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PROJECTED SPLINE ESTIMATION OF THE NONPARAMETRIC
FUNCTION IN HIGH-DIMENSIONAL PARTIALLY LINEAR

MODELS FOR MASSIVE DATA

BY HENG LIAN1, KAIFENG ZHAO AND SHAOGAO LV2

City University of Hong Kong, Philips Research China and Nanjing Audit
University

In this paper, we consider the local asymptotics of the nonparametric
function in a partially linear model, within the framework of the divide-
and-conquer estimation. Unlike the fixed-dimensional setting in which the
parametric part does not affect the nonparametric part, the high-dimensional
setting makes the issue more complicated. In particular, when a sparsity-
inducing penalty such as lasso is used to make the estimation of the linear
part feasible, the bias introduced will propagate to the nonparametric part.
We propose a novel approach for estimation of the nonparametric function
and establish the local asymptotics of the estimator. The result is useful for
massive data with possibly different linear coefficients in each subpopulation
but common nonparametric function. Some numerical illustrations are also
presented.

1. Introduction. In this paper, we consider divide-and-conquer methodol-
ogy for high-dimensional partially linear models, focusing on the estimation and
asymptotic distribution of the nonparametric function. In recent years, there has
been an increasing research interest on dealing with data sets so large that they
need to be partitioned into smaller subsets to be analyzed one by one, or even to
be distributed to multiple local machines to be analyzed, due to the whole data
set is too large to be loaded into a single machine. The final estimator is typically
obtained by averaging the local estimates. For example, Chen and Xie (2014) con-
sidered averaging the local estimates for generalized linear models after dividing
the data, Zhang, Duchi and Wainwright (2015) studied the nonparametric problem
of averaging the local kernel ridge estimates and Kleiner et al. (2014) proposed
averaging the bootstrap estimates after subsampling the original data, calling their
method “bag of little bootstraps.” The common messages of these works, roughly
speaking, is that the divide-and-conquer approach yields a pooled estimator of
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the same statistical performance as the estimator using the entire sample. Shi, Lu
and Song (2017) and Banerjee, Durot and Sen (2017) established that the pooled
estimator even outperforms the estimator based on the entire sample in some non-
standard problems where the convergence rate is slower than

√
n.

For semiparametric models, Zhao, Cheng and Liu (2016) considered a pooled
estimator of the nonparametric function in a partially linear model and found that
as long as the number of partitions does not grow too fast and the smoothing pa-
rameter is chosen according to the entire sample size N , the asymptotic properties
of the estimator can be the same as the estimator based on the entire data. Fur-
thermore, it was shown under appropriate assumptions the existence of the fixed-
dimensional linear part in a partially linear model does not affect the estimation
of the nonparametric function, and the aggregated estimator possesses the same
asymptotic distribution as the “oracle estimate” computed when all data, as well
as the linear coefficients, are available. A natural open question is that whether
and how the asymptotic distribution of the nonparametric part is affected by the
unknown linear part in the high-dimensional setting with possibly p > N . Even
if the entire data is analyzed without a divide-and-conquer strategy, the answer to
this question seems unclear. It turns out aggregating the standard spline estima-
tor of the nonparametric function when a lasso penalty is used for the linear part
does not work in the high-dimensional setting and the high-dimensional linear part
needs to be dealt with carefully.

The high-dimensional partially linear model can be motivated by the genetic
study where a response variable is related to a large set of genes, while there is an
additional environmental variable whose relationship with the response is required
to be nonlinear possibly based on biological knowledge. Although the sample size
used in such studies is typically small due to cost consideration, after combining
different studies together the data can potentially be massive.

In this paper, we consider partially linear model estimators with a high-
dimensional linear part, with a lasso penalty for the linear part. We note even
though partially linear models with a high-dimensional linear part has been in-
vestigated, the asymptotic distribution of the nonparametric function has not been
considered in the literature. We use polynomial splines to approximate the non-
parametric functions (Huang, Zhang and Zhou (2007), Liang and Li (2009), Xie
and Huang (2009)) which is computationally more convenient than using kernel-
based estimation (Fan and Yao (2003), Härdle and Liang (2007)). For spline esti-
mators with a lasso penalty, both the nonparametric part and the parametric part
can be estimated simultaneously in a single step. However, the resulting shrinkage
bias of the linear part will propagate to the nonparametric part. In particular, this
makes it hard to establish the asymptotic distribution of the nonparametric func-
tion, unless the dimension of the parametric part is sufficiently small, or at least
the number of nonzero components in the linear part is sufficiently small, so that
its convergence rate is dominated by the convergence rate of the nonparametric
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part. In this paper, we propose a novel estimation method for the nonparamet-
ric function, which we call a projected spline estimator, since it is related to the
projection/profile technique often used in semiparametric models. The projection
alleviates bias and makes it possible to establish its asymptotic normality under
reasonable conditions.

Our results directly apply to the setting where the data are naturally partitioned
into subpopulations and the true linear coefficients in different subpopulations
are allowed to be different (see model (2.2)). This is an extension to the high-
dimensional setting of the heterogeneous data context considered in Zhao, Cheng
and Liu (2016). The latter focused on fixed-dimensional problems without a lasso
penalty in which the linear part has a

√
n convergence rate and is asymptotically

unbiased, and thus does not affect the convergence rate of the nonparametric part.
On the other hand, we argue that the bias in the high-dimensional linear part can
have a nontrivial effect on the estimator of the nonparametric part.

The main contribution of this work is to establish the asymptotic distribution of
the aggregated estimator for the nonparametric function in a massive data setting
where the entire dataset is partitioned into subpopulations. The partition is neces-
sary due to the data set is too big to be analyzed simultaneously. The nonparamet-
ric functions are assumed to be the same across subpopulations, while the linear
part can be the same or different in different subpopulations. To deal with the bias
from the penalized estimation of the linear part, our proposed projection/profile
approach is similar to the one often used in the literature for parametric and semi-
parametric models (Li (2000), Wang et al. (2011)). However, as far as we know,
there is no work that explicitly used the projection for the estimation of the non-
parametric function, due to that it is not useful in the fixed-dimensional setting.
A further technical challenge here is that we are trying to profile out an ultrahigh
dimensional linear part.

In the special case that the data are homogeneous (different partitions have the
same linear coefficients), aggregation of the linear part is also of interest, which
has been considered in Lv and Lian (2017) in a reproducing kernel Hilbert space
framework, and thus we do not consider distributed estimation of the linear part
in this paper. Since Lv and Lian (2017) focused on the linear part, the problem
of bias propagation to the nonparametric part was not studied there. Compared
to the profiling procedure for the parametric part, the profile technique for the
nonparametric part here involves novel ideas and techniques.

The rest of the article is organized as follows. In the next section, we present
the model setup and explain the possible large bias when both the nonparametric
and the parametric part are estimated simultaneously. We then propose a profiled
method to address the bias problem, which makes it possible to aggregate the esti-
mators in a massive data setting. In Section 3, we present the asymptotic properties
of the estimator, followed by some simulation studies in Section 4. We conclude
with a discussion in Section 5.
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Notation. For any vector a = (aj ), ‖a‖0 = ∑
j I {aj �= 0}, ‖a‖1 = ∑

j |aj |,
‖a‖ = (

∑
j a2

j )
1/2, ‖a‖∞ = maxj |aj | denotes its �0, �1, �2 and �∞ norm, respec-

tively. For a matrix A = (aij ), we define ‖A‖ = (
∑

i,j a2
ij )

1/2, ‖A‖op its operator
norm and ‖A‖max = maxi,j |aij |. Throughout the paper, C denotes a generic posi-
tive constant whose value can be different at different places.

2. High-dimensional partially linear model. We consider the following par-
tially linear model (PLM):

yi = f (wi) + xT
i β + εi, i = 1, . . .N,(2.1)

where xi = (xi1, . . . , xip)T are the predictors in the linear part with p diverging
with, or even larger than, the sample size N and (yi,wi,xi ) are i.i.d. copies of
(y,w,x). We assume the sample size N is so large that it is impossible to analyze
the entire data set at once. So we divide observations into m parts/subpopulations
Sj , j = 1, . . . ,m with

⋃
j Sj = {1, . . . ,N}, and each is analyzed separately before

being aggregated.
Slightly more generally, we can allow the subpopulations to be heterogeneous

in the sense that the linear coefficients could be different. That is, within subpopu-
lation j ,

yi = f (wi) + xT
i β(j) + εi, i ∈ Sj .(2.2)

There is no extra complication in dealing with (2.2) compared to (2.1) using our
methodology proposed below, and thus we will stick with the more general setting
(2.2). For simplicity of notation, we always assume all subpopulations have the
same size n = N/m which is an integer.

For the nonparametric function, we consider polynomial splines for estima-
tion. Assume the support of the distribution of w is [0,1] for simplicity. Let
τ0 = 0 < τ1 < · · · < τK ′ < 1 = τK ′+1 be a partition of [0,1] into subintervals
[τk, τk+1), k = 0, . . . ,K ′ with K ′ internal knots. We only restrict our attention to
equally spaced knots. A polynomial spline of order q is a function whose restric-
tion to each subinterval is a polynomial of degree q − 1 and globally q − 2 times
continuously differentiable on [0,1]. The collection of splines with a fixed se-
quence of knots has a B-spline basis B(t) = (B1(t), . . . ,BK(t))T with K = K ′+q .
We assume the B-spline basis is normalized to have

∑K
k=1 Bk(t) = √

K . Such nor-
malization is not essential and is just imposed to simplify some expressions in
theoretical derivations later.

We assume f ∈ Cα([0,1]) with α ≥ 1, where

Cα([0,1]) = {
f : [0,1] → R,f (t)(x) is Lipschitz continuous of order r

}
,

where t is the largest integer strictly less than α and r = α − t . Then there exists a
K-vector θ0 such that

(2.3) sup
t

∣∣f (t) − BT(t)θ0
∣∣ ≤ CK−α,
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which is possible by splines’ approximation property (de Boor (2001), Huang
(2003), Schumaker (2007)). We will use a particular coefficient vector defined by

θ0 = arg min
θ

E
[(

f (w) − BT(w)θ
)2]

.(2.4)

By Theorem A.1 of Huang (2003), θ0j defined in this way satisfies (2.3).
We first study the estimators in one subpopulation, and thus suppress the su-

perscript (j) which we will use to denote the quantities based on subpopulation
j toward the end of the current section. For the linear part, when p is large, one
typically assumes the true parameter β0 is sparse in order to feasibly obtain some
good estimate of β0. We follow this tradition by assuming ‖β0‖0 = s and use a
lasso penalty on β (Tibshirani (1996)). We can estimate θ0 and β0 by

(̂θ , β̂) = arg min
θ ,β

1

2
‖Y − Zθ − Xβ‖2 + λ‖β‖1,(2.5)

where Y = (Y1, . . . , Yn)
T, Zn×K = (B(w1), . . . ,B(wn))

T, and X = (x1, . . . ,xn)
T.

In the estimation of partially linear models, often the nonparametric part is pro-
filed out first to obtain an estimator of β0. More specifically, under our current
framework, it is easy to see that for any given β , the minimizer of θ in the dis-
played above is given by

θ = (
ZTZ

)−1ZT(Y − Xβ),(2.6)

or equivalently,

θ − θ0 = (
ZTZ

)−1ZT(
ε + R − X(β − β0)

)
,(2.7)

where ε = (ε1, . . . , εn)
T, R = (r1, . . . , rn) and ri = f (wi) − BT(wi)θ0. By plug-

ging (2.6) into (2.5), we have

β̂ = arg min
β

1

2

∥∥(I − PZ)(Y − Xβ)
∥∥2 + λ‖β‖1,(2.8)

where for any matrix A, PA := A(ATA)−1AT is a projection matrix. The classical
profiled estimator in the fixed-dimensional setting without using penalty is simply

(2.9)
(
(X − PZX)T(X − PZX)

)−1
(X − PZX)TY,

the minimizer of the first term in (2.8). After obtaining β̂ , we can plug it back into
(2.6) to get

θ∗ = (
ZTZ

)−1ZT(Y − Xβ̂),

which we call the plug-in estimator.
Except for the projection PZ, (2.8) is basically the standard lasso problem,

and thus one expects that similar strategy such as that used in Bickel, Ritov and
Tsybakov (2009); Belloni and Chernozhukov (2013) will yield convergence rate
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‖β̂ − β0‖1 = Op(s
√

log(p ∨ N)/n) (see Theorem 3.1). After plugging β̂ into
(2.6) to obtain θ̂ , it is seen that the bias inherent in β̂ will propagate to θ̂ , and
thus we expect that the bias in β̂ makes it hard to obtain the asymptotic distribu-
tion, unless s

√
log(p ∨ N)/n is small compared to the typical convergence rate of

the nonparametric part
√

K/N . Even if s is small, s
√

log(p ∨ N)/n can still be
much larger than

√
K/N if n is small compared to N , which is a phenomenon

nonexistent in the classical setting where the entire data set is analyzed without
partitioning. Note that in the big data setting where there are multiple partitions,
the bias will survive aggregation and remains being the same order as the bias
before aggregation.

To motivate our new estimator to be proposed, by examining (2.9) we note that
the rows of X − PZX is an approximation to xi − E[x|w = wi] which is uncorre-
lated with f (wi). Thus one initial idea is to define the estimator for the nonpara-
metric part as

θ̃ = (
(Z − Xγ̂ )T(Z − Xγ̂ )

)−1
(Z − Xγ̂ )TY

= (
(Z − Xγ̂ )T(Z − Xγ̂ )

)−1
(Z − Xγ̂ )T(ε + R + Zθ0 + Xβ0),

where γ̂ ∈ R
p×K is an estimator of γ = (γ 1, . . . ,γ K) := (E[XTX])−1E[XTZ] =

(E[xxT])−1E[xBT(w)]. Note that by the definition of γ , B(wi) − γ Txi is uncor-
related with xi . We call θ̃ the naive profiled estimator.

However, although (Z − Xγ )TX has mean zero due to the projection, the non-
stochastic terms are still too large for our purpose. In fact, by easy algebra, we
have

θ̃ − θ0 = (
(Z − Xγ̂ )T(Z − Xγ̂ )

)−1
(Z − Xγ̂ )TY − θ0

= (
(Z − Xγ̂ )T(Z − Xγ̂ )

)−1
(Z − Xγ̂ )T(

ε + R + X(γ̂ θ0 + β0)
)
,(2.10)

and (Z − Xγ̂ )TX(γ̂ θ0 + β0) turns out to be too large for our purpose. We thus
make two key modifications. The first and more obvious change is to replace Y by
Y − Xβ̂ so that Xβ0 in the expression above will become X(β0 − β̂). The second
and less obvious change is to replace ((Z−Xγ̂ )T(Z−Xγ̂ ))−1 by ((Z−Xγ̂ )TZ)−1

whose purpose is to remove Xγ̂ θ0. In fact, with these changes, now we define

θ̂ = (
(Z − Xγ̂ )TZ

)−1
(Z − Xγ̂ )T(Y − Xβ̂),

and by substituting Y = ε + R + Zθ0 + Xβ0 and subtracting θ0 from both sides,
we easily get (note θ0 has disappeared in the right-hand side below)

θ̂ − θ0 = (
(Z − Xγ̂ )TZ

)−1
(Z − Xγ̂ )

(
ε + R − X(β̂ − β0)

)
,

and we will establish the asymptotic normality of this estimator. Note also that
compared with (2.7), ZTX(β̂ − β0) is replaced with (Z − Xγ̂ )TX(β̂ − β0) with
the latter hopefully being of a smaller order due to that (Z−Xγ )TX has mean zero.
θ̂ is our proposed (profiled) estimator. Although in form the difference between θ̃
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and θ̂ is minor, without careful analysis it is hard to see beforehand why θ̂ works
while θ̃ does not.

Since E[xxT] is a large p × p matrix, we need additional assumptions to esti-
mate γ . Among possibly multiple approaches, for example, by assuming sparsity
of (E[xxT])−1, we adopt the more direct approach of assuming the sparsity of γ .
More specifically, we assume ‖γ k‖0 ≤ sk and for simplicity of notation assume
s1 = · · · = sK = s. Note γ k can be interpreted as the coefficients when regressing
Bk(w) on x, and thus sparsity of γ k can be naturally assumed as for the standard
lasso approach in a regression framework. Furthermore, we can define the estima-
tor of γ k by

(2.11) γ̂ k = arg min
1

2
‖Zk − Xγ k‖2 + λk‖γ k‖1,

where Zk is the kth column of Z and λk > 0 is a tuning parameter. Again for
simplicity, since γ k has the same sparsity as β0, we can use λ1 = · · · = λK = λ. In
practice, we will use different λk for k = 1, . . . ,K .

Now consider the partitioned setting (2.2). Here, we can first estimate β
(j)
0 by

β̂
(j) = arg min

β

1

2

∥∥(I − PZ(j))
(
Y(j) − X(j)β

)∥∥2 + λ‖β‖1,(2.12)

where Y(j), Z(j)
n×K and X(j)

n×p are defined as before, using only observations in Sj .
Then we compute

θ̂
(j) = ((

Z(j) − X(j)γ̂ (j))TZ(j))−1(
Z(j) − X(j)γ̂ (j))T(

Y(j) − X(j)β̂
(j))

,

where γ̂ (j) = (γ̂
(j)
1 , . . . , γ̂

(j)
K ) is obtained from (2.11) using only observations in

Sj .

Once we obtained θ̂
(j)

, j = 1, . . . ,m, these m estimates can be pooled to finally
yield

θ̌ = 1

m

m∑
j=1

θ̂
(j)

.

In particular, f (x) is estimated by f̌ (x) = BT(x)θ̌ .

3. Asymptotic properties. The following assumptions are adopted to show
the asymptotic properties under model (2.2), and treat (2.1) as a special case.

(A1) The observations in different subpopulations are independent and are in-
dependent and identically distributed within each subpopulation satisfying model
(2.2).

(A2) w has a density whose support is [0,1] and is bounded away from zero
and infinity. The error has variance σ 2 and is independent of predictors with a
sub-Gaussian distribution.
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(A3) f ∈ Cα([0,1]) with α ≥ 1. Here,

Cα([0,1]) = {
f : [0,1] → R,f (t)(x) is Lipschitz continuous of order r

}
,

where t is the largest integer strictly less than α and r = α − t .
(A4) x = (x1, . . . , xp)T has sub-Gaussian components and eigenvalues of

E[xxT] are bounded away from zero and infinity. Let hik = xi (Bk(wi) − xT
i γ k)

and we assume hik has subexponential components (note hik has mean zero by the
definition of γ ) with parameters (C1,C2

√
K) for some constants C1,C2 > 0.

(A5) E[xj |w] as a function of w is in Cα′
([0,1]) with some α′ ≥ 1. We use B-

splines with order q ≥ max{α,α′}. Eigenvalues of E[(x −E[x|w])(x −E[x|w])T]
are bounded away from zero and infinity.

(A6) The true parameter β
(j)
0 is sparse with ‖β(j)

0 ‖0 ≤ s. We also assume
‖γ k‖0 ≤ s. Furthermore, ‖γ k‖1 is bounded.

(A7) (restricted eigenvalue condition) For some constants c > 1 and κ > 0,

inf‖δT c‖1≤c‖δT ‖1

‖(X − E[X|w])δ‖√
N‖δ‖ ≥ κ,

where T = {j : |β0j | �= 0} and δT is the subvector of δ containing only components
in T . Here, E[X|w] is the N × p matrix with entries E[xj |w = wi].
Some of the assumptions are standard while others call for more explanations.
Compact support for w is standard in order to construct splines, but we do not
assume xj is bounded. Sub-Gaussianity assumption for x and ε is convenient for
applying some concentration inequality. On the other hand, for xj (Bk(w)−xTγ k),
it is more reasonable to use a subexponential assumption. Chapter 2 of Wainwright
(2018) contains a comprehensive discussion of supexponential random variables.
Remember that a mean zero subexponential random variable x with parameters
(a, b) by definition satisfies that E[etx] ≤ ea2t2/2 for |t | < 1/b. If we assume that
components of x are sub-Gaussian, that the conditional density p(w|xj ) is uni-

formly bounded, then we have E[Br
k (w)|xj ] ≤ C

√
K

r−2
, and thus E[xr

jB
r
k (w)] =

E[xr
jE[Br

k (w)|xj ]] ≤ Cr!(C√
K)r−2 by Theorem 2.1(III) of Wainwright (2018).

Then by Proposition 2.3 of Wainwright (2018), xjBk(w) is subexponential with
parameters (C1,C2

√
K). Furthermore, suppose we assume xTγ k is sub-Gaussian.

This would be true, for example, if x is sub-Gaussian (in the sense that xTa is
sub-Gaussian for any unit norm vector a) and ‖γ k‖2 is bounded, or if compo-
nents of x are bounded and ‖γ k‖1 is bounded (in this case xTγ k is easily seen
to be bounded, and thus sub-Gaussian). Then xj xTγ k is subexponential (based
on the fact that product of two sub-Gaussian random variables is subexponen-
tial). These then imply the second statement of (A4). In (A6), we assume both
β

(j)
0 and γ k are sparse. Although this is common and a familiar assumption for

β
(j)
0 , sparsity of γ k is less common. But it can be motivated from the similar
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principle that motivated the sparsity of β
(j)
0 . Without sparsity assumption, it is

hard, if not impossible, to feasibly estimate γ k . This also roughly means only
a few of the components of x is related to Bk(w). On the other hand, the strict
sparsity can be relaxed. For example, one can assume the existence of an s-
sparse γ̃ k with ‖γ k − γ̃ k‖1 ≤ an where an represents sparse approximation er-
ror. Then it is easy to show that

∑
i (x

T
i (γ k − γ̃ k))

2/n ≤ Ca2
n with high proba-

bility. Following similar arguments in Theorem 1 of Belloni and Chernozhukov
(2013), we have ‖γ̂ k − γ̃ k‖1 ≤ s

√
log(p ∨ N)/n + √

sa2
n, and thus ‖γ̂ k − γ k‖1 ≤

s
√

log(p ∨ N)/n + √
sa2

n + an. A larger bound for ‖γ̂ k − γ k‖1 leads to larger
bound in the statement of Lemma 5, but does not invalidate our main results with
corresponding modification of assumptions in the statement of Theorem 3.2 below.

Similarly, the assumption that ‖γ k‖1 is bounded can be relaxed to allow it to
be (slowly) diverging. This makes the bound in Lemma 5 as well as the bound in
(3.14) and (3.15) slightly larger but it is easy to see that the assumptions in the
statement of Theorem 3.2 below can be modified accordingly so that the result
still holds. Finally, (A5) is standard in semiparametric models, for example, in
Xie and Huang (2009) and we provide a more detailed discussion of the restricted
eigenvalue condition (A7) in the Appendix.

THEOREM 3.1. Under Assumptions (A1)–(A7) and that (s2 + Ks) log(p ∨
N) = o(n), s = o(K2α′

) and that λ = C
√

n log(p ∨ N) for some C large enough,
with probability at least 1 − (p ∨ N)−C , for all m machines,∥∥β̂(j) − β

(j)
0

∥∥
1 ≤ s

√
log(p ∨ N)/n,(3.1) ∥∥γ̂ (j)

k − γ k

∥∥
1 ≤ s

√
log(p ∨ N)/n.(3.2)

Note the appearance of logN above instead of logn is due to that we require rates
uniform over all m machines.

PROOF. In the proof, we suppress the superscripts (j) and the following argu-
ments apply to each subpopulation separately.

Based on the profiled penalized least squares problem (2.8), we have

1

2

∥∥(I − PZ)(Y − Xβ̂)
∥∥2 + λ‖β̂‖1 ≤ 1

2

∥∥(I − PZ)(Y − Xβ0)
∥∥2 + λ‖β0‖1.

Using Y = ε +R+Zθ0 +Xβ0 with R = (r1, . . . , rn) and ri = f (wi)−BT(wi)θ0,
simple algebra on the displayed above yields

1

2

∥∥(I − PZ)X(β̂ − β0)
∥∥2 − (ε + R)T(I − PZ)X(β̂ − β0) + λ‖β̂T ‖1 + λ‖β̂T c‖1

≤ λ‖β0T ‖1,
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where T = {j : β0j �= 0} is the support of the true β0 while T c = {1, . . . , p}\T ,
and β0T denotes the subvector of β0 containing only components indexed by T ,
for example.

Denote � := β̂ − β0, using ‖β̂T c‖1 = ‖�T c‖1 and ‖β0T ‖1 − ‖β̂T ‖1 ≤ ‖�T ‖1,
the display above becomes

1

2

∥∥(I − PZ)X�
∥∥2 − (ε + R)T(I − PZ)X� ≤ λ‖�T ‖1 − λ‖�T c‖1.

By Lemmas 1 and 2, |(ε + R)T(I − PZ)X�| ≤ ‖(ε + R)T(I − PZ)X‖∞‖�‖1 ≤
(λ/c)‖�‖1 = (λ/c)(‖�T ‖1 + ‖�T c‖1) for some c > 1, which leads to

(3.3)
1

2

∥∥(I − PZ)X(β̂ − β0)
∥∥2 + λ

(
1 − 1

c

)
‖�T c‖1 ≤ λ

(
1 + 1

c

)
‖�T ‖1.

In particular, the above implies

‖�T c‖1 ≤ c + 1

c − 1
‖�T ‖1.(3.4)

Then Lemma 4 shows that

(3.5)
1

2

∥∥(I − PZ)X�
∥∥2 ≥ Cn‖�‖2.

Combining (3.3) and (3.5), we get

n‖�‖2
2 ≤ Cλ‖�T ‖1 ≤ Cλ

√
s‖�‖2,

or,

‖�‖ ≤ C
λ
√

s

n
.

Furthermore, by (3.4), we have

‖�‖1 = ‖�T ‖1 + ‖�T c‖1 ≤ C‖�T ‖1 ≤ C
√

s‖�‖2 ≤ C
λs

n
,

which proved (3.1).
Proof of (3.2) is similar. We have by similar arguments that, with now � =

γ̂
(j)
k − γ k and T = {j : |γ kj | �= 0},

(3.6)
1

2
‖X�‖2 − hT

k � ≤ λ‖�T ‖1 − λ‖�T c‖1,

where hk = ∑
i hik . Using Bernstein’s inequality instead of Hoeffding’s inequality

used in Lemma 2, we can have with probability at least 1 − (p ∨ N)−C , ‖hk‖∞ ≤
λ/c and the same arguments for β̂ lead to the conclusion (3.2). �

The following main result shows the asymptotic property of the estimator.
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THEOREM 3.2. Under assumptions assumed in Theorem 3.1, and that
s
√

K log(p ∨ N)/n = o(1/
√

N), s
√

log(p ∨ N)/nK−α+1/2 = o(1/
√

N),
K2 log(p ∨ N)/n = o(1/

√
N), K−α+1 log(p ∨ N)/

√
n = o(1/

√
N) and N =

o(K2α+2α′−1), we have

BT(x)(θ̌ − θ0) = BT(x)
(
E

[
(Z − Xγ )T(Z − Xγ )

])−1
(Z − Xγ )Tε + op(

√
K/N).

In particular, this implies

(3.7)
f̌ (x) − f (x) + O(K−α)

(σ 2BT(x)(NE[(B(w) − γ Tx)(B(w) − γ Tx)T])−1B(x))1/2
d→ N(0,1).

REMARK 1. The assumptions on the relative order of s,K,p,N can be eas-
ily satisfied. For example, assume α = α′ and set K  N1/(2α+1) which is the
optimal number of knots based on the entire sample, the constraints are satis-
fied when s2Kα+5/2 log2(p ∨ N) = o(n). Note that the assumptions in the state-
ment of Theorem 3.2 actually impose a constraint on m. For example, with
K  N1/(2α+1), s2Kα+5/2 log2(p ∨ N) = o(n) can be equivalently written as
m = o(

√
N/(s2K2 log2(p ∨ N))). On the other hand, there is not theoretical low

bound for m and m can be fixed or even m = 1. But our interest is in the setting
that the data is too big to be analyzed as a whole, so one wants to use large m to
alleviate computational burden.

REMARK 2. The key mechanism by which the novel projected estimator re-
duces the propagation of bias from the linear part is seen in (3.9) in the proof.
In the standard estimator based on (2.7), instead of (3.9), we would have to
bound the term ‖((Z(j))TZ(j))−1(Z(j))TX(j)(β̂

(j) − β0)‖. Even when p is fixed,
‖(Z(j))TX(j)‖ would have order O(n), and thus ‖((Z(j))TZ(j))−1(Z(j))TX(j) ×
(β̂

(j) − β0)‖ = Op(‖β̂(j) − β0‖) would fail to be smaller than 1/
√

N .

REMARK 3. For the naive profiled estimator, the term (2.10) causing trouble
that cannot be easily dealt with is((

Z(j) − X(j)γ̂ (j))T(
Z(j) − X(j)γ̂ (j)))−1(

Z(j) − X(j)γ̂ (j))TX(j)γ̂ (j)θ0.(3.8)

In fact, it can be show that, similar to the proof of Lemma 5, ‖((Z(j) −
X(j)γ̂ (j))T(Z(j) − X(j)γ̂ (j)))−1‖op = Op(1/n). Furthermore, ‖(Z(j) − X(j) ×
γ̂ (j))TX(j)‖max ≤ λ = C

√
n log(p ∨ N) by the first-order condition for estimat-

ing γ . ‖γ̂ (j)θ0‖1 can be bounded by ‖γ̂ (j)‖1‖θ0‖∞ = O(
√

K). These bounds
however lead to a bound for (3.8) that is larger than n−1/2 which is too large for
our purpose. Thus although we do not have a rigorous proof, it seems difficult to
establish asymptotic normality of θ̃ . On the other hand, when p is fixed, we can
define γ̂ (j) as the least squares solution that minimizes the first term of (2.11)
without penalization. This makes (Z(j) − X(j)γ̂ (j))TX(j) exactly equal to zero,
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and thus this problem does not appear in the fixed-dimensional case. It is also easy
to see, by following our proof of Theorem 3.2, that for the fixed-dimensional case
the asymptotic distribution of the naïve profiled estimator is the same as (3.7).

REMARK 4. Under mild assumptions, it can be shown that E[(B(w) −
γ Tx)(B(w)− γ Tx)T] has eigenvalues bounded and bounded away from zero, then
the denominator of (3.7) is of order

√
K/N since ‖B(x)‖2  K , which is the stan-

dard convergence rate for the spline-based nonparametric function estimation. In
fact, to see the order of the eigenvalues, we first assume that E[vvT] has eigen-
values bounded and bounded away from zero, where we define v = (B(w),xT)T.
Note that this is a reasonable assumption even in the high-dimensional case. Once
this is assumed, using the identity(

I,−γ T)
vvT(

I,−γ T)T = (
B(w) − γ Tx

)(
B(w) − γ Tx

)T
,

we see that E[(B(w) − γ Tx)(B(w) − γ Tx)T] has eigenvalues bounded and
bounded away from zero as long as the operator norm of γ (its largest singu-
lar value) is bounded. Given γ = (E[xxT])−1E[xBT(w)], with eigenvalues of
(E[xxT])−1 and operator norm of E[xBT(w)] bounded (this is easily seen by
(aTE[xBT(w)]b)2 ≤ (aTE[xxT]a)(bTE[B(w)BT(w)]b)), we have indeed ‖γ ‖op

is bounded.

REMARK 5. When the dimension p is fixed, we can actually show that
E[(B(w) − γ Tx)(B(w) − γ Tx)T] = E[B(w)BT(w)](1 + o(1)) so the asymptotic
distribution would reduce to the more familiar form for nonparametric regres-
sion, and the effect of the linear part would disappear. This is because, using
γ = (E[xxT])−1E[xBT(w)], we have

E
[(

B(w) − γ Tx
)(

B(w) − γ Tx
)T]

= E
[
B(w)BT(w)

] − E
[
B(w)xT](

E
[
xxT])−1

E
[
xBT(w)

]
and E[B(w)xj ] = O(1/

√
K), so the first term above of order O(1) dominates.

REMARK 6. When q = α, as shown in Zhou, Shen and Wolfe (1998) and
also mentioned in Section 5.3 of Huang (2003) (note that our definition of θ0 has
nothing to do with the linear part, and thus the bias is the same as for nonpara-
metric models), the bias can be written more explicitly as −f (q)(x)h

q
k/q!Bq((x −

τk)/hk) + o(K−d) when x ∈ (τk, τk+1] where Bq(·) is the qth Bernoulli polyno-
mial and hk = τk+1 − τk . If q ≥ α + 1, then as Huang (2003) showed, the bias
become smaller with order o(K−α).
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PROOF OF THEOREM 3.2. Using superscript (j) to denote the estimates based
on the j th subpopulation, we consider the aggregated estimator that satisfies

θ̌ − θ0 = (1/m)

m∑
j=1

((
Z(j) − X(j)γ̂ (j))TZ(j))−1

× (
Z(j) − X(j)γ̂ (j))T(

ε(j) + R(j) − X(j)(β̂(j) − β0
))

.

We have∥∥∥∥∥(1/m)

m∑
j=1

((
Z(j) − X(j)γ̂ (j))TZ(j))−1(

Z(j) − X(j)γ̂ (j))TX(j)(β̂(j) − β0
)∥∥∥∥∥

≤ max
j

∥∥((
Z(j) − X(j)γ̂ (j))TZ(j))−1(

Z(j) − X(j)γ̂ (j))TX(j)(β̂(j) − β0
)∥∥

≤ Cs
√

K log(p ∨ N)/n = o(1/
√

N),(3.9)

where we used that ‖((Z(j) − X(j)γ̂ (j))TZ(j))−1‖op is of order Op(1/n)

(Lemma 5) and ‖(Z(j) − X(j)γ̂ (j))TX(j)‖∞ ≤ λ by the KKT condition from the
definition of γ̂ (j), as well as Theorem 3.1. Thus we focus on

(3.10) (1/m)

m∑
j=1

((
Z(j) − X(j)γ̂ (j))TZ(j))−1(

Z(j) − X(j)γ̂ (j))T(
ε(j) + R(j)).

If the second appearance of γ̂ (j) above is replaced by the true γ , we get

(3.11) (1/m)

m∑
j=1

((
Z(j) − X(j)γ̂ (j))TZ(j))−1(

Z(j) − X(j)γ
)T(

ε(j) + R(j)).
The difference between (3.10) and (3.11) is∥∥∥∥∥(1/m)

m∑
j=1

((
Z(j) − X(j)γ̂ (j))TZ(j))−1(

γ̂ (j) − γ
)T(

X(j))T(
ε(j) + R(j))∥∥∥∥∥

≤ max
j

∥∥((
Z(j) − X(j)γ̂ (j))TZ(j))−1(

γ̂ (j) − γ
)T(

X(j))T(
ε(j) + R(j))∥∥

≤ max
j

∥∥((
Z(j) − X(j)γ̂ (j))TZ(j))−1∥∥

op

× √
K max

k

∥∥γ̂ (j)
k − γ k

∥∥
1

(∥∥(
X(j))T

ε(j)
∥∥∞ + ∥∥(

X(j))TR(j)
∥∥∞

)
≤ s

√
K log(p ∨ N) + √

n log(p ∨ N)sK−α+1/2

n
= o(1/

√
N),

using Theorem 3.1 and Lemma 5. Let

A(j) = [((
Z(j) − X(j)γ̂ (j))TZ(j))−1

− (
E

[
Z − Xγ )T(Z − Xγ )

])−1](
Z(j) − X(j)γ

)T
.
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We have by Lemma 5, and the identity A−1 − B−1 = A−1(B − A)B−1,

max
j

∥∥A(j)
∥∥ ≤ C

(
K/n2)(

s2 log(p ∨ N) +
√

n
(
K + log(p ∨ N)

)
logK

)√
nK.

Thus

(1/m)

m∑
j=1

(((
Z(j) − X(j)γ̂ (j))TZ(j))−1

− (
E

[(
Z(j) − X(j)γ

)T(
Z(j) − X(j)γ

)])−1)
× (

Z(j) − X(j)γ
)T(

ε(j) + R(j))
= (1/m)

m∑
j=1

A(j)(ε(j) + R(j))
= Op

(
(1/m)

√∑
j

∥∥A(j)
∥∥2 + (1/m)

√
nK−α

∑
j

∥∥A(j)
∥∥)

= Op

((
1/

√
m + √

nK−α)(
K/n2)(

s2 log(p ∨ N)

+
√

n
(
K + log(p ∨ N)

)
logK

)√
nK

)
= op(1/

√
N).

Thus

θ̌ − θ0 = 1

m

m∑
j=1

(
E

[(
Z(j) − X(j)γ

)T(
Z(j) − X(j)γ

)])−1(
Z(j) − X(j)γ

)T

× (
ε(j) + R(j)) + op(1/

√
N)

= (
E

[
(Z − Xγ )T(Z − Xγ )

])−1
(Z − Xγ )T(ε + R) + op(1/

√
N)

and

BT(x)(θ̌ − θ0) = BT(x)
(
E

[
(Z − Xγ )T(Z − Xγ )

])−1
(Z − Xγ )T(ε + R)

+ op(
√

K/N).

Although asymptotic normality can be shown from the above, we have the bias
term, based on a simple bound, BT(x)(E[(Z − Xγ )T(Z − Xγ )])−1(Z − Xγ )TR =
Op(K−α+1), while the stochastic term BT(x)(E[(Z − Xγ )T(Z − Xγ )])−1(Z −
Xγ )Tε = Op(

√
K/N). Thus undersmoothing with N/Kd−1/2 → 0 needs to be

used. To avoid this, we carry out a more careful analysis of the bias term.
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Using Lemma 6,

BT(x)
(
E

[
(Z − Xγ )T(Z − Xγ )

])−1
(Z − Xγ )R

= BT(x)
(
E

[
ZTZ

])−1ZTR

− BT(x)
(
E

[
ZTZ

])−1
E

[
ZTX

](
E

[
XTX

]
− E

[
XTZ

](
E

[
ZTZ

])−1
E

[
ZTX

])−1

× (
XT − E

[
XTZ

](
E

[
ZTZ

])−1ZT)
R

= BT(x)
(
E

[
ZTZ

])−1ZTR

− BT(x)
(
E

[
ZTZ

])−1
E

[
ZTX

](
E

[
XTX

])−1

× (
XT − E

[
XTZ

](
E

[
ZTZ

])−1ZT)
R

− BT(x)
(
E

[
ZTZ

])−1
E

[
ZTX

](
E

[
XTX

])−1
E

[
XTZ

](
E

[
ZTZ

]
− E

[
ZTX

](
E

[
XTX

])−1
E

[
XTZ

])−1

× E
[
ZTX

](
E

[
XTX

])−1(
XT − E

[
XTZ

](
E

[
ZTZ

])−1ZT)
R,(3.12)

where the last equality used the Woodbury matrix identity. By Lemma 7, and that
E[B(wi)ri] = 0 (due to the definition of θ0 in (2.4)), the first term in (3.12) is

BT(x)
(
E

[
ZTZ

])−1ZTR = Op

(√
K/NK−α) = op(

√
K/N).

Now consider the second term in (3.12). By Lemma 7, ‖BT(x)(E[ZTZ])−1γ T‖1 ≤√
K/N . Furthermore,∥∥(

XT − E
[
XTZ

](
E

[
ZTZ

])−1ZT)
R

∥∥∞
≤ ∥∥(

XT − E
[
XT|w])

R
∥∥∞

+ ∥∥(
E

[
XT|w] − E

[
XTZ

](
E

[
ZTZ

])−1ZT)
R

∥∥∞

≤
√

N log(p ∨ N)K−α + NK−α−α′
,(3.13)

using that (XT − E[XT|w])R has mean zero. Thus the second term in (3.12) is∣∣BT(x)
(
E

[
ZTZ

])−1
E

[
ZTX

](
E

[
XTX

])−1(
XT − E

[
XTZ

](
E

[
ZTZ

])−1ZT)
R

∣∣
≤ ∥∥BT(x)

(
E

[
ZTZ

])−1
γ T∥∥

1

∥∥(
XT − E

[
XTZ

](
E

[
ZTZ

])−1ZT)
R

∥∥∞

≤ (
√

K/N)
(√

N log(p ∨ N)K−α + NK−α−α′) = op(
√

K/N).(3.14)

Now consider the third term in (3.12). By Lemma 7,∥∥BT(x)
(
E

[
ZTZ

])−1
E

[
ZTX

](
E

[
XTX

])−1
E

[
XTZ

]∥∥ = O(
√

K),



HIGH-DIMENSIONAL PLM FOR MASSIVE DATA 2937

since ∥∥E[
ZT

k X
]
γ

∥∥ ≤ ∥∥E[
ZTX

]∥∥∞
√

K max
j

‖γ j‖1 ≤ C.(3.15)

Furthermore, by (3.13),∥∥E[
ZTX

](
E

[
XTX

])−1(
XT − E

[
XTZ

](
E

[
ZTZ

])−1ZT)
R

∥∥
≤ √

K max
k

‖γ k‖1
∥∥(

XT − E
[
XTZ

](
E

[
ZTZ

])−1ZT)
R

∥∥∞

= Op

(√
K

(√
N log(p ∨ N)K−α + NK−α−α′))

.

These imply the third term in (3.12) is again op(
√

K/N).
Finally, the asymptotic normality straightforwardly follows from the central

limit theorem. �

4. Simulations. We illustrate the performances of the distributed estimators
for high-dimensional partially linear models via simulations. We generate data
from model (2.2) with f (x) = 4 sin(2πx)/(2 − sin(2πx)). For the covariates, we
first generate a (p + 1)-vector x∗

i from a multivariate normal distribution with
mean zero, marginal variances 1 and all pairwise correlations equal to 0.5. Then
the first component of x∗

i is used as wi , after applying the cumulative distribution
function of the standard normal distribution to map it to [0,1], and the remaining
components of x∗

i become the components of xi . We set

β = (±1,±2,±1,±0.5,±2,0,0, . . . ,0)T,(4.1)

or

β = (±0.5,±1,±0.5,±0.25,±1,±0.5,±1, . . . ,±1︸ ︷︷ ︸
s=20

,0, . . . ,0)T,(4.2)

where the sign in the coefficients are generated randomly for each partition. While
this can create heterogeneity of data such that β assumes different values in differ-
ent partitions, it is clear that the performance of the estimators does not depend on
the sign of the components since the distribution of xi is symmetric. Also note that
the two β vectors have the same Euclidean norm. The errors are generated from
N(0,32).

The tuning parameter λ in the penalties are selected by 5-fold cross-validation
for each subpopulation. We use cubic splines in our simulation (spline order equals
4) and we set the number of internal knots to be simply N1/9, which is the theo-
retical optimal order. Since our sample size is generally large, we find the results
are insensitive to the choice of the number of knots as long as it is not too small.
For the estimation of f , we compute the centralized estimator (CE), the naive es-
timator which solves (2.5) and directly aggregates the θ estimates (NE) and the
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proposed estimator motivated by projection (PE). We compare the estimators by
mean squared errors given by

∫
(f̂ (x) − f (x))2 dx.

First, we set N = 5000, m = 1,5,10,20,25,50 (m = 1 is the centralized es-
timator) and p = 5000. The first row of Figure 1 shows errors of the estimators
that change with m, based on 200 data sets generated. We see the performances
generally deteriorate with the increase of m. For the estimation of the function f ,
we see that the proposed estimator is better than both plug-in estimator and the
naive estimator. Furthermore, for the first setting of β value (4.1), we separately
compute the bias (we take the absolute value of it for visualization) and standard
error and show them in Figure 2. We see that bias is generally larger than standard
error and both increases with m.

In the second set of simulations, we still use p = 5000 and consider larger
sample sizes N = 5000,7000,9000,11,000,13,000,15,000, and fix the number
of samples in each subpopulation to be n = 1000 (and thus the number of ma-
chines m increases with N from 5 to 15). From the reported results in the second
row of Figure 1, it is seen that the proposed estimator has errors decreasing with
total sample size, with errors close to the central estimator while the errors of the
plug-in estimator and the naive estimator are larger.

In the third setting, we fix N = 5000 and consider larger dimensions p =
5000,7000,9000,11,000,13,000 and the MSEs are shown in the third row of Fig-
ure 1. The errors are increasing with the increase of dimension as expected and
again it shows the proposed estimator works well.

Finally, we investigate the coverage probability of the pointwise confidence in-
terval for the proposed estimator with N = 5000, p = 5000 and m = 1, 5, 10,
20, 25, 50 (same as the setup used in the first simulation setting above). This is
based on the derived asymptotic normality for the proposed estimator, and thus
we cannot construct the confidence interval for the plug-in estimator and the naive
estimator. The coverage probabilities are found for the nonparametric function at
the points w = 0.1,0.2, . . . ,0.9. We observe from Figure 3 that the coverage is
satisfactory when m is small while it fails when m becomes large, for which the
coverage probability is particularly low close to the boundary.

The simulations are carried out on the computational cluster Katana in the Uni-
versity of New South Wales. For the first set of simulations, for example, com-
putation time decreases from 7 hours for the central estimator to about half an
hour with m = 10, to finish all 200 repetitions. For sample size N = 15,000 of
the second set of simulations, the central estimator takes about 20 hours while the
distributed estimator takes 2 hours to finish.

5. Conclusion. In this paper, we considered the estimation of the nonpara-
metric function in high-dimensional partially linear models. The newly proposed
estimator is designed to block partially the propagation of estimation error from
the high-dimensional linear part to the nonparametric part. This is important in
a big and/or heterogeneous data setting in which the linear part is estimated at a
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FIG. 1. First row: the MSE of estimates with m ∈ {1,5,10,15,20,25,50} (m = 1 represents the
centralized estimator) with N = p = 5000. Second row: the MSE of estimates with p = 5000 and
N ∈ {5000,7000,9000,11000,13000,15000}. Third row: the MSE of estimates with N = 5000 and
p ∈ {5000,7000,9000,11000,13000}. ◦(black): centralized estimator (CE); �(red): plug-in estima-
tor θ∗ (PIE); ×(blue): naive profile estimator θ̃ ; +(green): the proposed profile estimator θ̂ (PPE).
The left column is for β0 as in (4.1) while the right column is for β0 as in (4.2).
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FIG. 2. The absolute bias (left panel) and standard error (right panel) of estimates with
m ∈ {1,5,10,15,20,25,50} for the first set of simulations for β0 value in (4.1).

rate much slower than the estimator based on the entire sample, as is the estimate
based on a small subset of the data. We demonstrated the asymptotic normality
of the nonparametric part despite that the estimator for the linear part can only be
estimated at a slower rate.

Extension of the proposal to more complicated settings can be entertained.
These may include additive partially linear models with multiple nonparametric
functions, generalized partially linear models and models with a nonsmooth loss

FIG. 3. Coverage probabilities of CI for f (w) at w = 0.1,0.2, . . . ,0.9 for the two choices of β0.
The colors red, green, blue, cyan, magenta and gray represent the result for m = 1,5,10,20,25,50,
respectively. The left panel is for β0 as in (4.1) while the right panel is for β0 as in (4.2).
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function such as in quantile regression. These are interesting models for future
investigation.

APPENDIX: LEMMAS

In the following, the superscripts (j) are suppressed and the results in Lemmas
1–5 apply to each subpopulation.

LEMMA 1. ‖RT(I − PZ)X‖∞ ≤ λ/c for some c > 1, with probability at least
1 − (p ∨ N)−C .

PROOF. We write∥∥RT(I − PZ)X
∥∥∞

≤ ∥∥RT(
X − E[X|w])∥∥∞ + ∥∥RT(I − PZ)E[X|w]∥∥∞

+ ∥∥RTPZ
(
X − E[X|w])∥∥∞

=: I1 + I2 + I3,

where E[X|w] = (E[x|w = w1], . . . ,E[x|w = wn])T as defined previously. By
our definition of θ0, |ri | ≤ CK−α . Since ri(xij − E[xj |w = wi]) has mean zero,
Bernstein’s inequality yields

I1 ≤ C
√

nK−α
√

log(p ∨ N) ≤ C
√

n log(p ∨ N),

with probability at least 1 − (p ∨ N)−C . Similarly, all bounds below hold with
probability at least 1 − (p ∨ N)−C even without explicitly stating so.

Next, we write

I2 = ∥∥RT(I − PZ)E[X|w]∥∥∞
= ∥∥RT(I − PZ)

(
E[X|w] − Zα0

)∥∥∞
= ∥∥RT(

E[X|w] − Zα0
)∥∥∞

+ ∥∥RTZ
∥∥∥∥(

ZTZ
)−1∥∥

op max
j

∥∥ZT(
E[X|w] − Zα0j

)∥∥,
where α0 = (α01, . . . ,α0p) and α0j is such that∥∥E[X|w] − Zα0j

∥∥ ≤ C
√

nK−α′
,(A.1)

which is possible by assumption (A5).
This implies ∥∥RT(

E[X|w] − Zα0
)∥∥∞

≤ CnK−α−α′ = o(λ),(A.2)
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and ∥∥ZT(
E[X|w] − Zα0j

)∥∥ = Op

(
nK−α′)

.(A.3)

Also, by the definition of θ0, RiB1k(w1i ) has mean zero, and thus by Bernstein’s
inequality, ∥∥RTZ

∥∥ ≤ C
√

nK log(p ∨ N)K−α.(A.4)

Combining (A.2), (A.3) and (A.4), we have

I2 = op(λ).

Finally,

I3 ≤ ∥∥RTZ
∥∥∥∥(

ZTZ
)−1∥∥

op max
j

∥∥ZT(
Xj − E[Xj |w])∥∥.

Similar to the bound for I1, since ZT(Xj − E[Xj |w]) has mean zero,

max
j

∥∥ZT(
Xj − E[Xj |w])∥∥∞ ≤ C

√
nK log(p ∨ N).(A.5)

Thus

I3 = op(λ). �

LEMMA 2. With probability at least 1 − (p ∨ N)−C , ‖εT(I − PZ)X‖∞ ≤
C(

√
n log(p ∨ N)).

PROOF. By Hoeffding’s inequality, we get

P
(∥∥εT(I − PZ)X

∥∥∞ > a|{xi ,wi}) ≤ Cp exp
{
−C

a2

maxj ‖(I − PZ)Xj‖2

}
.

Using maxj ‖(I − PZ)Xj‖2 ≤ maxj ‖Xj‖2 = Op(n), we get ‖εT(I − PZ)X‖∞ ≤
C(

√
n log(p ∨ N)). �

LEMMA 3. The eigenvalues of ZTZ/n are bounded away from zero and infin-
ity, with probability at least 1 − (p ∨ N)−C .

PROOF. Since |Bk(w)Bk′(w)| ≤ K,E[B2
k (w)B2

k′(w)] ≤ CK , this is trivially
based on Bernstein’s inequality

P

(∣∣∣∣∑
i

Bk(wi)Bk′(wi) − nE
[
Bk(w)Bk′(w)

]∣∣∣∣ > a

)
< C exp

{
−C

a2

aK + nK

}
.

�
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LEMMA 4.

inf‖�T c‖1≤c‖�T ‖1

‖(I − PZ)X�‖√
n‖�‖ ≥ κ/2,

with probability at least 1 − (p ∨ N)−C .

PROOF.∥∥(I − PZ)X�
∥∥ ≥ ∥∥(

X − E[X|w])�∥∥ − ∥∥(I − PZ)E[X|w]�∥∥
− ∥∥PZ

(
X − E[X|w])�∥∥.

We have ∥∥(I − PZ)E[X|w]�∥∥2

= ∥∥(I − PZ)
(
E[X|w] − Zα0

)
�

∥∥2

≤ ‖�‖2
1
∥∥(

E[X|w] − Zα0
)T

(I − PZ)
(
E[X|w] − Zα0

)∥∥∞
≤ CnK−2α′‖�‖2

1,

where α0 is defined in (A.1), and thus∥∥(I − PZ)E[X|w]�∥∥ ≤ C
√

nK−α′‖�‖1

≤ C
√

nK−α′‖�T ‖1

≤ C
√

nK−α′√
s‖�T ‖

≤ C
√

nK−α′√
s‖�‖

= o(
√

n)‖�‖.
Furthermore, ∥∥PZ

(
X − E[X|w])�∥∥2

≤ ‖�‖2
1
∥∥(

X − E[X|w])TPZ
(
X − E[X|w])∥∥∞

≤ ‖�‖2
1
∥∥(

ZTZ
)−1∥∥

op max
j

∥∥Z
(
Xj − E[Xj |w])∥∥2

≤ C‖�‖2
1K log(p ∨ N),

and thus ∥∥PZ
(
X − Eadd[X])�∥∥
≤ C

√
K log(p ∨ N)‖�‖1

≤ C
√

sK log(p ∨ N)‖�‖
= o(

√
n)‖�‖.

The proof is complete by assumption (A7). �



2944 H. LIAN, K. ZHAO AND S. LV

LEMMA 5. With probability at least 1 − (p ∨ N)−C ,∥∥(Z − Xγ̂ )TZ − E
[
(Z − Xγ )T(Z − Xγ )

]∥∥
max

≤ Cs2 log(p ∨ N) + C

√
n
(
K + log(p ∨ N)

)
logK.

PROOF. We have

(Z − Xγ̂ )T(Z − Xγ̂ ) − (Z − Xγ )T(Z − Xγ )

= −(γ̂ − γ )TXTX(γ̂ − γ ) + (γ̂ − γ )TXT(Z − Xγ̂ )

+ (Z − Xγ̂ )TX(γ̂ − γ ).

For the first term above,

max
k,k′

∣∣(γ̂ k − γ k)
TXTX(γ̂ k′ − γ k′)

∣∣ ≤ ∥∥XTX
∥∥

max max
k

‖γ̂ k − γ k‖2
1

≤ Cs2 log(p ∨ N).

By the KKT condition for (2.11), ‖XT(Zk − Xγ̂ k)‖∞ ≤ λ, and thus∥∥(γ̂ − γ )TXT(Z − Xγ̂ )
∥∥

max ≤ Cλs
√

log(p ∨ N)/n.

Thus

(A.6)
∥∥(Z − Xγ̂ )T(Z − Xγ̂ ) − (Z − Xγ )T(Z − Xγ )

∥∥
max ≤ Cs2 log(p ∨ N).

Let  = {x : ‖x‖∞ ≤ C
√

log(p ∨ N)}. Then {xi ∈ ,∀i = 1, . . . ,N} holds with
probability at least 1 − (p ∨ N)−C . We have |Bk(wi) − xT

i γ k|I {xi ∈ } ≤
C

√
K + log(p ∨ N) and E|Bk(wi) − xT

i γ k|2I {xi ∈ } ≤ C. Thus by Bernstein’s
inequality,

P

(∑
i

∣∣Bk(wi) − xT
i γ k

∣∣2I {xi ∈ } − nE
[∣∣Bk(wi) − xT

i γ k

∣∣2I {xi ∈ }] > a

)

≤ C exp
{
−C

a2

a(K + log(p ∨ N)) + n(K + log(p ∨ N))

}
.

Thus with probability at least 1 − (p ∨ N)−C ,∥∥(Z − Xγ )T(Z − Xγ ) − E
[
(Z − Xγ )T(Z − Xγ )

]∥∥
max

≤ C

√
n
(
K + log(p ∨ N)

)
logK.

Finally, using the KKT condition again, we have∥∥γ̂ TXT(Z − Xγ̂ )
∥∥

max ≤ max
k

‖γ̂ k‖1
∥∥XT(Z − Xγ̂ )

∥∥
max ≤ Cλ,

and the lemma is proved by combining the two displayed equations above and
(A.6). �
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LEMMA 6.(
E

[
(Z − Xγ )T(Z − Xγ )

])−1
(Z − Xγ )T

= (
E

[
ZTZ

])−1ZT − (
E

[
ZTZ

])−1
E

[
ZTX

]
× (

E
[
XTX

] − E
[
XTZ

](
E

[
ZTZ

])−1
E

[
ZTX

])−1

× (
XT − E

[
XTZ

](
E

[
ZTZ

])−1ZT)
.

PROOF. Since γ = (E[XTX])−1E[XTZ],(
E

[
(Z − Xγ )T(Z − Xγ )

])−1
(Z − Xγ )T

= (
E

[
ZTZ

] − E
[
ZTX

](
E

[
XTX

])−1
E

[
XTZ

])−1
(Z − Xγ )T

= ((
E

[
ZTZ

])−1 + (
E

[
ZTZ

])−1
E

[
ZTX

]
× (

E
[
XTX

] − E
[
XTZ

](
E

[
ZTZ

])−1
E

[
ZTX

])−1

× E
[
XTZ

](
E

[
ZTZ

])−1)
(Z − Xγ )T

= (
E

[
ZTZ

])−1ZT

+ (
E

[
ZTZ

])−1
E

[
ZTX

](
E

[
XTX

] − E
[
XTZ

](
E

[
ZTZ

])−1
E

[
ZTX

])−1

× E
[
XTZ

](
E

[
ZTZ

])−1ZT

− (
E

[
ZTZ

])−1
E

[
ZTX

](
E

[
XTX

])−1XT

− (
E

[
ZTZ

])−1
E

[
ZTX

](
E

[
XTX

] − E
[
XTZ

](
E

[
ZTZ

])−1
E

[
ZTX

])−1

× E
[
XTZ

](
E

[
ZTZ

])−1
E

[
ZTX

](
E

[
XTX

])−1XT,

where the second equality used the Woodbury identity. Let A = (E[XTX])−1, B =
E[XTZ] and C = (E[ZTZ])−1. Based on the expression above, we only need to
show that

A + (
A−1 − BCBT)−1BCBTA = (

A−1 − BCBT)−1
.

The above identity is easily validated by left-multiplying both sides by (A−1 −
BCBT). �

LEMMA 7. For any x and any (random) matrix A,∥∥BT(x)
(
NE

[
B(w)BT(w)

])−1A
∥∥ ≤ C(

√
K/N)max

j
‖Aj.‖.

The above also holds if ‖ · ‖ is replaced by any other vector norm on both sides.
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REMARK 7. This key lemma improves upon a more naive bound based
on ‖BT(x)(NE[B(w)BT(w)])−1A‖ ≤ ‖B(x)‖‖(NE[B(w)BT(w)])−1‖op‖A‖ ≤
C(

√
K1/N)‖A‖. It uses the fact that B(x) only has at most q nonzero components

and the peculiar structure of (NE[B(w)BT(w)])−1 as in the proof.

PROOF OF LEMMA 7. Let ej be the unit vector with a single one in the j th
position, since B(x) only has at most q nonzero components and its nonzero com-
ponents are bounded by

√
K . Thus we can write B(x) = ∑

j vj ej where at most q

of the values vj is nonzero and these values are no larger than
√

K . Thus we only
need to prove that for any j ,

(A.7)
∥∥eT

j

(
NE

[
B(w)BT(w)

])−1A
∥∥ ≤ (C/n)max

j
‖Aj.‖.

By Theorem 2.2 of Demko (1977), the (j, j ′) entry of (NE[B(w)BT(w)])−1 is
bounded by (C/N)γ |j−j ′| for some γ < 1. Thus∥∥eT

j

(
NE

[
B(w)BT(w)

])−1A
∥∥

≤ (C/N)
∑
j ′

γ |j−j ′|‖Aj ′.‖

≤ (C/N)max
j

‖Aj.‖. �

DISCUSSIONS ON ASSUMPTION (A7)

We will first discuss how the restricted eigenvalue condition (A7) can be im-
plied by a related sparse Riesz condition (SRC) and then consider how sparse Riesz
condition can be satisfied in the semiparametric case. We do not aim to conduct
a comprehensive study on these eigenvalue assumptions or provide very general
sufficient conditions for (A7). The main goal is just to show that (A7) is a reason-
able assumption and we make some further simplifying assumptions to facilitate
this discussion.

We will relate (A7) to sparse Riesz condition as in Bickel, Ritov and Tsybakov
(2009). Let A ⊆ {1, . . . , p} and denote by uiA the subvector of ui := xi −E[x|w =
wi] containing only components associated with predictors in A. Define c∗(v) =
sup|A|≤v,‖δ‖=1

∑
i δ

TuiAuT
iAδ/N and c∗(v) = inf|A|≤v,‖δ‖=1

∑
i δ

TuiAuT
iAδ/N .

Conditions on the magnitudes of c∗(v) and c∗(v) are usually referred to as sparse
Riesz conditions.

The following discussions are mainly adapted from Bickel, Ritov and Tsybakov
(2009), in particular, their proof of Lemma 4.1 and we only focus on the modifi-
cations required. The paper of Bickel, Ritov and Tsybakov (2009) contains other
sufficient conditions for restricted eigenvalue assumption but here we only focus
on part (ii) of their Lemma 4.1.
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In the following discussion, we suppose the covariates are rearranged such that
T = {1, . . . , s} are the indices for all the nonzero components in β0 and T c =
{s + 1, . . . , p}. Also, for the p-dimensional vector δ as used in (A7), we write
δ = (δ1, . . . , δp).

Given δ satisfying the constraint
∑

j∈T c |δj | ≤ c
∑

j∈T |δj |, we partition T c into
subsets of size � with last subset of size ≤ � (we will set � = s logN −s later). Thus
we write T c = ⋃H

h=1 Th where Th contains the indices j corresponding to � largest
|δj | outside of

⋃h−1
k=1 Tk . Let T01 = T ∪ T1. Using the same arguments as in the

proof of Lemma 4.1 of Bickel, Ritov and Tsybakov (2009), we get
∑

i δTuiuT
i δ

N
≥

(
√

c∗(s + �) − c
√

c∗(�)
√

s/�))‖δT01‖2. Furthermore, since the kth largest value
among |δj |, s + 1 ≤ j ≤ p satisfies |δj | ≤ ∑

s+1≤j≤p |δj |/k, we have ‖δT c
01

‖2 ≤
(
∑

s+1≤j≤p |δj |)2 ∑
k≥�+1(1/k2) ≤ (

∑
s+1≤j≤p |δj |)2/�, and thus

‖δ‖ ≤ ‖δT01‖ + ‖δT c
01

‖ ≤ ‖δT01‖ +
∑

s+1≤j≤p |δj |√
�

≤ ‖δT01‖ + c

∑
1≤j≤s |δj |√

�
≤ ‖δT01‖ + c

√
s/�‖δT ‖

≤ (1 + c
√

s/�)‖δT01‖.
Then we have∑

i δ
TuiuT

i δ

(N)‖δ‖2 ≥ C(1 + c
√

s/�)−2(√
c∗(s + �) − c

√
c∗(�)

√
s/�

)
).

As a result, the above is bounded away from zero if s +� = s logN and c∗(s logN)

is bounded away from zero, and c∗(�) is bounded.
We now consider how c∗(v) and c∗(v) can be bounded and bounded away

from zero for v not too large. The calculation below is a standard application
of Bernstein’s inequality for subexponential random variables. Assuming xj is
sub-Gaussian and also naturally that E[xj |w] is a bounded function of w, then
uj := xj − E[xj |w] is also sub-Gaussian. It is well known that the product of two
sub-Gaussian random variables is a subexponential random variable. Then Bern-
stein’s inequality yields

P

(∣∣∣∣∣
N∑

i=1

ujuj ′/N − E[ujuj ′ ]
∣∣∣∣∣ > t

)
≤ C exp

{−Cnt2/(t + 1)
}

and thus by union bound

P

(
sup
j,j ′

∣∣∣∣∣
N∑

i=1

ujuj ′/N − E[ujuj ′ ]
∣∣∣∣∣ > t

)
≤ Cp2 exp

{−Cnt2/(t + 1)
}
,
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which in turn implies

sup
|A|≤v

∥∥∥∥∑
i

uiAuT
iA/N − E

[
uiAuT

iA

]∥∥∥∥
op

= Op(v
√

logp/N).

When v
√

logp/N = o(1), the above together with Assumption (A5) implies c∗(v)

and c∗(v) are bounded and bounded away from zero. This means (A7) can be
satisfied under suitable conditions and concludes our discussion.
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