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QUANTILE REGRESSION UNDER MEMORY CONSTRAINT

BY XI CHEN∗,1 WEIDONG LIU†,2 AND YICHEN ZHANG∗

New York University∗ and Shanghai Jiao Tong University†

This paper studies the inference problem in quantile regression (QR) for
a large sample size n but under a limited memory constraint, where the mem-
ory can only store a small batch of data of size m. A natural method is the
naive divide-and-conquer approach, which splits data into batches of size m,
computes the local QR estimator for each batch and then aggregates the es-
timators via averaging. However, this method only works when n = o(m2)

and is computationally expensive. This paper proposes a computationally ef-
ficient method, which only requires an initial QR estimator on a small batch
of data and then successively refines the estimator via multiple rounds of ag-
gregations. Theoretically, as long as n grows polynomially in m, we establish
the asymptotic normality for the obtained estimator and show that our estima-
tor with only a few rounds of aggregations achieves the same efficiency as the
QR estimator computed on all the data. Moreover, our result allows the case
that the dimensionality p goes to infinity. The proposed method can also be
applied to address the QR problem under distributed computing environment
(e.g., in a large-scale sensor network) or for real-time streaming data.

1. Introduction. The development of modern technology has enabled data
collection of unprecedented size, which leads to large-scale datasets that cannot
be fit into memory or are distributed in many machines over limited memory. For
example, the memory of a personal computer only has a storage size in GBs while
the data set on the hard disk could have a much larger size. In addition, in a sensor
network, each sensor is designed to collect and store a limited amount of data, and
computations are performed via communications and aggregations among sensors
(see, e.g., Wang and Li (2018)). Other examples include high-speed data streams
that are transient and arrive at the processor at a high speed. In online streaming
computation, the memory is usually limited as compared to the length of the data
stream (Gama, Sebastião and Rodrigues (2013), Zhang and Wang (2007)). Under
memory constraints in all these scenarios, classical statistical methods, which are
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developed under the assumption that the memory can fit all the data, are no longer
applicable; thus, many estimation and inference methods need to be reinvestigated.
For example, suppose that there are n samples for some very large n, a fundamental
question in data analysis is as follows:

How to calculate the sample quantiles of n samples when the memory
can only store m samples with n � m?

As one of the most popular interview questions from high-tech companies, this
problem has attracted much attention from computer scientists over the last decade;
see Greenwald and Khanna (2004), Guha and McGregor (2008/09), Manku, Ra-
jagopalan and Lindsay (1998), Zhang and Wang (2007) and the references therein.
However, this is mainly a computation problem with a fixed dataset, which does
not involve any statistical modeling.

Motivated by this sample quantile calculation problem, we study a more gen-
eral problem of quantile regression (QR) under memory constraints. Quantile re-
gression, which models the conditional quantile of the response variable given
covariates, finds a wide range of applications to survival analysis (e.g., Wang and
Wang (2014), Xu et al. (2017)), health care (e.g., Luo, Huang and Wang (2013),
Sherwood, Wang and Zhou (2013)), and economics (e.g., Belloni et al. (2011)). In
the classical QR model, assume that there are n i.i.d. samples {(Xi , Yi)} from the
following model:

(1) Yi = X′
iβ(τ ) + εi for i = 1, . . . , n,

where X′
i = (1,Xi1, . . . ,Xip) is the random covariate vector with the dimension

p + 1 drawn from a common population X. The error εi is an unobserved random
variable satisfying P(εi ≤ 0|Xi) = τ for some specified 0 < τ < 1 (known as the
quantile level). In other words, X′

iβ(τ ) is the τ th quantile of Yi given Xi . When
all the n samples can be fit into memory, one can estimate β(τ ) via the classical
QR estimator (Koenker (2005)),

(2) β̂QR = arg min
β∈Rp+1

n∑
i=1

ρτ

(
Yi − X′

iβ
)
,

where ρτ (x) = x(τ − I {x ≤ 0}) is the asymmetric absolute deviation function
(a.k.a. check function) and I (·) is the indicator function. However, when sam-
ples are distributed across many machines or the sample size n is extremely large,
and thus the samples cannot be fit into memory, it is natural to ask the following
question:

How to estimate and conduct inference about β(τ ) when the memory
can only store m samples with n � m?

The divide-and-conquer (DC), as one of the most important algorithms in com-
puter science, has been commonly adopted to deal with this kind of big data chal-
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FIG. 1. An illustration of tree-structured sensor network where the root is the base station. Each
sensor collects its a small batch of data. The dashed lines indicate the prior information sent by the
base station to all sensors (e.g., initializations) and the solid lines indicate the information flow (i.e.,
the paths for transferring local statistics T(·)).

lenge. We below describe a general DC algorithm for statistical estimation. Specif-
ically, we split the data indices {1,2, . . . , n} into N subsets H1, . . . ,HN with equal
size m and N = n/m. Correspondingly, the entire data set {Yi,Xi ,1 ≤ i ≤ n} is
divided into N batches D1, . . . ,DN , where Dk = {Yi,Xi , i ∈ Hk} for 1 ≤ k ≤ N .
By swapping each batch of data Dk into the memory, one constructs a low dimen-
sion statistic Tk = gk(Dk) for Dk with some function gk(·). Then the estimator β̂ is
obtained by the aggregation of {Tk}Nk=1 (i.e., β̂ = G(T1, . . . , TN) for some aggrega-
tion function G(·)). In recent years, this DC framework has been widely adopted in
distributed statistical inference (see, e.g., Banerjee, Durot and Sen (2018), Battey
et al. (2018), Chen and Xie (2014), Li, Lin and Li (2013), Shi, Lu and Song (2017),
Volgushev, Chao and Cheng (2018), Zhao, Cheng and Liu (2016) and Section 2 for
detailed descriptions).

In addition to memory-constrained estimation on a single machine (where the
size of the dataset is much larger than memory size), another natural situation
for using the DC framework comes from the application of large-scale wireless
sensor networks (see, e.g., Greenwald and Khanna (2004), Huang et al. (2011),
Rajagopal, Wainwright and Varaiya (2006), Shrivastava et al. (2004), Wang and Li
(2018)). In a sensor network with N sensors, the data are collected and stored in
different sensors. Moreover, due to limited energy carried by sensors, communi-
cation cost is one of the main concerns in data aggregation. The samples are not
transferred to the base station or neighboring sensors directly. Instead, each sen-
sor first summarizes the samples into a low dimensional statistic Tk , which can be
transferred with a low communication cost. Figure 1 visualizes a typical sensor
network with data flows as a routing tree with the base station as the root. An in-
ternal sensor node in the ith layer receives statistics T(·) from its children nodes in
(i + 1)th layer, and then combines received statistics with its own T(·) and sends
the resulting statistic to its parent in the (i − 1)th layer. The final estimator in the
base station (or central node) can be computed by β̂ = G(T1, . . . , TN).

A critical problem in statistical DC framework is how to construct local statistics
gk(·) and aggregation function G(·). In many existing studies, a typical choice of
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gk(·) is to use the same estimator as the one designed for the estimation from the
entire data. For example, in QR, one may choose

β̂QR,k := gk(Dk) = arg min
β∈Rp+1

∑
i∈Hk

ρτ

(
Yi − X′

iβ
)
,(3)

and a simple averaging function G(T1, . . . , TN) = 1
N

∑N
k=1 Tk , where Tk = gk(Dk)

is the local statistic. We call this kind of DC methods the naive-DC algorithm
where the estimator is denoted by β̂ndc = ∑N

k=1 β̂QR,k/N . Despite its popular-
ity, the naive-DC algorithm might fail when n/m is large. For example, in a
special case of quantile estimation (i.e., p = 0), it is straightforward to show
that

√
n|β̂ndc − β(τ)| → ∞ in probability when n/m2 → ∞ (see Theorem B.1

in the supplementary material). Similar phenomenon occurs for general p; see
Volgushev, Chao and Cheng (2018). In fact, the local QR estimators β̂QR,k are bi-
ased estimators with the bias O(1/m). Although the averaging aggregation is use-
ful for variance reduction, it is unable to reduce the bias, which makes the naive-
DC fail when n is large as compared to m. In the DC framework, bias reduction
in Tk is more critical than the variance reduction. This is a fundamental difference
from many classical inference problems that require to balance the variance and
bias (cf. nonparametric estimation). Furthermore, in the naive-DC algorithm, we
need to solve N = n/m optimization problems, which could be computationally
expensive.

The deficiency of the naive-DC approach calls for a new DC scheme to achieve
the following two important goals in distributed inference:

1. The obtained estimator β̂ should achieve the same statistical efficiency as
merging all the data together under a weak condition on the sample size n as a
function of m. More precisely, it is desirable to remove the constraint n = o(m2)

in naive-DC so that the procedure can be applied to situations such as large-scale
sensor networks, where the number of sensors N = n/m is excessively large.

2. The second goal is on the computational efficiency. For example, the naive-
DC requires solving a nonsmooth optimization for computing the local statistic
Tk = gk(Dk). Since there is no explicit formula for gk(·), the computation is quite
heavy (especially considering each sensor has a limited computational power).

This paper develops new constructions of gk(·) and G(·) with a multi-round
aggregation scheme in Algorithm 1, which simultaneously achieves the two goals
referred above. Our method is applicable to both scenarios of small memory on
a single machine and large-scale sensor networks. Instead of using the local QR
estimation as in (3), we adopt a smoothing technique in the literature (see, e.g.,
Horowitz (1998), Pang, Lu and Wang (2012), Wang, Stefanski and Zhu (2012),
Whang (2006), Wu, Ma and Yin (2015)), and propose a new estimator for QR
called linear estimator of QR (LEQR), which serves as the cornerstone for our DC
approach. Our LEQR has an explicit formula in the form of direct sums of the
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transformation of {Yi,Xi}, which is quite different from the optimization-based
QR estimator in (3). It is also worthwhile noting that the linearity is the most de-
sirable property in the DC framework for both theoretical development and com-
putation efficiency.

The high-level description of the proposed multiround DC approach is provided
as follows. Our method only needs to compute an initial QR estimator β̂0 based
on a small part of samples (e.g., D1). Based on β̂0, for each batch of data Dk ,
we compute local statistics {Tk} using the proposed LEQR. The local statistics are
in a simple form of weighted sums of Xi and XiX

′
i . The aggregation function

is constructed by adding up the local statistics and then solving a linear system,

which gives the first-round estimator β̂
(1)

. Now, we can repeat this DC algorithm

using β̂
(1)

as the initial estimator. After q iterations, we denote our final estimator

by β̂
(q)

. Theoretically, under some conditions on the growth rate of p → ∞ as a

function m and n, we first establish the Bahadur representation of β̂
(q)

and show
that the Bahadur remainder term achieves a nearly optimal rate (up to a log-factor)
when q satisfies some mild conditions (see (17) and Theorem 4.3). Furthermore,

as long as n = o(mA) for some constant A, the final estimator β̂
(q)

achieves the
same asymptotic efficiency as the QR estimator (2) computed on the entire data
(see Theorem 4.4).

The new DC approach is particularly suitable for QR in sensor networks in
which communication cost is one of the major concerns. The proposed procedure
only requires O(p2) bits communication between any two sensors. We also high-
light two other important applications of our method:

1. Our method can be adapted to make inference for online streaming data,
which arrives at the processor at a high speed. Our method provides a sequence
of successively refined estimators of β(τ ) for streaming data and can deal with an
arbitrary length of data stream. The online quantile estimation problem (which is a
special case of QR with p = 0) for streaming data has been extensively studied in
computer science literature (see, e.g., Guha and McGregor (2008/09), Munro and
Paterson (1980), Wang et al. (2013), Zhang and Wang (2007)). However, these
works mainly focus on developing approximations to the sample quantile, which
are insufficient to obtain limiting distribution results for the purpose of inference.
We extend the quantile estimation to the more general QR problem and provide the
asymptotical normality result for the proposed online estimator (see Theorem 4.5).

2. Our method also serves as an efficient optimization solver for classical
QR on a single machine. As compared to the standard interior-point method
for solving the QR estimator in (2) that requires the computational complex-
ity of O(n1.25p3 logn) (Portnoy and Koenker (1997)), our approach requires
O(m1.25p3 logm+np2 +p3) since it only solves an optimization on a small batch
of data for construction initial estimator. Therefore, our method is computationally
more efficient.
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We will illustrate them in Section 3.2 after we provide the detailed description of
the method.

1.1. Organization and notations. The rest of the paper is organized as follows.
In Section 2, we review the related literature on recent works on distributed esti-
mation and inference. Section 3 describes the proposed inference procedure for
QR under memory constraints. Section 4 presents the theoretical results. In Sec-
tion 5, we demonstrate the performance of the proposed inference procedure by
simulated experiments, followed by conclusions in Section 6. The proofs and ad-
ditional experimental results are provided in the supplementary material (Chen,
Liu and Zhang (2019)).

In the QR model in (1), let F(·|x) and f (·|x) denote the CDF and PDF
of ε conditioning on X = x, respectively, throughout the paper. Then, for any
x, we have F(0|x) = τ . For two sequences of real numbers f (n) and g(n),
let f (n) = �(g(n)) denote that f is bounded below by g (up to constant fac-
tor) asymptotically. For a set of random variables Xn and a corresponding set
of constants an, Xn = Op(an) means that Xn/an is stochastically bounded and
Xn = op(an) means that Xn/an converges to zero in probability as n goes to infin-
ity. For a real number c, we will use 
c� to denote largest integer less than or equal
to c. Finally, denote the Euclidean norm for a vector x ∈ R

p by ‖x‖2, and denote
the spectral norm for a matrix X by ‖X‖.

2. Related works. The explosive growth of data presents new challenges for
many classical statistical problems. In recent years, a large body of literature has
emerged on studying estimation and inference problems under memory constraints
or in distributed environments (please see the references described below as well
as other works such as Kleiner et al. (2014), Wang and Dunson (2014), Wang et al.
(2015)). Examples include but are not limited to density parameter estimation (Li,
Lin and Li (2013)), generalized linear regression with nonconvex penalties (Chen
and Xie (2014)), kernel ridge regression (Zhang, Duchi and Wainwright (2015)),
high-dimensional sparse linear regression (Lee et al. (2017)), high-dimensional
generalized linear models (Battey et al. (2018)), semiparametric partial linear mod-
els (Zhao, Cheng and Liu (2016)), QR processes (Volgushev, Chao and Cheng
(2018)), M-estimators with cubic rate (Shi, Lu and Song (2017)) and some non-
standard problems where rates of convergence are slower than n1/2 and limit dis-
tributions are non-Gaussian (Banerjee, Durot and Sen (2018)). All of these results
rely on averaging, where the global estimator is the average of the local estima-
tors computed on each batch of data. For the averaging estimators to achieve the
same asymptotic distribution for inference as pooling the data together, it usually
requires the number of batches (i.e., the number of machines) to be o(m) (i.e.,
n = o(m2)). However, in some applications such as sensor networks and stream-
ing data, the number of batches can be large.
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To address the challenge, instead of using one-shot aggregation via averaging,
recent works by Jordan, Lee and Yang (2018) and Wang et al. (2017) proposed it-
erative methods with multiple rounds of aggregations, which relaxes the condition
n = o(m2). These methods have been applied to the M-estimator and Bayesian in-
ference. Their framework is based on an approximate Newton algorithm (Shamir,
Srebro and Zhang (2014)) and thus requires the twice-differentiability of the loss
function. However, the QR loss is nondifferentiable, and thus their approach can-
not be utilized. More detailed discussions on these two works will be provided in
Remark 4.3. Rajagopal, Wainwright and Varaiya (2006) proposed a multiround
decentralized quantile estimation algorithm under a restrictive communication-
constrained setup. However, their method cannot be applied to solve QR problems.

There is a large body of literature on estimation and inference for QR and its
variant (e.g., censored QR). We will not be able to provide a detailed survey here
and we refer the readers to Koenker (2005), Koenker et al. (2018) for more back-
ground knowledge and recent development of QR. However, it is worth noting
that the smoothing idea in QR literature has been adopted for developing our lin-
ear estimator for QR (LEQR in Section 3.1), which serves as the cornerstone of
our method. The idea of smoothing the nonsmooth QR objective goes back to
Horowitz (1998), where he studied the bootstrap refinement in inference in quan-
tile models. Since the smoothing idea overcomes the difficulty in higher-order ex-
pansion of the scores associated with the QR objective, it plays an important role
in solving various QR problems. For example, Wang, Stefanski and Zhu (2012)
and Wu, Ma and Yin (2015) proposed different smoothed objectives to determine
the corrected scores under the presence of covariate measurement errors for QR
and censored QR. Galvao and Kato (2016) proposed a fix-effects estimator for the
smoothed QR in linear panel data models and derived the corresponding limit-
ing distribution. Pang, Lu and Wang (2012) proposed an induced-smoothing idea
for estimating the variance of inverse-censoring-probability weighted estimator in
Bang and Tsiatis (2002). Whang (2006) considered the problem of inference using
the empirical likelihood mehod for QR and demonstrated that the smoothed em-
pirical likelihood can help achieve higher-order refinements (i.e., O(n−1) of the
coverage error). The smoothing idea can also facilitate the computation, especially
for the first-order optimization methods (see, e.g., Zheng (2011)). We also adopt
the smoothing idea for constructing our LEQR estimator (see Section 3.1), which
heavily relies on the first-order optimality condition of the objective. Instead of
using the smoothing technique for computing a one-stage estimator as in existing
literature, our use of the smoothing technique enables successive refinement of the
LEQR estimator (see Propositions 4.1 and 4.2).

3. Methodology. In this section, we introduce the proposed method. We start
with a new linear type estimator for quantile regression, which serves as an impor-
tant building block for our inference approach.
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3.1. A linear type estimator of quantile regression. We first propose a lin-
ear type estimator for quantile regression, which is named as LEQR Linear Es-
timator for Quantile Regression (LEQR). Recall the classical quantile regres-
sion estimator from (2). Note that for the quantile regression, the loss function
ρτ (x) = x(τ − I {x ≤ 0}) = x(I {x > 0} + τ − 1) is nondifferentiable. Using the
smoothing idea (see the literature surveyed in Section 2), we approximate the
indicator factor I {x > 0} with a smooth function H(x/h), where h → 0 is the
bandwidth. With this approximation, we replace ρτ (x) in quantile regression by
Kh(x) = x(H(x/h) + τ − 1) and define

β̂h = arg min
β∈Rp+1

n∑
i=1

Kh

(
Yi − X′

iβ
)
.(4)

Now the right-hand side in (4) is differentiable and we note that dKh(x)
dx

=
H(x/h)+τ −1+(x/h)H ′(x/h). Here, the function H(u) is a smooth approxima-
tion of the indicator factor I {x > 0} satisfying H(u) = 1 when u ≥ 1 and H(u) = 0
when u ≤ −1 (see more details on the condition of H(·) in Condition (C3) on
page 3256). For example, one may choose H(u) for u ∈ [−1,1] to be the integral
of a smooth kernel function with support on [−1,1], for example, a biweight (or
quartic) kernel (see (25)). We further note that (4) is a nonconvex optimization, and
thus it is difficult to compute the minimizer β̂h. However, it is not a concern since
(4) is only introduced for the motivation purpose. The proposed LEQR estimator,
which is explicitly defined in (7) below, does not require to solve (4).

Since H(·) is a smooth function, by the first-order optimality condition, the
solution β̂h in (4) satisfies (see Theorem 2.6 in Beck (2014))

(5)
n∑

i=1

Xi

{
H

(
Yi − X′

i β̂h

h

)
+ τ − 1 + Yi − X′

i β̂h

h
H ′

(
Yi − X′

i β̂h

h

)}
= 0.

From (5), we can express β̂h by

β̂h =
(

n∑
i=1

XiX
′
i

1

h
H ′

(
Yi − X′

i β̂h

h

))−1

×
[

n∑
i=1

Xi

{
H

(
Yi − X′

i β̂h

h

)
+ τ − 1 + Yi

h
H ′

(
Yi − X′

i β̂h

h

)}]
.(6)

However, there is no closed-form expression of β̂h from this fixed-point equa-
tion. Instead of using β̂h on the right-hand side of (6), we replace β̂h by a consis-
tent initial estimator β̂0, which leads to the proposed LEQR:

β̂ =
(

n∑
i=1

XiX
′
i

1

h
H ′

(
Yi − X′

i β̂0

h

))−1
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×
[

n∑
i=1

Xi

{
H

(
Yi − X′

i β̂0

h

)
+ τ − 1 + Yi

h
H ′

(
Yi − X′

i β̂0

h

)}]
.(7)

Allowing the choice of initial estimator β̂0 is crucial for our inference procedure
under the memory constraint. While it is difficult to solve the fixed-point equation
in (6) when all data cannot be loaded into memory, we are still able to compute
an initial estimator using only a batch of samples, for example, D1. Given the ini-
tial estimator β̂0, the LEQR in (6) only depends on sums of Xi and XiX

′
i , which

can be easily implemented via a divide-and-conquer scheme (see Section 3.2 for
details). Comparing to the naive-DC method that needs to solve N optimization
problems on each batch of data, LEQR only needs to solve one optimization, and
thus is computationally more efficient. Moreover, our estimator in (7) is essentially
solving a linear equation system, and we do not need to explicitly compute a ma-
trix inversion. There are a number of efficient methods for solving a linear system
numerically, such as conjugate gradient method (Hestenes and Stiefel (1952)) and
stochastic variance reduced gradient method (Johnson and Zhang (2013)). In our
simulation studies, we use the conjugate gradient method, and due to space limita-
tions, more detailed explanations of this method are relegated to Section B in the
supplementary material.

3.2. Divide-and-conquer LEQR. Based on LEQR, we now introduce a divide-
and-conquer LEQR for estimating β(τ ). For each batch of data Dk for 1 ≤ k ≤ N ,
let us define the following quantities:

U k = ∑
i∈Hk

Xi

{
H

(
Yi − X′

i β̂0

h

)
+ τ − 1 + Yi

h
H ′

(
Yi − X′

i β̂0

h

)}
,

(8)

V k = ∑
i∈Hk

XiX
′
i

1

h
H ′

(
Yi − X′

i β̂0

h

)
.

The inference procedure is presented in Algorithm 1. Using our theory in The-
orem 4.3 and 4.4, for the gth iteration, we choose the bandwidth h = hg =
max(

√
p/n, (p/m)2g−2

) for 1 ≤ g ≤ q .
Algorithm 1 cannot only be used under the memory constraint, but also be ap-

plied to distributed setting, to reduce computational cost for classical quantile re-
gression, and to deal with streaming data. We illustrate these important applica-
tions as follows:

1. Quantile regression in large-scale sensor networks. Algorithm 1 is directly
applicable to distributed sensor network with N sensors, where each sensor col-
lects a batch of data Dk (for k = 1, . . . ,N ). The base station first broadcasts the
initial estimator β̂0 computed on D1 in (9) to all sensors (see Figure 1 for an il-
lustration). Then each sensor computes (U k,V k) locally, which will be transferred
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Algorithm 1 Divide-and-conquer (DC) LEQR
Input: Data batches Dk for k = 1, . . . ,N , the number of iterations/aggregations
q , quantile level τ , smooth function H , a sequence of bandwidths hg for g =
1, . . . , q .

1: for g = 1,2 . . . , q do
2: if g = 1 then
3: Calculate the initial estimator (for the first iteration) based on D1:

β̂0 = arg min
β∈Rp+1

∑
i∈H1

ρτ

(
Yi − X′

iβ
)
.(9)

4: else
5: Set the initial estimator to be the estimator from the previous iteration:

β̂0 = β̂
(g−1)

6: end if
7: for k = 1, . . . ,N do
8: Swap data Dk into the memory and compute (U k,V k) according to (8)

using the bandwidth h := hg .
9: Compute and maintain the sums (

∑k
j=1 U j ,

∑k
j=1 V j ) in the memory

(and delete (U k,V k)).
10: end for
11: Compute the estimator β̂

(g)
:

(10) β̂
(g) =

(
N∑

k=1

V k

)−1(
N∑

k=1

U k

)
.

12: end for
Output: The final estimator β̂

(q)
.

from bottom to the base station. In particular, each sensor k only keeps the summa-
tion of (U ·,V ·) from all its children nodes and its own (U k,V k) and then transfers
the summed statistics to its parent. After receiving (

∑N
k=1 U k,

∑N
k=1 V k), the base

station will compute β̂
(g)

for g = 1 in (10). Then this distributed procedure can be
repeated for g = 2, . . . , q .

2. Computational reduction of quantile regression. Algorithm 1 can also be
utilized as an efficient solver for classical quantile regression on a single ma-
chine. For the ease of illustration, let us assume the quantile regression estimator
in (2) (or (3)) is solved by the standard interior-point method. Using the standard
interior-point method, the initial estimator requires the computational complexity
O(m1.25p3 logm) (Portnoy and Koenker (1997)). The computation of

∑N
k=1 U k

and
∑N

k=1 V k require O(np) and O(np2), respectively. Therefore, the computa-
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tional complexity for β̂
(q)

is at most O(m1.25p3 logm + np2 + p3), where O(p3)

comes from the inversion of
∑N

k=1 V k . This greatly saves the computational cost as
compared to the interior-point method for computing quantile regression estimator
on the entire data, which requires a complexity of O(n1.25p3 logn).

3. Online quantile regression for streaming data. To deal with online streaming
data, it is critical to design a one-pass algorithm since streaming data are transient.
To this end, based on Algorithm 1, we develop a new one-pass algorithm (see
Algorithm 2) that provides a sequence of successively refined estimators.

For streaming data, we divide the data into intervals {(sl, rl)}∞l=1. The starting
and ending positions of the lth interval are chosen as

sl = ⌊
mal−1

⌋ + 1 and rl = ⌊
mal

⌋
for l ≥ 1 where a2k−1 = 2k−1 +1/2 and a2k = 2k−1 +3/4 for k ≥ 1 and a0 = −∞.
The intervals are chosen to ensure that the sample size of the lth interval nl is
approximately n2

l−2. As we will show in the proof of Theorem 4.5, if an initial
estimator is computed from m samples, there will be no improvement of the online
LEQR estimator after m2 fresh samples and this is the ending point of an interval
where we compute a new initial estimator.

In Algorithm 2, for each interval l and each j such that sl ≤ j ≤ rl , the memory
only maintains β̂[rl−1], (U(rl−1),V (rl−1)), (U(j),V (j)) and β̂[j ]. We note that
(U(rl−1),V (rl−1)) are the weighted sums of Xi and XiX

′
i for sl−1 ≤ i ≤ rl−1

and (U(j),V (j)) can be easily updated from (U(j − 1),V (j − 1)) in an online
fashion. Therefore, except for an O(m) space for deriving the initial estimator
β̂[0], the online LEQR only requires O(p2) memory, which is independent on n.

In Theorem 4.5, we will show that the online LEQR algorithm achieves the same
statistical efficiency for any l and j as the standard quantile regression estimator
when merging all the streaming data together. Also, the asymptotic normality of√

m + j(β̂[j ] − β(τ )) holds uniformly in 1 ≤ j ≤ mA for any constant A > 0
(note that m + j is the sample size until time j ).

4. Theoretical results. In this section, we provide a Bahadur representation

of β̂
(q)

, based on which we derive the asymptotic normality result for DC LEQR

β̂
(q)

and the online LEQR β̂[j ]. We also discuss adaptive choices of bandwidth
and extensions to heterogeneous settings.

4.1. Asymptotics for DC LEQR. We note that (7) can be equivalently written
as

(12) β̂ − β(τ ) = D−1
n,hAn,h,

where

An,h = 1

n

n∑
i=1

Xi

{
H

(
Yi − X′

i β̂0

h

)
+ τ − 1 + εi

h
H ′

(
Yi − X′

i β̂0

h

)}
,
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Algorithm 2 Online LEQR
Initialization: For the first m samples {Yi,Xi ,−m + 1 ≤ i ≤ 0}, compute the
initial standard quantile regression estimator β̂[0]. Then constructs the initial
(U(0),V (0)) based on β̂[0] according to (8) with h = (p/m)1/2.
Parameter Setup: Define a2k−1 = 2k−1 + 1/2 and a2k = 2k−1 + 3/4 for k ≥ 1
and a0 = −∞. Let sl = 
mal−1� + 1 and rl = 
mal� for any l ≥ 1 and let r0 = 0.
Define a sequence of bandwidths h1 = (p/m)1/2 and hl = (p/mal−1)1/2 for l ≥ 2.

1: for each interval l = 1,2, . . . , do
2: for indices in the interval l, j = sl, sl + 1, . . . , rl do
3: Receive an online sample (Yj ,Xj ).
4: Compute

Ũ(j) = Xj

{
H

(Yj − X′
j β̂[rl−1])
hl

)
+ τ − 1

+ Yj

hl

H ′
(Yj − X′

j β̂[rl−1]
hl

)}

Ṽ (j) = XjX
′
j

1

hl

H ′
(Yj − X′

j β̂[rl−1]
hl

)
,

where β̂[rl−1] is the estimator computed up to the end of (l − 1)th inter-
val.

5: Update (U(j),V (j)) by

U(j) �
j∑

i=sl

Ũ(j) =
{
Ũ(j) if j = sl,

U(j − 1) + Ũ(j) if j > sl,

V (j) �
j∑

i=sl

Ṽ (j) =
{
Ṽ (j) if j = sl,

V (j − 1) + Ṽ (j) if j > sl.

6: Calculate (U(rl−1) + U(j),V (rl−1) + V (j)) and compute the online
quantile regression estimator at time j :

β̂[j ] = (
V (rl−1) + V (j)

)−1(
U(rl−1) + U(j)

)
.(11)

7: Remove (Ũ(j), Ṽ (j)), (U(j − 1),V (j − 1)) from the memory.
8: end for
9: Remove (U(rl−1),V (rl−1)) from the memory and only keep β̂[rl],

(U(rl),V (rl)) in the memory.
10: end for
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Dn,h = 1

nh

n∑
i=1

XiX
′
iH

′
(

Yi − X′
i β̂0

h

)
.

We first state some regularity conditions for our theoretical development and
then give Propositions 4.1–4.2 on the expansions of An,h and Dn,h. We assume
the model (1) with n i.i.d. samples {(Xi , Yi)} (the non-i.i.d. case will be discussed
in the next subsection). Let f (·|X) be the conditional density function of the noise
ε given X. Further, we define D = E(XX′f (0|X)).

(C1) The conditional density function f (·|X) is Lipschitz continuous (i.e.,
|f (x|X) − f (y|X)| ≤ L|x − y| for any x, y ∈ R and some constant L > 0). Also,
assume that 0 < c1 ≤ λmin(D) ≤ λmax(D) ≤ c2 < ∞ for some constants c1, c2.

(C2) Let the smoothing function H(·) satisfy H(u) = 1 if u ≥ 1 and H(u) = 0
if u ≤ −1. Further, suppose H(·) is twice differentiable and its second derivative
H(2)(·) is bounded. Moreover, we assume the bandwidth h = o(1).

(C3) Assume that p = o(nh/(logn)) and sup‖θ‖2=1 Eeη(θ ′X)2 ≤ C for some
η,C > 0.

(C3∗) Assume for some κ > 0, p = o((n1−4κh/ logn)1/3). Suppose that
supj E|X1,j |a ≤ C1 for some a ≥ 2/κ and sup‖θ‖2=1 E(θ ′X)4 ≤ C2 for some
C1,C2 > 0.

Condition (C1) contains a standard eigenvalue condition related to covariates X
and the smoothness of the conditional density function f . Condition (C2) is a mild
condition on H for smooth approximation.

Condition (C3) and (C3∗) illustrate the relationship between the dimension p

and sample size n and the moment condition on covariates X. Either one of them
leads to our theoretical results in Propositions 4.1–4.2. As compared to Condi-
tion (C3∗), Condition (C3) is weaker in terms of the relationship of p and n, but
requires a stronger moment condition on X.

Under these conditions, we have the following Propositions 4.1 and 4.2 for the
asymptotic behavior of An,h and Dn,h.

PROPOSITION 4.1. Suppose we have an initial estimator β̂0 with ‖β̂0 −
β(τ )‖2 = OP(an) with an = O(h). Assume that (C1), (C2) and (C3) (or (C3∗))
hold. We have∥∥∥∥∥An,h − 1

n

n∑
i=1

Xi

(
I {εi ≥ 0} + τ − 1

)∥∥∥∥∥
2

= OP

(√
ph logn

n
+ a2

n + h2
)
.

PROPOSITION 4.2. Suppose the conditions in Proposition 4.1 hold. We have

‖Dn,h − D‖ = OP

(√
p logn

nh
+ an + h

)
.
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Combining Propositions 4.1 and 4.2 with (12) and with some algebraic manip-
ulations, we have

β̂ − β(τ ) = D−1

n

n∑
i=1

Xi

(
I {εi ≥ 0} + τ − 1

) + rn(13)

with

‖rn‖2 = OP

(√
p2 logn

n2h
+

√
ph logn

n
+ a2

n + h2
)
.(14)

By choosing the bandwidth h shrinking at an appropriate rate, the dominat-
ing term of (14) is a2

n, which means that one round of aggregation enables
a refinement of the estimator with its bias reducing from an to a2

n (note that
‖β̂0 −β(τ )‖2 = OP(an)). Therefore, an iterative refinement of the initial estimator
will successively improve the estimation accuracy. The effect of bias reduction is

mainly due to the term Yi

h
H ′(Yi−X′

i β̂0
h

) in (7), which is induced by the smoothing
technique (please see more details in the proof of Proposition 4.1).

The previous discussions only involve one round of aggregation. Now we are

ready to present the theoretical results for our DC LEQR β̂
(q)

in Algorithm 1
with multiple rounds of aggregations. By a recursive argument based on (13), we
establish the following Bahadur representation.

THEOREM 4.3. Assume the initial estimator β̂0 in (9) satisfies ‖β̂0 −
β(τ )‖2 = OP(

√
p/m). Let hg = max(

√
p/n, (p/m)2g−2

) for 1 ≤ g ≤ q . Assum-
ing that (C1), (C2) and (C3) (or (C3∗)) hold with h = hq and p also satisfies
p = O(m/(logn)2), then we have

β̂
(q) − β(τ ) = D−1

n

n∑
i=1

Xi

(
I {εi ≥ 0} + τ − 1

) + rn(15)

with

‖rn‖2 = OP

(√
phq logn

n
+

(
p

m

)2q−1)
.(16)

The classical initial estimator based on QR in (9) will satisfy ‖β̂0 − β(τ )‖2 =
OP(

√
p/m) under some regularity conditions; see He and Shao (2000). According

to our choice of bandwidth, we have h1 = √
p/m and thus the convergence rate of

the initial estimator is O(h1), which satisfies the condition in Proposition 4.1. Fur-
thermore, we note that any initial estimator β̂0 with ‖β̂0 − β(τ )‖2 = OP(

√
p/m)

can be used in the first iteration and the same Bahadur representation in Theo-
rem 4.3 holds.

The condition p = O(m/(logn)2) in Theorem 4.3 ensures that
√

p/m = o(1),
which implies the consistency of the initial estimator (and the 1/(logn)2 factor
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is used for balancing the terms in ‖rn‖2 in (14)). This condition on p cannot be
implied by either (C3) or (C3∗); and we choose to present (C3) (or (C3∗)) at the
beginning since they are the minimum requirements to obtain Propositions 4.1–
4.2. On the other hand, the condition p = o(nhq/ logn) in (C3) will be satisfied if
p = o(n/(logn)2) since hq ≥ √

p/n. Therefore, we can simply impose a stronger
condition p = o(m/(logn)2) that unifies the condition p = O(m/(logn)2) and
that in (C3).

REMARK 4.1 (Nearly optimal rate of the Bahadur remainder term). From
Theorem 4.3, as long as

(17) q ≥ 2 + log
{
log(

√
p/n)/ log(p/m)

}
/ log 2,

the bandwidth for the qth iteration is hq = √
p/n. Then the first term in the right-

hand side of (16) is (p/n)3/4√logn and the second term is bounded by p/n, which
is dominated by the first term. Therefore, the Bahadur remainder term rn of our
method achieves a nearly optimal rate

(18) ‖rn‖2 = OP

(
(p/n)3/4(logn)1/2)

.

In fact, for classical QR estimator β̂QR and fixed p, it is known that the rate n−3/4

cannot be improved except for a logn term (Koenker (2005)). Note that in a com-
mon scenario when n = O(mA) and p = O(mδ) for some constants A ≥ 1 and
0 < δ < 1, the right-hand side of (17) is bounded by a constant. Therefore, a con-
stant number of rounds of aggregations is sufficient to obtain a nearly optimal rate
in Bahadur representation.

Applying the central limit theorem to Theorem 4.3, we obtain the asymptotic

distribution of β̂
(q) − β(τ ) as follows.

THEOREM 4.4. Suppose that all the conditions in Theorem 4.3 hold. Further,
assume that n = O(mA) for some constant A ≥ 1, p = o(min{n1/3/(logn)2/3,mδ})
for some 0 < δ < 1 and the number of iterations q satisfies (17). By choosing the
bandwidth sequence hg = max(

√
p/n, (p/m)2g−2

) for 1 ≤ g ≤ q , for any v ∈ R
p

with v �= 0,

(19)
n1/2v′(β̂(q) − β(τ ))√
v′D−1

E[XX′]D−1v
⇒ N

(
0, τ (1 − τ)

)
as m,n → ∞.

Note that to establish central limit theorem, we need p = o(n1/3/(logn)2/3) in
Theorem 4.4, which ensures that ‖rn‖2 = o(1/

√
n) (see (16)). Therefore, as the

first term in (15) is an average of n i.i.d. zero-mean random vectors, the reminder
term rn is dominated by each coordinate of the first term in (15). For the classical
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QR estimator β̂QR in (2) (assuming all data is pooled together), the correspond-
ing condition should be p = o(n1/3/(logn)2/3); see He and Shao (2000). This is
the same with our condition except for the term mδ which is required for the con-
sistency of the initial estimator in our method. We also note that the conditions
n = O(mA) and p = o(mδ) ensure that the number of required iterations q from
(17) is a constant (see Remark 4.1). Therefore, we only need to perform a constant
number of aggregations as m,n → ∞.

Theorem 4.4 shows that β̂
(q)

achieves the same asymptotic efficiency as β̂QR
in (2) computed directly on all the samples. When p is fixed, as compared to the
naive-DC that also achieves (19) but under the condition n = o(m2), our approach
removes the restriction on the relationship of m and n by applying multiple rounds
of aggregations. It is also important to note that the required number of rounds q

in (17) is usually quite small even with a large dimension p.
Given (19), we only need consistent estimators of D and E[XX′] to con-

struct confidence interval of v′β(τ ) for any given v. It is natural to use Dn,h and
1
n

∑n
i=1 XiX

′
i to estimate D and E[XX′], respectively. These estimators can be

easily implemented under memory constraint by averaging the local sample esti-
mators on each batch of data. The proofs of Propositions 4.1, 4.2 and Theorems
4.3, 4.4 are provided in the supplementary material of Chen, Liu and Zhang (2019).

REMARK 4.2 (Data-adaptive choices of bandwidth). In practice, one could
use the bandwidth hg = cg max(

√
p/n, (p/m)2g−2

) with a scaling constant cg

to further improve the empirical performance. An intuitive data-adaptive way of
choosing cg is provided as follows. Given a set of candidate choices for cg (e.g.,
{c1, . . . , cL}), we choose the best cg by minimizing

(20) S(c) :=
∥∥∥∥∥1

n

n∑
i=1

Xi

(
I
{
Yi − X′

i β̂
(g)

c ≥ 0
} + τ − 1

)∥∥∥∥∥
2

,

where β̂
(g)

c denotes the estimator in the gth round of aggregation with the constant
c in the bandwidth. That is, cg = arg minc∈{c1,...,cL} S(c). In a distributed setting,
the method only requires a small amount of communication. More specifically,

given β̂
(g)

c , each machine k returns
∑

i∈Hk
Xi (I {Yi −X′

i β̂
(g)

c ≥ 0}+τ −1) (i.e., an
O(p) vector) to the center for computing S(c). We also evaluate the performance
of our algorithm with the use of data-adaptive bandwidth in Section 5.3.

It is worthwhile noting that the bandwidth tuning is not a critical issue for our
algorithm (in contrast to many other smoothed QR estimators) since our estima-
tor is constructed via multiple rounds of aggregations. Even using an inaccurate
constant in bandwidth (as long as the bandwidths for different rounds shrink at
the right rate of (p/m)2g−2

), our method can achieve good performance by simply
performing more rounds of aggregations. In Section 5.3, we will provide simula-
tion studies to show that our algorithm is insensitive to the scaling constant in the
bandwidth.
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REMARK 4.3 (Discussions with related literature). Note that our estimator β̂

can be written as

β̂ = β̂0 + D−1
n,h

[
1

n

n∑
i=1

Xi

{
H

(
Yi − X′

i β̂0

h

)
+ τ − 1

+ Yi − X′
i β̂0

h
H ′

(
Yi − X′

i β̂0

h

)}]
.

This formula is closely related to the estimator for quantile regression considered
in Pang, Lu and Wang (2012), where they introduced the estimator (noncensored
version)

β̂PLW = β̂0 + A−1
n

[
1

n

n∑
i=1

Xi

{
H

(
Yi − X′

i β̂0√
X′

iWXi

)
+ τ − 1

}]
,

where An = 1
n

∑n
i=1

XiX
′
i√

X′
iWXi

H ′( Yi−X′
i β̂0√

X′
iWXi

) and W is a weight matrix with order

O(1/n). Pang, Lu and Wang (2012) applied the smoothing to the original score
function

∑n
i=1 Xi (I {Yi − X′

i β̂0 ≥ 0} + τ − 1), while our estimator comes from
the smoothing to the loss function ρτ (·), and hence we have an additional term
Yi−X′

i β̂0
h

H ′(Yi−X′
i β̂0

h
). Note that this term plays a key role in reducing the bias

induced by the initial estimator β̂0 to ‖β̂0 − β(τ )‖2
2. As pointed above, this allows

our estimator to have a successive improvement on the estimation accuracy by
iteratively updating the initial estimator.

Moreover, the recent work by Jordan, Lee and Yang (2018) and Wang et al.
(2017) also proposed iterative approaches in distributed setting for successive re-
finement of an estimator. However, there are a few key differences between our
DC LEQR and their approaches. First, their results require the loss function to
have Lipschitz continuous second-order derivative, which is not satisfied by the
original quantile loss function. Even if we replace the indicator function I {x ≥ 0}
in the quantile loss by the smoothed version H(x/h), the second derivative of the
loss function will not satisfy their conditions (e.g., Assumption PD in Jordan, Lee
and Yang (2018) requires that the “Lipschitz constant” of the second derivative has
a uniform upper bound). Furthermore, our results allow p → ∞ in the inference
problem without �1-regularization.

REMARK 4.4 (General heterogenous case). We further consider a more gen-
eral heterogenous case where {Xi , εi}’s are independent, but not identically dis-
tributed from the model (1). Due to space limitations, this heterogenous case is
relegated to Section C in the supplementary material.
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4.2. Asymptotics for online LEQR. The next theorem gives the limiting be-
havior of the online LEQR in Algorithm 2.

THEOREM 4.5. Suppose that (C1)–(C3) hold and p = o(m/(logm)2). We
have for any A > 0 and uniformly in 1 ≤ j ≤ mA,

β̂[j ] − β(τ ) = D−1

m + j

j∑
i=−m+1

Xi

(
I {εi ≥ 0} + τ − 1

) + rm,j ,(21)

where

‖rm,j‖2 = OP

(√
p

m + j

{(
p

m

)1/4√
logm +

√
p

m1/4

})
.(22)

Furthermore, when p = o(m1/4), we have for any v ∈ R
p with v �= 0,

(23)
(m + j)1/2v′(β̂[j ] − β(τ ))√

v′D−1
E[XX′]D−1v

⇒ N
(
0, τ (1 − τ)

)
as m → ∞.

We note that m + j is the total number of used samples (including the sam-
ples for initialization) up to time j . From (21), we have ‖β̂[j ] − β(τ )‖2 =
OP(

√
p/(m + j)) for any 1 ≤ j ≤ mA when rm,j is dominated by the first term.

By Theorem 1 in Siegmund (1969), we can further obtain ‖β̂[j ] − β(τ )‖2 =
OP(

√
p log logm

m+j
) uniformly for 1 ≤ j ≤ mA. To establish the asymptotic distribu-

tion in (23), we need p = o(m1/4), which ensures that ‖rm,j‖2 = o(1/
√

m + j)

(see (22)).

5. Simulations. In this section, we provide simulation studies to illustrate the
performance of DC LEQR for constructing confidence intervals for QR problems.
We generate data from a linear regression model

(24) Yi = X′
iβ + εi, i = 1,2, . . . , n,

where Xi = (1,Xi1, . . . ,Xip)′ ∈ R
p+1 is a random covariate vector. Here,

(Xi1, . . . ,Xip)′ follows a multivariate uniform distribution Unif([0,1]p) with
Corr(Xij ,Xik) = 0.5|j−k| for 1 ≤ j �= k ≤ p. Please refer to Falk (1999) for the
construction of such a multivariate uniform distribution. The regression coefficient
vector β = 1p+1. The errors εi ’s are generated independently from the following
three distributions:

(1) homoscedastic normal, εi ∼ N(0,1);
(2) heteroscedastic normal, εi ∼ N(0, (1 + 0.3Xi1)

2);
(3) exponential, εi ∼ Exp(1).
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For each quantile level τ , we compute the corresponding true QR coefficient vector
β(τ ) in the QR model (1) by shifting εi such that P(εi ≤ 0|Xi ) = τ :

(1) homoscedastic normal, β(τ ) = β + �−1(τ )e1;
(2) heteroscedastic normal, β(τ ) = β + �−1(τ )e1 + 0.3�−1(τ )e2;
(3) exponential, β(τ ) = β + F−1

exp(τ )e1.

Here, � and Fexp are the cumulative distribution function of standard normal
distribution and exponential distribution with parameter 1. The vector ei (for
i = 1, . . . , p + 1) is the (p + 1)-dimensional canonical vector with the ith element
being one and all the other elements being zero.

We use the integral of a biweight (or quartic) kernel as the smoothing function
H :

(25) H(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if v ≤ −1,
1

2
+ 15

16

(
v − 2

3
v3 + 1

5
v5

)
if |v| < 1,

1 if v ≥ 1.

It is easy to see that it satisfies Condition (C2).

5.1. Coverage rates. We compute the DC LEQR β̂
(q)

in (10) and measure

the performance of β̂
(q)

in terms of the statistical inference. In particular, we
report average coverage rates of the confidence interval of v′

0β(τ ), where v0 =
(p + 1)−1/21p+1. We set the nominal coverage probability 1 − α0 to 95%. From
Theorem 4.4, an oracle (1 − α0)th confidence interval for v′

0β(τ ) is given by

(26) v′
0β̂

(q) ± n−1/2
√

τ(1 − τ)v′
0D

−1
E

[
XX′]D−1v0zα0/2,

where zα0/2 is the (1 − α0/2)-quantile of the standard normal distribution. To
construct the confidence interval, we estimate D and E[XX′] by Dn,h and
1
n

∑n
i=1 XiX

′
i , respectively. There are two major advantages of this approach. First,

since Dn,h has already been obtained in computing DC LEQR, we estimate D
without any extra computation. Second, both Dn,h and 1

n

∑n
i=1 XiX

′
i are in the

form of summation over n terms, which can be easily computed in a distributed
setting with little communication cost. As we will show in Table 5, the proposed
estimator is very close to the truth. The scaling constant in bandwidth is simply set
to one (as in our theorems) and more detailed experiments on the sensitivity analy-
sis of the scaling constant is provided in Section 5.3. We report empirical coverage
rates as an average of 1000 independent runs of the simulations.

In Tables 1–3, we present the empirical coverage rates of our DC LEQR esti-
mator, the naive-DC estimator, and the oracle QR estimator in (2) computed on all
data points (denoted as QR All) for three different noise models. More precisely,
we generate the error from one of three distributions (i.e., homoscedastic normal
for Table 1, heteroscedastic normal for Table 2, and exponential for Table 3) and
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TABLE 1
Coverage rates, bias and variance of DC LEQR vs. QR All and naive-DC when n varies from m1.6

to m3. Noises εi ’s are generated from homoscedastic normal distribution. Dimension p = 15. Batch
size m = 100. Quantile level τ ∈ {0.1,0.5,0.9}

Coverage Bias Var Coverage Bias Var
logm(n) Rate (×10−2) (×10−4) Rate (×10−2) (×10−4)

DC LEQR q = 4 DC LEQR q = 5
τ = 0.1

1.6 0.954 0.38 20.81 0.953 0.26 21.14
2.0 0.956 0.13 3.04 0.953 0.09 3.05
2.4 0.946 −0.02 0.52 0.949 −0.02 0.52
3.0 0.942 0.00 0.04 0.943 0.00 0.03

τ = 0.5
1.6 0.943 0.00 12.07 0.938 0.03 12.01
2.0 0.947 0.02 1.81 0.947 0.02 1.81
2.4 0.944 0.00 0.29 0.945 0.00 0.29
3.0 0.951 0.00 0.02 0.952 0.00 0.02

τ = 0.9
1.6 0.938 −0.45 21.37 0.940 −0.36 21.77
2.0 0.942 −0.05 3.65 0.932 −0.02 3.65
2.4 0.960 −0.02 0.51 0.959 −0.02 0.51
3.0 0.952 0.00 0.04 0.955 0.00 0.03

QR All Naïve-DC
τ = 0.1

1.6 0.948 0.15 23.04 0.638 7.86 13.82
2.0 0.949 0.04 3.21 0.000 7.96 1.93
2.4 0.952 0.03 0.50 0.000 7.97 0.31
3.0 0.953 0.01 0.03 0.000 7.95 0.02

τ = 0.5
1.6 0.954 −0.20 11.16 0.978 0.46 8.71
2.0 0.951 −0.01 1.68 0.968 0.40 1.32
2.4 0.950 0.02 0.28 0.916 0.36 0.21
3.0 0.930 0.00 0.02 0.222 0.35 0.01

τ = 0.9
1.6 0.942 −0.16 23.12 0.945 3.35 14.36
2.0 0.946 −0.04 3.30 0.531 3.46 2.20
2.4 0.947 0.02 0.52 0.000 3.45 0.35
3.0 0.944 0.00 0.03 0.000 3.41 0.02

consider three different quantile levels τ = 0.1,0.5,0.9. In our experiment, we set
m = 100, p = 15 and vary n from m1.6 to m3 (i.e., logm(n) from 1.6 to 3). From
(17), it is easy to see that we need number of aggregations q ≥ 4. Thus, we report

the performance of DC LEQR β̂
(q)

for q = 4 and q = 5. We also report the case
of p = 3 in the supplementary material (see Section E.1).
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TABLE 2
Coverage rates, bias and variance of DC LEQR vs. QR All and naive-DC when n varies from m1.6

to m3. Noises εi ’s are generated from heteroscedastic normal distribution. Dimension p = 15.
Batch size m = 100. Quantile level τ ∈ {0.1,0.5,0.9}

Coverage Bias Var Coverage Bias Var
logm(n) Rate (×10−2) (×10−4) Rate (×10−2) (×10−4)

DC LEQR q = 4 DC LEQR q = 5
τ = 0.1

1.6 0.941 0.62 30.11 0.940 0.56 30.24
2.0 0.942 0.03 4.67 0.938 −0.04 4.79
2.4 0.947 0.01 0.72 0.947 0.00 0.70
3.0 0.952 0.00 0.06 0.950 0.00 0.05

τ = 0.5

1.6 0.941 −0.19 16.14 0.939 −0.18 16.22
2.0 0.946 0.02 2.48 0.944 0.02 2.48
2.4 0.940 0.01 0.40 0.940 0.01 0.40
3.0 0.947 0.00 0.03 0.947 0.00 0.02

τ = 0.9
1.6 0.925 −0.61 31.55 0.926 −0.48 31.46
2.0 0.943 −0.05 4.81 0.947 −0.01 4.73
2.4 0.955 −0.03 0.67 0.956 −0.02 0.67
3.0 0.953 −0.01 0.09 0.957 0.00 0.04

QR All Naïve-DC
τ = 0.1

1.6 0.951 0.25 31.53 0.362 11.95 17.03
2.0 0.959 0.10 4.42 0.000 11.92 2.71
2.4 0.937 −0.01 0.79 0.000 11.88 0.44
3.0 0.954 0.01 0.04 0.000 11.91 0.02

τ = 0.5
1.6 0.950 −0.09 16.70 0.976 0.16 11.99
2.0 0.948 0.03 2.38 0.974 0.29 1.81
2.4 0.943 −0.03 0.40 0.944 0.33 0.28
3.0 0.960 0.00 0.02 0.320 0.36 0.02

τ = 0.9
1.6 0.942 −0.32 31.16 0.972 2.10 19.16
2.0 0.946 −0.13 4.68 0.882 2.00 2.94
2.4 0.954 0.00 0.72 0.303 1.99 0.45
3.0 0.946 0.00 0.05 0.000 2.01 0.03

As one can see from Tables 1–3, for most of the settings, the coverage rates of
our DC LEQR are close to the nominal level of 95% after 4 rounds of aggregations
(q = 4). The coverage performance becomes quite stable for q = 5 iterations. On
the other hand, for the naive-DC estimator, the coverage rates are quite low in most
settings, especially when n is larger than m2.
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TABLE 3
Coverage rates, bias and variance of DC LEQR vs. QR All and naive-DC when n varies from m1.6

to m3. Noises εi ’s are generated from exponential distribution. Dimension p = 15. Batch size
m = 100. Quantile level τ ∈ {0.1,0.5,0.9}

Coverage Bias Var Coverage Bias Var
logm(n) Rate (×10−2) (×10−4) Rate (×10−2) (×10−4)

DC LEQR q = 4 DC LEQR q = 5
τ = 0.1

1.6 0.880 0.71 1.19 0.916 0.45 0.90
2.0 0.920 0.05 0.42 0.942 0.02 0.22
2.4 0.915 0.00 0.13 0.931 0.02 0.09
3.0 0.907 0.04 0.33 0.931 −0.04 0.58

τ = 0.5
1.6 0.933 −0.12 7.76 0.931 −0.09 7.75
2.0 0.937 −0.05 1.59 0.939 −0.04 1.12
2.4 0.928 0.01 0.51 0.933 0.00 0.19
3.0 0.934 0.00 0.39 0.941 −0.01 0.04

τ = 0.9
1.6 0.931 −0.43 61.03 0.933 −0.21 58.31
2.0 0.908 0.00 10.75 0.916 0.12 10.37
2.4 0.906 −0.05 1.95 0.915 0.03 1.52
3.0 0.885 −0.02 0.15 0.917 0.01 0.10

QR All Naïve-DC
τ = 0.1

1.6 0.945 0.14 0.87 0.422 1.98 1.11
2.0 0.957 0.02 0.12 0.001 1.99 0.16
2.4 0.958 0.00 0.02 0.000 1.99 0.03
3.0 0.944 0.00 0.00 0.000 2.00 0.00

τ = 0.5
1.6 0.959 0.11 7.16 0.799 3.49 5.32
2.0 0.944 0.02 1.15 0.070 3.46 0.93
2.4 0.948 0.01 0.18 0.000 3.46 0.15
3.0 0.953 0.00 0.01 0.000 3.45 0.01

τ = 0.9
1.6 0.952 0.07 65.66 0.798 11.20 36.00
2.0 0.944 0.16 10.14 0.010 11.66 5.76
2.4 0.953 0.00 1.59 0.000 11.68 0.96
3.0 0.948 0.02 0.10 0.000 11.69 0.06

Note that for naive-DC and QR All, we use the same estimator of the limiting
variance in (26) as in our DC LEQR when q = 4. More precisely, we use Dn,h

computed in the 4th iteration to estimate D in (26) when constructing the confi-
dence intervals of naive-DC and QR All estimators. We will show in Table 5 below
that the proposed estimator of the limiting variance performs well. In fact, we also
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use the true limiting variance to construct the confidence interval and the coverage
rates for all the methods are almost the same.

In addition, we also report the simulation study with large dimension (p =
1000). The results and analysis are relegated to Section E.3 in the supplemen-
tary material. From the results, we can infer that the coverage rates get better as
the iterative refinement proceeds. In particular, the coverage rates are close to the
nominal level 95% after 4 iterations when the dimension p = 1000. In summary,
when the dimension p is large, the proposed DC LEQR algorithm still achieves
desirable performance with a small number of iterations.

5.2. Bias and variance analysis. To see the improvement of DC LEQR over
naive-DC when n is excessively larger than the subset size m, we also report the
mean bias and variance of our proposed DC LEQR, naive-DC and QR All in Ta-
bles 1–3. The mean bias and variance of v′

0β̂ are based on 1000 independent runs
of simulations.

From Tables 1–3, the bias of our method is quite small while the naive-DC
approach has a much larger bias regardless of the sample size n. For the variance,
it decays with the rate 1/n as n goes large for all methods. For most cases of using
naive-DC, as logm(n) exceeding 2, the squared bias becomes comparable or larger
than the variance, which explains the reason of the failure of naive-DC when n is
large as compared to m. On the other hand, the bias of our proposed DC LEQR is
similar to that of QR All and much smaller than that of niave-DC.

5.3. Sensitivity analysis and data-adaptive choice of the bandwidth. In this
section, we show the empirical performance of the data-adaptive choice of band-
width in Remark 4.2 and the sensitivity of the scaling constant in bandwidth. Due
to space limitations, we report τ = 0.1, homoscedastic normal noise case as an
example. More noise cases (e.g., heteroscedastic normal and exponential cases)
are relegated to Section E.2 in the supplementary material, and observations are
similar to the homoscedastic normal case.

Table 4 shows coverage rates of the DC LEQR with q = 1,2,3,4,5 iterations.
Similar to the setting in Tables 1–3, we choose m = 100, p = 15 and n varies from
m1.6 to m3. We report the performance of DC LEQR using different fixed con-
stants c = 1,3,5,10 in bandwidth hg for 1 ≤ g ≤ q (using the same constant in all
iterations) as well as our data-adaptive choice of bandwidth. For the data-adaptive
bandwidth, we choose the best scaling constant from a list of 1000 equally spaced
constants from a very small number (0.1) to a large one (100) according to Re-
mark 4.2. Note that different scaling constants will be chosen for different itera-
tions. As one can see, for q = 1 and q = 2, the adaptive method indeed achieves
better coverage than other scaling constants. On the other hand, when q ≥ 3, all
different choices of scaling constants lead to coverage rates close to the nominal
level of 95%. This experiment suggests that for our proposed iterative aggregation
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TABLE 4
Coverage rates for DC LEQR with iterations q = 1,2,3,4,5 for different choices of the scaling

constant c. Noises εi ’s are generated from homoscedastic normal distribution. Dimension p = 15.
Batch size m = 100. Sample size n varies from m1.6 to m3. Quantile level τ = 0.1

logm(n) q = 1 q = 2 q = 3 q = 4 q = 5

c = 1
1.6 0.642 0.909 0.949 0.954 0.953
2.0 0.311 0.911 0.956 0.956 0.953
2.4 0.077 0.427 0.877 0.946 0.949
3.0 0.000 0.231 0.611 0.942 0.943

c = 3
1.6 0.711 0.907 0.951 0.949 0.944
2.0 0.303 0.891 0.947 0.946 0.946
2.4 0.111 0.521 0.889 0.952 0.949
3.0 0.000 0.306 0.687 0.953 0.950

c = 5
1.6 0.644 0.900 0.959 0.950 0.950
2.0 0.196 0.849 0.942 0.952 0.951
2.4 0.079 0.469 0.815 0.944 0.944
3.0 0.000 0.120 0.588 0.947 0.949

c = 10
1.6 0.597 0.814 0.955 0.949 0.947
2.0 0.129 0.729 0.944 0.951 0.951
2.4 0.000 0.402 0.777 0.952 0.949
3.0 0.000 0.011 0.513 0.950 0.946

data-adaptive
1.6 0.724 0.929 0.946 0.949 0.948
2.0 0.336 0.914 0.947 0.954 0.949
2.4 0.187 0.564 0.912 0.941 0.944
3.0 0.000 0.385 0.710 0.954 0.951

approach, even when a suboptimal scaling constant is used, one can still achieve
good performance by performing more iterations.

Moreover, to investigate the sensitivity of the scaling constant in terms of vari-
ance estimation, we also present the square root of the ratio of the estimated vari-
ance of our approach versus the true limiting variance, that is,

(27)

√
v′

0D
−1
n,h

1
n

∑n
i=1[XiX

′
i]D−1

n,hv0√
v′

0D
−1

E[XX′]D−1v0

,

where Dn,h is computed for iterations q = 1,2,3,4,5 and for each fixed q , the
bandwidth hg = c max(

√
p/n, (p/m)2g−2

) for 1 ≤ g ≤ q . In Table 5, we report
the performance of the variance estimation with different choices of the scaling
constant c of the bandwidth h in constructing Dn,h.
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TABLE 5
Square root of the ratio of the estimated variance and the true limiting variance using different
choices of the scaling constant c in bandwidths. Noises εi ’s are generated from homoscedastic

normal distribution. Dimension p = 15. Batch size m = 100. Sample size n varies from m1.6 to m3.
Quantile level τ = 0.1

logm(n) q = 1 q = 2 q = 3 q = 4 q = 5

c = 1
1.6 1.05 1.10 1.11 1.07 1.05
2.0 1.14 1.09 0.99 1.04 1.03
2.4 1.27 1.24 1.12 0.99 1.00
3.0 1.12 1.07 1.03 1.00 1.01

c = 3
1.6 1.14 1.01 0.99 0.99 1.00
2.0 1.06 1.04 1.02 1.00 1.01
2.4 1.08 1.03 1.03 1.01 1.01
3.0 1.04 1.00 0.99 0.99 0.99

c = 5
1.6 1.09 1.04 0.99 0.98 0.99
2.0 1.11 1.12 1.07 1.03 1.04
2.4 1.04 1.07 1.00 1.00 1.01
3.0 1.07 1.02 1.01 1.01 1.01

c = 10
1.6 0.74 0.84 0.89 0.94 0.96
2.0 0.86 0.86 0.92 0.96 0.99
2.4 0.90 0.91 0.96 0.99 1.01
3.0 0.88 0.90 0.98 1.00 1.00

data-adaptive
1.6 1.01 1.06 1.03 1.01 1.00
2.0 1.03 1.03 1.01 0.98 0.97
2.4 1.01 1.06 1.01 1.00 1.01
3.0 1.01 1.04 1.02 1.01 1.01

From Table 5, the ratio is very close to 1 when q = 4 or 5. Therefore, when q

is large, the proposed variance estimator is a reliable one in the distributed setting.
Moreover, we notice that the ratio is very stable for different choices of the scaling
constant c, which illustrates the robustness of the estimator.

5.4. Computation efficiency. We further conduct experiments to illustrate the
computation efficiency of our algorithm for different m and n with τ = 0.1, p = 15
and εi ∼ N(0,1). We compare the computation time of DC LEQR versus that of
naive-DC as well as QR All in Table 6. We report the bias and variance and the
coverage rates for reference of the performance of the estimators.

First of all, the computation time of DC LEQR is about as twice faster than that
of the QR All, especially when n is large. It is also faster than the naive-DC and
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TABLE 6
Bias (×10−2), variance (×10−4), coverage rates (nominal level 95%) and computation time

(×100 seconds) of DC LEQR for different q versus the standard QR estimator on the entire data
(QR All), and naive-DC. Noises εi ’s are generated from homoscedastic normal distribution.

Dimension p = 15. Quantile level τ = 0.1

DC LEQR QR Naive

q = 1 q = 2 q = 3 q = 4 All DC

m = 100, n = 106

Bias 6.112 0.865 0.038 −0.020 −0.020 7.947
Variance 35.464 1.637 0.037 0.035 0.031 0.24
Coverage 0.001 0.314 0.940 0.942 0.942 0.000
Time 0.409 0.821 1.233 1.643 8.015 2.421

m = 500, n = 106

Bias 1.334 0.029 −0.008 −0.010 −0.009 0.214
Variance 0.642 0.042 0.029 0.029 0.029 0.029
Coverage 0.087 0.914 0.947 0.951 0.951 0.132
Time 0.499 0.993 1.488 1.982 7.909 2.549

m = 500, n = 107

Bias 1.171 0.046 −0.005 −0.005 −0.005 0.237
Variance 0.885 0.016 0.002 0.002 0.002 0.002
Coverage 0.024 0.642 0.943 0.948 0.947 0.000
Time 4.555 9.106 13.648 18.188 143.521 25.289

m = 1000, n = 107

Bias 0.786 0.016 −0.007 −0.007 −0.007 0.140
Variance 0.167 0.002 0.003 0.003 0.003 0.003
Coverage 0.014 0.897 0.952 0.947 0.947 0.013
Time 4.547 9.087 13.625 18.164 137.425 25.353

with a much better coverage when n is much larger than m. Moreover, the time
of our algorithm grows almost linearly in both n and q , which is consistent with
the computation time analysis in Section 3.2. In contrast, we observe that the time
of QR grows faster than a linear function in the sample size n. We also observe
that, for each fixed n, the value m has little effect on the computation time of DC
LEQR. For naive-DC, the squared bias in these cases dominate the variance, so
the coverage rates are far below the nominal level. In the meantime, DC LEQR
has around 95% coverage in all four cases after 2 iterations, and shows a similar
behavior of bias and variance as in Table 1.

Recently, researchers have developed new optimization techniques based on al-
ternating direction method of multiplier (ADMM) for solving QR problems (see,
e.g., Gu et al. (2018), Yu, Lin and Wang (2017)). We further conduct comparisons
to the ADMM approach and the details are provided in the supplementary material
due to space limitations.
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Finally, we also conduct simulation studies for online LEQR and the results are
presented in Section E.5 in the supplementary material.

6. Conclusions and future works. In this paper, we propose a novel infer-
ence approach for quantile regression under the memory constraint. The proposed
method achieves the same asymptotic efficiency as the quantile regression estima-
tor using all the data. Furthermore, it allows a weak condition on the sample size n

as a function of memory size m and is computationally attractive. One key insight
from this work is that naively splitting data and averaging local estimators could
be suboptimal. Instead, the iterative refinement idea can lead to much improved
performance for some inference problems in distributed environments.

In some applications, one would expect a weaker assumption on the distribu-
tion of data where the data could be correlated. It would be an interesting future
direction to study the problem of inference for correlated data in distributed set-
tings. Moreover, for the online problem, it is also interesting to consider the case
where the model (e.g., β(τ )) is evolving over time. In this case, some exponential
decaying techniques to down weight historical data might be useful.

In the future, we would also like to further explore this idea to other QR prob-
lems under memory constraints or in a distributed setup, for example, �1-penalized
high-dimensional quantile regression (see, e.g., Belloni and Chernozhukov (2011),
Fan, Xue and Zou (2016), Wang, Wu and Li (2012)) and censored quantile regres-
sion (see, e.g., Kong, Linton and Xia (2013), Leng and Tong (2014), Volgushev,
Wagener and Dette (2014), Wang and Wang (2009), Zheng, Peng and He (2018)).

Acknowledgments. The authors are very grateful to three anonymous refer-
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SUPPLEMENTARY MATERIAL

Supplement to “Quantile regression under memory constraint” (DOI:
10.1214/18-AOS1777SUPP; .pdf). We provide the proofs of all the theorectial re-
sults as well as additional simulated experimental results.
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