sample size T → ∞ while the
dimension p remains fixed, are heavily biased when the dimension p is in fact
not negligible with respect to the sample size. To be more precise, these biases are
clearly present when the dimension-to-sample ratio p/T is not “small” enough,
say, greater than 0.1. Such high-dimensional traps for classical procedures have
already been reported in other testing problems; see, for example, Bai et al. (2009)
and Wang and Yao (2013). Here we observe that the empirical sizes of the Hosking
and the Li–McLeod tests quickly degenerate to 0 as the ratio p/T increases from
0.1 to 0.5. In other words, the critical values from their χ2

qp2 asymptotic limits are
seemingly too large. On the other hand, the statistics Gq and Gq,1 have reasonable
sizes when compared to the 5% nominal level across all the tested (p,T ) combi-
nations. Various (p,T ) combinations are accommodated to testify the adaptability
of our test statistics, Gq and Gq,1. Test sizes in both high and low dimension cases
are shown in Table 2. It can be seen that both Gq and Gq,1 attain the nominal level
accurately under various scenarios.

3.2. Empirical powers and adjusted powers. In this section, we compare the
empirical powers of the tests by assuming that xt = �

1/2
0 yt , yt follows a vector

autoregressive process of order 1,

xt = �
1/2
0 yt , yt = Ayt−1 + zt ,

where A = aIp , zt ∼ Np(0, Ip) being independent of each other for t = 1, . . . , T .
First, we check the power of two classic test procedures, Q̃q and Q∗

q . Table A
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TABLE 2
Test sizes of our tests Gq and Gq,1

Gaussian (I) Non-Gaussian (II)

Gq Gq,1 Gq Gq,1

p T p/T q = 1 q = 3 q = 1 q = 3 q = 1 q = 3 q = 1 q = 3

5 500 0.01 0.0500 0.0545 0.0465 0.0485 0.0650 0.0655 0.0655 0.0540
10 1000 0.01 0.0565 0.0420 0.0575 0.0400 0.0515 0.0615 0.0600 0.0575
20 2000 0.01 0.0545 0.0570 0.0515 0.0525 0.0610 0.0595 0.0600 0.0510

25 500 0.05 0.0550 0.0570 0.0630 0.0510 0.0570 0.0645 0.0520 0.0565
50 1000 0.05 0.0520 0.0515 0.0510 0.0455 0.0500 0.0485 0.0495 0.0455

100 2000 0.05 0.0565 0.0410 0.0545 0.0355 0.0500 0.0595 0.0440 0.0530 (III)

100 100 1 0.0515 0.0545 0.0565 0.0520 0.0515 0.0520 0.0395 0.0420
200 200 1 0.0540 0.0460 0.0485 0.0395 0.0475 0.0495 0.0450 0.0520
400 400 1 0.0570 0.0565 0.0505 0.0450 0.0385 0.0420 0.0505 0.0510

200 100 2 0.0530 0.0480 0.0560 0.0380 0.0560 0.0545 0.0370 0.0420
400 200 2 0.0480 0.0500 0.0510 0.0420 0.0545 0.0515 0.0470 0.0390
800 400 2 0.0505 0.0485 0.0480 0.0520 0.0475 0.0470 0.0405 0.0445

5 500 0.01 0.0630 0.0715 0.0585 0.0665 0.0670 0.0560 0.0650 0.0585
10 1000 0.01 0.0680 0.0645 0.0695 0.0580 0.0555 0.0540 0.0545 0.0565
20 2000 0.01 0.0590 0.0545 0.0575 0.0540 0.0655 0.0520 0.0635 0.0560

25 500 0.05 0.0510 0.0545 0.0505 0.0505 0.0635 0.0590 0.0595 0.0580
50 1000 0.05 0.0435 0.0425 0.0475 0.0405 0.0550 0.0555 0.0535 0.0465

100 2000 0.05 0.0480 0.0460 0.0470 0.0420 0.0600 0.0460 0.0595 0.0520 (IV)

100 100 1 0.0500 0.0525 0.0455 0.0455 0.0545 0.0485 0.0595 0.0530
200 200 1 0.0510 0.0530 0.0530 0.0505 0.0495 0.0460 0.0480 0.0520
400 400 1 0.0535 0.0495 0.0530 0.0390 0.0450 0.0440 0.0510 0.0520

200 100 2 0.0550 0.0545 0.0480 0.0605 0.0480 0.0485 0.0415 0.0450
400 200 2 0.0470 0.0485 0.0540 0.0525 0.0545 0.0525 0.0460 0.0520
800 400 2 0.0415 0.0505 0.0450 0.0495 0.0480 0.0490 0.0510 0.0495

in the Supplementary Material (Li et al. (2019)) gives these empirical powers for
a = 0.1 and various combinations (p,T ).

From Table 1, we know that the two classic tests become seriously biased when
the dimension p is large compared to the sample size T . Their sizes approach zero
when p/T becomes larger. From Table A of Li et al. (2019), we see that due to
such biased critical values used in Q̃q and Q∗

q , their powers are driven downward.
This is particularly severe when the ratio p/T is larger than 0.5.

To explore more of these two traditional tests, we also examine their intrinsic
powers when �0 = Ip . Namely, we empirically find the 95 percentiles of Q̃q and
Q∗

q under the null and use these values as the corrected critical value for the power
comparison. Empirical values are reported in Table B of the Supplementary Mate-
rial (Li et al. (2019)). It is interesting to observe that after such correction, both Q̃q
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TABLE 3
Test power of our tests Gq and Gq,1 under VAR(1)

Gaussian (I) Non-Gaussian (II)

Gq Gq,1 Gq Gq,1

p T p/T a q = 1 q = 3 q = 1 q = 3 q = 1 q = 3 q = 1 q = 3

5 500 0.01 0.05 0.2355 0.1535 0.2500 0.1540 0.2485 0.1475 0.2465 0.1505
10 1000 0.01 0.05 0.5280 0.2770 0.5335 0.2935 0.5135 0.2645 0.5265 0.2930
20 2000 0.01 0.05 0.9460 0.6620 0.9495 0.6995 0.9355 0.6010 0.9500 0.6670

25 500 0.05 0.05 0.2260 0.1300 0.2485 0.1770 0.2315 0.1395 0.2585 0.1810
50 1000 0.05 0.05 0.5410 0.2800 0.5995 0.3785 0.5105 0.2495 0.5960 0.3750

100 2000 0.05 0.05 0.9580 0.6550 0.9815 0.8275 0.9500 0.5895 0.9805 0.8385 (III)

100 100 1 0.1 0.2615 0.2205 0.6170 0.8190 0.2100 0.1750 0.6165 0.8285
200 200 1 0.1 0.6010 0.4720 0.9870 0.9995 0.4460 0.3370 0.9865 1
400 400 1 0.1 0.9745 0.9230 1 1 0.9025 0.7875 1 1

200 100 2 0.1 0.3275 0.2710 0.9375 0.9980 0.2420 0.2135 0.9390 0.9995
400 200 2 0.1 0.7415 0.6745 1 1 0.5715 0.4830 1 1
800 400 2 0.1 0.9995 0.9930 1 1 0.9710 0.9350 1 1

5 500 0.01 0.05 0.2540 0.1680 0.2590 0.1700 0.2355 0.1505 0.2450 0.1615
10 1000 0.01 0.05 0.4650 0.2870 0.4730 0.2850 0.4650 0.2885 0.4825 0.2970
20 2000 0.01 0.05 0.8750 0.6170 0.8815 0.6285 0.8880 0.5980 0.8950 0.6190

25 500 0.05 0.05 0.2580 0.1630 0.2555 0.1710 0.2475 0.1415 0.2655 0.1750
50 1000 0.05 0.05 0.5215 0.2650 0.5525 0.3110 0.5165 0.2575 0.5450 0.3270

100 2000 0.05 0.05 0.9450 0.6500 0.9555 0.7320 0.9345 0.6240 0.9635 0.7405 (IV)

100 100 1 0.1 0.2145 0.1690 0.3700 0.4695 0.1970 0.1470 0.3765 0.4495
200 200 1 0.1 0.4910 0.3470 0.8335 0.9005 0.4355 0.2935 0.8430 0.9150
400 400 1 0.1 0.9205 0.7690 1 1 0.8655 0.6735 1 1

200 100 2 0.1 0.2450 0.2035 0.6255 0.8115 0.2240 0.1745 0.6425 0.8235
400 200 2 0.1 0.5815 0.4790 0.9915 1 0.5000 0.3770 0.9880 1
800 400 2 0.1 0.9705 0.9205 1 1 0.9425 0.8525 1 1

and Q∗
q show very reasonable powers which all increase to 1 when the dimension

and the sample size increases. Our test statistics Gq and Gq,1 also maintain com-
parably high power in all the tested (p,T ) combinations. Table 3 demonstrates
the feasibility of our test statistics under both high and low dimension cases. In-
terestingly enough, Gq,1 shows slightly better power than Gq under the present
AR(1) alternative which is not intuitive. A comparison with the Hosking and the
Li–McLeod tests sheds new light on the superiority of our test statistics in both
low- and high-dimensional cases.

3.3. Why both the Hosking and the Li–McLeod tests fail in high dimension.
The experiments here are designed to explore the reasons behind the failure of the
Hosking and the Li–McLeod tests in high dimension. For the test statistics Q̃q

and Q∗
q as well as our test statistic φτ , we consider their empirical mean, variance
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and the 95% quantile, say θemp, with their theoretical values predicted by their re-
spective asymptotic distributions (denoted as θtheo). As for the two classical tests,
we have often observed very large discrepancy between these values so it is more
convenient to report the corresponding relative errors (θtheo − θemp)/θemp (in per-
centage). Empirical values are reported in Table C of the Supplementary Material
(Li et al. (2019)). It clearly appears from this table that for both statistics Q̃q and
Q∗

q , the traditional asymptotic theory severely overestimated their variances, that
is, their empirical means are close to the degree of freedom p2(q − u − v) of
the asymptotic chi-squared distribution while their empirical variances are much
smaller than 2p2(q −u−v) as suggested by the same chi-squared limit. This leads
to an inflated 95th percentile which, although in a lesser proportion, is enough to
create a high downward-bias in the empirical sizes of these two classical tests with
high-dimensional data; see Table 1.

3.4. Comparison with other test statistics. In this section, we compare our
test statistics with some others in recent literature. Chang, Yao and Zhou (2017)
proposed an omnibus test for vector white noise using the maximum absolute au-
tocorrelations and cross-correlations of the component series. Let

�̂(k) = {
ρ̂ij (k)

}
1≤i,j≤p = diag

{
�̂(0)

}−1/2
�̂(k)diag

{
�̂(0)

}−1/2

be the sample autocorrelation matrix at lag k, where �̂(k) = 1
T

∑T −k
t=1 xt+kx∗

t . Their
test statistic Tn is defined as

Tn = max
1≤k≤q

Tn,k,

where Tn,k = max1≤i,j≤p T 1/2|ρ̂ij (k)|. Another test statistic T ∗
n is defined in the

same manner as Tn, only that the time series principal component analysis pro-
posed by Chang, Guo and Yao (2015) is applied to the data {xt } first.

Here we fix p = 20, T = 100 and adopt the spherical AR(1) process for power
comparison, that is, xt = �

1/2
0 yt , yt = Ayt−1 + zt , A = aIp , where zt and �0

follow different combinations of settings. Power values of all the five test statis-
tics, that is, Gq , Gq,1, G∗

q,1, Tn and T ∗
n , are compared when VAR coefficient a

grows from 0 to 0.5. Here G∗
q,1 is our test statistic with finite sample correction

as demonstrated in (2.11). Empirical statistics are obtained using 2000 indepen-
dent replicates. Results are shown in Figure 1. Notice that on these displays, Gq,1
and G∗

q,1 coincide almost everywhere showing a high accuracy of the parameter
estimates used in G∗

q,1.
It can be seen that our test statistics show better performance under this spheri-

cal AR(1) model setting. Designed via Frobenius norm of sample autocovariance
matrices, the strength of our test statistics are fully demonstrated in such VAR(1)

settings. While Tn and T ∗
n are more adapted to settings where the majority coor-

dinates of the test sequence xt or their linear transformations remain to be white
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FIG. 1. Power comparison under VAR(1) with (p,T ) = (20,100). Left column with q = 1 and
right column with q = 3. First two rows under alternative model (III); last two rows under alternative
model (IV).
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noise; see the model settings in Chang, Yao and Zhou (2017). Moreover, it can be
seen that test size of Tn is a little biased when p = 20, T = 100. Actually, such
bias appears to be more significant when we increase the dimension-to-sample
ratio p/T to a relative higher level, say 0.5. On the contrary, our test statistics
maintain the nominal level accurately in both low- and high-dimensional settings.
T ∗

n shows very resilient powerful performance while it is quite time-consuming
due to its relatively complicated bootstrap procedures. All in all, our test statis-
tics Gq , Gq,1 and G∗

q,1 provide very satisfactory alternatives for high-dimensional
diagnostic checking.

3.5. Performance under VMA(1) model. In this section, we compare perfor-
mance of the tests when xt follows a vector moving average process of order 1,
that is,

xt = A0zt + A1zt−1.

We use different settings for zt and A0, A1, respectively, to compare our test statis-
tic Gq as defined in (2.5) and Gq,1 in (2.8) under nominal level α = 5%.

As for zt , we use the same two models as defined in (I) and (II) in Section 3.1.
As for A0 and A1, we use two different models as follows:

(V) A0 = Ip and A1 = aIp , 0 < a < 1.
(VI) A0 = Ip and for 0 < r < 1, take d = [pr]. Here [·] means to take the

closest integer to the given value. A1 = ( 4
p
E0E

∗
0 )1/2, where E0 is p × d matrix

with entries eij ∼ U(−1,1) i.i.d., thus rank(A1) ≤ d < p.

To evaluate the performance of our test statistics Gq and Gq,1 under VMA(1)
models, we assign a = 0.07 and r = 0.01, d = max(1, [pr]), respectively, for
Scenario (V) and (VI). Testing power of Gq and Gq,1 are shown in Table 4 for
q = 1 under various (p,T ) combinations. The asymptotic power β(G1,1) of the
test statistic G1,1 derived in Proposition 2.3 are also listed for comparison. All
empirical results are obtained using 2000 independent replicates.

Similarly, as in Section 3.4, we further compare our test statistics with others,
that is, Tn and T ∗

n in Chang, Yao and Zhou (2017) under the VMA(1) settings.
Here we fix p = 20, T = 100 and let xt = A0zt + A1zt1 where A1 follows model
(V) or (VI) and zt is either Gaussian or non-Gaussian. Power values of all the five
test statistics, that is, Gq , Gq,1, G∗

q,1, Tn and T ∗
n , are compared under model (V)

and (VI) separately. Figure 2 shows the results under model (V) when coefficient
a of A1 grows from 0 to 0.5 (top rows), and for model (VI) when parameter r

varies from 0 to 0.5 (bottom rows). All results are based on 2000 independent
experiments.

From Table 4, it can be seen that our test statistics G1 and G1,1 consistently
show reasonable powers for various (p,T ) combinations under both VMA(1)
model settings. Especially G1,1 performs surprisingly well under VMA model (VI)
even when d(rank(A1)) is very small. Meanwhile, the empirical power of G1,1 is
consistent with the asymptotic values β(G1,1) derived in Proposition 2.3. As for
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FIG. 2. Power comparison under VMA(1) with (p,T ) = (20,100). Left column with q = 1 and
right column with q = 3. First two rows under alternative model (V); last two rows under alternative
model (VI).
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TABLE 4
Test power of our tests G1 and G1,1 under VMA(1)

Gaussian (I) Non-Gaussian (II)

p T p/T a G1 G1,1 β(G1,1) G1 G1,1 β(G1,1)

10 200 0.05 0.07 0.2085 0.2260 0.2144 0.1865 0.1990 0.2159
20 400 0.05 0.07 0.4135 0.4410 0.4530 0.3805 0.4315 0.4548
40 800 0.05 0.07 0.8350 0.8985 0.8903 0.7910 0.8885 0.8910

20 200 0.1 0.07 0.1830 0.2120 0.2235 0.1755 0.2165 0.2250
40 400 0.1 0.07 0.3915 0.4925 0.5015 0.3605 0.4800 0.5034
80 800 0.1 0.07 0.8480 0.9395 0.9372 0.7995 0.9485 0.9377

50 100 0.5 0.07 0.1185 0.1705 0.1790 0.1070 0.1730 0.1804
100 200 0.5 0.07 0.2070 0.3820 0.3958 0.1600 0.3850 0.3977 (V)
200 400 0.5 0.07 0.4940 0.8395 0.8521 0.3660 0.8400 0.8531

100 100 1 0.07 0.1305 0.2670 0.2754 0.1120 0.2715 0.2771
200 200 1 0.07 0.2540 0.6605 0.6485 0.1925 0.6470 0.6502
400 400 1 0.07 0.5520 0.9900 0.9903 0.4110 0.9895 0.9904

200 100 2 0.07 0.1510 0.4990 0.5157 0.1225 0.5000 0.5177
400 200 2 0.07 0.3005 0.9480 0.9500 0.2385 0.9500 0.9504
800 400 2 0.07 0.7310 1 0.9999 0.5500 1 0.9999

p T p/T r G1 G1,1 β(G1,1) G1 G1,1 β(G1,1)

10 200 0.05 0.01 0.9955 0.9995 0.9838 1 1 0.9884
20 400 0.05 0.01 1 1 0.9995 1 1 0.9994
40 800 0.05 0.01 1 1 0.9999 1 1 0.9999

20 200 0.1 0.01 0.9700 0.9935 0.9705 0.9875 0.9980 0.9815
40 400 0.1 0.01 0.9995 1 0.9970 0.9980 1 0.9979
80 800 0.1 0.01 1 1 0.9999 0.9995 1 0.9999

50 100 0.5 0.01 0.0530 0.0445 0.0500 0.0615 0.0510 0.0500
100 200 0.5 0.01 0.3255 0.5855 0.6185 0.2765 0.5925 0.6155 (VI)
200 400 0.5 0.01 0.6080 0.9390 0.9439 0.5150 0.9565 0.9544

100 100 1 0.01 0.1135 0.1910 0.2132 0.1110 0.2575 0.2759
200 200 1 0.01 0.2200 0.5665 0.5690 0.1780 0.5450 0.5770
400 400 1 0.01 0.5110 0.9755 0.9709 0.3810 0.9620 0.9628

200 100 2 0.01 0.0910 0.2430 0.2553 0.1020 0.2660 0.2772
400 200 2 0.01 0.1625 0.5785 0.5972 0.1320 0.5575 0.5917
800 400 2 0.01 0.3695 0.9755 0.9714 0.2615 0.9785 0.9746

comparison with Tn and T ∗
n in Figure 2, our test statistics in general show better

performance under VMA(1) model settings. The test sizes of Tn and T ∗
n are a little

biased when p = 20, T = 100, especially for non-Gaussian cases, while our test
statistics maintain the nominal level accurately and uphold higher detection power
even when the signals are relatively weak.
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4. Proofs.

4.1. Proof of Theorem 2.1. To derive the null distribution of Gq when xt =
�

1/2
0 zt , we looked into the Free probability and moment method proposed by

Bhattacharjee and Bose (2016). In Section 4.2.3 of Bhattacharjee and Bose (2016),
they have proved the following result.

PROPOSITION 4.1. Let � := �(�̂τ , �̂
∗
τ : τ ≥ 0) be a symmetric polynomial

in {�̂τ , �̂
∗
τ : τ ≥ 0},

σ 2
� = limE

(
Tr(�) −E

(
Tr(�)

))2
.

They have

limE
(
Tr(�) −E

(
Tr(�)

))k =

⎧⎪⎪⎨⎪⎪⎩
0 if k = 2d − 1,(

d∏
l=1

(2d − 2l + 1)

)
σ 2d

� if k = 2d,

therefore, as p,T → ∞, cp = p/T → c ∈ (0,∞),

Tr(�) −ETr(�)
d−→ N

(
0, σ 2

�

)
.

Since Gq is a symmetric polynomial in {�̂τ , �̂
∗
τ : τ ≥ 0}, its asymptotic normal-

ity directly results from the proposition above. It remains to determine its first two
moments in order to get the null distribution. This is done in the following corol-
lary which is a direct consequence of moment calculations presented in Section 1
of the Supplementary Material (Li et al. (2019)).

COROLLARY 4.1. Let the assumptions for zt in Theorem 2.1 hold. Under the
framework p/T → c > 0, assume that ‖�0‖ = O(1). Then as p,T → ∞,

E(Gq) ∼ qp2s2
1/T ,

Var(Gq) → qc2(
s2

2 + b2(
s′

2
)2)

+ 4q2c3(ν4 − b − 2)s2
1sd,2 + 8q2c3s2

1sr,2 + 4q2c3(b − 1)s2
1s′

2,

where s′
2 = limp→∞ Tr(�0�

T
0 )/p, sr,2 = limp→∞ Tr(
2(�0))/p.

If the zit ’s are real, then �0 is real symmetric and b = 1, s ′
2 = sr,2 = s2. The

asymptotic formula for Var(Gq) then reduces to

2qc2s2
2 + 4q2c3(ν4 − 3)s2

1sd,2 + 8q2c3s2
1s2,

which further reduces to 2qc2s2
2 + 8q2c3s2

1s2 if all the zit ’s are Gaussian.
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4.2. Proof of Theorem 2.2. The proof of Theorem 2.2 is similar to that of The-
orem 2.1, while in this proof we only consider the real value cases. Both Gq and
p(ŝ2

1 − s2
1) are symmetric polynomials in {�̂τ , �̂

∗
τ : τ ≥ 0}, thus the asymptotic

normality of any linear combinations of these two statistics have been proven by
Proposition 4.1. We can directly calculate the first two moments and covariance
of these two statistics to obtain the joint limiting distribution. By directly conduct-
ing moment calculations as in Section 1 of the Supplementary Material (Li et al.
(2019)), we have the following proposition.

PROPOSITION 4.2. Let the assumptions for zt in Theorem 2.1 hold. Under the
framework p/T → c > 0, assume that ‖�0‖ = O(1). Then as p,T → ∞,

E
(
pŝ2

1
) = 1

p
Tr2(�0) + 1

pT

(
2Tr

(
�2

0
) + (ν4 − 3)Tr

(
D2(�0)

))
,

Var
(
pŝ2

1
) = 8

p2T
Tr

(
�2

0
)
Tr2(�0) + 4

p2T
(ν4 − 3)Tr2(�0)Tr

(
D(�0)

)
+ o

(
1

T

)
,

E(ŝ2) = 1

p
Tr

(
�2

0
) + 1

pT
Tr2(�0)

+ 1

pT

(
Tr

(
�2

0
) + (ν4 − 3)Tr

(
D2(�0)

))
,

E(Gq) = q

T
Tr2(�0),

Var(Gq) = 4q2

T 3 Tr2(�0)
(
2Tr

(
�2

0
) + (ν4 − 3)Tr

(
D2(�0)

)) + 2q

T 2 Tr2(
�2

0
)

+ q

T 3

(
2Tr

(
�2

0
) + (ν4 − 3)Tr

(
D2(�0)

))2 + o

(
1

T

)
,

Cov
(
Gq, pŝ2

1
) = 4q

pT 2 Tr2(�0)
(
2Tr

(
�2

0
) + (ν4 − 3)Tr

(
D2(�0)

)) + o

(
1

T

)
.

Results in Theorem 2.2 and Proposition 2.1 naturally follows from Proposi-
tion 4.2. The proof of Proposition 4.2 is postponed to Section 2 of the Supplemen-
tary Material (Li et al. (2019)).

4.3. Proof of Theorem 2.3. The proof of Theorem 2.3 is similar to that of The-
orem 2.2 while the calculations are more complicated. When xt = A0zt + A1zt−1,
both Gq and p(ŝ2

1 − s2
1) are still symmetric polynomials in {�̂τ , �̂

∗
τ : τ ≥ 0},

thus the asymptotic normality of any linear combinations of these two statistics
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have been proven by Proposition 4.1. We can directly calculate the first two mo-
ments and covariance of these two statistics to obtain the joint limiting distribu-
tion.

To elucidate the calculations of moments, we implement the following decom-
positions on both Gq and qT c2

pŝ2
1 when xt = A0zt + A1zt−1 for q = 1. Actually,

G1 = 1

T 2

T∑
s,t=1

(A0zs + A1zs−1)
∗(A0zt + A1zt−1)

× (A0zt−1 + A1zt−2)
∗(A0zs−1 + A1zs−2)

= G(I) + G(II) + G(III),

T c2
pŝ2

1 = 1

T 3

T∑
s,t=1

(A0zs + A1zs−1)
∗(A0zs + A1zs−1)

× (A0zt + A1zt−1)
∗(A0zt + A1zt−1)

= S(I) + S(II) + S(III),

where

G(I) = 1

T 2

T∑
s,t=1

(
z∗
sA

∗
0A0ztz∗

t−1A
∗
0A0zs−1 + z∗

s−1A
∗
1A1zt−1z∗

t−2A
∗
1A1zs−2

+ z∗
sA

∗
0A0ztz∗

t−2A
∗
1A1zs−2 + z∗

s−1A
∗
1A1zt−1z∗

t−1A
∗
0A0zs−1

)
,

G(II) = 1

T 2

T∑
s,t=1

(
z∗
sA

∗
0A1zt−1z∗

t−1A
∗
0A0zs−1 + z∗

s−1A
∗
1A0ztz∗

t−1A
∗
0A0zs−1

+ z∗
s−1A

∗
1A1zt−1z∗

t−1A
∗
0A1zs−2 + z∗

s−1A
∗
1A1zt−1z∗

t−2A
∗
1A0zs−1

+ z∗
sA

∗
0A0ztz∗

t−2A
∗
1A0zs−1 + z∗

sA
∗
0A0ztz∗

t−1A
∗
0A1zs−2

+ z∗
sA

∗
0A1zt−1z∗

t−2A
∗
1A1zs−2 + z∗

s−1A
∗
1A0ztz∗

t−2A
∗
1A1zs−2

)
,

G(III) = 1

T 2

T∑
s,t=1

(
z∗
sA

∗
0A1zt−1z∗

t−1A
∗
0A1zs−2 + z∗

s−1A
∗
1A0ztz∗

t−2A
∗
1A0zs−1

+ z∗
sA

∗
0A1zt−1z∗

t−2A
∗
1A0zs−1 + z∗

s−1A
∗
1A0ztz∗

t−1A
∗
0A1zs−2

)
,

S(I) = 1

T 3

T∑
s,t=1

(
z∗
t A

∗
0A0ztz∗

sA
∗
0A0zs + z∗

t−1A
∗
1A1zt−1z∗

s−1A
∗
1A1zs−1

+ z∗
t A

∗
0A0ztz∗

s−1A
∗
1A1zs−1 + z∗

t−1A
∗
1A1zt−1z∗

sA
∗
0A0zs

)
,
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S(II) = 1

T 2

T∑
s,t=1

(
z∗
t A

∗
0A1zt−1z∗

sA
∗
0A0zs + z∗

t−1A
∗
1A0ztz∗

sA
∗
0A0zs

+ z∗
t−1A

∗
1A1zt−1z∗

sA
∗
0A1zs−1 + z∗

t−1A
∗
1A1zt−1z∗

s−1A
∗
1A0zs

+ z∗
t A

∗
0A0ztz∗

s−1A
∗
1A0zs + z∗

t A
∗
0A0ztz∗

sA
∗
0A1zs−1

+ z∗
t A

∗
0A1zt−1z∗

s−1A
∗
1A1zs−1 + z∗

t−1A
∗
1A0ztz∗

s−1A
∗
1A1zs−1

)
,

S(III) = 1

T 2

T∑
s,t=1

(
z∗
t A

∗
0A1zt−1z∗

sA
∗
0A1zs−1 + z∗

t−1A
∗
1A0ztz∗

s−1A
∗
1A0zs

+ z∗
t A

∗
0A1zt−1z∗

s−1A
∗
1A0zs + z∗

t−1A
∗
1A0ztz∗

sA
∗
0A1zs−1

)
.

By conducting moment calculations similar to Section 1 of the Supplementary
Material (Li et al. (2019)), we have the following proposition.

PROPOSITION 4.3. Let the assumptions in Theorem 2.3 hold, as p,T → ∞,
p/T → c > 0, we have

E
(
G(I)

) = 1

T

[
Tr(�̃0�̃1) + (ν4 − 3)Tr

(
D(�̃0)D(�̃1)

)]
+ 1

T
Tr2(�̃0 + �̃1) + Tr(�̃0�̃1),

E
(
G(II)

) = 0, E
(
G(III)

) = 2

T
Tr2(�̃01),

E
(
S(I)

) = 1

T 2

[
2Tr(�̃0 + �̃1)

2 + (ν4 − 3)Tr
(
D2(�̃0 + �̃1)

)]
+ 1

T
Tr2(�̃0 + �̃1),

E
(
S(II)

) = 0, E
(
S(III)

) = 4

T 2 Tr
(
�̃01�̃

∗
01

)
and

Var
(
G(I)

) = 4

T 3 Tr2(�̃0 + �̃1)
[
2Tr(�̃0 + �̃1)

2

+ (ν4 − 3)Tr
(
D2(�̃0 + �̃1)

)]
+ 8

T 2 Tr(�̃0 + �̃1)
[
2Tr

(
�̃0�̃1(�̃0 + �̃1)

)
+ (ν4 − 3)Tr

(
D(�̃0�̃1)D(�̃0 + �̃1)

)]
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+ 2

T 2 Tr2(
�̃2

0 + �̃2
1
) + 6

T 2 Tr2(�̃0�̃1)

+ 4

T

[
2Tr(�̃0�̃1)

2 + (ν4 − 3)Tr
(
D2(�̃0�̃1)

)] + Rn,

Var
(
G(III)

) = 4

T
Tr

(
�̃01�̃

∗
01�̃

∗
01�̃01

) + 12

T 2 Tr2(
�̃01�̃

∗
01

)
+ 16

T 2 Tr(�̃01)Tr
(
�̃01�̃

∗
01�̃

∗
01

)
+ 16

T 3 Tr2(�̃01)
[
Tr(�̃01)

2 + 2Tr
(
�̃01�̃

∗
01

)
+ (ν4 − 3)Tr

(
D2(�̃01)

)] + Rn,

Var
(
G(II)

) = 8

T 2 Tr
(
�̃01�̃

∗
01

)
Tr

(
�̃2

0 + �̃2
1
) + 16

T 2 Tr(�̃01�̃1)Tr(�̃01�̃0)

+ 16

T 2 Tr(�̃0 + �̃1)
[
Tr

(
�̃∗

01�̃01�̃0
) + Tr

(
�̃01�̃

∗
01�̃1

)]
+ 16

T 2 Tr(�̃01)
[
Tr

(
�̃2

0�̃∗
01

) + Tr
(
�̃2

1�̃01
)

+ 2Tr(�̃1�̃01�̃0)
]

+ 4

T
Tr

(
�̃∗

01�̃01�̃
2
0 + �̃01�̃

∗
01�̃

2
1 + 2�̃∗

01�̃1�̃01�̃0
)

+ 16

T 3 Tr2(�̃0 + �̃1)Tr
(
�̃01�̃

∗
01

)
+ 16

T 3 Tr2(�̃01)Tr(�̃0 + �̃1)
2

+ 32

T 3 Tr(�̃0 + �̃1)Tr(�̃01)Tr
(
�̃01(�̃0 + �̃1)

) + Rn,

Cov
(
G(I),G(III)

) = 4

T 2 Tr2(�̃0�̃01) + 4

T 2 Tr2(�̃1�̃01)

+ 8

T 3 Tr(�̃01)Tr(�̃0 + �̃1)
[
2Tr

(
�̃01(�̃0 + �̃1)

)
+ (ν4 − 3)Tr

(
D(�̃01)D(�̃0 + �̃1)

)]
+ 8

T 2 Tr(�̃01)
[
2Tr(�̃0�̃1�̃01)

+ (ν4 − 3)Tr
(
D(�̃0�̃1)D(�̃01)

)] + Rn,

Cov
(
G(I),G(II)

) = o(1), Cov
(
G(II),G(III)

) = o(1);
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Var
(
S(I)

) = 4

T 3 Tr2(�̃0 + �̃1)
[
2Tr(�̃0 + �̃1)

2

+ (ν4 − 3)Tr
(
D2(�̃0 + �̃1)

)] + Rn,

Var
(
S(II)

) = 16

T 3 Tr2(�̃0 + �̃1)Tr
(
�̃01�̃

∗
01

) + Rn,

Var
(
S(III)

) = 32

T 4 Tr2(
�̃01�̃

∗
01

)
, Cov

(
S(I), S(II)

) = o(1),

Cov
(
S(I), S(III)

) = o(1), Cov
(
S(II), S(III)

) = o(1);
Cov

(
G(I), S(I)

) = 4

T 3 Tr2(�̃0 + �̃1)
[
2Tr(�̃0 + �̃1)

2

+ (ν4 − 3)Tr
(
D2(�̃0 + �̃1)

)]
+ 4

T 2 Tr(�̃0 + �̃1)
[
2Tr

(
�̃0�̃1(�̃0 + �̃1)

)
+ (ν4 − 3)Tr

(
D(�̃0�̃1)D(�̃0 + �̃1)

)] + Rn,

Cov
(
G(II), S(II)

) = 8

T 2 Tr(�̃0 + �̃1)
[
Tr

(
�̃∗

01�̃01�̃0
) + Tr

(
�̃01�̃

∗
01�̃1

)]
+ 16

T 3 Tr2(�̃0 + �̃1)Tr
(
�̃01�̃

∗
01

)
+ 16

T 3 Tr(�̃0 + �̃1)Tr(�̃01)Tr
(
�̃01(�̃0 + �̃1)

) + Rn,

Cov
(
G(III), S(I)

) = 8

T 3 Tr(�̃01)Tr(�̃0 + �̃1)
[
2Tr

(
�̃01(�̃0 + �̃1)

)
+ (ν4 − 3)Tr

(
D(�̃01)D(�̃0 + �̃1)

)] + Rn,

Cov
(
G(III), S(III)

) = 0, Cov
(
G(I), S(II)

) = o(1),

Cov
(
G(I), S(III)

) = 0,

Cov
(
G(II), S(I)

) = o(1), Cov
(
G(II), S(III)

) = o(1),

Cov
(
G(III), S(II)

) = o(1).

Here the Rn’s are possibly different: they represent remainder terms with smaller
orders than the others listed in each variance covariance items.

Theorem 2.3 naturally follows from Proposition 4.3.

SUPPLEMENTARY MATERIAL

Supplement to “On testing for high-dimensional white noise” (DOI:
10.1214/18-AOS1782SUPP; .pdf). This supplemental article contains some tech-

https://doi.org/10.1214/18-AOS1782SUPP
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nical lemmas, the proof of Proposition 4.2 of the main article and some additional
simulation results.
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