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DISTRIBUTED ESTIMATION OF PRINCIPAL EIGENSPACES
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Principal component analysis (PCA) is fundamental to statistical ma-
chine learning. It extracts latent principal factors that contribute to the most
variation of the data. When data are stored across multiple machines, how-
ever, communication cost can prohibit the computation of PCA in a central
location and distributed algorithms for PCA are thus needed. This paper pro-
poses and studies a distributed PCA algorithm: each node machine computes
the top K eigenvectors and transmits them to the central server; the central
server then aggregates the information from all the node machines and con-
ducts a PCA based on the aggregated information. We investigate the bias
and variance for the resulting distributed estimator of the top K eigenvec-
tors. In particular, we show that for distributions with symmetric innovation,
the empirical top eigenspaces are unbiased, and hence the distributed PCA is
“unbiased.” We derive the rate of convergence for distributed PCA estimators,
which depends explicitly on the effective rank of covariance, eigengap, and
the number of machines. We show that when the number of machines is not
unreasonably large, the distributed PCA performs as well as the whole sam-
ple PCA, even without full access of whole data. The theoretical results are
verified by an extensive simulation study. We also extend our analysis to the
heterogeneous case where the population covariance matrices are different
across local machines but share similar top eigenstructures.

1. Introduction. Principal component analysis (PCA) (Pearson (1901),
Hotelling (1933)) is one of the most fundamental tools in statistical machine learn-
ing. The past century has witnessed great efforts on establishing consistency and
asymptotic distribution of empirical eigenvalues and eigenvectors. The early clas-
sical work of Anderson (1963) studied the asymptotic normality of eigenvalues
and eigenvectors of sample covariances from multivariate Gaussian distribution
with dimension d fixed and sample size n going to infinity. Recent focus moves
on to the high-dimensional regimes, that is, both n and d go to infinity. A partial
list of such literatures are Baik, Ben Arous and Péché (2005), Johnstone (2001),
Johnstone and Lu (2009), Jung and Marron (2009), Onatski (2012), Paul (2007),
Shen et al. (2016), Wang and Fan (2017). As demonstrated by these papers, asymp-
totic behaviors of empirical eigenvalues and eigenvectors depend on the scaling of
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n,d and also the spikiness of the covariance. When n � d , the empirical leading
eigenvector v̂1 is inconsistent in estimating the true top eigenvector v1 unless the
top eigenvalue λ1 diverges fast. This phenomenon inspires another line of research
on sparse PCA where certain sparsity on top eigenvectors is imposed to overcome
the noise accumulation due to high dimensionality; see, for example, Johnstone
and Lu (2009), Shen, Shen and Marron (2013), Vu and Lei (2013), Cai, Ma and
Wu (2013). Besides the asymptotic study, there are also nonasymptotic results on
PCA, for example, Nadler (2008) and Reiss and Wahl (2016).

With rapid developments of information and technology, massive datasets are
now ubiquitous. Statistical analysis such as regression or PCA on such enormous
data is unprecedentedly desirable. However, large data sets are usually scattered
across distant places such that to fuse or aggregate them is extremely difficult due
to communication cost, privacy, data security and ownerships, among others. Con-
sider giant IT companies that collect data simultaneously from places all around
the world. Constraints on communication budget and network bandwidth make
it nearly impossible to aggregate and maintain global data in a single data center.
Another example is that health records are scattered across many hospitals or coun-
tries. It is hard to process the data in a central location due to privacy and ownership
concerns. To resolve these issues, efforts have been made to exploiting distributed
computing architectures and developing distributed estimators or testing statistics
based on data scattered around different locations. A typical distributed statistical
method first calculates local statistics based on each subdataset and then com-
bines all the subsample-based statistics to produce an aggregated statistic. Such
distributed methods fully adapt to the parallel data collection procedures, and thus
significantly reduce the communication cost. Many distributed regression methods
follow this fashion (Zhang, Duchi and Wainwright (2013), Chen and Xie (2014),
Battey et al. (2015), Lee et al. (2017), Mücke and Blanchard (2018), Guo, Lin and
Zhou (2017)). The last two papers study distributed kernel regression with spectral
regularization using eigendecomposition of Gram matrices, which is relevant to
but different from our distributed PCA.

Among all the efforts toward creating accurate and efficient distributed statisti-
cal methods, there has been rapid advancement on distributed PCA over the past
two decades. Unlike the traditional PCA where we have the complete data matrix
X ∈ R

N×d with d features of N samples at one place, the distributed PCA needs
to handle data that are partitioned and stored across multiple servers. There are
two data partition regimes: “horizontal” and “vertical.” In the horizontal partition
regime, each server contains all the features of a subset of subjects, while in the
vertical partition regime, each server has a subset of features of all the subjects.
To conduct distributed PCA in the horizontal regime, Qu et al. (2002) proposes
that each server computes several top eigenvalues and eigenvectors on its local
data and then sends them to the central server that aggregates the information
together. Yet there is no theoretical guarantee on the approximation error of the
proposed algorithm. Liang et al. (2014), Kannan, Vempala and Woodruff (2014)
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and Boutsidis, Woodruff and Zhong (2016) aim to find a good rank-K approx-
imation X̂ of X. To assess the approximation quality, they compare ‖X̂ − X‖F

against minrank(B)≤K ‖B − X‖F and study the excess risk. For the distributed PCA
in the vertical data partition regime, there is also a great amount of literature, for
example, Kargupta et al. (2001), Li, Scaglione and Manton (2011), Bertrand and
Moonen (2014), Schizas and Aduroja (2015), etc. This line of research is often
motivated from sensor networks and signal processing where the vertically parti-
tioned data are common. Our work focuses on the horizontal partition regime, that
is, we have partitions over the samples rather than the features.

Despite these achievements, very few papers establish rigorous statistical error
analysis of the proposed distributed PCA methods. To our best knowledge, the
only works that provide statistical analysis so far are El Karoui and d’Aspremont
(2010) and Chen et al. (2016). To estimate the leading singular vectors of a large
target matrix, both papers propose to aggregate singular vectors of multiple ran-
dom approximations of the original matrix. El Karoui and d’Aspremont (2010)
adopts sparse approximation of the matrix by sampling the entries, while Chen
et al. (2016) uses Gaussian random sketches. The works are related to ours, since
we can perceive subdatasets in the distributed PCA problem as random approxima-
tions. However, our analysis is more general, since it does not rely on any matrix
incoherence assumption as required by El Karoui and d’Aspremont (2010) and it
explicitly characterizes how the probability distribution affects the final statistical
error in finite sample error bounds. Besides, our aggregation algorithm is much
simpler than the one in Chen et al. (2016). The manuscript Garber, Shamir and
Srebro (2017) came out after we submitted the first draft of our work. The authors
focused on estimation of the first principal component rather than the multidimen-
sional eigenspaces, based on very different approaches.

We propose a distributed algorithm with only one-shot communication to solve
for the top K eigenvectors of the population covariance matrix � when sam-
ples are scattered across m servers. We first calculate for each subset of data �

its top K eigenvectors {V̂(�)
K = (̂v(�)

1 , . . . , v̂(�)
K )}m�=1 of the sample covariance ma-

trix there, then compute the average of projection matrices of the eigenspaces

�̃ = (1/m)
∑m

i=1 V̂(�)
K V̂(�)T

K , and finally take the top K eigenvectors of �̃ as the

final estimator ṼK = (ṽ(�)
1 , . . . , ṽ(�)

K ). The communication cost of this method is
of order O(mKd). We establish rigorous nonasymptotic analysis of the statistical
error ‖ṼKṼT

K − VKVT
K‖F , and show that as long as we have a sufficiently large

number of samples in each server, ṼK enjoys the same statistical error rate as the
standard PCA over the full sample. The eigenvalues of � are easily estimated once
we get good estimators of the eigenvectors, using another round of communication.

The rest of the paper is organized as follows. In Section 2, we introduce the
problem setup of the distributed PCA. In Section 3, we elucidate our distributed
algorithm for estimating the top K eigenvectors. Section 4 develops the statistical
error rates of the aggregated estimator. The results are extended to heterogeneous
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samples in Section 5. Finally, in Section 6 we present extensive simulation results
to validate our theories.

2. Problem setup. We first collect all the notation that will be used. By
convention, we use regular letters for scalars and bold letters for both matrices
and vectors. We denote the set {1,2,3, . . . , d} by [d] for convenience. For two
scalar sequences {an}n≥1 and {bn}n≥1, we say an � bn (an � bn) if there ex-
ists a universal constant C > 0 such that an ≥ Cbn (an ≤ Cbn), and an � bn

if both an � bn and an � bn hold. For a random variable X ∈ R, we define

‖X‖ψ2 = supp≥1(E|X|p)
1
p /

√
p and define ‖X‖ψ1 = supp≥1(E|X|p)

1
p /p. Please

refer to Vershynin (2012) for equivalent definitions of ψ2-norm and ψ1-norm. For

two random variables X and Y , we use X
d= Y to denote that X and Y have iden-

tical distributions. Define ei to be the unit vector whose components are all zero
except that the ith component equals 1. For q ≥ r , Oq×r denotes the space of q × r

matrices with orthonormal columns. For a matrix A ∈ R
n×d , we use ‖A‖F , ‖A‖∗

and ‖A‖2 to denote the Frobenius norm, nuclear norm and spectral norm of A,
respectively. Col(A) represents the linear space spanned by column vectors of A.
We denote the Moore–Penrose pseudo inverse of a matrix A ∈ R

d×d by A†. For a
symmetric matrix A, we use λj (A) to refer to its j th largest eigenvalue.

Suppose we have N i.i.d. random samples {Xi}Ni=1 ⊆ R
d with EX1 = 0 and

covariance matrix E(X1XT
1 ) = �. By spectral decomposition, � = V�VT , where

� = diag(λ1, λ2, . . . , λd) with λ1 ≥ λ2 ≥ · · · ≥ λd and V = (v1, . . . ,vd) ∈ Od×d .
For a given K ∈ [d], let VK = (v1, . . . ,vK). Our goal is to estimate Col(VK),
that is, the linear space spanned by the top K eigenvectors of �. To ensure the
identifiability of Col(VK), we assume � := λK −λK+1 > 0 and define κ := λ1/�

to be the condition number. Let r = r(�) := Tr(�)/λ1 be the effected rank of �.
The standard way of estimating Col(VK) is to use the top K eigenspace of the

sample covariance �̂ = 1
N

∑N
i=1 XiXT

i . Let �̂ = V̂�̂V̂T be spectral decomposi-
tion of �̂, where �̂ = diag(̂λ1, . . . , λ̂d) with λ̂1 ≥ · · · ≥ λ̂d and V̂ = (̂v1, . . . , v̂d).
We use the empirical top K eigenspace Col(V̂K), where V̂K = (̂v1, . . . , v̂K),
to estimate the eigenspace Col(VK). To measure the statistical error, we adopt
ρ(V̂K,VK) := ‖V̂KV̂T

K − VKVT
K‖F , which is the Frobenius norm of the dif-

ference between projection matrices of two spaces and is a well-defined dis-
tance between linear subspaces. In fact, ρ(VK, V̂K) is equivalent to the so-called
sin� distance. Denote the singular values of V̂T

KVK by {σi}Ki=1 in descending
order. Recall that �(V̂K,VK) = diag(θ1, . . . , θK), the principal angles between
Col(VK) and Col(V̂K), are defined as diag(cos−1 σ1, . . . , cos−1 σK). Then we de-
fine sin�(V̂K,VK) to be diag(sin θ1, . . . , sin θK). Note that

ρ2(VK, V̂K) = ∥∥VKVT
K

∥∥2
F + ∥∥V̂KV̂T

K

∥∥2
F − 2 Tr

(
VKVT

KV̂KV̂T
K

)
= 2K − 2

∥∥V̂T
KVK

∥∥2
F = 2

K∑
i=1

(
1 − σ 2

i

) = 2
K∑

i=1

sin2 θi(2.1)
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= 2
∥∥sin�(V̂K,VK)

∥∥2
F .

Therefore, ρ(VK, V̂K) and ‖sin�(VK, V̂K)‖F are equivalent.
Now consider the estimation of top K eigenspace under the distributed data

setting, where our N = m · n samples are scattered across m machines with each
machine storing n samples.2 Application of standard PCA here requires data or co-
variance aggregation, thus leads to huge communication cost for high-dimensional
big data. In addition, for the areas such as genetic, biomedical studies and customer
services, it is hard to communicate raw data because of privacy and ownership
concerns. To address these problems, we need to avoid naive data aggregation and
design a communication-efficient and privacy-preserving distributed algorithm for
PCA. In addition, this new algorithm should be statistically accurate in the sense
that it enjoys the same statistical error rate as the full sample PCA.

Throughout the paper, we assume that all the random samples {Xi}Ni=1 are
i.i.d. sub-Gaussian. We adopt the definition of sub-Gaussian random vectors in
Koltchinskii and Lounici (2017) and Reiss and Wahl (2016) as specified below,
where M is assumed to be a constant. It is not hard to show that the following defi-
nition is equivalent to the definition ‖(�1/2)†X‖ψ2 ≤ M used in Vershynin (2012),
Wang and Fan (2017), and many other authors.

DEFINITION 2.1. We say the random vector X ∈ R
d is sub-Gaussian if there

exists M > 0 such that ‖uT X‖ψ2 ≤ M
√
E(uT X)2, ∀u ∈ R

d .

We emphasize here that the global i.i.d. assumption on {Xi}Ni=1 can be further
relaxed. In fact, our statistical analysis only requires the following three condi-
tions: (i) within each server �, data are i.i.d.; (ii) across different servers, data
are independent; (iii) the covariance matrices of the data in each server {�(�)}m�=1
share similar top K eigenspaces. We will further study this heterogeneous regime
in Section 5. To avoid future confusion, unless specified, we always assume i.i.d.
data across servers.

3. Methodology. We now introduce our distributed PCA algorithm. For � ∈
[m], let {X(�)

i }ni=1 denote the samples stored on the �th machine. We specify the
distributed in Algorithm 1.

In other words, each server first calculates the top K eigenvectors of the local
sample covariance matrix, and then transmits these eigenvectors {V̂(�)

K }m�=1 to a cen-
tral server, where the estimators get aggregated. This procedure has similar spirit
as distributed estimation based on one-shot averaging in Zhang, Duchi and Wain-
wright (2013), Battey et al. (2015), Lee et al. (2017), among others. To see this,

2Note that here for simplicity we assume the subsample sizes are homogeneous. We can easily
extend our analysis to the case of heterogeneous subsample sizes with similar theoretical results.
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Algorithm 1 Distributed PCA
1. On each server, compute locally the K leading eigenvectors

V̂(�)
K = (̂v(�)

1 , . . . , v̂(�)
K ) ∈ R

d×K of the sample covariance matrix

�̂
(�) = (1/n)

∑n
i=1 X(�)

i X(�)T

i . Send V̂(�)
K to the central processor.

2. On the central processor, compute �̃ = (1/m)
∑m

�=1 V̂(�)
K V̂(�)T

K , and its K lead-
ing eigenvectors {ṽj }Kj=1. Output: ṼK = (̃v1, . . . , ṽK) ∈ R

d×K .

we recall the SDP formulation of the eigenvalue problem. Let V̂K = (̂v1, . . . , v̂K)

contain the K leading eigenvectors of �̂ = 1
m

∑m
�=1 �̂

(�). Lemma 3 in the Supple-
mentary Material (Fan et al. (2019)) asserts that P̂K = V̂KV̂T

K solves the SDP:

min
P∈Sd×d

−Tr
(
PT �̂

)
s.t. Tr(P) ≤ K,‖P‖2 ≤ 1,P � 0.

(3.1)

Here, Sd×d refers to the set of d × d symmetric matrices. In the traditional setting,
we have access to all the data, and P̂K is a natural estimator for VKVT

K . In the

distributed setting, each machine can only access �̂
(�). Consequently, it solves a

local version of (3.1):

min
P∈Sd×d

−Tr
(
PT �̂

(�))
s.t. Tr(P) ≤ K,‖P‖2 ≤ 1,P � 0.

(3.2)

The optimal solution is P̂(�)
K = V̂(�)

K V̂(�)T
K . Since the loss function in (3.1) is the

average of local loss functions in (3.2), we can intuitively average the optimal so-
lutions P̂(�)

K to approximate P̂K . However, the average 1
m

∑m
�=1 P̂(�)

K may no longer
be a rank-K projection matrix. Hence a rounding step is needed, extracting the
leading eigenvectors of that average to get a projection matrix.

Here is another way of understanding the aggregation procedure. Given a col-
lection of estimators {V̂(�)

K }m�=1 ⊆ Od×K and the loss ρ(·, ·), we want to find the

center U ∈ Od×K that minimizes the sum of squared losses
∑m

�=1 ρ2(U, V̂(�)
K ).

Lemma 4 in the Supplementary Material indicates that U = ṼK is an optimal so-
lution. Therefore, our distributed PCA estimator ṼK is a generalized “center” of
individual estimators.

It is worth noting that in this algorithm, we do not really need to compute
{�̂(�)}m�=1 and �̃. {V̂(�)

K }m�=1 and ṼK can be derived from top-K SVD of data
matrices. This is far more expeditious than the entire SVD and highly scal-
able, by using, for example, the power method (Golub and Van Loan (2012)).
In regard to the estimation of the top eigenvalues of �, we can send the ag-
gregated eigenvectors {ṽj }Kj=1 back to the m servers, where each one computes
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{λ(�)
j }Kj=1 = {ṽT

j �̂
(�)ṽj }Kj=1. Then the central server collects all of the eigenvalues

and delivers the average eigenvalues {λ̃j }Kj=1 = { 1
m

∑m
�=1 λ

(�)
j }Kj=1 as the estimators

of all eigenvalues.
As we can see, the communication cost of the proposed distributed PCA algo-

rithm is of order O(mKd). In contrast, to share all the data or entire covariance,
the communication cost will be of order O(md min(n, d)). Since in most cases
K = o(min(n, d)), our distributed PCA requires much less communication cost
than naive data aggregation.

4. Statistical error analysis. Algorithm 1 delivers ṼK to estimate the top K

eigenspace of �. In this section, we analyze the statistical error of ṼK , that is,
ρ(ṼK,VK). The main message is that ṼK enjoys the same statistical error rate
as the full sample counterpart V̂K as long as the subsample size n is sufficiently
large.

We first conduct a bias and variance decomposition of ρ(ṼK,VK), which
serves as the key step in establishing our theoretical results. Recall that �̃ =
(1/m)

∑m
�=1 V̂(�)

K V̂(�)T
K and ṼK consists of the top K eigenvectors of �̃. Define

�∗ := E(V̂(�)
K V̂(�)T

K ) and denote its top K eigenvectors by V∗
K = (v∗

1, . . . ,v∗
K) ∈

R
d×K . When the number of machines goes to infinity, �̃ converges to �∗, and

naturally we expect Col(ṼK) to converge to Col(V∗
K) as well. This line of think-

ing inspires us to decompose the statistical error ρ(ṼK,VK) into the following
bias and sample variance terms:

(4.1) ρ(ṼK,VK) ≤ ρ
(
ṼK,V∗

K

)︸ ︷︷ ︸
sample variance term

+ρ
(
V∗

K,VK

)︸ ︷︷ ︸
bias term

.

The first term is stochastic and the second term is deterministic. Here, we elucidate
on why we call ρ(ṼK,V∗

K) the sample variance term and ρ(V∗
K,VK) the bias

term, respectively.

1. Sample variance term ρ(ṼK,V∗
K):

By Davis–Kahan’s theorem (Theorem 2 in Yu, Wang and Samworth (2015))
and (2.1), we have

(4.2) ρ
(
ṼK,V∗

K

)
� ‖�̃ − �∗‖F

λK(�∗) − λK+1(�
∗)

.

As we can see, ρ(ṼK,V∗
K) depends on how the average �̃ = 1

m

∑m
�=1 V̂(�)

K V̂(�)T
K

concentrates to its mean �∗. This explains why we call ρ(ṼK,V∗
K) the sample

variance term. We will show in the sequel that for sub-Gaussian random samples,
{‖V̂(�)

K V̂(�)T
K − �∗‖F }m�=1 and ‖�̃ − �∗‖F are subexponential random variables

and under appropriate regularity assumptions,

(4.3)
∥∥∥∥�̃ − �∗∥∥

F

∥∥
ψ1

� 1√
m

∥∥∥∥V̂(1)
K V̂(1)T

K − �∗∥∥
F

∥∥
ψ1

.
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If we regard ψ1-norm as a proxy for standard deviation, this result is a counterpart
to the formula for the standard deviation of the sample mean under the context
of matrix concentration. By (4.3), the average of projection matrices �̃ enjoys a
similar square-root convergence, so does ρ(ṼK,V∗

K).
2. Bias term ρ(V∗

K,VK):
The error ρ(V∗

K,VK) is deterministic and independent of how many machines
we have, and is therefore called the bias term. We will show this bias term is
exactly zero when the random sample has a symmetric innovation (to be defined
later). In general, we will show that the bias term is negligible in comparison with
the sample variance term when the number of nodes m is not unreasonably large.

In the following subsections, we will analyze the sample variance term and bias
term, respectively, and then combine these results to obtain the convergence rate
for ρ(ṼK,VK).

4.1. Analysis of the sample variance term. To analyze ρ(ṼK,V∗
K), as shown

by (4.2), we need to derive the order of the numerator ‖�̃ − �∗‖F and denom-
inator λK(�∗) − λK+1(�

∗). We first focus on the matrix concentration term
‖�̃ −�∗‖F = ‖ 1

m

∑m
�=1(V̂

(�)
K V̂(�)T

K −�∗)‖F . Note that �̃ −�∗ is an average of m

centered random matrices. To establish the correspondent concentration inequal-
ity, we first investigate each individual term in the average, that is, V̂(�)

K V̂(�)T
K −�∗

for � ∈ [m]. In the following lemma, we show that when random samples are sub-
Gaussian, ‖V̂(�)

K V̂(�)T
K −�∗‖F is subexponential and we can give an explicit upper

bound of its ψ1-norm.

LEMMA 1. Suppose that on the �th server we have n i.i.d. sub-Gaussian ran-
dom samples {Xi}ni=1 in R

d with covariance matrix �. There exists a constant
C > 0 such that when n ≥ r ,

∥∥∥∥V̂(�)
K V̂(�)T

K − �∗∥∥
F

∥∥
ψ1

≤ Cκ

√
Kr

n
.

Note that here we use the Frobenius norm to measure the distance between
two matrices. Therefore, it is equivalent to treat {V̂(�)

K V̂(�)T
K }K�=1 and �∗ as d2-

dimensional vectors and apply the concentration inequality for random vectors to
bound ‖�̃ − �∗‖F . As we will demonstrate in the proof of Theorem 1, ‖‖�̃ −
�∗‖F ‖ψ1 � 1√

m
‖‖V̂(�)

K V̂(�)T
K − �∗‖F ‖ψ1 .

With regard to λK(�∗)−λK+1(�
∗), when the individual node has enough sam-

ples, V̂(�)
K and VK will be close to each other and so will �∗ = E(V̂(�)

K V̂(�)T
K ) and

VKVT
K . Given λK(VKVT

K) = 1 and λK+1(VKVT
K) = 0, we accordingly expect

λK(�∗) and λK+1(�
∗) be separated by a positive constant as well.

All the arguments above lead to the following theorem on ρ(ṼK,V∗
K).
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THEOREM 1. Suppose X1, . . . ,XN are i.i.d. sub-Gaussian random vectors in
R

d with covariance matrix � and they are scattered across m machines. If n ≥ r

and ‖�∗ − VKVT
K‖2 ≤ 1/4, then

∥∥ρ(
ṼK,V∗

K

)∥∥
ψ1

≤ Cκ

√
Kr

N
,

where C is some universal constant.

4.2. Analysis of the bias term. In this section, we study the bias term
ρ(V∗

K,VK) in (4.1). We first focus on a special case where the bias term is ex-

actly zero. For a random vector X with covariance � = V�VT , let Z = �− 1
2 VT X.

We say X has symmetric innovation if Z d= (Id − 2ej eT
j )Z,∀j ∈ [d]. In other

words, flipping the sign of one component of Z will not change the distribution of
Z. Note that if Z has density, this is equivalent to say that its density function has
the form p(|z1|, |z2|, . . . , |zd |). All elliptical distributions centered at the origin
belong to this family. In addition, if Z has symmetric and independent entries, X
has also symmetric innovation. It turns out that when the random samples have
symmetric innovation, �∗ := E(V̂(�)

K V̂(�)T
K ) and � share exactly the same set of

eigenvectors. When we were completing the paper, we noticed that Chen et al.
(2016) had independently established a similar result for the Gaussian case.

DEFINITION 4.1. Let V be a K-dimensional linear subspace of R
d . For a

subspace estimator represented by V̂ ∈ Od×K , we say it is unbiased for V if and
only if the top K eigenspace of E(V̂V̂T ) is V .

If V̂(�)
K is unbiased for Col(VK), then ρ(V∗

K,VK) = 0 and we will only have the

sample variance term in (4.1). In that case, aggregating {V̂(�)
K }m�=1 reduces variance

and yields a better estimator ṼK . Theorem 2 shows that this is the case so long as
the distribution has symmetric innovation and the sample size is large enough.

THEOREM 2. Suppose on the �th server we have n i.i.d. random samples
{Xi}ni=1 with covariance �. If {Xi}ni=1 have symmetric innovation, then VT �∗V
is diagonal, that is, �∗ and � share the same set of eigenvectors. Further-
more, if ‖�∗ − VKVT

K‖2 < 1/2, then {V̂(�)
K }m�=1 are unbiased for Col(VK) and

ρ(V∗
K,VK) = 0.

It is worth pointing out that distributed PCA is closely related to aggregation
of random sketches of a matrix (Halko, Martinsson and Tropp (2011), Tropp et al.
(2016)). To approximate the subspace spanned by the K leading left singular vec-
tors of a large matrix A ∈ R

d1×d2 , we could construct a suitable random matrix
Y ∈ R

d2×n with n ≥ K , and use the left singular subspace of AY ∈ R
d1×n as an
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estimator. AY is called a random sketch of A. It has been shown that to obtain rea-
sonable statistical accuracy, n can be much smaller than min(d1, d2) as long as A
is approximately low rank. Hence it is much cheaper to compute SVD on AY than
on A. When we want to aggregate a number of such subspace estimators, a smart
choice of the random matrix ensemble for Y is always preferable. It follows from
Theorem 2 that if we let Y have i.i.d. columns from a distribution with symmetric
innovation (e.g., Gaussian distribution or independent entries), then the subspace
estimators are unbiased, which facilitates aggregation.

Here, we explain why we need the condition ‖�∗ − VKVT
K‖2 < 1/2 to achieve

zero bias. First of all, the condition is similar to a bound on the “variance” of the
random matrix V̂(�)

K whose covariance �∗ is under investigation. As demonstrated
above, with the symmetric innovation, �∗ has the same set of eigenvectors as �,
but we still cannot guarantee that the top K eigenvectors of �∗ match with those
of �. For example, the (K + 1)-th eigenvector of � might be the K th eigenvector
of �∗. In order to ensure the top K eigenspace of �∗ is exactly the same as that
of �, we require V̂(�)

K to not deviate too far from VK so that �∗ is close enough to
VKVT

K . Both Theorems 1 and 2 require control of ‖�∗ − VKVT
K‖2, which will be

studied shortly.
For general distributions, the bias term is not necessarily zero. However, it turns

out that when the subsample size is large enough, the bias term ρ(V∗
K,VK) is of

high order compared with the statistical error of V̂(�)
K on the individual subsample.

By the decomposition (4.1) and Theorem 1, we can therefore expect the aggregated
estimator ṼK to enjoy sharper statistical error rate than PCA on the individual
subsample. In other words, the aggregation does improve the statistical efficiency.
A similar phenomenon also appears in statistical error analysis of the average of
the debiased Lasso estimators in Battey et al. (2015) and Lee et al. (2017). Recall
that in sparse linear regression, the Lasso estimator β̂ satisfies that ‖β̂ − β∗‖2 =
OP (

√
s logd/n), where β∗ is the true regression vector, s is the number of nonzero

coefficients of β∗ and d is the dimension. The debiasing step reduces the bias of β̂
to the order OP (s logd/n), which is negligible when m is not too large, compared
with the statistical error of β̂ , and thus enables the average of the debiased Lasso
estimators to enhance the statistical efficiency.

Below we present Lemma 2, a high-order Davis–Kahan theorem that explic-
itly characterizes the linear term and high-order error on top K eigenspace due
to matrix perturbation. This is a genuine generalization of the former high-order
perturbation theorems on a single eigenvector, for example, Lemma 1 in Kneip
and Utikal (2001) and Theorem 2 in El Karoui and d’Aspremont (2010). An el-
egant result on eigenspace perturbation is Lemma 2 in Koltchinskii and Lounici
(2016). Our error bound uses Frobenius norm while theirs uses spectral norm. Be-
sides, when the top K eigenspace is of interest, the upper bound in Lemma 2 in
Koltchinskii and Lounici (2016) contains an extra factor 1 + (λ1 − λK)/�. Hence
we have better dependence on problem parameters. Other related works in the
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literature consider asymptotic expansions of perturbation (Kato (1966), Vaccaro
(1994), Xu (2002)), and singular space of a matrix contaminated by Gaussian noise
(Wang (2015)). Our result is both nonasymptotic and deterministic. It serves as the
core of bias analysis.

LEMMA 2. Let A, Â ∈ R
d×d be symmetric matrices with eigenvalues λ1 ≥

· · · ≥ λd , and λ̂1 ≥ · · · ≥ λ̂d , respectively. Let {uj }dj=1, {̂uj }dj=1 be two or-

thonormal bases of R
d such that Auj = λj uj and Âûj = λ̂j ûj for all j ∈

[d]. Fix s ∈ {0,1, . . . , d − K} and assume that � = min{λs − λs+1, λs+K −
λs+K+1} > 0, where λ0 = +∞ and λd+1 = −∞. Define U = (us+1, . . . ,us+K),
Û = (ûs+1, . . . , ûs+K). Define E = Â − A, S = {s + 1, . . . , s + K}, Gj =∑

i /∈S(λi − λs+j )
−1uiuT

i for j ∈ [K], and

f :Rd×K →R
d×K (w1, . . . ,wK) �→ (−G1w1, . . . ,−GKwK).

When ε = ‖E‖2/� ≤ 1/10, we have∥∥ÛÛT − UUT − [
f (EU)UT + Uf (EU)T

]∥∥
F ≤ 24

√
Kε2.

Similar to Taylor expansion, the difference is decomposed into the linear lead-
ing term and residual of higher order with respect to the perturbation. Here, we
only present a version that is directly applicable to bias analysis. Stronger re-
sults are summarized in Lemma 6 in the Supplementary Material, which refines
the Davis–Kahan theorem by showing that under certain conditions, we have
‖ÛÛT − UUT ‖F � ‖f (EU)‖F and∥∥ÛÛT − UUT − [

f (EU)UT + Uf (EU)T
]∥∥

F � ε
∥∥f (EU)

∥∥
F .

Hence it may be of independent interest in perturbation analysis of spectral pro-
jectors. Now we apply Lemma 2 to the context of principal eigenspace estimation.
Let A = �, Â = �̂

(1) and S = [K]. It thus follows that U = VK , Û = V̂(1)
K and

E = �̂
(1) − �. From the second inequality in Lemma 2, we can conclude that the

bias term ρ(V∗
K,VK) is a high-order term compared with the linear leading term.

More specifically, the Davis–Kahan theorem helps us control the bias as follows:

ρ
(
V∗

K,VK

)
�

∥∥�∗ − VKVT
K

∥∥
F = ∥∥E[

V̂(1)
K V̂(1)T

K − VKVT
K

]∥∥
F .

By the facts that E(E) = 0 and f is linear, we have

ρ
(
V∗

K,VK

) = ∥∥E[
V̂(1)

K V̂(1)T
K − (

VKVT
K + f (EVK)VT

K + VKf (EVK)T
)]∥∥

F .

By Jensen’s inequality, the right-hand side above is further bounded by

E
∥∥V̂(1)

K V̂(1)T
K − (

VKVT
K + f (EVK)VT

K + VKf (EVK)T
)∥∥

F .(4.4)

When n is large enough, the typical size of ε = ‖E‖2/� is small, and Lemma 1
controls it tail and all of the moments. Together with Lemma 2, this fact implies
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that (4.4) has roughly the same order as
√

K ·Eε2, which should be much smaller
than the typical size of

√
Kε, that is, the upper bound for ρ(V̂(1)

K ,VK) given by
Davis–Kahan theorem. The following theorem makes our hand-waving analysis
rigorous.

THEOREM 3. There are constants C1 and C2 such that when n ≥ r ,

ρ
(
V∗

K,VK

) ≤ C1
∥∥�∗ − VKVT

K

∥∥
F ≤ C2κ

2
√

Kr/n.

As a by-product, we get ‖�∗ − VKVT
K‖2 � κ2

√
Kr/n. Hence when n ≥

Cκ2
√

Kr for some large enough C, the assumptions in Theorems 1 and 2 on
‖�∗ − VKVT

K‖2 are guaranteed to hold.

4.3. Properties of distributed PCA. We now combine the results we obtained
in the previous two subsections to derive the statistical error rate of ṼK . We first
present a theorem under the setting of global i.i.d. data and discuss its optimality.

THEOREM 4. Suppose we have N i.i.d. sub-Gaussian random samples with
covariance �. They are scattered across m servers, each of which stores n samples.
There exist constants C,C1,C2,C3 and C4 such that the followings hold when
n ≥ Cκ2

√
Kr :

1. Symmetric innovation:

(4.5)
∥∥ρ(ṼK,VK)

∥∥
ψ1

≤ C1κ

√
Kr

N
.

2. General distribution:

(4.6)
∥∥ρ(ṼK,VK)

∥∥
ψ1

≤ C1κ

√
Kr

N
+ C2κ

2

√
Kr

n
.

Furthermore, if we further assume m ≤ C3n/(κ2r),

(4.7)
∥∥ρ(ṼK,VK)

∥∥
ψ1

≤ C4κ

√
Kr

N
.

As we can see, with appropriate scaling conditions on n, m and d , ṼK can
achieve the statistical error rate of order κ

√
Kr/N . The result is applicable to the

whole sample or traditional PCA, in which m = 1. Hence the distributed PCA and
the traditional PCA share the same error bound as long as the technical conditions
are satisfied.

In the second part of Theorem 4, the purpose of setting restrictions on n and m is
to ensure that the distributed PCA algorithm delivers the same statistical rate as the
centralized PCA which uses all the data. In the boundary case where n � κ2

√
Kr ,
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the bias of the local empirical eigenspace is of constant order. Since our aggre-
gation cannot kill bias, there is no hope to achieve the centralized rate unless the
number of machines is of constant order so that the centralized PCA has constant
error, too. Besides, our result says that when n is large, we can tolerate more data
splits (larger m) for achieving the centralized statistical rate.

We now illustrate our result through a simple spiked covariance model intro-
duced by Johnstone (2001). Assume that � = diag(λ,1, . . . ,1︸ ︷︷ ︸

d−1

), where λ > 1, and

we are interested in the first eigenvector of �. Note that K = 1, r = Tr(�)/‖�‖2 =
(λ + d − 1)/λ � d/λ when λ = O(d), and κ = λ/(λ − 1) �: 1. It is easy to see
from (4.5) or (4.7) that

∥∥ρ(Ṽ1,V1)
∥∥
ψ1

� κ

√
r

N
�

√
d

Nλ
.

Without loss of generality, we could always assume that the direction of Ṽ1 is
chosen such that ṼT

1 V1 ≥ 0, that is, Ṽ1 is aligned with V1. Note that

ρ2(Ṽ1,V1) = ∥∥Ṽ1ṼT
1 − V1VT

1
∥∥2
F = 2

(
1 − ṼT

1 V1
)(

1 + ṼT
1 V1

)
≥ 2

(
1 − ṼT

1 V1
) = ‖Ṽ1 − V1‖2

2.

Hence

(4.8) E‖Ṽ1 − V1‖2
2 �

∥∥ρ(Ṽ1,V1)
∥∥2
ψ1

� d

Nλ
.

We now compare this rate with the previous results under the spiked model. In Paul
and Johnstone (2012), the authors derived the �2 risk of the empirical eigenvectors
when random samples are Gaussian. It is not hard to derive from Theorem 1 therein
that given N i.i.d. d-dimensional Gaussian samples, when N,d and λ go to infinity,

E‖V̂1 − V1‖2
2 � d

Nλ
,

where V̂1 is the empirical leading eigenvector with V̂T
1 V1 ≥ 0. We see from (4.8)

that the aggregated estimator Ṽ1 performs as well as the full sample estimator V̂1
in terms of the mean squared error. See Wang and Fan (2017) for generalization of
the results for spiked covariance.

In addition, our result is consistent with the minimax lower bound developed in
Cai, Ma and Wu (2013). For λ > 0 and fixed c ≥ 1, define

� = {� � 0 : λ + 1 ≤ λK ≤ λ1 ≤ cλ + 1, λj = 1 for K + 1 ≤ j ≤ d}.
Assume that K ≤ d/2 and 1 � d/λ � N . Theorem 8 in Cai, Ma and Wu (2013)
shows that under the Gaussian distribution with � ∈ �, the minimax lower bound
of Eρ2(V̂,VK) satisfies

(4.9) inf
V̂

sup
�∈�

Eρ2(V̂,VK)� min
{
K, (d − K),

K(λ + 1)(d − K)

Nλ2

}
� Kd

Nλ
.
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Based on r = Tr(�)/‖�‖2 ≤ (cKλ + d)/(cλ + 1) � Kd/λ and κ ≤ c � 1, our
(4.5) gives an upper bound

Eρ2(Ṽ1,V1)� κ2 Kr

n
� Kd

Nλ
,

which matches the lower bound in (4.9).
Although the upper bound κ

√
Kr/N established in Theorem 4 is optimal in the

minimax sense as discussed above, the nonminimax risk of empirical eigenvectors
can be improved when the condition number κ is large. See Vu and Lei (2013),
Koltchinskii and Lounici (2016) and Reiss and Wahl (2016) for sharper results.
We use (4.5) as a benchmark rate for the centralized PCA only for the sake of
simplicity.

Notice that in Theorem 4, the prerequisite for ṼK to enjoy the sharp statistical
error rate is a lower bound on the subsample size n, that is,

(4.10) n � κ2
√

Kr.

As in the remarks after Lemma 2, this is the condition we used to ensure close-
ness between �∗ and VKVT

K . It is natural to ask whether this required sample
complexity is sharp, or in other words, is it possible for ṼK to achieve the same
statistical error rate with a smaller sample size on each machine? The answer is
no. The following theorem presents a distribution family under which Col(ṼK) is
even perpendicular to Col(VK) with high probability when n is smaller than the
threshold given in (4.10). This means that having a smaller sample size on each
machine is too uninformative such that the aggregation step completely fails in
improving estimation consistency.

THEOREM 5. Consider a Bernoulli random variable W with P(W = 0) =
P(W = 1) = 1/2, a Rademacher random variable P(Y = 1) = P(Y = −1) =
1/2, and a random vector Z ∈ R

d−1 that is uniformly distributed over the (d − 1)-
dimensional unit sphere. For λ ≥ 2, we say a random vector X ∈ R

d follows the
distribution D(λ) if

X d=
(

1{W=0}
√

2λY

1{W=1}
√

2(d − 1)Z

)
.

Now suppose we have {Xi}Ni=1 as N i.i.d. random samples of X. They are stored
across m servers, each of which has n samples. When 32 logd ≤ n ≤ (d −1)/(3λ),
we have

P(Ṽ1 ⊥ V1) ≥
{

1 − d−1 if m ≤ d3,

1 − e−d/2 if m > d3.
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It is easy to verify that D(λ) is symmetric, sub-Gaussian and satisfies EX = 0
and E(XXT ) = diag(λ,1, . . . ,1). Besides, κ = λ/(λ − 1) � 1 and r = (λ + d −
1)/λ = d/λ + 1 − λ−1 � d/λ when 2 ≤ λ � d . According to (4.10), we require
n � d/λ to achieve the rate as demonstrated in (4.5). Theorem 5 shows that if
we have fewer samples than this threshold, the aggregated estimator Ṽ1 will be
perpendicular to the true top eigenvector V1 with high probability. Therefore, our
lower bound for the subsample size n is sharp.

5. Extension to heterogeneous samples. We now relax global i.i.d . as-
sumptions in the previous section to the setting of heterogeneous covariance
structures across servers. Suppose data on the server � has covariance matrix
�(�), whose top K eigenvalues and eigenvectors are denoted by {λ(�)

k }Kk=1 and

V(�)
K = (v(�)

1 , . . . ,v(�)
K ), respectively. We will study two specific cases of heteroge-

neous covariances: one requires all covariances to share exactly the same principal
eigenspaces, while the other considers the heterogeneous factor models with com-
mon factor eigenstructures.

5.1. Common principal eigenspaces. We assume that {�(�)}m�=1 share the
same top K eigenspace, that is, there exists some VK ∈ Od×K such that
V(�)

K V(�)T
K = VKVT

K for all � ∈ [m]. The following theorem can be viewed as a
generalization of Theorem 4.

THEOREM 6. Suppose we have in total N sub-Gaussian samples scattered
across m servers, each of which stores n i.i.d. samples with covariance �(�).
Assume that {�(�)}m�=1 share the same top K eigenspace. For each � ∈ [m], let

S� = κ�

√
Kr�
N

and B� = κ2
�

√
Kr�

n
, where r� := Tr(�(�))/λ

(�)
1 and κ� := λ

(�)
1 /(λ

(�)
K −

λ
(�)
K+1).

1. Symmetric innovation: There exist some positive constants C and C1 such
that

(5.1)
∥∥ρ(ṼK,VK)

∥∥
ψ1

≤ C1

√√√√ 1

m

m∑
�=1

S2
�

so long as n ≥ C
√

K max�∈[m](κ2
� r�).

2. General distribution: There exist positive constant C2 and C3 such that when
n ≥ max�∈[m] r�,

(5.2)
∥∥ρ(ṼK,VK)

∥∥
ψ1

≤ C2

√√√√ 1

m

m∑
�=1

S2
� + C3

m

m∑
�=1

B(�).
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5.2. Heterogeneous factor models. Suppose on the server �, the data conform
to a factor model as below:

X(�)
i = B(�)f(�)i + u(�)

i , i ∈ [n],

where B(�) ∈ R
d×K is the loading matrix, f(�)i ∈ R

K is the factor that satisfies

Cov(f(�)i ) = I and u(�)
i ∈ R

d is the residual vector. It is not hard to see that �(�) =
Cov(X(�)

i ) = B(�)B(�)T + �(�)
u , where �(�)

u is the covariance matrix of u(�)
i .

Let B(�)B(�)T = V(�)
K �

(�)
K V(�)T

K be the spectral decomposition of B(�)B(�)T . We
assume that there exists a projection matrix PK = VKVT

K , where VK ∈ Od×K ,

such that V(�)
K V(�)T

K = PK for all � ∈ [m]. In other words, {B(�)B(�)T }m�=1 share the
same top K eigenspace. Given the context of factor models, this implies that the
factors have similar impact on the variation of the data across servers. Our goal
now is to recover Col(VK) by the distributed PCA approach, namely Algorithm 1.

Recall that �̂
(�) = 1

n

∑n
i=1 X(�)

i X(�)T

i is the sample covariance matrix on the

�th machine, and V̂(�)
K = (̂v(�)

1 , . . . , v̂(�)
K ) ∈ Od×K stores K leading eigenvectors

of �̂
(�). Define �̃ = 1

m

∑m
�=1 V̂(�)

K V̂(�)T
K , and let ṼK ∈ Od×K be the top K eigen-

vectors of �̃. Below we present a theorem that characterizes the statistical perfor-
mance of the distributed PCA under the heterogeneous factor models.

THEOREM 7. For each � ∈ [m], let S� = κ�

√
Kr�
N

and B� = κ2
�

√
Kr�

n
. There

exist some positive constants C1, C2 and C3 such that when n ≥ max�∈[m] r�,

(5.3)
∥∥ρ(ṼK,VK)

∥∥
ψ1

≤ C1

√√√√ 1

m

m∑
�=1

S2
� + C2

m

m∑
�=1

B� + C3

√
K

m

m∑
�=1

‖�(�)
u ‖2

λK(�
(�)
K )

.

The first two terms in the RHS of (5.3) are similar to those in (5.2), while the
third term characterizes the effect of heterogeneity in statistical efficiency of ṼK .
When ‖�(�)

u ‖2 is small compared with λK(�
(�)
K ) as in spiky factor models, �(�)

u

can hardly distort the eigenspace Col(VK), and thus has little influence on the final
statistical error of ṼK .

6. Simulation study. In this section, we conduct Monte Carlo simulations to
validate the statistical error rate of ṼK that is established in the previous section.
We also compare the statistical accuracy of ṼK and its full sample counterpart V̂K ,
that is, the empirical top K eigenspace based on the full sample covariance. The
main message is that our proposed distributed estimator performs equally well as
the full sample estimator V̂K when the subsample size n is large enough.
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FIG. 1. Statistical error rate with respect to: (a) the dimension d when λ = 50 and n = 2000; (b)
the number of servers m when λ = 50 and n = 2000; (c) the subsample size n when λ = 50 and
m = 50; (d) the eigengap δ when d = 800 and n = 2000.

6.1. Verification of the statistical error rate. Consider {xi}Ni=1 i.i.d. following
N(0,�), where � = diag(λ,λ/2, λ/4,1, . . . ,1). Here, the number of spiky eigen-
values K = 3 and VK = (e1, e2, e3). We generate m subsamples, each of which
has n samples, and run our proposed distributed PCA algorithm (Algorithm 1) to
calculate ṼK . Since the centered multivariate Gaussian distribution is symmetric,
according to Theorem 4, when λ = O(d) we have

(6.1)
∥∥ρ(ṼK,VK)

∥∥
ψ1

= O

(
C1‖�‖2

λK − λK+1

√
Kr(�)

N

)
= O

(√
d

mnδ

)
,

where δ := λK − λK+1 = λ/4 − 1. Now we provide numerical verification of the
order of the number of servers m, the eigengap δ, the subsample size n and dimen-
sion d in the statistical error.

Figure 1 presents four plots that demonstrate how ρ(ṼK,VK) changes as d ,
m, n and δ increases respectively. Each data point on the plots is based on 100
independent Monte Carlo simulations. Figure 1(a) demonstrates how ρ(ṼK,VK)

increases with respect to the increasing dimension d when λ = 50 and n = 2000.
Each line on the plot represents a fixed number of machines m. Figure 1(b) shows
the decay rate of ρ(ṼK,VK) as the number of servers m increases when λ = 50
and n = 2000. Different lines on the plot correspond to different dimensions d .
Figure 1(c) demonstrates how ρ(ṼK,VK) decays as the subsample size n in-
creases when λ = 50 and m = 50. Figure 1(d) shows the relationship between
ρ(ṼK,VK) and the eigengap δ when d = 800 and n = 2000. The results from

Figures 1(a)–(d) show that ρ(ṼK,VK) is proportion to d
1
2 , m− 1

2 , n− 1
2 and δ− 1

2 ,
respectively when the other three parameters are fixed. These empirical results are
all consistent with (6.1).

Figure 1 demonstrates the marginal relationship between ρ(ṼK,VK) and the
four parameters m, n, d and δ. Now we study their joint relationship. Inspired by
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FIG. 2. Observed and fitted values of log(ρ(ṼK,VK)).

(6.1), we consider a multiple regression model as follows:

(6.2) log
(
ρ(ṼK,VK)

) = β0 +β1 log(d)+β2 log(m)+β3 log(n)+β4 log(δ)+ε,

where ε is the error term. We collect all the data points (d,m,n, δ, ρ(ṼK,VK))

from four plots in Figure 1 to fit the regression model (6.2). The fitting result is that
β̂1 = 0.5043, β̂2 = −0.4995, β̂3 = −0.5011 and β̂4 = −0.5120 with the multiple
R2 = 0.99997. These estimates are quite consistent with the theoretical results in
(6.1). Moreover, Figure 2 plots all the observed values of log(ρ(ṼK,VK)) against
its fitted values by the linear model (6.2). We can see that the observed and fitted
values perfectly match. It indicates that the multiple regression model (6.2) well
explains the joint relationship between the statistical error and the four parameters
m, n, d and δ.

6.2. The effects of splitting. In this section, we investigate how the number of
data splits m affects the statistical performance of ṼK when the total sample size
N is fixed. Since N = mn, it is easy to see that the larger m is, the smaller n will
be, and hence the less computational load there will be on each individual server.
In this way, to reduce the time consumption of the distributed algorithm, we prefer
more splits of the data. However, per the assumptions of Theorem 4, the subsample
size n should be large enough to achieve the optimal statistical performance of ṼK .
This motivates us to numerically illustrate how ρ(ṼK,VK) changes as m increases
with N fixed.

We adopt the same data generation process as described in the beginning of
Section 6.1 with λ = 50 and N = 6000. We split the data into m subsamples where
m is chosen to be all the factors of N that are less than or equal to 300. Figure 3
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FIG. 3. Statistical error with respect to the number of machines when the total sample size
N = 6000 is fixed.

plots ρ(ṼK,VK) with respect to the number of machines m. Each point on the
plot is based on 100 simulations. Each line corresponds to a different dimension
d .

The results show that when the number of machines is not unreasonably large, or
equivalently the number of subsample size n is not small, the statistical error does
not depend on the number of machines when N is fixed. This is consistent with
(6.1) where the statistical error rate only depends on the total sample size N = mn.
When the number of machines m is large (logm ≥ 5), or the subsample size n is
small, we observe slightly growing statistical error of the distributed PCA. This is
aligned with the required lower bound of n in Theorem 4 to achieve the optimal
statistical performance of ṼK . Note that even when m = 300 (log(m) ≈ 5.7) and
n = 20, our distributed PCA performs very well. This demonstrates that distributed
PCA is statistically efficient as long as m is within a reasonable range.

6.3. Comparison between distributed and full sample PCA. In this subsection,
we compare the statistical performance of the following three methods:

1. Distributed PCA (DP);
2. Full sample PCA (FP), that is, the PCA based on the all the samples;
3. Distributed PCA with communication of five additional largest eigenvectors

(DP5).

Here, we explain more on the third method DP5. The difference between DP5 and
DP is that on each server, DP5 calculates V̂(�)

K+5, the top K + 5 eigenvectors of
�(�) and send them to the central server, and the central server computes the top

K eigenvectors of (1/m)
∑m

�=1 V̂(�)
K+5V̂(�)T

K+5 as the final output. Intuitively, DP5
communicates more information of the covariance structure and is designed to
guide the spill-over effects of the eigenspace spanned by the top K eigenvalues.
In Figure 4, we compare the performance of all the three methods under various
scenarios.
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FIG. 4. Comparison between DP, FP and DP5: (a) m = 20, n = 2000 and λ = 50; (b) d = 1600,
n = 1000 and λ = 30; (c) d = 800, m = 5 and λ = 30; (d) d = 1600, m = 10 and n = 500.

From Figures 4(a)–(d), we can see that all the three methods have similar finite
sample performance. This means that it suffices to communicate K eigenvectors to
enjoy the same statistical accuracy as the full sample PCA. For more challenging
situations with large p/(mnδ) ratios, small improvements using FP are visible.

7. Discussion. Our theoretical results are established under sub-Gaussian as-
sumptions of the data. We believe that similar results will hold under distributions
with heavier tails than sub-Gaussian tails, or more specifically, with only bounded
fourth moment. Typical examples are Student t-distributions with more than four
degrees of freedom, Pareto distribution, etc. The only difference is that with heavy-
tailed distribution, if the local estimators are still the top eigenspaces of the sample
covariance matrix, we will not be able to derive exponential deviation bounds. To
establish statistical rate with exponential deviation, special treatments of data, in-
cluding shrinkage (Fan, Wang and Zhu (2016), Minsker (2018), Wei and Minsker
(2017)), are needed, and the bias induced by such treatments should be carefully
controlled. This will be an interesting future problem to study.

SUPPLEMENTARY MATERIAL

Supplement to “Distributed estimation of principal eigenspaces” (DOI:
10.1214/18-AOS1713SUPP; .pdf). Proofs of the results in the paper can be found
in the Supplementary Material.
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