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AN OPERATOR THEORETIC APPROACH TO
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When estimating finite mixture models, it is common to make assump-
tions on the mixture components, such as parametric assumptions. In this
work, we make no distributional assumptions on the mixture components and
instead assume that observations from the mixture model are grouped, such
that observations in the same group are known to be drawn from the same
mixture component. We precisely characterize the number of observations
n per group needed for the mixture model to be identifiable, as a function
of the number m of mixture components. In addition to our assumption-free
analysis, we also study the settings where the mixture components are either
linearly independent or jointly irreducible. Furthermore, our analysis consid-
ers two kinds of identifiability, where the mixture model is the simplest one
explaining the data, and where it is the only one. As an application of these re-
sults, we precisely characterize identifiability of multinomial mixture models.
Our analysis relies on an operator-theoretic framework that associates mix-
ture models in the grouped-sample setting with certain infinite-dimensional
tensors. Based on this framework, we introduce a general spectral algorithm
for recovering the mixture components.

1. Introduction. A finite mixture model P is a probability measure over a
space of probability measures where P({μi}) = wi > 0 for some finite collec-
tion of probability measures μ1, . . . ,μm and

∑m
i=1 wi = 1. A realization from this

mixture model first randomly selects some mixture component μ ∼ P and then
draws from μ. Mixture models have seen extensive use in statistics and machine
learning.

A central theoretical question concerning mixture models is that of identifiabil-
ity. A mixture model is said to be identifiable if there is no other mixture model that
defines the same distribution over the observed data. Classically, mixture models
were concerned with the case where the observed data X1,X2, . . . are i.i.d. with

Xi distributed according to some unobserved random measure μi with μi
i.i.d.∼ P .

This situation is equivalent to Xi
i.i.d.∼ ∑m

j=1 wjμj . If we impose no restrictions on
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the mixture components μ1, . . . ,μm, one could easily concoct many choices of μj

and wj which yield an identical distribution on Xi . Because of this, most previ-
ous work on identifiability assumes some sort of structure on μ1, . . . ,μm, such as
Gaussianity [3, 9, 26]. In this work, we consider an alternative scenario where we
make no assumptions on μ1, . . . ,μm and instead have access to groups of samples
that are known to come from the same component. We will call these groups of
samples “random groups.” Mathematically, a random group is a random element

Xi where Xi = (Xi,1, . . . ,Xi,n) with Xi,1, . . . ,Xi,n
i.i.d.∼ μi and μi

i.i.d.∼ P .
In this setting, identifiability is now concerned with the distribution over Xi and

the value of n, the number of samples in each random group. We call a mixture of
measures P n-identifiable if it is the simplest mixture model (in terms of number
of mixture components) that yields the observed distribution on Xi . We also intro-
duce a concept which is stronger than identifiability. We call P n-determined if it
is the only mixture model that yields the observed distribution on Xi .

In this paper, we show that every mixture model with m components is (2m−1)-
identifiable and 2m-determined. Furthermore, we show that any mixture model
with linearly independent components is 3-identifiable and 4-determined, and any
mixture model with jointly irreducible components is 2-determined. These results,
presented in Section 4, hold for any mixture model over any space and cannot be
improved. The operator theoretic framework underlying our analysis is presented
in Section 5, and selected proofs of our main results appear in Section 6, with the
rest appearing in the Supplementary Material [25]. In Section 7, we apply our main
results to demonstrate some new and old results on the identifiability of multino-
mial mixture models. Section 8 describes a spectral algorithm for the recovery of
the mixture components and weights, and experimental results on simulated data
are presented in Section 9. Related work, the problem formulation and a conclud-
ing discussion are offered in Sections 2, 3 and 10, respectively.

To keep the paper length reasonable, many of the proofs have been omitted and
can be found in the Supplementary Material [25]. The Supplementary Material
[25] also contains an in-depth description of the application of our spectral algo-
rithm to categorical data (including a consistency proof) and additional technical
details regarding the experiments in Section 9.

2. Previous work. In classical mixture model theory, identifiability is
achieved by making assumptions about the mixture components. Some assump-
tions which yield identifiability are Gaussian or binomial mixture components [9,
24]. If one makes no assumptions on the mixture components, then one must lever-
age some other type of structure in order to achieve identifiability. An example of
such structure exists in the context of multiview models. In a multiview model,
samples have the form Xi = (Xi,1, . . . ,Xi,n) and the distribution of Xi is defined
by

∑m
i=1 wi

∏n
j=1 μ

j
i . In [1], it was shown that if μ

j
i are probability distributions

on R with μ
j
1, . . . ,μ

j
m linearly independent for all j and n ≥ 3, then the model is
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identifiable. In [7], the authors perform a smoothed analysis of tensor decomposi-
tions. They demonstrate that, with high probability, a tensor’s components are both
identifiable and can be recovered using a polynomial time algorithm, provided the
component dimensionality is sufficiently high. In that paper, the authors go on to
apply the result to multiview models, demonstrating bounds on identifiability.

The setting which we investigate is a special case of the multiview model where

μ
j
i = μ

j ′
i for all i, j, j ′. If the sample space of the μi is finite, then this problem

is exactly the topic modeling problem with a finite number of topics and one topic
for each document. In topic modeling, each μi is a “topic” and the sample space
is a finite collection of words. This setting is well studied and it has been shown
that one can recover the true topics provided certain assumptions on the topics are
satisfied [1, 2, 4, 5]. This problem was studied for arbitrary topics in [22]. In this
paper, the authors introduce an algorithm that recovers any mixture of m topics
provided 2m − 1 words per document. They also show, in a result analogous to
our own, that this 2m − 1 value cannot be improved. Our proof techniques are
quite different than those used in [22], hold for arbitrary sample spaces and are
less complex.

In Lemma 7.1, we show that, when restricted to finite sample spaces, the
grouped sample setting introduced in this paper is equivalent to a multinomial
mixture model. Fundamental bounds on the identifiability of multinomial mixture
models can be found in [12, 17]. We will reproduce these results (and develop some
new results) using techniques developed in this paper. Additional connections to
previous work are given later.

3. Problem setup. We treat this problem in a general setting. For any mea-
surable space, we define δx as the Dirac measure at x. For ϒ a set, σ -algebra, or
measure, we denote ϒ×a to be the standard a-fold product associated with that
object. Let N be the set of integers greater than or equal to zero and N+ be the in-
tegers strictly greater than 0. For k ∈ N+, we define [k] to be those elements in N+
which are less than or equal to k. Let � be a set containing more than one element.
This set is the sample space of our data. Let F be a σ -algebra over �. Assume
F �= {∅,�}, that is, F contains nontrivial events. We denote the space of probabil-
ity measures over a measurable space (�,G) as D(�,G). The space D(�,F) will
be shortened to D for brevity. We equip D with the σ -algebra 2D so that each Dirac
measure over D is unique. Define �(D) � span({δx : x ∈ D}). This is the ambi-
ent space where our mixtures of probability measures live. Let P = ∑m

i=1 wiδμi

be a probability measure in �(D). Let μ ∼ P and X1, . . . ,Xn
i.i.d.∼ μ and denote

X = (X1, . . . ,Xn). Here, X is a random group sample, which was described in the
Introduction.
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We now derive the probability distribution of X. Let A ∈ F×n. Letting P reflect

both the draw of μ ∼ P and X1, . . . ,Xn
i.i.d.∼ μ, we have

P(X ∈ A) =
m∑

i=1

P(X ∈ A|μ = μi)P(μ = μi)(1)

=
m∑

i=1

wiμ
×n
i (A).(2)

The second equality follows from Lemma 3.10 in [16]. So the probability distribu-
tion of X is

m∑
i=1

wiμ
×n
i .(3)

We want to view the probability distribution of X as a function of P in a mathe-
matically rigorous way, which requires a bit of technical buildup. Let Q ∈ �(D).
From the definition of �(D), it follows that Q admits a representation

Q =
r∑

i=1

αiδνi
.

From the well-ordering principle, there must exist some representation with min-
imal r and we define this r as the order of Q. We can show that the minimal
representation of any Q ∈ �(D) is unique up to permutation of its indices.

LEMMA 3.1. Let Q ∈ �(D) and admit minimal representations Q =∑r
i=1 αiδνi

= ∑r
j=1 α′

j δν′
j
. There exists some permutation ψ : [r] → [r] such that

νψ(i) = ν′
i and αψ(i) = α′

i for all i.

Proofs of most of the lemmas in this paper are omitted and can be found in the
Supplementary Material [25]. The only lemma proved in this paper is Lemma 6.5
since it is nontrivial and quite crucial for showing some of our bounds are tight.

Henceforth, when we define an element of �(D) with a summation, we will
assume that the summation is a minimal representation.

DEFINITION 3.1. We call P = ∑m
i=1 wiδμi

a mixture of measures if it is a
probability measure in �(D). The elements μ1, . . . ,μm, are called mixture com-
ponents.

Any minimal representation of a mixture of measures P with m components
satisfies P = ∑m

i=1 wiδμi
with wi > 0 for all i and

∑m
i=1 wi = 1. Hence any mix-

ture of measures is a convex combination of Dirac measures at elements in D.
For a measurable space (�,G), we define M (�,G) as the space of all finite

signed measures over (�,G). We can now introduce the operator Vn : �(D) →
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M (�×n,F×n). For a minimal representation Q = ∑r
i=1 αiδνi

, we define Vn, with
n ∈ N+, as

Vn(Q) =
r∑

i=1

αiν
×n
i .(4)

This mapping is well defined as a consequence of Lemma 3.1. From this definition,
we have that Vn(P) is simply the distribution of X which we derived earlier. In
the following definitions, two mixtures of measures are considered equal if they
define the same measure.

DEFINITION 3.2. We call a mixture of measures, P , n-identifiable if there
does not exist a different mixture of measures P ′, with order no greater than the
order of P , such that Vn(P) = Vn(P

′).

DEFINITION 3.3. We call a mixture of measures, P , n-determined if there
exists no other mixture of measures P ′ such that Vn(P) = Vn(P

′).

Definitions 3.2 and 3.3 are central objects of interest in this paper. Given a mix-
ture of measures, P = ∑m

i=1 wiδμi
then Vn(P) is equal to

∑m
i=1 wiμ

×n
i , the mea-

sure from which X is drawn. If P is not n-identifiable, then we know that there
exists a different mixture of measures that is no more complex (in terms of num-
ber of mixture components) than P which induces the same distribution on X.
Practically speaking, this means we need more samples in each random group X
in order for the full richness of P to be manifested in X. A stronger version of
n-identifiability is n-determinedness where we enforce the requirement that our
mixture of measures be the only mixture of measures (of any order) that admits the
distribution on X.

A quick note on terminology. We use the term “mixture of measures” rather than
“mixture model” to emphasize that a mixture of measures should be interpreted a
bit differently than a typical mixture model. A “mixture model” connotes a prob-
ability measure on the sample space of observed data �, whereas a “mixture of
measures” connotes a probability measure on the sample space of the unobserved
latent measures D.

4. Main results. The first result is a bound on the n-identifiability of all mix-
tures of measures with m or fewer components. This bound cannot be uniformly
improved.

THEOREM 4.1. Let (�,F) be a measurable space. Mixtures of measures with
m components are (2m − 1)-identifiable.

THEOREM 4.2. Let (�,F) be a measurable space with F �= {∅,�}. For all
m ≥ 2, there exists a mixture of measures with m components that is not (2m− 2)-
identifiable.
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We mention again that the previous two theorems had been previously found
in [22] for finite sample spaces, using techniques different from our own. To be
explicit, a “finite sample space” in our problem setting is the assumption that
|�| < ∞ and F = 2�, which implies that the mixture components are cate-
gorical distributions. The following lemmas convey the unsurprising fact that n-
identifiability is, in some sense, monotonic.

LEMMA 4.1. If a mixture of measures is n-identifiable, then it is q-identifiable
for all q > n.

LEMMA 4.2. If a mixture of measures is not n-identifiable, then it is not q-
identifiable for any q < n.

Viewed alternatively, these results say that n = 2m − 1 is the smallest value
for which Vn is injective over the set of mixtures of measures with m or fewer
components.

We also present an analogous bound for n-determinedness. This bound also
cannot be improved.

THEOREM 4.3. Let (�,F) be a measurable space. Mixtures of measures with
m components are 2m-determined.

THEOREM 4.4. Let (�,F) be a measurable space with F �= {∅,�}. For all
m, there exists a mixture of measures with m components that is not (2m − 1)-
determined.

Again n-determinedness is monotonic in the number of samples per group.

LEMMA 4.3. If a mixture of measures is n-determined, then it is q-determined
for all q > n.

LEMMA 4.4. If a mixture of measures is not n-determined, then it is not q-
determined for any q < n.

This collection of results can be interpreted in an alternative way. Consider some
pair of mixtures of measures P,P ′. If n ≥ 2m and either mixture of measures is
of order m or less, then Vn(P) = Vn(P

′) implies P = P ′. Furthermore, n = 2m

is the smallest value of n for which the previous statement is true for all pairs of
mixtures of measures.

Our definitions of n-identifiability, n-determinedness and their relation to pre-
vious works on identifiability deserve a bit of discussion. Some previous works
on identifiability contain results related to what we call “identifiability” and others
contain results related what we call “determinedness.” Both of these are simply
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called “identifiability” in these works. For example, in [26] it is shown that differ-
ent finite mixtures of multivariate Gaussian distributions will always yield different
distributions, a result which we could call “determinedness.” Alternatively, in [24]
it is demonstrated that mixtures of binomial distributions, with a fixed number of
trials n for every mixture component, are identifiable provided we only consider
mixtures with m mixture components and n ≥ 2m − 1. In this result, allowing
for more mixture components may destroy identifiability, and thus this is what we
would call an “identifiability” result. The fact that the value 2m − 1 occurs in both
the previous binomial mixture model result and Theorem 4.1 is not a coincidence.
We will demonstrate a new determinedness result for multinomial mixtures models
later in the paper, under the assumption that n ≥ 2m. We will prove these results
using Theorems 4.1 and 4.3. To our knowledge, our work is the first to consider
both identifiability and determinedness.

Finally, we also include results that are analogous to previously shown results
for the finite sample space setting. We note that our proof techniques are markedly
different than the previous proofs for the finite sample space case.

THEOREM 4.5. If P = ∑m
i=1 wiδμi

is a mixture of measures where μ1, . . . ,

μm are linearly independent, then P is 3-identifiable.

This bound is tight as a consequence of Theorem 4.2 with m = 2 since any pair
of distinct measures must be linearly independent.

A version of this theorem was first proven in [1] by making use of Kruskal’s
theorem [18]. Kruskal’s theorem demonstrates that order 3 tensors over Rd admit
unique decompositions (up to scaling and permutation) given certain linear in-
dependence assumptions. The linear independence assumption in Theorem 4.5 is
stronger than that contained in Kruskal’s theorem, and thus yields a simple proof
which does not invoke Kruskal’s theorem. An efficient algorithm for recovering
linearly independent mixture components for finite sample spaces with 3 samples
per random group is described in [2]. Interestingly, with one more sample per
group, these mixtures of measures become determined.

THEOREM 4.6. If P = ∑m
i=1 wiδμi

is a mixture of measures where μ1, . . . ,

μm are linearly independent, then P is 4-determined.

This bound is tight as a result of Theorem 4.4 with m = 2.
Our final result is related to the “separability condition” found in [11]. The sep-

arability condition in the finite sample space setting requires that, for each mixture
component μi , there exists Bi ∈ F such that μi(Bi) > 0 and μj(Bi) = 0 for all
i �= j . There exists a generalization of the separability condition, known as joint
irreducibility.

DEFINITION 4.1. A collection of probability measures μ1, . . . ,μm are said to
be jointly irreducible if

∑m
i=1 wiμi being a probability measure implies wi ≥ 0.
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In other words, any probability measure in the span of μ1, . . . ,μm must be
a convex combination of those measures. It was shown in [8] that separability
implies joint irreducibility, but not vice versa. In that paper, it was also shown that
joint irreducibility implies linear independence, but the converse does not hold.

THEOREM 4.7. If P = ∑m
i=1 wiδμi

is a mixture of measures where μ1, . . . ,

μm are jointly irreducible, then P is 2-determined.

A straightforward consequence of the corollary of Theorem 1 in [11] is that any
mixture of measures on a finite sample space with jointly irreducible components
is 2-identifiable. The result in [11] is concerned with the uniqueness of nonnegative
matrix factorizations and Theorem 4.7, when applied to a finite sample space, can
be posed as a special case of the result in [11]. In the context of nonnegative matrix
factorization, the result in [11] is significantly more general than our result. In
another sense, our result is more general since it applies to spaces where joint
irreducibility and the separability condition are not equivalent. Furthermore, [11]
only implies that the mixture of measures in Theorem 4.7 are identifiable. The
determinedness result is, as far as we know, totally new. It is worth mentioning
that, in finite sample spaces, the separability condition assumption yields efficient
algorithms for nonnegative matrix factorization [4, 5], whereas we are not aware of
analogous algorithms which are applicable to the more general joint irreducibility
setting.

5. Tensor products of Hilbert spaces. Our proofs will rely heavily on the
geometry of tensor products of Hilbert spaces which we will introduce in this
section.

5.1. Overview of tensor products. First, we introduce tensor products of
Hilbert spaces. Instead of a rigorous primer to the subject, we will simply state
some basic facts about tensor products of Hilbert spaces, and hopefully instill
some intuition for the uninitiated by way of example. A thorough treatment of
tensor products of Hilbert spaces can be found in [15].

Let H and H ′ be Hilbert spaces. From these two Hilbert spaces, the “simple
tensors” are elements of the form h ⊗ h′ with h ∈ H and h′ ∈ H ′. We can define
an inner product on the simple tensors by setting〈

h1 ⊗ h′
1, h2 ⊗ h′

2
〉 = 〈h1, h2〉〈h′

1, h
′
2
〉
.(5)

Let H0 be the inner product space spanned by the simple tensors. The tensor prod-
uct of H and H ′ is the completion of H0 and is denoted H ⊗H ′. To avoid potential
confusion, we note that the notation just described is standard in operator theory
literature. In some literature, our definition of H0 is denoted as H ⊗ H ′ and our
definition of H ⊗ H ′ is denoted H ⊗̂H ′.
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As an illustrative example, we consider the tensor product L2(R) ⊗ L2(R).
It can be shown that there exists an isomorphism between L2(R) ⊗ L2(R) and
L2(R2) that maps the simple tensors to separable functions [15], f ⊗ f ′ �→
f (·)f ′(·). We can demonstrate this isomorphism with a simple example. Let
f,g,f ′, g′ ∈ L2(R). Taking the L2(R2) inner product of f (·)f ′(·) and g(·)g′(·)
gives us∫ ∫ (

f (x)f ′(y)
)(

g(x)g′(y)
)
dx dy =

∫
f (x)g(x) dx

∫
f ′(y)g′(y) dy(6)

= 〈f,g〉〈f ′, g′〉(7)

= 〈
f ⊗ f ′, g ⊗ g′〉.(8)

Beyond tensor product, we will need to define tensor power. To begin, we will
first show that tensor products are, in a certain sense, associative. Let H1,H2,H3
be Hilbert spaces. Proposition 2.6.5 in [15] states that there is a unique unitary
operator, U : (H1 ⊗ H2) ⊗ H3 → H1 ⊗ (H2 ⊗ H3), that satisfies the following for
all h1 ∈ H1, h2 ∈ H2, h3 ∈ H3:

U
(
(h1 ⊗ h2) ⊗ h3

) = h1 ⊗ (h2 ⊗ h3).(9)

This implies that for any collection of Hilbert spaces, H1, . . . ,Hn, the Hilbert
space H1 ⊗ · · · ⊗ Hn is defined unambiguously regardless of how we decide to
associate the products. In the space H1 ⊗ · · · ⊗ Hn, we define a simple tensor as a
vector of the form h1 ⊗· · ·⊗hn with hi ∈ Hi . In [15], it is shown that H1 ⊗· · ·⊗Hn

is the closure of the span of these simple tensors. To conclude this primer on tensor
products, we introduce the following notation. For a Hilbert space H , we denote
H⊗n = H ⊗ H ⊗ · · · ⊗ H︸ ︷︷ ︸

n times

and for h ∈ H , h⊗n = h ⊗ h ⊗ · · · ⊗ h︸ ︷︷ ︸
n times

.

5.2. Tensor rank. A tool we will use frequently in our proofs is tensor rank,
which is similar to matrix rank.

DEFINITION 5.1. Let h ∈ H⊗n where H is a Hilbert space. The rank of h is
the smallest natural number r such that h = ∑r

i=1 hi where hi are simple tensors.

In an infinite dimensional Hilbert space, it is possible for a tensor to have infinite
rank. We will only be concerned with finite rank tensors.

5.3. Some results for tensor product spaces. We present some technical results
concerning tensor product spaces that will be useful for the rest of the paper. These
lemmas are similar to or are straightforward extensions of previous results which
we needed to modify for our particular purposes. The following lemma is used in
the proof of Lemma 5.2 (Supplementary Material [25]) and Lemma 6.5.
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LEMMA 5.1. Let H1, . . . ,Hn, H ′
1, . . . ,H

′
n be a collection of Hilbert spaces

and U1, . . . ,Un a collection of unitary operators with Ui : Hi → H ′
i for all i.

There exists a unitary operator U : H1 ⊗ · · · ⊗ Hn → H ′
1 ⊗ · · · ⊗ H ′

n satisfying
U(h1 ⊗ · · · ⊗ hn) = U1(h1) ⊗ · · · ⊗ Un(hn) for all h1 ∈ H1, . . . , hn ∈ Hn.

Let (�,G, γ ) be a σ -finite measure space. We have the following lemma that
connects tensor power of a L2 space to the L2 space of the product measure.

LEMMA 5.2. There exists a unitary transform U : L2(�,G, γ )⊗n → L2(�×n,

G×n, γ ×n) such that, for all f1, . . . , fn ∈ L2(�,G, γ ),

U(f1 ⊗ · · · ⊗ fn) = f1(·) · · ·fn(·).(10)

A statement of the following lemma for Rd can be found in [10]. We present
our own proof for the Hilbert space setting in the Supplementary Material [25].

LEMMA 5.3. Let n > 1 and let h1, . . . , hn be elements of a Hilbert space
such that no elements are zero and no pairs of elements are collinear. Then
h⊗n−1

1 , . . . , h⊗n−1
n are linearly independent.

The following lemma is a Hilbert space version of a well-known property for
positive semidefinite matrices.

LEMMA 5.4. Let h1, . . . , hm be elements of a Hilbert space. The rank of∑m
i=1 h⊗2

i is the dimension of span({h1, . . . , hm}).
6. Proofs of theorems. With the tools developed in the previous sections, we

will now prove a few, selected theorems. Due to space constraints, we only prove
Theorems 4.1 to 4.4 in this document. These proofs give a good overview of the
general techniques used to prove the other identifiability and determinedness re-
sults, which can be found in the Supplementary Material [25]. These theorems are
proved for general measure spaces which introduces a fair amount of mathematical
overhead. There are two basic components to these proofs, transforming the mea-
sure problem into and out of a tensor framework, and using the tensor framework
as a means to manipulate these objects geometrically. For concreteness, it can be
helpful to consider the situation where � = {1,2, . . . , d}, that is, a finite sample
space. In this situation, a mixture component μ can be directly associated with a
probability vector p ∈ R

d where [p]i = μ({i}) and the tensor p⊗m represents the
density of m i.i.d. samples of μ:[

p⊗m]
i1,...,im

= [p]i1[p]i2 · · · [p]im(11)

= μ
({i1})μ({i2}) · · ·μ({im})(12)

= μ×m({
(i1, i2, . . . , im)

})
.(13)
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In essence, all of our results directly parallel this setting once transformed into the
tensor space.

Before we begin our proofs, we need to introduce one additional piece of nota-
tion. For a function f on a domain X , we define f ×k as simply the product of the
function k times on the domain X×k ,

f ×k = f (·) · · ·f (·)︸ ︷︷ ︸
k times

.(14)

For a set, σ -algebra, or measure the notation continues to denote the standard k-
fold product.

In these proofs, we will be making extensive use of various L2 spaces. These
spaces will be equivalence classes of functions which are equal almost everywhere
with respect to the measure associated with that space. When considering elements
of these spaces, equality will always mean almost everywhere equality with respect
to the measure associated with that space. When performing integrals or other
manipulations of elements in L2 spaces, we will be performing operations that do
not depend on the representative of the equivalence class. The following lemma
will be quite useful.

LEMMA 6.1. Let γ1, . . . , γm, π1, . . . , πl be probability measures on a mea-
surable space (�,G), a1, . . . , am, b1, . . . , bl ∈ R and n ∈ N+. If

m∑
i=1

aiγ
×n
i =

l∑
j=1

bjπ
×n
j(15)

then for all n′ ∈ N+ with n′ ≤ n we have that

m∑
i=1

aiγ
×n′
i =

l∑
j=1

bjπ
×n′
j .(16)

PROOF OF THEOREM 4.1. We proceed by contradiction. Suppose there exist
m, l ∈ N+ with l ≤ m such that there two different mixtures of measures P =∑m

i=1 aiδμi
�= P ′ = ∑l

j=1 bj δνj
, and

m∑
i=1

aiμi
×2m−1 =

l∑
j=1

bjν
×2m−1
j .(17)

Clearly, m > 1 otherwise we immediately arrive at a contradiction. By the well-
ordering principle, there exists a minimal m such that the previous statement holds.
For that minimal m, there exists a minimal l such that the previous statement holds.
We will assume that the m and l are both minimal in this way. This assumption
implies that μi �= νj for all i, j . To prove this, we will assume that there exists i, j

such that μi = νj , and show that this assumption leads to a contradiction. Without
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loss of generality, we will assume that μm = νl . We will consider the three cases
where am = bl , am > bl and am < bl .

Case 1. If am = bl , then we have that
m−1∑
i=1

ai

1 − am

μ×2m−1
i =

l−1∑
j=1

bj

1 − bl

ν×2m−1(18)

and from Lemma 6.1 we have
m−1∑
i=1

ai

1 − am

μ
×2(m−1)−1
i =

l−1∑
j=1

bj

1 − bl

ν×2(m−1)−1.(19)

Setting P = ∑m−1
i=1

ai

1−am
δμi

and P ′ = ∑l−1
j=1

bj

1−bl
δνj

, it now follows that
V2(m−1)−1(P) = V2(m−1)−1(P

′) which contradicts the minimality of m.
Case 2. If am > bl , then we have

m−1∑
i=1

ai

1 − bl

μ×2m−1
i + am − bl

1 − bl

μ×2m−1
m =

l−1∑
j=1

bj

1 − bl

ν×2m−1
j(20)

which contradicts the minimality of l by an argument similar to that in Case 1.
Case 3. If am < bl , we have that

m−1∑
i=1

ai

1 − am

μ×2m−1
i =

l−1∑
j=1

bj

1 − am

ν×2m−1
j + bl − am

1 − am

ν×2m−1
l .(21)

Again, we will use arguments similar to the one used in Case 1. If l = m, then
swapping the mixtures associated with m and l gives us a pair of mixtures of
measures which violates the minimality of l. If l < m, then from Lemma 6.1 we
have that

m−1∑
i=1

ai

1 − am

μ
×2(m−1)−1
i

=
l−1∑
j=1

bj

1 − am

ν
×2(m−1)−1
j + bl − am

1 − am

ν
×2(m−1)−1
l ,(22)

which violates the minimality of m, thus completing Case 3.
We have now established that μi �= νj , for all i, j . We will use the following

lemma to embed the mixture components in a Hilbert space.

LEMMA 6.2. Let γ1, . . . , γn be finite measures on a measurable space
(�,G). There exists a finite measure π and nonnegative functions f1, . . . , fn ∈
L1(�,G, π) ∩ L2(�,G, π) such that, for all i and all B ∈ G,

γi(B) =
∫
B

fi dπ.(23)
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From Lemma 6.2, there exists a finite measure ξ and nonnegative functions
p1, . . . , pm, q1, . . . , ql ∈ L1(�,F, ξ) ∩ L2(�,F, ξ) such that, for all B ∈ F ,
μi(B) = ∫

B pi dξ and νj (B) = ∫
B qj dξ for all i, j . Clearly, no two of these func-

tions are equal (in the ξ -almost everywhere sense). If one of the functions were a
scalar multiple of another, for example, p1 = αp2 for some α �= 1, it would imply

μ1(�) =
∫

p1 dξ =
∫

αp2 dξ = α.(24)

This is not true so no pair of these functions are collinear.
We can use the following lemma to extend this new representation to a product

measure.

LEMMA 6.3. Let (�,G) be a measurable space, γ and π a pair of finite
measures on that space, and f a nonnegative function in L1(�,G, π) such that,
for all A ∈ G, γ (A) = ∫

A f dπ . Then for all n, for all B ∈ G×n we have

γ ×n(B) =
∫
B

f ×n dπ×n.(25)

Thus for any R ∈F×2m−1 we have∫
R

m∑
i=1

aip
×2m−1
i dξ×2m−1 =

m∑
i=1

aiμ
×2m−1
i (R)(26)

=
l∑

j=1

bjν
×2m−1
j (R)(27)

=
∫
R

l∑
j=1

bjq
×2m−1
j dξ×2m−1.(28)

The following lemma is a well known result in real analysis (Proposition 2.23 in
[13]), but it is worth mentioning explicitly.

LEMMA 6.4. Let (�,G, γ ) be a measure space and f,g ∈ L1(�,G, γ ). Then
f = g γ -almost everywhere iff, for all A ∈ G,

∫
A f dγ = ∫

A g dγ .

From this lemma, it follows that
m∑

i=1

aip
×2m−1
i =

l∑
j=1

bjq
×2m−1
j .(29)

Applying the U−1 operator from Lemma 5.2 to the previous equation yields

m∑
i=1

aip
⊗2m−1
i =

l∑
j=1

bjq
⊗2m−1
j .(30)
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Since l + m ≤ 2m, Lemma 5.3 states that

p⊗2m−1
1 , . . . , p⊗2m−1

m ,q⊗2m−1
1 , . . . , q⊗2m−1

l(31)

are all linearly independent, and thus ai = 0 and bj = 0 for all i, j , a contradiction.
�

PROOF OF THEOREM 4.2. To prove this theorem, we will construct a pair
of mixture of measures, P �= P ′ which both contain m components and satisfy
V2m−2(P) = V2m−2(P

′). From our definition of (�,F), we know there exists
F ∈ F such that F and FC are nonempty. Let x ∈ F and x′ ∈ FC . It follows that
δx and δx′ are different probability measures on (�,F). The theorem follows from
the next lemma. We will prove the lemma after the theorem proof.

LEMMA 6.5. Let (�,G) be a measurable space and γ, γ ′ be distinct proba-
bility measures on that space. Let ε1, . . . , εt be t ≥ 3 distinct values in [0,1]. Then
there exist β1, . . . , βt , a permutation σ : [t] → [t] and l ∈N+ such that

l∑
i=1

βi

(
εσ(i)γ + (1 − εσ(i))γ

′)×t−2

=
t∑

j=l+1

βj

(
εσ(j)γ + (1 − εσ(j))γ

′)×t−2(32)

where βi > 0 for all i,
∑l

i=1 βi = ∑t
j=l+1 βj = 1, and l, t − l ≥ � t

2�.

Let ε1, . . . , ε2m ∈ [0,1] be distinct and let μi = εiδx + (1 − εi)δx′ for i ∈ [2m].
From Lemma 6.5 with t = 2m, there exists a permutation σ : [2m] → [2m] and
β1, . . . , β2m such that

m∑
i=1

βiμ
×2m−2
σ(i) =

2m∑
j=m+1

βjμ
×2m−2
σ(j) ,(33)

with
∑m

i=1 βi = ∑2m
j=m+1 βj = 1 and βi > 0 for all i.

If we let P = ∑m
i=1 βiδμσ(i)

and P ′ = ∑2m
j=m+1 βjδμσ(j)

, we have that
V2m−2(P) = V2m−2(P

′) and P �= P ′ since μ1, . . . ,μ2m are distinct. �

For the next proof, we will introduce some notation. For a tensor U ∈ R
d1 ⊗

· · · ⊗R
dl , we define Ui1,...,il to be the entry in the [i1, . . . , il] location of U .

PROOF OF LEMMA 6.5. From Lemma 6.2, there exists a finite measure π and
nonnegative functions f,f ′ ∈ L1(�,G, π) ∩ L2(�,G, π) such that, for all A ∈ G,
γ (A) = ∫

A f dπ and γ ′(A) = ∫
A f ′ dπ .
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Let H2 be the Hilbert space associated with the subspace in L2(�,G, π)

spanned by f and f ′. Let (fi)
t
i=1 be nonnegative functions in L1(�,G, π) ∩

L2(�,G, π) with fi = εif + (1 − εi)f
′. Clearly, fi is a pdf over π for all i and

there are no pairs in this collection which are collinear. Since H2 is isomorphic
to R

2 there exists a unitary operator U : H2 → R
2. From Lemma 5.1, there ex-

ists a unitary operator Ut−2 : H⊗t−2
2 → R

2⊗t−2
, with Ut−2(h1 ⊗ · · · ⊗ ht−2) =

U(h1) ⊗ · · · ⊗ U(ht−2). Because U is unitary, it follows that

Ut−2
(
span

({
h⊗t−2 : h ∈ H2

})) = span
({

x⊗t−2 : x ∈R
2})

.(34)

An order r tensor, Ai1,...,ir , is symmetric if Ai1,...,ir = Aiψ(1),...,iψ(r)
for any i1, . . . , ir

and permutation ψ : [r] → [r]. A consequence of Lemma 4.2 in [10] is that
span({x⊗t−2 : x ∈ R

2}) ⊂ St−2(C2), the space of all symmetric order t − 2 ten-
sors over C2. Complex symmetric tensor spaces will always be viewed as a vector
space over the complex numbers and real symmetric tensor spaces will be always
be viewed as a vector space over the real numbers.

From Proposition 3.4 in [10], it follows that the dimension of St−2(C2) is
( 2+t−2−1

t−2 ) = t − 1. From this, it follows that dimSt−2(R2) ≤ t − 1, where

St−2(R2) is the space of all symmetric order t − 2 tensors over R2. To see this,
consider some set of linearly dependent tensors x1, . . . , xr ∈ St−2(C2) each con-
taining only real valued entries, that is, the tensors are in St−2(R2). Then it follows
that there exists c1, . . . , cr ∈ C such that

r∑
i=1

cixi = 0.(35)

Let � denote the real component when applied to an element of C, and the real
component applied entrywise when applied to a tensor. We have that

0 = �
(

r∑
i=1

cixi

)
=

r∑
i=1

�(cixi) =
r∑

i=1

�(ci)xi .(36)

Thus it follows that x1, . . . , xr are linearly dependent in St−2(R2), and thus the
dimensionality bound holds, dimSt−2(R2) ≤ t − 1.

From this, we get that

dim
(
span

({
h⊗t−2 : h ∈ H2

})) ≤ t − 1.(37)

The bound on the dimension of span({h⊗t−2 : h ∈ H2}) implies that (f ⊗t−2
i )ti=1

are linearly dependent. Conversely, Lemma 5.3 implies that removing a single
vector from (f ⊗t−2

i )ti=1 yields a set of vectors which are linearly independent.
It follows that there exists (αi)

t
i=1 with αi �= 0 for all i and

t∑
i=1

αif
⊗t−2
i = 0.(38)
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There exists a permutation σ : [t] → [t] such that ασ(i) < 0 for all i ∈ [l] and
ασ(j) > 0 for all j > l with l ≤ � t

2� (ensuring that l ≤ � t
2� may also require multi-

plying (38) by −1). This σ appears in the lemma statement, but for the remainder
of the proof we will simply assume without loss of generality that αi < 0 for i ∈ [l]
with l ≤ � t

2�.
From this, we have

l∑
i=1

−αif
⊗t−2
i =

t∑
j=l+1

αjf
⊗t−2
j .(39)

From Lemma 5.2, we have

l∑
i=1

−αif
×t−2
i =

t∑
j=l+1

αjf
×t−2
j(40)

and thus ∫ l∑
i=1

−αif
×t−2
i dπ×t−2 =

∫ t∑
j=l+1

αjf
×t−2
j dπ×t−2(41)

⇒
l∑

i=1

−αi =
t∑

j=l+1

αj .(42)

Let r = ∑l
i=1 −αi . We know r > 0 so dividing both sides of (39) by r gives us

l∑
i=1

−αi

r
f ⊗t−2

i =
t∑

j=l+1

αj

r
f ⊗t−2

j(43)

where the left-hand and the right-hand side are convex combinations. Let (βi)
t
i=1

be positive numbers with βi = −αi

r
for i ∈ [l] and βj = αj

r
for j ∈ [t] \ [l]. This

gives us

l∑
i=1

βif
⊗t−2
i =

t∑
j=l+1

βjf
⊗t−2
j .(44)

We will now consider 3 cases for the value of t .
Case 1. If t = 3, then l = 1 and l, t − l ≥ � t

2� is satisfied.
Case 2. If t is divisible by two, then we can do the following:

l∑
i=1

βif
⊗ t

2 −1
i ⊗ f

⊗ t
2 −1

i =
t∑

j=l+1

βjf
⊗ t

2 −1
j ⊗ f

⊗ t
2 −1

j .(45)

Consider the elements in the last equation as order two tensors in L2(�,G,

π)⊗ t
2 −1 ⊗ L2(�,G, π)

⊗ t
2 −1

. From Lemma 5.3 and Lemma 5.4, we have that the
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RHS of the previous equation has rank at least t
2 and since l ≤ t

2 it follows that
l = t

2 . Again, we have that l, t − l ≥ � t
2�.

Case 3. If t is greater than 3 and not divisible by 2, then we can apply Lemma 5.2
to get ∫

�

l∑
i=1

βif
×t−3
i fi(x) dπ(x) =

∫
�

t∑
j=l+1

βjf
×t−3
j fj (y) dπ(y)(46)

⇒
l∑

i=1

βif
×t−3
i =

t∑
j=l+1

βjf
×t−3
j .(47)

Applying Lemma 5.2 again, we get

l∑
i=1

βif
⊗t−3
i =

t∑
j=l+1

βjf
⊗t−3
j(48)

⇒
l∑

i=1

βif
⊗ t−1

2 −1
i ⊗ f

⊗ t−1
2 −1

i =
t∑

j=l+1

βjf
⊗ t−1

2 −1
j ⊗ f

⊗ t−1
2 −1

j .(49)

Recall that � t
2� ≥ l so we also have that⌊

t

2

⌋
− l ≥ 0(50)

⇒ t

2
− l ≥ −1

2
(51)

⇒ t − l ≥ t − 1

2
.(52)

From Lemma 5.3 and Lemma 5.4, we have that the RHS of (49) has rank at least
t−1

2 , and thus l ≥ t−1
2 . From this, we have that t − l, l ≥ � t

2� once again, which
completes Case 3.

So l, t − l ≥ � t
2� for any t ≥ 3. Applying Lemma 5.2 to (44), we have

l∑
i=1

βif
×t−2
i =

t∑
j=l+1

βjf
×t−2
j .(53)

From Lemma 6.3, we have
l∑

i=1

βi

(
εiγ + (1 − εi)γ

′)×t−2 =
t∑

j=l+1

βj

(
εjγ + (1 − εj )γ

′)×t−2
.(54)

�

PROOF OF THEOREM 4.3. Let P = ∑m
i=1 aiδμi

and P ′ = ∑l
j=1 bj δνj

be
mixtures of measures such that P ′ �= P . We will proceed by contradiction. Sup-
pose that

∑m
i=1 aiμ

×2m
i = ∑l

j=1 bjν
×2m
j . From Theorem 4.1, we know that P is
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2m − 1-identifiable and, therefore, 2m-identifiable by Lemma 4.1. It follows that
l > m. From Lemma 6.2, there exists a finite measure ξ and nonnegative func-
tions p1, . . . , pm, q1, . . . , ql ∈ L1(�,F, ξ)∩L2(�,F, ξ) such that, for all B ∈ F ,
μi(B) = ∫

B pi dξ and νj (B) = ∫
B qj dξ for all i, j . Using Lemmas 6.3 and 6.4,

we have

m∑
i=1

aip
×2m
i =

l∑
j=1

bjq
×2m
j .(55)

By Lemma 5.2, we have

m∑
i=1

aip
⊗2m
i =

l∑
j=1

bjq
⊗2m
j(56)

and, therefore,

m∑
i=1

aip
⊗m
i ⊗ p⊗m

i =
l∑

j=1

bjq
⊗m
j ⊗ q⊗m

j .(57)

Consider the elements in the last equation as tensors in L2(�,F, ξ)
⊗m ⊗

L2(�,F, ξ)
⊗m

. Since no pair of vectors in p1, . . . , pm are collinear, from
Lemma 5.3 and Lemma 5.4 we know that the LHS has rank m. On the other
hand, no pair of vectors q1, . . . , ql are collinear either, so Lemma 5.3 says that
there is a subset of {q⊗m

1 , . . . , q⊗m
l } which contains at least m + 1 linearly inde-

pendent elements. By Lemma 5.4, it follows that the RHS has rank at least m + 1,
a contradiction. �

PROOF OF THEOREM 4.4. To prove this theorem, we will construct a pair
of mixture of measures, P �= P ′ which contain m and m + 1 components, re-
spectively, and satisfy V2m−1(P) = V2m−1(P

′). From our definition of (�,F),
we know there exists F ∈ F such that F,FC are nonempty. Let x ∈ F and
x′ ∈ FC . It follows that δx and δx′ are different probability measures on (�,F).
Let ε1, . . . , ε2m+1 be distinct values in [0,1]. Applying Lemma 6.5 with t = 2m+1
and letting μi = εiδx + (1 − εi)δx′ , there exists a permutation σ : [2m + 1] →
[2m + 1] and β1, . . . , β2m+1, with βi > 0 for all i and

∑m
i=1 βi = ∑2m+1

j=m+1 βj = 1,
such that

m∑
i=1

βiμ
×2m−1
σ(i) =

2m+1∑
j=m+1

βjμ
×2m−1
σ(j) .(58)

If we let P = ∑m
i=1 βiδμσ(i)

and P ′ = ∑2m+1
j=m+1 βjδμσ(j)

, then it follows that
V2m−1(P) = V2m−1(P

′). �
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7. Identifiability and determinedness of mixtures of multinomial distribu-
tions. Using the previous results, we can show analogous identifiability and de-
terminedness results for mixtures of multinomial distributions. The identifiability
of mixtures of multinomial distributions was originally studied in [17] which con-
tains a proof of Corollary 7.1 from this paper. An alternative proof of this corollary
can be found in [12]. These results are analogous to identifiability results presented
in this paper. Our proofs (see the Supplementary Material [25]) use techniques
which are very different from those used in [12, 17]. Our techniques can also be
used to prove a determinedness style result, Corollary 7.2, which we have not seen
addressed elsewhere in the multinomial mixture model literature.

Central to the results in this section is Lemma 7.1 which establishes an equiv-
alence between the grouped sample setting and multinomial mixture models.
A sample from a multinomial distribution can be viewed as totalling the outcomes
from an i.i.d. sampling of a categorical distribution. Consider some probability
measure μ over a finite sample space and let X = (X1, . . . ,Xm) be a collection of
m i.i.d. samples from μ. Here, X has the form of what we would call a “random
group.” Because X contains i.i.d. sample, no useful statistical information is con-
tained in the order of the samples. It follows that we can simply tally the number of
results for each outcome and not lose any useful statistical information. Lemma 7.1
formalizes this intuition so that we can apply tools developed earlier in this paper
to the multinomial mixture model setting.

Before stating our results, we must first introduce some definitions and notation.
Any multinomial distribution is completely characterized by positive integers n

and q and a probability vector in R
q , p = [p1, . . . , pq]T .The value q represents

the number of possible outcomes of a trial, p is the likelihood of each outcome on
a trial and n is the number of trials. For whole numbers k, l, we define Ck,l = {x ∈
N

×l : ∑l
i=1 xi = k}. These are vectors of the form [x1, . . . , xl]T where

∑l
i=1 xi =

k. Using the values n and q above, the multinomial distribution is a probability
measure over Cn,q . If Q is a multinomial distribution with parameters n,p, q as
defined above, then its probability mass function is

Q
({[x1, . . . , xq]T }) = n!

x1! · · ·xq !p
x1
1 · · ·pxq

q(59)

for x ∈ Cn,q . We will denote this measure as Qn,p,q . Let

(60) M (n, q)�
{
Qn,p,q : p is a probability vector in R

q}
,

that is, the space of all multinomial distributions with n and q fixed.
At the heart of our multinomial mixture model, identifiability and determined-

ness results is the construction of a linear operator Tn,q from span(D(Cn,q,2Cn,q ))

to span(D([q]×n,2[q]×n
)) and its use to show that nonidentifiable mixtures of

multinomial distributions yield nonidentifiable mixtures of measures and nonde-
termined mixtures of multinomial distributions yields nondetermined mixtures of
measures.
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Since Cn,q is a finite set, the vector space of finite signed measures on
(Cn,q,2Cn,q ) is a finite dimensional space and the set {δx : x ∈ Cn,q} is a basis
for this space. Note that {δx : x ∈ Cn,q} is the set of all point masses on Cn,q ,
not vectors in the ambient space of Cn,q . Thus, to completely define the operator
Tn,q , we need only define Tn,q(δx) for all x ∈ Cn,q . To this end, let x ∈ Cn,q . We
define the function Fn,q : Cn,q → [q]×n as Fn,q(x) = 1×x1 × · · · × q×xq , where
the exponents represent Cartesian powers. The definition of Fn,q is a bit dense
so we will do a simple example. Suppose n = 6, q = 4 and x = [1,0,3,2]T
then Fn,q(x) = [1,3,3,3,4,4]T . Intuitively, the Fn,q operator undoes the total-
ing which transforms a collection of trials from a categorical distribution into a
draw from a multinomial distribution; Fn,q returns these trials in nondecreasing
order. Let Sn be the symmetric group on n symbols. We define our linear operator
as follows:

Tn,q(δx) = 1

n!
∑
σ∈Sn

δσ(Fn,q (x)),(61)

where σ is permuting the entries of Fn,q(x). This operator is similar to the projec-
tion operator onto the set of order n symmetric tensors [10]. The following lemma
makes the crucial connection between the space of multinomial distributions and
the probability measures of grouped samples.

LEMMA 7.1. Let Qn,p,q ∈ M (n, q), then

Tn,q(Qn,p,q) = Vn(δ∑q
i=1 piδi

).(62)

This lemma allows us to make some assertions about the identifiability of mix-
tures of multinomial distributions.

In the following, we will assume that all multinomial mixture models under
consideration have only nonzero summands and distinct components. In the con-
text of multinomial mixture models, a multinomial mixture model

∑m
i=1 aiQn,pi,q

is identifiable if it being equal to a different multinomial mixture model,

m∑
i=1

aiQn,pi,q =
s∑

j=1

bjQn,rj ,q ,(63)

with s ≤ m implies that s = m and there exists some permutation σ such that
ai = bσ(i) and Qn,pi,q = Qn,rσ(i),q for all i. The mixture model is determined if
the previous statement holds without the restriction s ≤ m.

Multinomial mixture models are identifiable if the number of components m

and the number of trials in each component n satisfy n ≥ 2m − 1.

COROLLARY 7.1. Let m ∈ N+, n ≥ 2m− 1, and fix q ∈ N+. Let Qn,p1,q , . . . ,

Qn,pm,q,Qn,r1,q , . . . ,Qn,rs,q ∈ M (n, q) with Qn,p1,q , . . . ,Qn,pm,q distinct,
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Qn,r1,q , . . . ,Qn,rs ,q distinct, and s ≤ m. If

m∑
i=1

aiQn,pi,q =
s∑

j=1

bjQn,rj ,q(64)

with ai > 0, bi > 0 for all i and
∑m

i=1 ai = ∑s
j=1 bj = 1, then s = m and there

exists some permutation σ such that ai = bσ(i) and pi = rσ(i).

Alternatively, this corollary says that, given two different finite mixtures with
components in M (n, q), one mixture with m components and the other with s

components, if n ≥ 2m − 1 and n ≥ 2s − 1 then the mixtures induce different
measures. Additionally, multinomial mixture models are determined if the number
of components m and the number of trials in each component n satisfy n ≥ 2m.

COROLLARY 7.2. Let n ≥ 2m and fix q ∈ N. Let Qn,p1,q , . . . ,Qn,pm,q and
Qn,r1,q , . . . ,Qn,rs ,q be elements of M (n, q) with Qn,p1,q , . . . ,Qn,pm,q distinct
and Qn,r1,q , . . . ,Qn,rs ,q distinct. If

m∑
i=1

aiQn,pi,q =
s∑

j=1

bjQn,rj ,q(65)

with ai > 0, bi > 0 for all i and
∑m

i=1 ai = ∑m
j=1 bi = 1, then m = s and there

exists some permutation σ such that ai = bσ(i) and pi = rσ(i).

Using the proof techniques employed in the proofs of these corollaries (see
the Supplementary Material [25]), one could establish additional identifiabil-
ity/determinedness style results for multinomial mixture models along the lines
of Theorems 4.5, 4.6 and 4.7. Furthermore, it seems likely that one could use the
algorithm described in the next section or from [2, 4, 22] to recover these compo-
nents, using the transform Tn,q .

8. Algorithm. Here, we present an algorithm for the recovery of mixture
components and proportions from data. The algorithm is quite general and can
be applied to any measurable space. The Supplementary Material [25] contains
a detailed description and analysis of the algorithm applied to categorical data,
including a consistency proof.

Let
∑m

i=1 wiδμi
be an arbitrary mixture of measures on some measurable space

(�,F) which we are interested in recovering. Let p1, . . . , pm be square integrable
densities with respect to a dominating measure ξ , with

∫
A pi dξ = μi(A) for all i ∈

[m] and A ∈ F . A measure ξ and densities p1, . . . , pm satisfying these properties
are guaranteed to exist as a consequence of Lemma 6.2.

We will consider the situation where we have 2m − 1 samples per random
group and have access to the tensors

∑m
i=1 wip

⊗2m−1
i and

∑m
i=1 wip

⊗2m−2
i . In
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a finite sample space, estimating these tensors is equivalent to estimating moment
tensors of order 2m − 1 and 2m − 2. For measures over R

d dominated by the
Lebesgue measure, one could estimate these tensors using a kernel density esti-
mator in R

d(2m−1) and R
d(2m−2) using each sample group as a kernel center. We

will also assume that p1, . . . , pm have distinct norms. Note that it is still possible
to recover the mixture components if they do not have distinct norms. One way to
do this is to choose ξ so that the norms are distinct. In the Supplementary Material
[25], we describe a method which is guaranteed to do this when (�,F) is a finite
sample space by choosing ξ randomly. We term this method “random dominat-
ing measure” in the experiments and supplement. Alternatively, if one is capable
of choosing an element in span({p1, . . . , pm}) in an appropriate random way, one
could recover the mixture components using a variation of Jenrich’s algorithm.

To describe the algorithm, we will need to make use of bounded linear opera-
tors on Hilbert spaces. Given a pair of Hilbert spaces H,H ′, we define L(H,H ′)
as the space of bounded linear operators from H to H ′ and L(H) � L(H,H).
An operator, T , is in this space if there exists a nonnegative number C such that
‖T x‖H ′ ≤ C‖x‖H for all x ∈ H . The space of bounded linear operators is a Ba-
nach space when equipped with the norm

‖T ‖� sup
x �=0

‖T x‖
‖x‖ .(66)

In addition, we will need to make use of tensor products of bounded linear opera-
tors. The following lemma is exactly Proposition 2.6.12 from [15].

LEMMA 8.1. Let H1, . . . ,Hn, H ′
1, . . . ,H

′
n be Hilbert spaces and let Ui ∈

L(Hi,H
′
i ) for all i ∈ [n]. There exists a unique

U ∈ L
(
H1 ⊗ · · · ⊗ Hn,H

′
1 ⊗ · · · ⊗ H ′

n

)
,(67)

such that U(h1 ⊗· · ·⊗hn) = U1(h1)⊗· · ·⊗Un(hn) for all h1 ∈ H1, . . . , hn ∈ Hn.

DEFINITION 8.1. The operator constructed in Lemma 8.1 is called the tensor
product of U1, . . . ,Un and is denoted U1 ⊗ · · · ⊗ Un.

Finally, we will need to employ Hilbert–Schmidt operators which are a subspace
of the bounded linear operators.

DEFINITION 8.2. Let H,H ′ be Hilbert spaces and T ∈ L(H,H ′). T is called
a Hilbert–Schmidt operator if

∑
x∈J ‖T x‖2 < ∞ for an orthonormal basis J ⊂ H .

We denote the set of Hilbert–Schmidt operators in L(H,H ′) by H S (H,H ′).

This definition does not depend on the choice of orthonormal basis: the sum∑
x∈J ‖T (x)‖2 will always yield the same value regardless of the choice of or-

thonormal basis J .
Finally, we will also need to utilize the equivalence between tensor products and

linear operators ([15], Proposition 2.6.9).
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LEMMA 8.2. Let H,H ′ be Hilbert spaces. There exists a unitary operator
U : H ⊗ H ′ → H S (H,H ′) such that, for any simple tensor h ⊗ h′ ∈ H ⊗ H ′,
U(h ⊗ h′) = 〈h, ·〉h′.

Before we introduce the algorithm, we will discuss an important point regard-
ing computational implementation and Lemmas 8.2 and 8.1. For the remainder
of this paragraph, we will assume that Euclidean spaces are equipped with the
standard inner product. Vectors in a space of tensor products of Euclidean spaces,
for example, Rd1 ⊗ · · · ⊗ R

ds are easily represented on computers as elements of
R

d1×···×ds [10]. Linear operators from some Euclidean tensor space to another can
also be easily represented. Furthermore, the transformation in Lemma 8.2 and the
construction of new operators from Lemma 8.1 can be implemented in comput-
ers by “unfolding” the tensors into matrices, applying common linear algebraic
manipulations and “folding” them back into tensors. The inner workings of these
manipulations are beyond the scope of this paper and we refer the reader to [14]
for details. Practically speaking, this means the manipulations mentioned in Lem-
mas 8.2 and 8.1 are straightforward to implement with a bit of tensor program-
ming know-how. Implementation may also be streamlined by using programming
libraries that assist with these tensor manipulations such as the NumPy library for
Python.

Because of the points mentioned in the previous paragraph, the following algo-
rithm is readily implementable for estimating categorical distributions, where the
measures can be represented as probability vectors on a Euclidean space. Simi-
larly, we expect that these techniques could be extended to probability densities on
Euclidean space using kernel density estimators with a kernel function with easily
computable L2 inner products (e.g., Gaussian kernels) although we suspect that
implementation of such an algorithm may be significantly more involved.

To begin our description of the abstract algorithm, we will apply the transform
from Lemma 8.2 to

∑m
i=1 wip

⊗2m−2
i to get the operator

C =
m∑

i=1

wip
⊗m−1
i

〈
p⊗m−1

i , ·〉 = m∑
i=1

√
wip

⊗m−1
i

〈√
wip

⊗m−1
i , ·〉.(68)

Here, C is a positive semidefinite (PSD) operator in L(L2(�,F, ξ)⊗m−1). Let
C† be the (Moore–Penrose) pseudoinverse of C and W = √

C†. Now W is an
operator that whitens

√
w1p

⊗m−1
1 , . . . ,

√
wmp⊗m−1

m . That is, W
√

w1p
⊗m−1
1 , . . . ,

W
√

wmp⊗m−1
m are orthonormal vectors. Using the operator construction from

Lemma 8.1, we can construct I ⊗ W ⊗ W where, for all simple tensors in
L2(�,F, ξ)⊗2m−1 we have

(I ⊗ W ⊗ W)(x1 ⊗ · · · ⊗ x2m−1)

= x1 ⊗ W(x2 ⊗ · · · ⊗ xm) ⊗ W(xm+1 ⊗ · · · ⊗ x2m−1).(69)
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Applying I ⊗ W ⊗ W to
∑m

i=1 wip
⊗2m−1
i yields

A�
m∑

i=1

wipi ⊗ W
(
p⊗m−1

i

) ⊗ W
(
p⊗m−1

i

)
(70)

=
m∑

i=1

pi ⊗ W
(√

wip
⊗m−1
i

) ⊗ W
(√

wip
⊗m−1
i

)
.(71)

From Lemma 8.2, we can transform the tensor A into the operator T ,

T =
m∑

i=1

pi ⊗ W
(√

wip
⊗m−1
i

)〈
W

(√
wip

⊗m−1
i

)
, ·〉.(72)

Because W is a whitening operator, the operator T T H is

T T H =
m∑

i=1

pi ⊗ W
(√

wip
⊗m−1
i

)〈
W

(√
wip

⊗m−1
i

)
, . . .(73)

m∑
j=1

W
(√

wjp
⊗m−1
j

)〈
pj ⊗ W

(√
wjp

⊗m−1
j

)
, ·〉〉

=
m∑

i=1

pi ⊗ W
(√

wip
⊗m−1
i

)〈
pi ⊗ W

(√
wip

⊗m−1
i

)
, ·〉(74)

which is a PSD operator. We set S � T T H .
For i �= j , it follows that pi ⊗W

√
wip

⊗m−1
i ⊥ pj ⊗W

√
wjp

⊗m−1
j . To see this,〈

pi ⊗ W
√

wip
⊗m−1
i , pj ⊗ W

√
wjp

⊗m−1
j

〉
(75)

= 〈pi,pj 〉〈W√
wip

⊗m−1
i ,W

√
wjp

⊗m−1
j

〉
(76)

= 〈pi,pj 〉0(77)

= 0.(78)

Also note that∥∥pi ⊗ W
√

wip
⊗m−1
i

∥∥2 = 〈
pi ⊗ W

√
wip

⊗m−1
i , pi ⊗ W

√
wip

⊗m−1
i

〉
(79)

= 〈pi,pi〉〈W√
wip

⊗m−1
i ,W

√
wip

⊗m−1
i

〉
(80)

= ‖pi‖2.(81)

If p1, . . . , pm have distinct norms, then it follows that
m∑

i=1

pi ⊗ W
√

wip
⊗m−1
i

〈
pi ⊗ W

√
wip

⊗m−1
i , ·〉(82)
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is the unique spectral decomposition of S since the vectors p1 ⊗ W
√

w1p
⊗m−1
1 ,

. . . , pm ⊗ W
√

wmp⊗m−1
m are orthogonal, have distinct norms, and thus distinct

positive eigenvalues. Given an eigenvector of S, pi ⊗ W
√

wip
⊗m−1
i , we need

only view it as a linear operator pi〈W√
wip

⊗m−1
i , ·〉 and apply this opera-

tor to some vector z which is not orthogonal to W
√

wip
⊗m−1
i , thus yielding

pi scaled by 〈W√
wip

⊗m−1
i , z〉. Where the norms of p1, . . . , pm not distinct,

then there would not be a spectral gap between some of the eigenvalues in S,
and a spectral decomposition of S may contain some eigenvectors that are not
p1 ⊗W

√
w1p

⊗m−1
1 , . . . , pm ⊗W

√
wmp⊗m−1

m , but are instead linear combinations
of these vectors.

The following is a concise summary of the main points of the full algorithm:

1. Let C = ∑m
i=1 wip

⊗m−1
i 〈p⊗m−1

i , ·〉 by transforming
∑m

i=1 wip
⊗2m−2
i .

2. Let W = √
C†.

3. Let A = I ⊗ W ⊗ W(
∑m

i=1 wip
⊗2m−1
i ). Note that

I ⊗ W ⊗ W

(
m∑

i=1

wip
⊗2m−1
i

)
=

m∑
i=1

pi ⊗ W
(√

wip
⊗m−1
i

) ⊗ W
(√

wip
⊗m−1
i

)
by direct evaluation and rearrangement of coefficients.

4. Let T = ∑m
i=1 pi ⊗ W(

√
wip

⊗m−1
i )〈W(

√
wip

⊗m−1
i ), ·〉 by transforming A.

5. Performing spectral decomposition on T T H gives us eigenvectors {pi ⊗
W(

√
wip

⊗m−1
i )}mi=1, up to scaling.

6. For all i, let p̃i = pi〈W(
√

wip
⊗m−1
i ), z〉 by transforming the eigenvectors

into linear operators and selecting z to be any vector such that the inner product
does not evaluate to 0. Now p̃i is a scaled version of pi .

7. Normalize p̃i to get pi .

Once the mixture components p1, . . . , pm are recovered from the spectral de-
composition we can calculate the mixture proportions. From these mixture com-
ponents, we can construct the tensors p⊗2m−2

1 , . . . , p⊗2m−2
m . These tensors are lin-

early independent by Lemma 5.3. The tensor
∑m

i=1 wip
⊗2m−2
i is known. By the

linear independence of the components, there is exactly one solution for a1, . . . , am

in the equation
m∑

i=1

wip
⊗2m−2
i =

m∑
j=1

ajp
⊗2m−2
j ,(83)

so simply minimizing ‖∑m
i=1 wip

⊗2m−2
i −∑m

j=1 ajp
⊗2m−2
j ‖ over a1, . . . , am will

give us the mixture proportions.
In the Supplementary Material [25], we study this algorithm applied to finite

sample spaces in further detail. In the supplement, we demonstrate how to recover
mixture components without the spectral gap assumption, how to construct the
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estimator given data (which we evaluate experimentally in Section 9) and prove
that it is consistent.

Taking inspiration from [2] and [23], we can suggest yet another algorithm.
The previous papers demonstrate algorithms for recovering mixture components
which are measures on finite sample spaces and R

d , from random groups of
size 3, provided the mixture components are linearly independent. Given a mix-
ture of measures P = ∑m

i=1 wiδμi
with density functions p1, . . . , pm, the tensors

p⊗m−1
1 , . . . , p⊗m−1

m are linearly independent. Thus, with 3m − 3 samples per ran-
dom group, we can estimate the tensors

∑m
i=1 wip

⊗3m−3
i and we can use the al-

gorithms from the previous papers to recover p⊗m−1
1 , . . . , p⊗m−1

m from which it is
straightforward to recover p1, . . . , pm.

9. Experiments. Here, we will present some experimental results of our algo-
rithm applied to a simple synthetic dataset. The sample space for the experiments
is � = {0,1,2}. The mixture components of our dataset are μ1,μ2,μ3 with μ1
distributed according to a binomial distribution with n = 2 and p = 0.2, μ2 is sim-
ilar with p = 0.8 and μ3 = 1

3μ1 + 2
3μ2. The component weights are w1 = 0.5,

w2 = 0.3, w3 = 0.2. We chose these mixture components so that they are not par-
ticularly nice. Specifically, the mixture components are not linearly independent,
and when considered as vectors in R

3, μ1 and μ2 have the same norm. Our mix-
ture of measures is P = ∑3

i=1 wiδμi
and our samples come from either V5(P) or

V6(P) depending on the algorithm used.
We construct our own performance measure which allows us to judge the perfor-

mance of the estimated components jointly. Let μ̂1, μ̂2, μ̂3 be the three estimates
for the mixture components from some algorithm. We will view these estimates
as vectors in R

3. Our performance measure is minσ∈S3
1
3

∑3
i=1 ‖μi − μ̂σ(i)‖�1(R3).

That is, we take the average of total variations of the best matching of the estimated
mixture components to the true components.

9.1. Proposed algorithms. We include two different implementations of our
proposed algorithm, one where we use what we call a “random dominating mea-
sure” and in the other we use what we call a “fixed dominating measure.” In the
following, we describe the two implementations and the rationale for presenting
both of them.

In the description of our algorithm in Section 8, we make the assumption that the
mixture components, when represented as square integrable densities over some
dominating measure, have distinct L2 norms. This is necessary to ensure that (82)
admits a unique spectral decomposition. Because μ1 and μ2 have the same norm
when considered as vectors in R

3 this assumption does not hold for the experi-
ments we present here. We use the aforementioned “random dominating measure”
technique (details in the Supplementary Material [25]) which transforms the mea-
sure space so that the mixture components have distinct norms. To do this, we
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choose a dominating measure randomly so that, with probability one, the mixture
components have different norms when represented as densities over this measure
space. We theoretically demonstrate that this technique works in the Supplemen-
tary Material [25]. In this paper, we present experimental evidence that this tech-
nique also works in practice.

The purpose of the random dominating measure is to create a spectral gap be-
tween the mixture components. Intuitively, it seems reasonable that if we choose
the dominating measure “well” then we will end up with large spectral gaps with-
out making any of the component norms so diminutive as to become unnoticeable.
In the interest of exploring this idea, we tested different dominating measures un-
til we found one that improved algorithmic performance significantly and include
these experimental results as well. We found that the dominating measure ξ with
ξ({0}) = 32, ξ({1}) = 22 and ξ({2}) = 1 improved performance significantly and
we refer to this as the “fixed dominating measure” implementation. These exper-
imental results indicate the possibility for significant improvements to our algo-
rithm by choosing the dominating measure intelligently. Additional specifics for
these proposed implementations can be found in the Supplementary Material [25].

Both of these implementations were run on two experimental scenarios, one
with 50,000 random groups and the other with 10,000,000 random groups, with
all groups drawn from V5(P). We repeated each experiment 20 times and report
relevant statistics.

9.2. Competing algorithms. As a baseline, we compare our algorithm against
simply choosing 3 measures uniformly at random from the probabilistic simplex.
The randomly selected components algorithm was repeated 1000 times. We also
compare our algorithm to a modified version of the algorithm introduced in [2].
The algorithm in [2] is designed to work on random groups with three samples
and a mixture of measures with linearly independent components. Because of this,
we apply the algorithm in [2] to random groups from V6(P) rather than V5(P),
with the adaptation described at the end of Section 8. This algorithm was also
run on experimental scenarios with 50,000 and 10,000,000 random groups. Again,
these experiments were repeated 20 times.

9.3. Results. The results are summarized in Table 1. Our algorithm demon-
strates a clear improvement as the number of random groups increases. Our mod-
ification of the algorithm in [2] performs noticeably better than the other algo-
rithms, likely owing to the fact that it has more information per group and/or the
fact that it does not depend on the “random dominating measure” trick. Using the
fixed dominating measure narrows this gap considerably, and it seems likely that
this gap could be further improved with a better choice of dominating measure.

10. Discussion. In closing, we offer the following observations related to our
results.
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TABLE 1
Experimental results

Method Performance

Random Dominating Measure, 50,000 samples Mean: 0.1407, Variance: 0.0169
Fixed Dominating Measure, 50,000 samples Mean: 0.0524, Variance: 0.0011
Anandkumar et al. [2], 50,000 samples Mean: 0.0503, Variance: 0.0145
Random Dominating Measure, 10,000,000 samples Mean: 0.0433, Variance: 0.0062
Fixed Dominating Measure, 10,000,000 samples Mean: 0.0037, Variance: 4e−6
Anandkumar et al. [2], 10,000,000 samples Mean: 0.0026, Variance: 4e−6
Randomly Selected Measures Mean: 0.5323, Variance: 0.0203

10.1. Potential statistical test and estimator. The results on determinedness
suggest the possibility of a goodness-of-fit test. Suppose we have grouped samples
from some mixture of measures P ′ = ∑m′

i=1 w′
iδμ′

i
. Further suppose some null

hypothesis

H0 : P ′ = P �
m∑

i=1

wiδμi
.(84)

Given data from V2m(P ′), we may be able to reject the null hypothesis provided
we have some way of estimating M � ∑m

i=1 wiμ
×2m
i from the groups of samples.

We will call such an estimator M̂ . If M̂ does not converge to M , then we can reject
the null hypothesis. The implementation and analysis of such an estimator would
depend on the setting and is outside the scope of this paper

One interesting observation from the proof of Theorem 4.3 is that, if P =∑m
i=1 wiδμi

is a mixture of measures, pi is a pdf for μi for all i, and n > m,
then the rank of

∑m
i=1 aip

⊗n
i ⊗ p⊗n

i will be exactly m. This suggests a statisti-
cal estimator for the number of mixture components. The form of this tensor is
amenable to spectral methods since it is a positive semidefinite tensor of order 2,
which is akin to a positive semidefinite matrix. Embedding the data with the kernel
mean mapping, using a universal kernel [19], seems like a promising approach to
constructing such a test or estimator.

10.2. Identifiability and the value 2n − 1. The value 2n − 1 seems to carry
some significance for identifiability beyond the setting we proposed. This value
can also be found in results concerning metrics on trees [20], hidden Markov mod-
els [21] and frame theory, with applications to signal processing [6]. All of these
results are related to identifiability of an object or the injectivity of an operator.
We can offer no further insight as to why this value recurs, but it appears to be an
algebraic phenomenon.

Acknowledgment. RV: Thanks to Marius Kloft for some interesting discus-
sions.
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SUPPLEMENTARY MATERIAL

Supplement to “An operator theoretic approach to nonparametric mix-
ture models” (DOI: 10.1214/18-AOS1762SUPP; .pdf). Technical results and ad-
ditional algorithmic details.
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