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In this paper, new tests for the independence of two high-dimensional
vectors are investigated. We consider the case where the dimension of the
vectors increases with the sample size and propose multivariate analysis of
variance-type statistics for the hypothesis of a block diagonal covariance ma-
trix. The asymptotic properties of the new test statistics are investigated un-
der the null hypothesis and the alternative hypothesis using random matrix
theory. For this purpose, we study the weak convergence of linear spectral
statistics of central and (conditionally) noncentral Fisher matrices. In partic-
ular, a central limit theorem for linear spectral statistics of large dimensional
(conditionally) noncentral Fisher matrices is derived which is then used to
analyse the power of the tests under the alternative.

The theoretical results are illustrated by means of a simulation study
where we also compare the new tests with several alternative, in particular
with the commonly used corrected likelihood ratio test. It is demonstrated
that the latter test does not keep its nominal level, if the dimension of one sub-
vector is relatively small compared to the dimension of the other sub-vector.
On the other hand, the tests proposed in this paper provide a reasonable ap-
proximation of the nominal level in such situations. Moreover, we observe
that one of the proposed tests is most powerful under a variety of correlation
scenarios.

1. Introduction. Estimation and testing the structure of the covariance ma-
trix are important problems that have a number of applications in practice. For
instance, the covariance matrix plays an important role in the determination of the
optimal portfolio structure following the well-known mean-variance analysis of
Markowitz (1952). It is also used in prediction theory where the problem of fore-
casting future values of the process based on its previous observations arises. In
such applications, misspecification of the covariance matrix might lead to signifi-
cant errors in the optimal portfolio structure and predictions. The problem becomes
even more difficult if the dimension is of similar order or even larger as the sample
size. A number of such situations are present in biostatistics, wireless communi-
cations and finance (see, e.g., Fan and Li (2006), Johnstone (2006) and references
therein).
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The sample covariance matrix is the commonly used estimator in practice. How-
ever, in the case of large dimension (compared to the sample size), a number of
studies demonstrate that the sample covariance does not perform well as an es-
timator of the population covariance matrix and numerous authors have recently
addressed this problem. One approach is based on the construction of improved
estimators in particular shrinkage-type estimators which reduce the variability of
the sample covariance matrix at the cost of an additional bias (see, Ledoit and Wolf
(2012), Wang et al. (2015) or Bodnar, Gupta and Parolya (2014), Bodnar, Gupta
and Parolya (2016) among others). Alternatively, several authors impose structural
assumptions on the population covariance matrix such as a block diagonal struc-
ture (e.g., Devijver and Gallopin (2018)), Toeplitz matrix (see, Cai, Ren and Zhou
(2013)), band matrix (see, Bickel and Levina (2008)) or general sparsity assump-
tions (see Cai, Liu and Luo (2011), Cai and Shen (2011), Cai and Zhou (2012)
among others) and show, that the population covariance matrix can be estimated
consistently in these cases, even for large dimensions. However, these techniques
may fail if the structural assumptions are not satisfied, and consequently it is desir-
able to validate the corresponding assumptions regarding the postulated structure
of the covariance matrix.

In the present paper, we consider the problem of testing for a block diagonal
structure of the covariance, which has found considerable interest in the litera-
ture. Early work in this direction has been done by Mauchly (1940), who proposed
a likelihood ratio test for the hypothesis of sphericity of a normal distribution,
that is, the independence of all components. This method has been extended by
Gupta and Xu (2006) to the nonnormal case and by Bai et al. (2009) and Jiang and
Yang (2013) to the high-dimensional case. An alternative approach is based on
the empirical distance between the sample covariance matrix and the target (e.g.,
a multiplicity of the identity matrix) and was initially suggested by John (1971)
and Nagao (1973). These tests can also be extended for testing the corresponding
hypotheses in the high-dimensional setup (see Ledoit and Wolf (2002), Birke and
Dette (2005), Fisher, Sun and Gallagher (2010), Chen, Zhang and Zhong (2010)).
Other authors use the distributional properties of the largest eigenvalue of the sam-
ple covariance matrix to construct tests (see, e.g., Johnstone (2001, 2008)).

In the problem of testing the independence between two (or more) groups of
random variables under the assumption of normality, the likelihood ratio approach
has also found considerable interest in the literature. The main results for a fixed di-
mension can be found in the text books of Muirhead (1982) and Anderson (2003).
Recently, Jiang and Yang (2013) have extended the likelihood ratio approach to the
case of high-dimensional data, while Hyodo et al. (2015) and Yamada, Hyodo and
Nishiyama (2017) used an empirical distance approach to test for a block diagonal
covariance matrix.

In Section 2, we introduce the testing problem (in the case of two blocks) and
demonstrate by means of a small simulation study that the likelihood ratio test
does not yield a reliable approximation of the nominal level, if the size of one
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block is small compared to the other one. In Section 3, we introduce three al-
ternative test statistics which are motivated from classical multivariate analysis
of variance (MANOVA) and are defined as linear spectral statistics of a Fisher
matrix. We derive their asymptotic distributions under the null hypotheses and il-
lustrate the approximation of the nominal level by means of a simulation study.
A comparison with the commonly used likelihood ratio test shows that the new
tests provide a reasonable approximation of the nominal level in situations where
the likelihood ratio test fails. Section 4 is devoted to the analysis of statistical
properties of the new tests under the alternative hypothesis. For this purpose, we
present a new central limit theorem for a (conditionally) noncentral Fisher ran-
dom matrix which is of own interest and can be used to study some properties of
the power of the new tests. Finally, most technical details and proofs are given in
Appendix A and in the Supplementary Material (see Bodnar, Dette and Parolya
(2019)).

2. Testing for independence. Let x1, . . . ,xn be a sample of i.i.d. observations
from a p-dimensional normal distribution with zero mean vector and covariance
matrix �, that is, x1 ∼ Np(0,�). We define the p × n dimensional observation
matrix X = (x1, . . . ,xn) and denote by

S = 1

n
XX�

the sample covariance matrix which is used as an estimate of �. It is well known
that nS has a p-dimensional Wishart distribution with n degrees of freedom and
covariance matrix �, that is, nS ∼ Wp(n,�). In the following, we consider parti-
tions of the population and the sample covariance matrix given by

� =
(
�11 �12
�21 �22

)
and nS =

(
S11 S12
S21 S22

)
,(2.1)

respectively, where �ij ∈ R
pi×pj and Sij ∈ R

pi×pj with i, j = {1,2} and p1 +
p2 = p. We are interested in the hypothesis that the sub-vectors x1,1 and x1,2 of
size p1 and p2 in the vector x1 = (x�

1,1,x�
1,2)

� are independent, or equivalently
that the covariance matrix is block diagonal, that is,

(2.2) H0 : �12 = O versus H1 : �12 �= O.

Here, the symbol O denotes a matrix of an appropriate order with all entries equal
to 0. It is worthwhile to mention that the case of nonzero mean vector can be treated
exactly in the same way observing that the centered sample covariance matrix
has a 1

n−1Wp(n − 1,�) distribution. Thus, one needs to normalize the sample
covariance matrix by 1/(n − 1) instead of 1/n due to the substitution principle of
Zheng, Bai and Yao (2015b) and the results presented in our paper will still remain
valid.
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Throughout this paper, we consider the case where the dimension of the blocks
is increasing with the sample size, that is, p = p(n), pi = pi(n), such that

lim
n→∞

pi

n
= ci < 1, i = 1,2

and define c = c1 + c2. For further reference, we also introduce the quantities

γ1,n = p − p1

p1
,(2.3)

γ2,n = p − p1

n − p1
,(2.4)

hn = √
γ1,n + γ2,n − γ1,nγ2,n.(2.5)

A common approach in testing for independence is the likelihood ratio test based
on the statistic

Vn = |S|
|S11||S22| = |S11||S22 − S21S−1

11 S12|
|S11||S22| = ∣∣Ip−p1 − S21S−1

11 S12S−1
22

∣∣.
The null hypothesis is rejected for small values of Vn. Jiang, Bai and Zheng (2013)
showed that under the assumptions made in this section Vn can be written in terms
of a determinant of a central Fisher matrix, that is,

(2.6) Vn =
∣∣∣∣Ip−p1 − F

(
F + γ1,n

γ2,n

Ip−p1

)−1∣∣∣∣ =
∣∣∣∣γ2,n

γ1,n

F + Ip−p1

∣∣∣∣−1
,

where F = 1
p1

S21S−1
11 S12(

1
n−p1

(S22 − S21S−1
11 S12))

−1. Under the null hypothesis
of independent blocks, the matrix F is a “ratio” of two central Wishart matrices
with p1 and n − p1 degrees of freedom. Naturally, it is called a central Fisher
matrix with p1 and n−p1 degrees of freedom, an analogue to its one-dimensional
counterpart (see Fisher (1939)). In particular, we have the following result (see
Theorem 8.2 in Yao, Zheng and Bai (2015))

PROPOSITION 1. Under the null hypothesis, we have for TLR = log(Vn)

TLR − (p − p1)sLR − μLR

σLR

D−→ N (0,1),

where the quantities μLR, σ 2
LR and sLR are defined by

μLR = 1/2 log
[

(w∗2
n − d∗2

n )h2
n

(w∗
nhn − γ2,nd∗2

n )2

]
, σ 2

LR = 2 log
[

w∗2
n

w∗2
n − d∗2

n

]
,

sLR = log
(

γ1,n

γ2,n

(1 − γ2,n)
2
)

+ 1 − γ2,n

γ2,n

log
(
w∗

n

)

− γ1,n + γ2,n

γ1,nγ2,n

log
(
w∗

n − d∗
nγ2/hn

)
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+

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − γ1,n

γ1,n

log
(
w∗

n − d∗
nhn

)
γ1,n ∈ (0,1),

0 γ1,n = 1,

−1 − γ1,n

γ1,n

log
(
w∗

n − d∗
n/hn

)
γ1,n > 1,

with w∗
n = hn√

γ2,n
and d∗

n = √
γ2,n.

Proposition 1 shows that the likelihood ratio test, which rejects the null hypoth-
esis whenever

(2.7)
TLR − (p − p1)sLR − μLR

σLR
< −u1−α,

is an asymptotic level α test (here and throughout this paper u1−α denotes the
(1 − α)-quantile of the standard normal distribution). In Figure 1, we illustrate the
approximation of the nominal level of the test (2.7) by means of a small simulation
study for the sample size n = 100, dimension p = 60 and different values of p1
and p2. We considered a centered p-dimensional normal distribution where the
blocks �11 and �22 in the block diagonal matrix � are constructed as follows. For
the first block �11, we took p1 uniformly distributed eigenvalues on the interval
(0,1] while the corresponding eigenvectors are simulated from the Haar distribu-
tion on the unit sphere. The p2 eigenvalues of the second block �22 are drawn from
a uniform distribution on the interval [1,10] while the corresponding eigenvectors
are again Haar distributed. The matrices �11 and �22 are then fixed for the gen-
eration of multivariate normal distributed random variables (�12 = O). The plots
show the empirical distribution of the statistic (TLR − (p − p1)sLR − μLR)/σLR
using 1000 simulation runs and the density of a standard normal distribution. We
observe a reasonable approximation if the dimension p1 of the sub-vector x1,1 is
large compared to the dimension p of the vector x1, that is γ1,n ≤ 1 (see the upper
part of Figure 1). However, if γ1,n >> 1, there arises a strong bias (see the lower
part of Figure 1) and the asymptotic statement in Proposition 1 cannot be used to
obtain critical value for the test (2.7).

Motivated by the poor quality of the approximation of the finite sample distri-
bution of the likelihood ratio test by a normal distribution if the dimension p1 is
small compared to the dimension p2, we now construct alternative tests for the hy-
pothesis (2.2), which will yield a more stable approximation of the nominal level.
For this purpose, we first note that a nonsingular partitioned matrix � in (2.1) is
block diagonal (i.e., �21 = O) if and only if �21�

−1
11 �12 = O. Therefore, a test

for independence can also be obtained by testing the hypotheses

(2.8) H0 : �21�
−1
11 �12 = O versus H1 : �21�

−1
11 �12 �= O.

In the following section, we will propose three tests for the hypothesis (2.8) as an
alternative to the likelihood ratio test.



2982 T. BODNAR, H. DETTE AND N. PAROLYA

FIG. 1. Simulated distribution of the statistic (TLR −(p−p1)sLR −μLR)/σLR und the null hypoth-
esis for sample size n = 100, dimension p = 60 and various values of p1 = 50,45,40,30,15,10.
The solid curve shows the standard normal distribution.

3. Alternative tests for independence and their null distribution. Recall
the definition of the matrices � and S in (2.1) and denote by �22·1 = �22 −
�21�

−1
11 �12 and S22·1 = S22 − S21S−1

11 S12 the corresponding Schur complements.
From Theorem 3.2.10 of Muirhead (1982), it follows that

S21S−1/2
11 |S11 ∼ Np−p1,p1

(
�21�

−1
11 S1/2

11 ,�22·1 ⊗ Ip1

)
,

S22·1 ∼ Wp−p1(n − p1,�22·1),

and the Schur complement S22·1 is independent of S21S−1/2
11 and S11. Hence, under

the null hypothesis,

Ŵ = S21S−1
11 S12 ∼ Wp−p1(p1,�22·1),

T̂ = S22·1 ∼ Wp−p1(n − p1,�22·1),
and Ŵ and T̂ are independent. Under the alternative hypothesis H1, Ŵ and T̂ are
still independent as well as T̂ ∼ Wp−p1(n − p1,�22·1), but Ŵ has a noncentral
Wishart distribution conditionally on S11, that is,

Ŵ|S11 ∼ Wp−p1

(
p1,�22·1,�1(S11)

)
where the noncentrality parameter is given by

�1 = �1(S11) = �−1
22·1�21�

−1
11 S11�

−1
11 �12.
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For technical reasons, we will use the normalized versions of Ŵ and T̂ through-
out this paper. Thus, the distributional properties of W = 1

p1
Ŵ and T = 1

n−p1
T̂

are very similar to the ones observed for the within and between covariance ma-
trices in the multivariate analysis of variance (MANOVA) model (see Fujikoshi,
Himeno and Wakaki (2004), Schott (2007), Kakizawa and Iwashita (2008)). More
precisely, p1W and (n − p1)T are independent (under both hypotheses) and they
possess Wishart distributions under the null hypothesis. However, under the al-
ternative hypothesis the matrix p1W has only conditionally on S11 a noncentral
Wishart distribution, while the unconditional distribution appears to be a more
complicated matrix-variate distribution. The similarity to MANOVA motivates the
application of three tests which are usually used in this context and are given by:

(i) Wilks’ � statistic:

(3.1) TW = − log
(|T|/|T + W|) = log

(∣∣I + WT−1∣∣) =
p−p1∑
i=1

log(1 + vi);

(ii) Lawley–Hotelling’s trace criterion:

(3.2) TLH = tr
(
WT−1) =

p−p1∑
i=1

vi;

(iii) Bartlett–Nanda–Pillai’s trace criterion:

(3.3) TBNP = tr
(
WT−1(

I + WT−1)−1) =
p−p1∑
i=1

vi

1 + vi

,

where v1 ≥ v2 ≥ · · · ≥ vp−p1 denote the ordered eigenvalues of the matrix WT−1.
A statistic very similar to (3.3) was proposed by Jiang, Bai and Zheng (2013), who
used

tr
(

WT−1
(

γ1

γ2
I + WT−1

)−1)
=

p−p1∑
i=1

vi
γ1
γ2

+ vi

instead of tr(WT−1(I+WT−1)−1). It is remarkable that all proposed test statistics
are functions of the eigenvalues of WT−1 and can be presented as linear spectral
statistics calculated for the random matrix WT−1, which is the so-called Fisher
matrix under the null hypothesis H0 (see Zheng (2012)).

A linear spectral statistics for the matrix WT−1 is generally defined by

(3.4) LSSn = (p − p1)

∫ ∞
0

f (x)dFn(x) =
p−p1∑
i=1

f (vi),

where v1 ≥ v2 ≥ · · · ≥ vp−p1 are the ordered eigenvalues of the matrix WT−1. The
symbol

Fn(x) = 1

p − p1

p−p1∑
i=1

1(−∞,x](vi)
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denotes the corresponding empirical spectral distribution and the symbol 1A is the
indicator function of the set A. Define

F ∗
n (dx) = qn(x)1[an,bn](x) dx + (1 − 1/γ1,n)1γ1,n>1δ0(dx) with

qn(x) = 1 − γ2,n

2πx(γ1,n + γ2,nx)

√
(bn − x)(x − an),

an = (1 − hn)
2

(1 − γ2,n)2 , bn = (1 + hn)
2

(1 − γ2,n)2 ,

where γ1,n, γ2,n and hn are defined by (2.3), (2.4) and (2.5), respectively. Note
that F ∗

n is a finite sample proxy of limiting spectral distribution F of Fn, which
is obtained by replacing γ1,n and γ2,n by their corresponding limits (see Bai and
Silverstein (2010)), that is,

F(dx) = q(x)1[a,b](x) dx + (1 − 1/γ1)1γ1>1δ0(dx) with(3.5)

q(x) = 1 − γ2

2πx(γ1 + γ2x)

√
(b − x)(x − a),(3.6)

a = (1 − h)2

(1 − γ2)2 , b = (1 + h)2

(1 − γ2)2 ,

where

γ1 = lim
n→∞γ1,n = lim

n→∞
p − p1

p1
, γ2 = lim

n→∞γ2,n = lim
n→∞

p − p1

n − p1
,

h = lim
n→∞hn = √

γ1 + γ2 − γ1γ2.

The representations of TW , TLH and TBNP in terms of the eigenvalues of the ran-
dom matrix WT−1 are used intensively in the proof of our first main result, which
provides their asymptotic distribution under the null hypothesis in (2.8). The de-
tails of the proof are deferred to Appendix B of the Supplementary Material (see
Bodnar, Dette and Parolya (2019)).

THEOREM 1. Under the assumptions stated in Section 2, we have

Ta − (p − p1)sα − μa

σa

D−→ N (0,1),

where the index a ∈ {W,LH,BNP} represents the statistic under consideration
defined in (3.1), (3.2) and (3.3), respectively. The asymptotic means and variances
are given by

μW = 1/2 log
[

(w2
n − d2

n)h2
n

(wnhn − γ2,ndn)2

]
, σ 2

W = 2 log
[

w2
n

w2
n − d2

n

]
,
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μLH = γ2,n

(1 − γ2,n)2 , σ 2
LH = 2h2

n

(1 − γ2,n)4 ,

μBNP = −(1 − γ2,n)
2w2

n(d
2
n − γ2,n)

(w2
n − d2

n)2 ,

σ 2
BNP = 2

d2(1 − γ2,n)
4(w2

n(w
2
n + dn) + d3

n(w2
n − 1))

w2
n(1 + dn)(w2

n − d2
n)4 ,

where wn > dn > 0 satisfy w2
n + d2

n = (1 − γ2,n)
2 + 1 + h2

n, wndn = hn and the
quantities γ1,n, γ2,n and hn are defined by (2.3), (2.4) and (2.5), respectively. The
centering parameters are given by

sW = − log
(
(1 − γ2,n)

2) − 1 − γ2,n

γ2,n

log(wn)

+ γ1,n + γ2,n

γ1,nγ2,n

log(wn − dnγ2,n/hn)

−

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − γ1,n

γ1,n

log(wn − dnhn) γ1,n ∈ (0,1),

0 γ1,n = 1,

−1 − γ1,n

γ1,n

log(wn − dn/hn) γ1,n > 1,

sLH = 1

1 − γ2,n

,

sBNP = 1 − γ2,n

w2
n − γ2,n

.

Theorem 1 provides a simple asymptotic level α test by rejecting the null hy-
pothesis H0 if

(3.7)
Ta − (p − p1)sa − μa

σa

> u1−α.

We illustrate the quality of the approximation in Theorem 1 by means of a small
simulation study. For the sake of comparison with the likelihood ratio test, we
use the same scenario as in Section 2, that is, n = 100, p = 60 and differ-
ent values for p1. In Figures 2–4, we display the rejection probabilities of the
test (3.7) under the null hypothesis in the case of the Wilk test, the Lawley–
Hotelling’s and the Bartlett–Nanda–Pillai’s trace criterion. From the results de-
picted in Figure 2, we observe that the statistic TW exhibits similar problems
as the statistic of the likelihood ratio test. If the dimension p1 is too small,
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FIG. 2. Simulated distribution of the statistic (TW − (p − p1)sW − μW )/σW und the null hypoth-
esis for sample size n = 100, dimension p = 60 and various values of p1 = 50,30,10. The solid
curve shows the standard normal distribution.

the approximation provided by Theorem 1 is not reliable. This fact seems to
be related to the use of the log determinant criterion. On the other hand, the
Lawley–Hotelling’s and the Bartlett–Nanda–Pillai’s trace criterion yield test statis-
tics which do not possess these drawbacks. The results in Figures 3 and 4
show a reasonable approximation of the nominal level in all considered scenar-
ios.

In order to investigate the properties of two adjusted tests TBNP and TLH for
small dimensions and small sample sizes, we provide additional results for p = 16,
n = 25 and different values of p1 = 13,8,3. The results are depicted in Figures 5
and 6 and indicate a good approximation of the nominal level although a small-
sample effect is present. Note that this effect is more pronounced for the LH test
as for the BNP. Thus the results are still reliable and there is again no large bias
as in case of LR and Wilk’s statistics when the dimension p1 is much smaller than
p − p1.

FIG. 3. Simulated distribution of the statistic (TLH − (p − p1)sLH − μLH)/σLH und the null hy-
pothesis for sample size n = 100, dimension p = 60 and various values of p1 = 50,30,10. The solid
curve shows the standard normal distribution.
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FIG. 4. Simulated distribution of the statistic (TBNP − (p − p1)sBNP − μBNP)/σBNP und the null
hypothesis for sample size n = 100, dimension p = 60 and various values of p1 = 50,30,10. The
solid curve shows the standard normal distribution.

FIG. 5. Simulated distribution of the statistic (TLH − (p − p1)sLH − μLH)/σLH und the null hy-
pothesis for sample size n = 25, dimension p = 16 and various values of p1 = 13,8,3. The solid
curve shows the standard normal distribution.

FIG. 6. Simulated distribution of the statistic (TBNP − (p − p1)sBNP − μBNP)/σBNP und the null
hypothesis for sample size n = 25, dimension p = 16 and various values of p1 = 13,8,3. The solid
curve shows the standard normal distribution.



2988 T. BODNAR, H. DETTE AND N. PAROLYA

4. Distributional properties under alternative hypothesis. In this section,
we derive the distribution of the considered linear spectral statistics under the alter-
native hypothesis. The main difficulty consists in the fact that under the alternative
the random matrix WT−1 has a (conditionally) noncentral Fisher distribution in
this case.

The following two results, which are proved in Appendix A and of independent
interest, specify the asymptotic distribution of the empirical spectral distribution
of the matrix WT−1 under H1. Throughout the paper,

mQ(z) =
∫ +∞
−∞

dQ(t)

t − z

denotes the Stieltjes transform of a distribution function Q.

THEOREM 2. Consider the alternative hypothesis H1 in (2.2) and as-
sume that the assumptions of Section 2 are satisfied. If the the matrix R =
�

−1/2
22·1 �21�

−1
11 �12�

−1/2
22·1 is bounded in spectral norm and its spectral distribu-

tion converges weakly to some function G, then for any z ∈ C \ R the Stieltjes
transform of the empirical spectral distribution of the matrix WT−1 converges al-
most surely to some deterministic function s, which is the unique solution of the
following system of equations:

s(z)

1 + γ2zs(z)
= mH

(
z
(
1 + γ2zs(z)

))
,

mH (z)

1 + γ1mH(z)
= m

H̃

((
1 + γ1mH(z)

)[(
1 + γ1mH(z)

)
z − (1 − γ1)

])
,(4.1)

m
H̃

(z)
(
1 − (c − c1) − (c − c1)zmH̃

(z)
)
c−1

1

= mG

(
c1z

1 − (c − c1) − (c − c1)zmH̃
(z)

)
,(4.2)

subject to the condition that {s(z)} is of the same sign as {z}. The functions
H and H̃ denote the limiting spectral distributions of the matrices W and R̃ =
1/p1�

−1/2
22·1 �21�

−1
11 S11�

−1
11 �12�

−1/2
22·1 , respectively.

Note that the matrix R̃ from Theorem 2 can be interpreted as the sample co-
variance matrix generated from a population with the covariance matrix equal to
p1
n

R.
We will use this result to derive a CLT for the linear spectral statistics of the

matrix WT−1, which can be used for the analysis of the test proposed in Sec-
tion 3 under the alternative hypothesis. For this purpose, we introduce some useful
notation as follows:

δ(z) = γ1mH(z),(4.3)



TESTING FOR INDEPENDENCE OF LARGE VECTORS 2989

δ̃(z) = δ(z) − 1 − γ1

z
,

η(z) = (
1 + δ(z)

)(
1 + δ̃(z)

)
,(4.4)

ξ(z) = δ′(z)
(zη(z))′

,(4.5)


(z) =
(

1

1 + δ(z)
− 2ξ(z)z + 1 − γ1

1 + δ(z)
ξ(z)

)−1
,(4.6)

r = 2
(1 + √

γ1)
2 + λmax(R)(1 + √

c1)
2

(1 − √
γ2)2 .(4.7)

THEOREM 3. If the assumptions of Theorem 2 are satisfied, then for any pair
f,g of analytic functions in an open region of the complex plane containing the
interval [0, r] the random vector(

(p − p1)

∫ ∞
0

f (x)d
(
Fn(x) − F ∗

n (x)
)
, (p − p1)

∫ ∞
0

g(x)d
(
Fn(x) − F ∗

n (x)
))�

converges weakly to a Gaussian vector (Xf ,Xg)
� with mean and covariances

given by

E[Xf ] = 1

4πi

∮
f (z)d log

(
q(z)

) + 1

2πi

∮
f (z)B

(
zb(z)

)
d
(
zb(z)

)

+ 1

2πi

∮
f (z)θb,H (z)

(
θ
b̃,H̃

(
zb(z)

)

× c2
1

∫
m3

H̃
(zb(z))t2(c1 + tm

H̃
(zb(z)))−3 dG(t)

(1 − c1
∫

m2
H̃

(zb(z))t2(c1 + tm
H̃

(zb(z)))−2 dG(t))2

)
dz,(4.8)

Cov[Xf ,Xg]

= − 1

2π2

∮ ∮
f (z1)g(z2)

∂2 log(z1b(z1) − z2b(z2))

∂z1 ∂z2
dz1 dz2

− 1

2π2

∮ ∮
f (z1)g(z2)

× ∂2 log(z1b(z1)η(z1b(z1)) − z2b(z2)η(z2b(z2)))

∂z1 ∂z1
dz1 dz2

− 1

2π2

∮ ∮
f (z1)g(z2)

[
θ
b̃,H̃

(
z1b(z1)

)
θ
b̃,H̃

(
z2b(z2)

)

×
(∂2 log[m

H̃
(z2b(z2))−m

H̃
(z1b(z1))

(z2b(z2)−z1b(z1))
]

∂z1 ∂z2

)]
dz1 dz2(4.9)
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respectively, where

b(z) = 1 + γ2zs(z),

b̃(z) = 1 + γ1mH(z),(4.10)

q(z) = 1 − γ2

∫
b2(z) dH(t)

(t/z − b(z))2 ,

θ
b̃,H̃

(z)

= b̃(z)
/(

1 − γ1mH̃

(
b̃(z)

(
b̃(z)z − (1 − γ1)

))

− b̃(z)γ1
(
2zb̃(z) − (1 − γ1)

) ∫
dH̃ (t)

[t − (b̃(z)(b̃(z)z − (1 − γ1)))]2

)

m
H̃

(z) = −1 − c1

z
+ c1mH̃

(z)

B(z) = 
2(z)

[
−ω̃(z)N(z)

(
1 − δ(z)

) + 1

1 + δ(z)
N(z) + ξ(z)
−1(z)

+ zξ2(z) + z2δ̃2(z)

(
ξ2(z) − δ(z)N(z)

(
z − 1 − γ1

1 + δ(z)
+ 1

))]
(4.11)

with

N(z) = ξ ′(z)
−1(z)

2
− ξ2(z) and ω̃(z) = z2ξ(z) + 1 − γ1

1 + δ(z)

−1(z).

Here, the integrals are taken over an arbitrary positively oriented contour which
contains the interval [0, r], moreover the contours in (4.9) are nonoverlapping.

There are substantial differences between the CLT derived here and the recent
results in Zheng, Bai and Yao (2017). In particular, the matrix W does not possess
the usual properties of the covariance matrix under normality anymore. Indeed, the
conditional distribution of W given S11 is a noncentral Wishart distribution, while
the unconditional distribution is defined by a very complicated integral expression.
As a consequence WT−1 can be interpreted as a conditionally noncentral Fisher
matrix, while Zheng, Bai and Yao (2017) considered a rescaled Fisher matrix. In
general, the CLT presented in Zheng, Bai and Yao (2017) is constructed for study-
ing the asymptotic power of the test for the equality of two population covariance
matrices. In contrast, the CLT derived in Theorem 3 is used to investigate the power
of the test for block-diagonality, that is, H0 : �12 = O.

It follows from the proof of Theorem 2 that

(4.12) W
d≤ 2

(
1

p1
XX� + MM�

)
,
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where nMM� ∼ Wp−p1(n,R) and all entries of X are independent and standard
normally distributed. Consequently, the largest eigenvalue of the matrix W will
asymptotically be smaller than

2
(
(1 + √

γ1)
2 + λmax(R)(1 + √

c1)
2)

and the quantity r defined in (4.7) is an upper bound for the limiting spectrum of
the matrix WT−1.

This observation is quite important for controlling the tail estimates of the ex-
treme eigenvalues of the matrix WT−1, which play a vital role for the application
of the Cauchy’s integral formula (A.19) at the end of the proof of Theorem 3. The
proof of the following result is given in Appendix A.

PROPOSITION 2. Let lr > r , where r is given in (4.7), then

∀k ∈ N : P
(
λmax

(
WT−1)

> lr
) = o

(
n−k).

Although the limiting mean and variance presented in Theorem 3 are very diffi-
cult to calculate in a closed form even for simple cases, there are several important
implications of Theorem 3.

REMARK 1 (Eigenvectors). Going through the proof of Theorem 3 one can
see that Lemma 1 in Appendix A reveals an interesting though quite expected
fact that the resulting asymptotic distributions depend neither on the eigenvec-
tors of the noncentrality matrix �1 nor on the eigenvectors of the matrix R =
�

−1/2
22·1 �21�

−1
11 �12�

−1/2
22·1 for the normally distributed data. Loosely speaking,

without loss of generality (w.l.g.), we can restrict ourselves to the case when �1
and R are diagonal matrices, which simplifies the simulations in a remarkable way.

REMARK 2 (Generalizations and simplifications). The noncentral Fisher ma-
trix in our case arises only conditionally on S11 where the noncentrality matrix
�1 is random in our framework. As a consequence, Theorem 3 generalizes the
result of Yao (2013), where a deterministic noncentrality matrix was considered.
Moreover, all the asymptotic quantities including δ(z) are expressed in a more con-
venient form, like δ(z) = γ1mH(z). Finally, the expression of the bias term B(z)

is significantly simplified which makes it possible to do numerical computations
more efficiently and to investigate the results of Theorem 3 deeper in the future.

REMARK 3 (Finite rank alternatives). Combining Theorem 2 and Theorem 3,
one observes that finite rank alternatives with a bounded spectrum have no in-
fluence on the asymptotic power of the tests, because the asymptotic means and
variances under the null hypothesis and alternative hypothesis coincide. Indeed,
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assuming that the matrix R has a finite rank, say k, and a bounded spectrum we
get

mF R(z) =
∫

dF R(t)

t − z
= 1

p − p1

p−p1∑
i=1

1

λi(R) − z

= 1

p − p1

k∑
i=1

1

λi(R) − z
− p − p1 − k

p − p1

1

z
→ −1

z
.

Thus, it follows that mG(z) = −1
z

and, therefore, G is the distribution function of
the Dirac measure concentrated at the point 0. Consequently, we obtain m

H̃
(z) =

−1/z and the third summands in (4.8) and in (4.9) vanish, that is,∫
t2

(c1 + tm
H̃

(z))3 dG(t) =
∫

t2

(c1 + tm
H̃

(z))3 δ0(t)d(t) = 0,

∂2 log[m
H̃

(z2)−m
H̃

(z1)

z2−z1
]

∂z1 ∂z2
= m′

H̃
(z1)m

′
H̃

(z2)

(m
H̃

(z1) − m
H̃

(z2))2 − 1

(z1 − z2)2 = 0,

for any z, z1, z2 ∈ C
+. The other summands in (4.8) and in (4.9) do not depend

on the eigenvalues of matrix R, which reflects the alternative hypothesis H1 via
�12, thus they are expected to be equal to the corresponding quantities under the
null hypothesis H0 given in Theorem 1. Consequently, all tests based on a linear
spectral statistic cannot detect the alternative hypothesis H1 if the matrix R has no
large eigenvalues.

On the other hand, if λmax(R) is an increasing function of the dimension p −p1
the spectrum of λmax(R) is not bounded and Theorem 3 is not applicable. Although
we have no theoretical result in this case, we expect that the power of the tests
will be an increasing function of λmax(R). These properties have been verified
numerically by means of a simulation study.

REMARK 4 (Full rank alternatives). As we have already mentioned, the for-
mulas in Theorem 2 and Theorem 3 are very complex, which makes it difficult
to calculate the power functions of the considered tests in an analytic form. For
instance, we need to solve the system of three equations in Theorem 2 which leads
to the cubic equation already for mH(z) even in the simple case R = ρ2I. On
the other hand, the whole system in Theorem 2 simplifies to a quadratic equation
under the null hypothesis H0. Nevertheless, we believe that these results may be
useful for future investigations of the power of the considered tests on the block
diagonality of the covariance matrix. For example, one may consider the numerical
approximations discussed in Zheng, Bai and Yao (2017).

To illustrate these remarks and comments, we present a comparison of the power
of the different tests under consideration by means of a small simulation study.
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FIG. 7. Empirical power of different tests for block diagonality for sample size n = 100, dimension
p = 60 and various values of p1 = 50,30,10 as a function of the correlation coefficient ρ = σ12

σ in
[0,0.0325].

In order to demonstrate the results in a clear way, we assume for simplicity that
�11 = �22 = σ I which yields

R = 1

σ

(
σ I − 1

σ
�21�12

)−1/2
�21�12

(
σ I − 1

σ
�21�12

)−1/2
.

Note that the spectrum of matrix R is the same as that of the matrix �21�12(σ
2I−

�21�12)
−1. First, we take �12 as a rank 1 matrix with all components equal to

σ12 ∈ [0,1.3] (equicorrelation) and in order to assure positive definiteness of � in
that range we choose σ = 40. Note that if σ12 varies in the interval [0,1.3] the
correlation coefficient ρ = σ12/σ will change in the interval [0,0.0325]. Further,
we increase the rank of �12 by setting some of its elements to zero (sparsifying).
The empirical rejection probailities of the proposed tests in the case of rank 1
alternatives are given in Figure 7.

For the sake of comparison, we also included the trace criterion recently pro-
posed by Jiang, Bai and Zheng (2013), the test introduced by Yamada, Hyodo and
Nishiyama (2017), which is based on an empirical distance between the full and a
block diagonal covariance matrix; and the test suggested by Yang and Pan (2015)
built on the sum of the canonical correlations coefficients. Note that there exists
a regularized and a nonregularized version of the latter test. In general, the statis-
tic of Yang and Pan (2015) is defined by the sum of eigenvalues of the matrix
(S22 + tIp−p1)

−1S21S−1
11 S12 for some t ≥ 0. Thus, in case t = 0 this test is equiv-

alent to the sum of canonical correlation coefficients. Moreover, the test of Jiang,
Bai and Zheng (2013) and Yang and Pan (2015) coincide for t = 0 because the
matrix S−1

22 S21S−1
11 S12 can be written in form WT−1(

γ1
γ2

I + WT−1)−1 under H0

(see, e.g., Yao, Zheng and Bai (2015), Section 8.5.1). Thus, in order to visualize
difference between them we take t = 10 and t = 40 for the test proposed by Yang
and Pan (2015). Further, the simulations showed that taking larger t will lead only
to a slight increase of power in the case where p1 is not equal to p − p1. Never-
theless, it must be mentioned that the regularized test is applicable even in the case
p − p1 > n while all of other considered tests need both p1 < n and p − p1 < n.
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Figure 7 justifies our theoretical findings, that is, none of the tests can detect
the alternatives for ρ ∈ [0,0.01] (the power function in this region is basically flat
and close to the nominal level 0.05). On the other hand, if the correlation is greater
than 0.01, then all of the tests gain power. For p1 = 30 (case of equal blocks)
all test are powerful enough to reject H0 if the correlation is greater than 0.03.
These results are in accordance with the discussion in Remark 3, because in the
considered scenario the largest eigenvalue of the matrix R is given by

p1(p − p1)ρ
2

1 − p1(p − p1)ρ2 .

Thus, if the correlation coefficient ρ is close to 1/
√

p1(p − p1) we will get a spike
(note that 1/

√
p1(p − p1) ≈ 0.0333 if p1 = 30, p = 60). Moreover, here we have

a clear winner—the Lawley–Hotelling’s (LH) trace criterion. The test of Yamada,
Hyodo and Nishiyama (2017) and Wilk’s test with the corrected likelihood ratio
(LR) criterion are ranked on the second and third, respectively. The regularized
test of Yang and Pan (2015) together with the trace criterion of Jiang, Bai and
Zheng (2013) are on the fourth position, while the Bartlett–Nanda–Pillai’s (BNP)
trace criterion shows the worst performance. Interestingly, the tests Jiang, Bai and
Zheng (2013) and Yang and Pan (2015) cannot be visually distinguished neither
for t = 10 nor for t = 40.

A similar ranking was observed for p1 = 50 with the difference of a decreasing
power of all tests and a slight increase of power for Yang and Pan (2015) with
respect to its benchmark for t = 0, that is, Jiang, Bai and Zheng (2013). Note
that Wilk’s test and the LR test have the same power for p1 = 50. In light of the
previous findings obtained under the null hypothesis H0, the case p1 = 10 is the
most interesting one. Indeed, here we observe that Wilk’s and the LR test are not
reliable anymore (they either always (Wilk’s) or never (LR) reject H0). On the
other hand, the other tests show a similar behaviour as in the case p1 = 50. As
before, the LH test is the most powerful in all three situations.

In order to investigate the robustness of the tests, we increase the sparsity of
the matrix �12, where 20% and 50% of the elements are set randomly to zero,
while all other elements are still equal to σ12. By this procedure, we increase the
probability that �12 has full rank. The results are summarized in Figures 8 and 9.

We observe a similar behaviour as in the nonsparse case (see Figure 7). The
LH test and the test proposed in Yamada, Hyodo and Nishiyama (2017) show the
best performance. The latter is slightly better than the LH test for the sparsity level
50%, while a superiority of the LH test could be observed for a sparsity level of
20%. Of course, by increasing the sparsity level we make the alternative hypothesis
harder to detect. For this reason the nonsensitivity interval [0,0.01] (the interval
where the test is not sensitive to the alternative H1) is increased to [0,0.02] and
[0,0.03] in case of 20% and 50% sparsity levels, respectively.

Moreover, in the Supplementary Material (see Bodnar, Dette and Parolya
(2019)) we have also investigated the performance of the different tests for p = 10,



TESTING FOR INDEPENDENCE OF LARGE VECTORS 2995

FIG. 8. Empirical power of different tests for block diagonality for sample size n = 100, dimension
p = 60 and various values of p1 = 50,30,10 as a function of the correlation coefficient ρ = σ12

σ in
[0,0.04] and sparsity level of 20%.

100, 200, 250, 290 and n = 300 (see Figures 10–14 in Appendix B of the Sup-
plementary Material). Our findings still remain unchanged except for the case
p = 290: here, all tests have a substantial loss in power and the LH test does
not keep the nominal level. Indeed, this is an expected result, because in the case
p = 290 and n = 300 the ratio p/n is close to one, and the sample covariance
matrix is a very unstable estimator.

As a conclusion, although the LH trace criterion is the most simple one among
the linear spectral statistics of the matrix WT−1 (f = id), it seems to be the most
robust and powerful test on the block diagonality of the large-dimensional covari-
ance matrix. On the other hand, the corrected LR and Wilk’s criteria cannot be
recommended, if the size of the first block is much smaller than the size of the
second one.

REMARK 5. A possible reason for the superior performance of the LH test
are the specific alternatives considered in our numerical experiments. In particular,
results coincide with the findings in Pillai and Jayachandran (1967), where the

FIG. 9. Empirical power of different tests for block diagonality for sample size n = 100, dimension
p = 60 and various values of p1 = 50,30,10 as a function of the correlation coefficient ρ = σ12

σ in
[0,0.06] and sparsity level of 50%.
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LH test showed the best performance in the case, where the eigenvalues of the
matrix �−1

22 �21�
−1
11 �12 are far apart. Thus, taking very sparse or other full rank

alternatives could have an considerable impact on the dominance property of the
LH test.

APPENDIX A: PROOFS

PROOF OF PROPOSITION 2. Because W and T are positive semi-definite we
have

P
(
λmax

(
WT−1)

> lr
) ≤ P

(
λmax(W)λmax

(
T−1)

> lr
)

≤ P
(
λmax(W) > lr(1 − √

γ2)
2) + o

(
n−k),(A.1)

where the last inequality follows from inequality (1.9b) in Bai and Silverstein
(2004). Furthermore, using this inequality again and (4.12) we get

P
(
λmax(W) > lr(1 − √

γ2)
2)

≤P
(
2λmax

(
1/p1XX�) + 2λmax

(
MM�)

> lr(1 − √
γ2)

2)
≤ P

(
λmax

(
1/p1XX�)

>
lr

2
(1 − √

γ2)
2 − λmax(R)(1 + √

c1)
2
)

+ o
(
n−k).(A.2)

Finally, combining (A.1), (A.2) and using (4.7) with lr > r , we arrive at

P
(
λmax

(
WT−1)

> lr
) ≤ P

(
λmax

(
1/p1XX�)

> (1 + √
γ1)

2) + o
(
n−k) = o

(
n−k),

where the last equality follows again from (1.9a) of Bai and Silverstein (2004).
�

PROOF OF THEOREM 2. Since (n − p1)T ∼ Wp−p1(n − p1,�22·1),
p1W|S11 ∼ Wp−p1(p1,�22·1,�1) with �1 = �1(S11) = �−1

22·1�21�
−1
11 S11�

−1
11 ×

�12 = �−1
22·1MM�, S11 ∼ Wp1(n,�11), and T is independent of W and S11 we

get the following stochastic representations for T and W expressed as2

W d= 1

p1
�

1/2
22·1

(
X + �

−1/2
22·1 M

)(
X + �

−1/2
22·1 M

)�
�

1/2
22·1,

T d= 1

n − p1
�

1/2
22·1YY��

1/2
22·1,

2Here, we use the definition of the noncentral Wishart distribution given by Muirhead (1982),
Definition 10.3.1.
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where X ∼ Np−p1,p1(O, I ⊗ I), Y ∼ Np−p1,n−p1(O, I ⊗ I), and X, Y, S11 are
mutually independent. Then the stochastic representation of WT−1 is given by

WT−1 d= 1

p1
�

1/2
22·1

(
X + �

−1/2
22·1 M

)(
X + �

−1/2
22·1 M

)�
�

1/2
22·1

×
(

1

n − p1
�

1/2
22·1YY��

1/2
22·1

)−1
.

The last equality in distribution implies that the spectral distribution of WT−1 is
the same as the spectral distribution of W̃T̃−1 with

W̃ = 1

p1

(
X + �

−1/2
22·1 M

)(
X + �

−1/2
22·1 M

)� and T̃ = 1

n − p1
YY�.

From Theorem 2.1 of Zheng, Bai and Yao (2015a), it holds that the Stieltjes
transform of W̃T̃−1 given W̃ m

F W̃T̃−1 |W̃(z) converges to sW̃(z) which satisfies the
following equation:

(A.3) zsW̃(z) = −1 +
∫

t dH(t)

t − z(1 + γ2zsW̃(z))
,

where H(t) = HW̃(t) is the limiting spectral distribution of the matrix W̃, which is
a deterministic function following Theorem 1.1 of Dozier and Silverstein (2007).
Noting that the right-hand side of (A.3) does not depend on the condition W̃ and
rewriting (A.3), we get the limiting spectral distribution of WT−1, which is equal
to W̃T̃−1, is given by s(z) = sW̃(z) expressed as

zs(z) =
∫

zγ2(zs(z) + 1) dH(t)

t − z(1 + γ2zs(z))
= z

(
γ2zs(z) + 1

)
mH

(
z
(
γ2zs(z) + 1

))
,

where (see Theorem 1.1 of Dozier and Silverstein (2007))

mH(z) =
∫

(1 + γ1mH(z)) dH̃ (t)

t − (1 + γ1mH(z))[(1 + γ1mH(z))z − (1 − γ1)]
= (

1 + γ1mH(z)
)
m

H̃

((
1 + γ1mH(z)

)[(
1 + γ1mH(z)

)
z − (1 − γ1)

])
with H̃ the limiting spectral distribution of

R̃ = 1/p1�
−1/2
22·1 �21�

−1
11 S11�

−1
11 �12�

−1/2
22·1

= c−1
1,n1/n�

−1/2
22·1 �21�

−1
11 S11�

−1
11 �12�

−1/2
22·1 ,

satisfying the following equation:

m
H̃

(z) =
∫

(1 − (c − c1) − (c − c1)zmH̃
(z))−1 dG(t)

c−1
1 t − z

1−(c−c1)−(c−c1)zmH̃
(z)
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= c−1
1

(
1 − (c − c1) − (c − c1)zmH̃

(z)
)−1

× mG

(
c1z

1 − (c − c1) − (c − c1)zmH̃
(z)

)

where G(t) is the limiting spectral distribution of the matrix R = �
−1/2
22·1 �21�

−1
11 ×

�12�
−1/2
22·1 which is deterministic as well. �

In the proof of Theorem 3, we make use of the following lemma which sim-
plifies the conditions used in Theorem 2.2 of Zheng, Bai and Yao (2015a) and
is proved in Appendix B of the Supplementary Material (see Bodnar, Dette and
Parolya (2019)).

LEMMA 1. Conditionally on S11, the distribution of the matrix WT−1 solely
depends on the eigenvalues of the noncentrality matrix �1(S11) and does not de-
pend on the corresponding eigenvectors. Moreover, the unconditional distribution
of the eigenvalues of matrix WT−1 depends only on the eigenvalues of the matrix
�−1

11 �12�
−1
22·1�21.

The results of Lemma 1 shows that both the unconditional distribution of the
eigenvalues of WT−1 and its conditional distribution given S11 depend only on the
eigenvalues of �1(S11) and of R̃ = 1/p1�

−1/2
22·1 �21�

−1
11 S11�

−1
11 �12�

−1/2
22·1 , respec-

tively, for any fixed dimension p and sample size n. Consequently, without loss of
generality both matrices �1(S11) and of R̃ can be taken as diagonal. These sim-
plify the validation of the conditions present in Theorem 2.2.1 and Theorem 2.2.2
of Yao (2013).

PROOF OF THEOREM 3. Throughout the proof of Theorem 3, we assume that
the complex number z belongs to the arbitrary positively oriented contour C, which
contains the limiting support [0, r]. We consider

(A.4)

(p − p1)
(
m

F WT−1 (z) − sn(z)
)

= (p − p1)
(
m

F WT−1 (z) − s∗
n(z)

) + (p − p1)
(
s∗
n(z) − sn(z)

)
,

where sn(z) and s∗
n(z) are unique roots of the following equations:

zsn(z) = −1 +
∫

t dHn(t)

t − z(1 + γ2,nzsn(z))
,(A.5)

zs∗
n(z) = −1 +

∫
t dF W

n (t)

t − z(1 + γ2,nzs∗
n(z))

(A.6)

with γ2,n = p−p1
n−p1

. The symbol Hn denotes the discretized limiting distribution of

W with γ2 replaced by γ2,n and F W
n stands for the empirical spectral distribution

of W.
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Following the proof of Theorem 2.2 by Zheng, Bai and Yao (2015a), we get
that the first summand (p − p1)(mF WT−1 (z) − s∗

n(z)) in (A.4) conditionally on the
matrix W converges to a Gaussian process M1(z) with the mean function

(A.7) E
(
M1(z)

) = γ2b
3(z)

z2q2(z)

∫
t dH(t)

(t/z − b(z))3 = 1

2
(log

(
q(z)

)′
and the covariance function

Cov
(
M1(z1),M1(z2)

) = 2
(z1b(z1))

′(z2b(z2))
′

(z1b(z1) − z2b(z2))2

= 2
∂ log((z1b(z1) − z2b(z2)))

∂z1 ∂z2
,(A.8)

where

b(z) = 1 + γ2zs(z),

q(z) = 1 − γ2

∫
b2(z) dH(t)

(t/z − b(z))2(A.9)

for z1 and z2 from C. Since all quantities in (A.7)–(A.9) do not depend on the con-
dition W, we get that this is also the unconditional distribution and both summands
in (A.4) are independent.

Next, we derive the asymptotic distribution of the second summand (p −
p1)(s

∗
n(z) − sn(z)) in (A.4). Let

b∗
n(z) = 1 + γ2,nzs

∗
n(z) and bn(z) = 1 + γ2,nzsn(z).

Then, by using the definition of the Stieltjes transform, (A.5), and (A.6) we get

(p − p1)
(
s∗
n(z) − sn(z)

)
= (p − p1)

(
b∗
n(z)mF W

n

(
zb∗

n(z)
) − bn(z)mHn

(
zbn(z)

))
= (p − p1)

(
b∗
n(z) − bn(z)

)
mF W

n

(
zb∗

n(z)
)

+ (p − p1)bn(z)
(
mF W

n

(
zb∗

n(z)
) − mF W

n

(
zbn(z)

))
+ (p − p1)bn(z)

(
mF W

n

(
zbn(z)

) − mHn

(
zbn(z)

))
= (p − p1)γ2,nz

(
s∗
n(z) − sn(z)

)
mF W

n

(
zb∗

n(z)
)

+ (p − p1)bn(z)γ2,nz
2(

s∗
n(z) − sn(z)

) ∫
dFW

n (t)

(t − zb∗
n(z))(t − zbn(z))

+ (p − p1)bn(z)
(
mF W

n

(
zbn(z)

) − mHn

(
zbn(z)

))
.
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Hence,

(p − p1)
(
s∗
n(z) − sn(z)

)
= (p − p1)

(
mF W

n

(
zbn(z)

) − mHn

(
zbn(z)

))
× bn(z)

1 − γ2,nzmF W
n

(zb∗
n(z)) − bn(z)γ2,nz2

∫ dFW
n (t)

(t−zb∗
n(z))(t−zbn(z))

,

where

bn(z)

1 − γ2,nzmF W
n

(zb∗
n(z)) − bn(z)γ2,nz2

∫ dFW
n (t)

(t−zb∗
n(z))(t−zbn(z))

a.s.→ θb,H (z) = b(z)

1 − γ2zmH(zb(z)) − b(z)γ2z2
∫ dH(t)

(t−zb(z))2

= b2(z)

q(z)
,

where the last equality follows from (A.9) and

(A.10) γ2zb(z)mH

(
zb(z)

) = b(z) − 1.

Next, we derive the asymptotic distribution of (p − p1)(mF W
n

(zbn(z)) −
mHn(zbn(z))). It holds that

(p − p1)
(
mF W

n

(
zbn(z)

) − mHn

(
zbn(z)

))
= (p − p1)

(
mF W

n

(
zbn(z)

) − m
H

S11
n

(
zbn(z)

))
(A.11)

+ (p − p1)
(
m

H
S11
n

(
zbn(z)

) − mHn

(
zbn(z)

))
(A.12)

where m
H

S11
n

(z) and mHn(z) are the unique solutions of the equations

m
H

S11
n

(z)

(1 + γ1,nm
H

S11
n

(z))

=
∫

dF R̃
n (t)

t − (1 + γ1,nm
H

S11
n

(z))[(1 + γ1,nm
H

S11
n

(z))z − (1 − γ1,n)] ,(A.13)

mHn(z)

(1 + γ1,nmHn(z))

=
∫

dH̃n(t)

t − (1 + γ1,nmHn(z))[(1 + γ1,nmHn(z))z − (1 − γ1,n)] ,(A.14)

where R̃ = 1/p1�
−1/2
22·1 �21�

−1
11 S11�

−1
11 �12�

−1/2
22·1 , H̃n(t) stands for its discretized

limiting spectral distribution, and F R̃
n (t) is the empirical spectral distribution of R̃.
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First, we consider the second summand in (A.12). Let

b̃∗
n(z) = 1 + γ1,nm

H
S11
n

(z) and b̃n(z) = 1 + γ1,nmHn(z).

Similarly, using the definition of Stieltjes transform, (A.13) and (A.14) one can
write

(p − p1)
(
m

H
S11
n

(z) − mHn(z)
)

= (p − p1)b̃
∗
n(z)mF R̃

n

(
b̃∗
n(z)

(
b̃∗
n(z)z − (1 − γ1,n)

))
− (p − p1)b̃n(z)mH̃n

(
b̃n(z)

(
b̃n(z)z − (1 − γ1,n)

))
= (p − p1)

(
b̃∗
n(z) − b̃n(z)

)
m

F R̃
n

(
b̃∗
n(z)

(
b̃∗
n(z)z − (1 − γ1,n)

))
+ (p − p1)b̃n(z)

[
m

F R̃
n

(
b̃∗
n(z)

(
b̃∗
n(z)z − (1 − γ1,n)

))
− m

F R̃
n

(
b̃n(z)

(
b̃n(z)z − (1 − γ1,n)

))]
+ (p − p1)b̃n(z)

[
m

F R̃
n

(
b̃n(z)

(
b̃n(z)z − (1 − γ1,n)

))
− m

H̃n

(
b̃n(z)

(
b̃n(z)z − (1 − γ1,n)

))]
= (p − p1)γ1,n

(
m

H
S11
n

(z) − mHn(z)
)
m

F R̃
n

(
b̃∗
n(z)

(
b̃∗
n(z)z − (1 − γ1,n)

))
+ (p − p1)b̃n(z)γ1,n

(
m

H
S11
n

(z) − mHn(z)
)(

z
(
b̃∗
n + b̃n

) − (1 − γ1,n)
)

×
∫

dF R̃
n (t)

[t − (b̃∗
n(z)(b̃

∗
n(z)z − (1 − γ1,n)))][t − (b̃n(z)(b̃n(z)z − (1 − γ1,n)))]

+ (p − p1)b̃n(z)
[
m

F R̃
n

(
b̃n(z)

(
b̃n(z)z − (1 − γ1,n)

))
− m

H̃n

(
b̃n(z)

(
b̃n(z)z − (1 − γ1,n)

))]
.

Rearranging terms, we get

(p − p1)
(
m

H
S11
n

(z) − mHn(z)
)

= (p − p1)
[
m

F R̃
n

(
b̃n(z)

(
b̃n(z)z − (1 − γ1,n)

))
− m

H̃n

(
b̃n(z)

(
b̃n(z)z − (1 − γ1,n)

))]
× b̃n(z)

(
1 − γ1,nmF R̃

n

(
b̃∗
n(z)

(
b̃∗
n(z)z − (1 − γ1,n)

))
− b̃n(z)γ1,n

(
z
(
b̃∗
n + b̃n

) − (1 − γ1,n)
)
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×
∫

dF R̃
n (t)

/([
t − (

b̃∗
n(z)

(
b̃∗
n(z)z − (1 − γ1,n)

))]

× [
t − (

b̃n(z)
(
b̃n(z)z − (1 − γ1,n)

))]))−1
,

where

b̃n(z)

(
1 − γ1,nmF R̃

n

(
b̃∗
n(z)

(
b̃∗
n(z)z − (1 − γ1,n)

))
− b̃n(z)γ1,n

(
z
(
b̃∗
n + b̃n

) − (1 − γ1,n)
)

×
∫

dF R̃
n (t)

/([
t − (

b̃∗
n(z)

(
b̃∗
n(z)z − (1 − γ1,n)

))]

× [
t − (

b̃n(z)
(
b̃n(z)z − (1 − γ1,n)

))]))−1

a.s.→ θ
b̃,H̃

(z)

= b̃(z)
/(

1 − γ1mH̃

(
b̃(z)

[
b̃(z)z − (1 − γ1)

])

− b̃(z)γ1
(
2zb̃(z) − (1 − γ1)

) ∫
dH̃ (t)

[t − (b̃(z)(b̃(z)z − (1 − γ1)))]2

)
,

where b̃(z) is given in (4.10).
The application of Lemma 1.1 in Bai and Silverstein (2004) proves that (p −

p1)(m
H

S11
n

(zbn(z)) − mHn(zbn(z))) converges to a Gaussian process M3(z) with

the mean function

E
(
M3(z)

) = θ
b̃,H̃

(
zb(z)

) c2
1

∫
m3

H̃
(zb(z))t2(c1 + tm

H̃
(zb(z)))−3 dG(t)

(1 − c1
∫

m2
H̃

(zb(z))t2(c1 + tm
H̃

(zb(z)))−2 dG(t))2

and the covariance function

Cov
(
M3(z1),M3(z2)

) = 2θ
b̃,H̃

(
z1b(z1)

)
θ
b̃,H̃

(
z2b(z2)

)

×
(

∂

∂(z1b(z1))

m
H̃

(z1b(z1))
∂

∂(z2b(z2))
m

H̃
(z2b(z2))

(m
H̃

(z1b(z1)) − m
H̃

(z2b(z2)))2

− 1

(z1b(z1) − z2b(z2))2

)
,

where m
H̃

(z) = −1−c1
z

+ c1mH̃
(z) and G(t) is the limiting spectral distribution of

the matrix R = �
−1/2
22·1 �21�

−1
11 �12�

−1/2
22·1 .

In order to derive the asymptotic distribution of the first summand in (A.11),
we use the results in Yao (2013) to the conditional distribution of (p − p1) ×
(mF W

n
(zbn(z)) − m

F
S11
n

(zbn(z))) given S11.
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From the proof of Theorem 2, we know that the empirical spectral distribution
of W is the same as of W̃ given by

W̃ =
(

1√
p1

X + 1√
p1

�
−1/2
22·1 M

)(
1√
p1

X + 1√
p1

�
−1/2
22·1 M

)�
,

with M = �21�
−1
11 S1/2

11 . Furthermore, following Lemma 1 it is enough to con-

sider the case where �
−1/2
22·1 MMT �

−1/2
22·1 is diagonal and, consequently, �

−1/2
22·1 M is

pseudo-diagonal.
Finally, in using that X consists of i.i.d. entries which are normally dis-

tributed and applying the results of Section 2.2.2 in Yao (2013), we get that
(p − p1)(mF W

n
(zbn(z)) − m

F
S11
n

(zbn(z))) converges to a Gaussian process M2(z)

with the mean function E(M2(z)) and Cov(M2(z1),M2(z2)) given in the following
lemma which is proved below the proof of the theorem.

LEMMA 2. The random process (p − p1)(mF W
n

(zbn(z)) − m
F

S11
n

(zbn(z)))

converges to a Gaussian process M2(z) with the mean function E(M2(z)) and
Cov(M2(z1),M2(z2)) given by

E
(
M2(z)

) = B
(
zb(z)

)
and the covariance function

Cov
(
M2(z1),M2(z2)

) = 2
∂2 log(z1b(z1)η(z1b(z1)) − z2b(z2)η(z2b(z2)))

∂(z1b(z1)) ∂(z2b(z2))

which are independent of S11. The functions B(z), δ(z), 
(z), ξ(z) and η(z) are
given by (4.11), (4.3), (4.6), (4.5) and (4.4), respectively.

The proof of Lemma 2 can be found in Appendix B of the Supplementary Ma-
terial (see Bodnar, Dette and Parolya (2019)). Thus, merging the results for the
independent asymptotic processes M2(z) and M3(z), we get

(p − p1)
(
s∗
n(z) − sn(z)

) → θb,H (z)
(
M2(z) + M3(z)

)
,

that is, converges to a Gaussian process with mean and covariance functions given
by

θb,H (z)

(
B

(
zb(z)

) + θ
b̃,H̃

(
zb(z)

)

× c2
1

∫
m3

H̃
(zb(z))t2(c1 + tm

H̃
(zb(z)))−3 dG(t)

(1 − c1
∫

m2
H̃

(zb(z))t2(c1 + tm
H̃

(zb(z)))−2 dG(t))2

)
(A.15)
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and

2θb,H (z1)θb,H (z2)

[
∂2 log(z1b(z1)η(z1b(z1)) − z2b(z2)η(z2b(z2)))

∂(z1b(z1)) ∂(z2b(z2))

+ θ
b̃,H̃

(
z1b(z1)

)
θ
b̃,H̃

× (
z2b(z2)

)( ∂
∂(z1b(z1))

m
H̃

(z1b(z1))
∂

∂(z1b(z1))
m

H̃
(z2b(z2))

(m
H̃

(z1b(z1)) − m
H̃

(z2b(z2)))2

− 1

(z1b(z1) − z2b(z2))2

)]
,(A.16)

respectively. Remind that H is the asymptotic spectral distribution of the matrix
W (and, thus, of W̃). Furthermore, it holds

θb,H (z1)θb,H (z2)
∂2 log(z1b(z1)η(z1b(z1)) − z2b(z2)η(z2b(z2)))

∂(z1b(z1)) ∂(z2b(z2))

= b2(z1)

q(z1)(z1b(z1))′
b2(z2)

q(z2)(z2b(z2))′

× ∂2 log(z1b(z1)η(z1b(z1)) − z2b(z2)η(z2b(z2)))

∂z1 ∂z2

= ∂2 log(z1b(z1)η(z1b(z1)) − z2b(z2)η(z2b(z2)))

∂z1 ∂z2
,(A.17)

where the last equality in (A.17) follows from (A.10) and

q(z)
(
zb(z)

)′ = (
1 − γ2

(
b(z)z

)2 m′
H (zb(z))

(zb(z))′
)(

zb(z)
)′

= (
zb(z)

)′ − (
zb(z)

)2
(
− 1

z2 + (zb(z))′

(zb(z))2

)
= b2(z).

Similarly, we get

θb,H (z1)θb,H (z2)

( ∂
∂z1b(z1)

m
H̃

(z1b(z1))
∂

∂z2b(z2)
m

H̃
(z2b(z2))

(m
H̃

(z1b(z1)) − m
H̃

(z2b(z2)))2

− 1

(z1b(z1) − z2b(z2))2

)

= b2(z1)

q(z1)(z1b(z1))′
b2(z2)

q(z2)(z2b(z2))′
∂2 log(

m
H̃

(z1b(z1))−m
H̃

(z2b(z2))

z1b(z1)−z2b(z2)
)

∂z1 ∂z2

= ∂2 log(
m

H̃
(z1b(z1))−m

H̃
(z2b(z2))

z1b(z1)−z2b(z2)
)

∂z1 ∂z2
.(A.18)
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At last, combining the results (A.7), (A.8), (A.15), (A.16) together with (A.17)
and (A.18) we get that the process (p −p1)(mF WT−1 (z)− sn(z)) is asymptotically
Gaussian with mean and covariance functions given by

1

2
d log

(
q(z)

) + θb,H (z)

(
B

(
zb(z)

)

+ θ
b̃,H̃

(
zb(z)

) c2
1

∫
m3

H̃
(zb(z))t2(c1 + tm

H̃
(zb(z)))−3 dG(t)

(1 − c1
∫

m2
H̃

(zb(z))t2(c1 + tm
H̃

(zb(z)))−2 dG(t))2

)

and

2
[
∂2 log(z1b(z1)η(z1b(z1)) − z2b(z2)η(z2b(z2)))

∂z1 ∂z2

+ θ
b̃,H̃

(
z1b(z1)

)
θ
b̃,H̃

(
z2b(z2)

)(∂2 log(
m

H̃
(z1b(z1))−m

H̃
(z2b(z2))

z1b(z1)−z2b(z2)
)

∂z1 ∂z2

)]
.

Since the process of interest (p − p1)(mF WT−1 (z) − sn(z)) = M1,n + M2,n +
M3,n forms a tight sequence (see Bai and Silverstein (2004), Yao (2013) and
Zheng, Bai and Yao (2015a)), the Cauchy integral formula leads to

(A.19)

p−p1∑
i=1

f (λi) − (p − p1)

∫
f (x)Fn(dx)

= − 1

2πi

∮
f (z)(p − p1)

(
m

F WT−1 (z) − sn(z)
)
dz,

where λi is the ith eigenvalue of the matrix WT−1 and f is an arbitrary ana-
lytic function with support containing the interval [0, r], which itself contains the
asymptotic spectrum of the matrix WT−1. The application of (A.19) to our process
together with some elementary calculus lead to the result of the theorem. �
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SUPPLEMENTARY MATERIAL

Supplement to “Testing for independence of large dimensional vectors”
(DOI: 10.1214/18-AOS1771SUPP; .pdf). The supplementary material contains the
proofs of Theorem 1, Lemma 1–2 and additional simulations provided in Fig-
ures 10–14.
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