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PROPERTY TESTING IN HIGH-DIMENSIONAL ISING MODELS

BY MATEY NEYKOV AND HAN LIU1

Carnegie Mellon University and Northwestern University

This paper explores the information-theoretic limitations of graph prop-
erty testing in zero-field Ising models. Instead of learning the entire graph
structure, sometimes testing a basic graph property such as connectivity, cy-
cle presence or maximum clique size is a more relevant and attainable ob-
jective. Since property testing is more fundamental than graph recovery, any
necessary conditions for property testing imply corresponding conditions for
graph recovery, while custom property tests can be statistically and/or compu-
tationally more efficient than graph recovery based algorithms. Understand-
ing the statistical complexity of property testing requires the distinction of
ferromagnetic (i.e., positive interactions only) and general Ising models. Us-
ing combinatorial constructs such as graph packing and strong monotonicity,
we characterize how target properties affect the corresponding minimax up-
per and lower bounds within the realm of ferromagnets. On the other hand,
by studying the detection of an antiferromagnetic (i.e., negative interactions
only) Curie–Weiss model buried in Rademacher noise, we show that prop-
erty testing is strictly more challenging over general Ising models. In terms
of methodological development, we propose two types of correlation based
tests: computationally efficient screening for ferromagnets, and score type
tests for general models, including a fast cycle presence test. Our correlation
screening tests match the information-theoretic bounds for property testing in
ferromagnets in certain regimes.

1. Introduction. The Ising model is a pairwise binary model introduced by
statistical physicists as a model for spin systems with the goal of understanding
spontaneous magnetization and phase transitions (Ising (1925)). More recently, the
model has found applications in diverse areas such as image analysis (Geman and
Geman (1984)), bioinformatics and social networks (Ahmed and Xing (2009)). In
statistics, the model is an archetypal example of an undirected graphical model.
A central topic of interest in graphical models research is estimating the structure
(also known as structure learning) of, or inferring questions about, the underly-
ing graph based on a sample of observations. Substantial progress has been made
toward understanding structure learning. Popular procedures developed for high-
dimensional graph estimation include �1-regularization methods (Yuan and Lin
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(2007), Rothman et al. (2008), Liu, Lafferty and Wasserman (2009), Ravikumar
et al. (2011), Cai, Liu and Luo (2011)), neighborhood selection (Meinshausen and
Bühlmann (2006), Bresler, Mossel and Sly (2008)) and thresholding (Montanari
and Pereira (2009)). In this paper, instead of focusing on learning the structure of
the entire graph, we study the weaker inferential problem of property testing, that
is, testing whether the graph structure obeys certain properties based on a sample
of n observations. Specifically, we study the zero-field Ising model.

Formally, a zero-field Ising model is a collection of d binary ±1 valued random
variables X = (X1,X2, . . .Xd), hereto referred to as spins, which are distributed
according to the law

(1.1) Pθ,Gw(X = x)∝ exp
(
θ

∑
(u,v)∈E(G)

wuvxuxv

)
,

where θ ≥ 0, Gw = (G,w) where G = ([d],E) is a simple graph, and w ∈ R(d
2)

are weights on the graph’s edges (i.e., for each edge (u, v) ∈ E(G), w specifies
the edge weight wuv , and for any (u, v) /∈ E(G): wuv = 0). Using (1.1), it is easily
seen that the vector X is Markov to the graph G, or in other words, any two non-
adjacent spins Xu and Xv ((u, v) /∈ E(G)) are independent given the values of all
the remaining spins.

Note that model (1.1) is overparametrized. However, when wuv are viewed as
fixed constants, this specification allows one to study the behavior of X for dif-
ferent values of θ . In statistical physics, the parameter θ = 1

T
where T stands for

temperature, and is often referred to as the inverse temperature of the system. The
temperature plays an important role in changing the “balance” of the distribution
of the spins, and is the main cause for the system to undergo phase transitions.
The complicated behavior of the Ising model at different temperatures suggests
that the difficulty of property testing is related to θ . The main focus of this pa-
per is uncovering necessary and sufficient conditions on the temperature, sample
size, dimensionality and graph properties, allowing one to conduct property tests
even when the data is sampled from the most challenging models. Understand-
ing such limitations is practically useful, since necessary conditions can provide a
benchmark for algorithm comparisons, while mismatches between sufficient and
necessary conditions can prompt to searching for better algorithms.

To elaborate on the type of problems, we study, let [d] = {1, . . . , d} be a ver-
tex set of cardinality d and let Gd be the set of all graphs over the vertex set [d].
A binary graph property P is a map P : Gd �→ {0,1}. Given a sample of n obser-
vations from a zero-field Ising model with an underlying simple graph G, the goal
of property testing is to test the hypotheses

(1.2) H0 : P(G) = 0 versus H1 : P(G) = 1.

Below we give three specific instances of property tests. We furthermore give infor-
mal summaries of our findings, which are presented more rigorously in Sections 2
and 3.
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Connectivity. A graph is connected if and only if each pair of its vertices is
connected via a path. Define P as P(G) = 0 if G is disconnected and P(G) = 1
otherwise. Testing for connectivity is equivalent to testing whether the variables
can be partitioned into two independent sets. It turns out that in simple ferromag-
nets (i.e., models whose spin-spin interactions satisfy wuv ∈ {0,1} for all (u, v))
connectivity testing is possible iff √

logd

n
� θ,

where � is inequality up to constants. Note that there is no upper bound on θ and
as long as θ is large enough connectivity testing is always possible.

Cycle presence. If a graph is a forest, that is, a graph containing no cycles,
its structure can be estimated efficiently using a graph selection procedure based
on a maximum spanning tree construction proposed by Chow and Liu (1968). It
is therefore sometimes of interest to test whether the underlying graph is a forest.
In this example, P satisfies P(G) = 0 if G is a forest and P(G) = 1 otherwise.
We will also refer to forest testing as cycle testing, since it is equivalent to testing
whether the graph contains cycles. In simple ferromagnets, cycle testing is possible
iff √

logd

n
� θ � log

n

logd
.

In contrast to connectivity, there appears to be an upper bound on the temperature
when one tests for cycle presence.

Clique size. Another relevant question is to test whether the size of a maximum
clique (i.e., a maximum complete subgraph) contained in the graph is less than or
equal to some integer m − 1 versus the alternative that a maximum clique is of
size at least m. This is a relevant question since Hammersley–Clifford’s theorem
(Grimmett (2018)) ensures that the Ising distribution can be factorized over the
cliques in the graph, and hence knowing the maximal size of any clique puts a
restriction on this factorization. In this example, set P(G) = 0 if G contains no m-
clique, and P(G) = 1 otherwise. Let the maximum degree2 of the graph G be s. It
turns out that testing the clique size is impossible in simple ferromagnets unless√

logd

n
� θ �

log n
logd

s
.

2The largest number of neighbors of any vertex of G.
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Different from before, the maximum degree appears in the upper bound on θ . We
will show that testing the maximum clique size is possible when√

logd

n
� θ � 1

s
and when m = s + 1 and

log s

s
� θ �

log n
logd

s
,

where � is used in the sense “much larger than” (for a precise definition see the
notation section below). This matches the previous two bounds up to constants.

By definition, property testing is a statistically simpler task compared to learn-
ing the entire graph structure, since if a graph estimate is available, property testing
can be done via a deterministic procedure (although possibly a computationally
challenging one). An important implication of this observation is that any quan-
tification on how hard testing a particular graph property is, immediately implies
that estimating the entire graph is at least as hard. Conversely, any algorithm capa-
ble of learning the graph structure with high confidence can be applied to test any
property while preserving the same confidence. Importantly, however, there could
exist tests geared toward particular graph properties which can statistically and/or
computationally outperform generic graph learning methods.

Under the assumption that the maximum degree of G is at most s, founda-
tional results on the limitations of structure learning of Ising models were given by
Santhanam and Wainwright (2012). In view of the relationship between property
tests and structure learning, our work can be seen as a generalization of necessary
conditions for structure learning. Our results also help to paint a more complete
picture of the statistical complexity of testing in Ising models. Unlike in structure
learning, understanding property testing requires the distinction of ferromagnetic
and general Ising models, of which the latter exhibit strictly stronger limitations.
In terms of methodological development, we formalize correlation based property
tests which can be customized to target any graph property. We now outline the
three major contributions of this work.

1.1. Summary of contributions. Our first contribution is to provide necessary
conditions for property testing in ferromagnets. We give a generic lower bound
on the inverse temperature (Theorem 2.4), demonstrating that property testing is
difficult in high-temperature regimes. A key role in the proof is played by Do-
brushin’s comparison theorem (Föllmer (1988)), which a is powerful tool for com-
paring discrepancies between Gibbs measures based on their local specifications.
We further formalize the class of strongly monotone graph properties, and show
that when the temperature drops below a certain property dependent threshold,
testing strongly monotone properties becomes challenging (Theorem 2.6). We also
provide an analogue of Theorem 2.4 specialized for strongly monotone properties
(Proposition 2.7). Our general results are applied to obtain bounds on testing con-
nectivity, cycles and maximum clique size.
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Our second contribution is to design several correlation based tests and under-
stand their limitations. First, we formalize and study a generic correlation screen-
ing algorithm for ferromagnets. We show that this algorithm works well at high-
temperature regimes (Remark 3.4 and Corollary 3.3), and could be successful even
beyond this regime for some properties (Section 3.2). To analyze the algorithms
at low temperature regimes, we develop a novel “no-edge” correlation bound
for graphs of bounded degree (see Proposition 3.3), which may be of indepen-
dent interest. We apply those algorithms to testing connectivity, cycles and maxi-
mum clique size and discover that they match the derived lower bounds in certain
regimes. Second, we adapt the correlation decoders of Santhanam and Wainwright
(2012) to property testing for general Ising models, and we develop a computa-
tionally tractable cycle test (Section 4.3).

Our third contribution is to study necessary conditions for general Ising mod-
els, that is, models including both ferromagnetic and antiferromagnetic3 interac-
tions. Specifically, we argue that testing strongly monotone properties over gen-
eral models requires more stringent conditions than performing the same tests
over ferromagnets (Theorem 4.1 and Proposition 4.3). In order to prove this re-
sult, we demonstrate that it is very difficult to detect the presence of an antifer-
romagnetic Curie–Weiss4 (e.g., see Kochmański, Paszkiewicz and Wolski (2013))
model buried in Rademacher noise, which to the best of our knowledge is the first
attempt to analyze this problem. The detection problem we consider is in part in-
spired by the works Addario-Berry et al. (2010), Arias-Castro, Bubeck and Lugosi
(2012, 2015), Arias-Castro et al. (2018).

1.2. Related work. Recent works on Ising models related to the Curie–Weiss
model include Berthet, Rigollet and Srivastava (2016), Mukherjee, Mukherjee and
Yuan (2018). An interesting paper on testing goodness-of-fit in Ising models by
Daskalakis, Dikkala and Kamath (2018), uses tests based on minimal pairwise
correlations which are similar in spirit to some of the tests we consider. In a re-
lated work, Gheissari, Lubetzky and Peres (2017) demonstrated that sums of pair-
wise correlations concentrate for general Ising models. Pseudo-likelihood param-
eter estimation and inference of the inverse temperature for Ising models of given
structures was studied by Bhattacharya and Mukherjee (2018). Property testing is
a fundamentally different problem, and our work is in part inspired by Neykov,
Lu and Liu (2016). We show that the graph packing constructions introduced by
Neykov, Lu and Liu (2016) for Gaussian models, can also be used to give upper
bounds on the temperature for property testing in Ising models (Theorem 2.4). Un-
like Neykov, Lu and Liu (2016) however, we do not restrict our study to graphs of

3Inspired by statistical physics jargon, throughout the paper we use the terms ferromagnetic and
antiferromagnetic to refer to positive and negative interactions, respectively.

4That is, an antiferromagnetic model with a complete graph.
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bounded degree, and we give a more complete picture of the complicated land-
scape of property testing in Ising models, by distinguishing ferromagnetic from
general models (see Theorems 2.6 and 4.1, and Propositions 2.7 and 4.3).

Structure learning is very relevant to property testing. Restricted to the class of
ferromagnetic models, Shanmugam et al. (2014) related structural conditions of the
graph with information-theoretic bounds. Santhanam and Wainwright (2012) sug-
gested correlation decoders, which are computationally inefficient but to the best
of our knowledge have the smallest sample size requirements for general models.
Anandkumar et al. (2012) gave a polynomial time neighborhood selection method
for models whose graphs obey special properties. The first polynomial time algo-
rithm which works for general Ising models was given by Bresler (2015) and was
motivated by earlier works on structure recovery (Bresler, Mossel and Sly (2008),
Bresler, Gamarnik and Shah (2014)). Inspired by the simplicity of the correlation
algorithms studied by Montanari and Pereira (2009), Santhanam and Wainwright
(2012), we use similar ideas to develop property tests, and demonstrate that for
some properties our tests work in vastly different regimes compared to graph re-
covery.

1.3. Notation. For convenience of the reader, we summarize the notation
used throughout the paper. For a vector v = (v1, . . . , [d])T ∈ Rd , let ‖v‖q =
(
∑d

i=1 v
q
i )1/q,1 ≤ q < ∞ with the usual extension for q = ∞: ‖v‖∞ = maxi |vi |.

Moreover, for a matrix A ∈ Rd×d we denote ‖A‖p = max‖v‖p=1 ‖Av‖p for p ≥ 1.
For any n ∈ N, we use the shorthand [n] = {1, . . . , n}. We denote N0 = N ∪ {0}.
For a set N ⊂ N, we define

(N
2

) = {(u, v) | u < v,u, v ∈ N} to be the set of ordered
pairs of numbers in N . For a graph G = (V ,E), we use V (G) = V , E(G) = E,
maxdeg(G) to refer to the vertex set, edge set and maximum degree of G, respec-
tively. For two graphs G,G′, we use G′ � G if G′ is a spanning subgraph of G,
that is, V (G′) = V (G) and E(G′) ⊆ E(G); we use G′ ⊆ G if G′ is a subgraph of
G but not necessarily a spanning one, that is, V (G′) ⊆ V (G) and E(G′) ⊆ E(G).
For a graph G = (V ,E) and an edge e, we will write e ∈ G, e ∈ E or e ∈ E(G)

interchangeably whenever this does not cause confusion.
For a probability measure P, the notation P⊗n means the product measure of n

independent and identically distributed (i.i.d.) samples from P. For two functions
f (x) and g(x), we use the notation f (x) ≈ g(x) in the sense that limx↓0

f (x)
g(x)

= 1.
Given two sequences {an}, {bn}, we write an = O(bn) if for large enough n there
exists a constant C < ∞ such that an ≤ Cbn; an = �(bn) if there exists a positive
constant c > 0 such that an ≥ cbn; an = o(bn) if an/bn → 0, and an � bn if there
exists positive constants c and C such that c < an/bn < C; an � bn if there exists
an absolute constant c > 0 so that an ≥ cbn. Finally, we use ∧ and ∨ for min and
max of two numbers, respectively. For positive sequences an and bn, we denote
an � bn if bn/an = o(1).
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1.4. Organization. The remainder of the paper is structured as follows. Mini-
max bounds for ferromagnetic models are given in Section 2. Section 3 is dedicated
to correlation screening algorithms for testing in ferromagnets. Section 4 provides
minimax bounds for general models and studies correlation based algorithms for
general models. The proofs of two results on strongly monotone properties, The-
orem 2.6 and Proposition 2.7, are given in Section 5. Discussion is postponed to
the final Section 6. Most proofs are relegated to the Appendices A–E in the Sup-
plementary Material (Neykov and Liu (2019)).

2. Bounds for ferromagnets. This section discusses lower and upper bounds
on the temperature for ferromagnetic models. We begin by formally introducing
the simple zero-field ferromagnetic Ising models. Given a θ ≥ 0, the simple zero-
field ferromagnetic Ising model with signal θ is given by

(2.1) Pθ,G(X = x) = 1

Zθ,G

exp
(
θ

∑
(u,v)∈E(G)

xuxv

)
,

where the vector of spins x ∈ {±1}d and

Zθ,G = ∑
x∈{±1}d

exp
(
θ

∑
(u,v)∈E(G)

xuxv

)
,

denotes the normalizing constant, also known as partition function. Model (2.1) is
equivalent to (1.1), where the spin-spin interactions wuv are either equal to 0 or
1; hence the term “simple.” The term “zero-field” refers to the fact that all “main-
effects” parameters of the spins xu have been set to zero, and “ferromagnetic”
refers to the fact that all spin-spin interactions are non-negative. As discussed in
the Introduction, the parameter θ is the inverse temperature but will also be referred
to as signal strength interchangeably.

2.1. General results. A key concept allowing us to quantify the difficulty of
testing a graph property P under the worst possible scenario is the minimax risk.
Formally, given data generated from model (2.1) and a property P , testing (1.2) is
equivalent to testing H0 : G ∈ G0(P) versus H1 : G ∈ G1(P) where

(2.2) G0(P) := {
G ∈ Gd | P(G) = 0

}
, G1(P) := {

G ∈ Gd | P(G) = 1
}
.

The minimax risk of testing P is defined as

(2.3) Rn(P, θ) := inf
ψ

[
sup

G∈G0(P)

P⊗n
θ,G(ψ = 1) + sup

G∈G1(P)

P⊗n
θ,G(ψ = 0)

]
,

where the infimum is taken over all measurable binary valued test functions ψ ,
and recall the notation ⊗n for a product measure of n i.i.d. observations. Criteria
(2.3) evaluates the sum of the worst possible type I and type II errors under the best
possible test function ψ . One can always generate ψ ∼ Ber(1

2) independently of
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the data, which yields a minimax risk equal to 1. In the remainder of this section,
we derive upper and lower bounds on the temperature beyond which Rn(P, θ)

asymptotically equals 1, which implies that asymptotically the best test of P would
be as good as a random guess. Importantly, here and throughout the manuscript, we
implicitly assume the high-dimensional regime d := d(n), so that asymptotically
d → ∞ as n → ∞.

To formalize our general signal strength bound for combinatorial properties in
Ising models, we need several definitions. Similar definitions were previously used
by Neykov, Lu and Liu (2016) to understand the limitations of combinatorial in-
ference in Gaussian graphical models. The first definition allows us to measure a
graph based pre-distance between edges.

DEFINITION 2.1 (Edge geodesic pre-distance). Let G be a graph and {e, e′}
be a pair of edges which need not belong to G. The edge geodesic pre-distance is
given by

dG

(
e, e′) := min

u∈e,v∈e′ dG(u, v),

where dG(u, v) denotes the geodesic distance5 between vertices u and v on G. If
such a path does not exist, dG(e, e′) = ∞.

Here, we use the term pre-distance since dG(e, e′) does not obey the triangle
inequality. Having defined a pre-distance, we can define edge packing sets and
packing numbers.

DEFINITION 2.2 (Packing number). Given a graph G = (V ,E) and a collec-
tion of edges C with vertices in V , a r-packing of C is any subset of edges S, that
is, S ⊆ C such that each pair of edges e, e′ ∈ S satisfy dG(e, e′) ≥ r . We define the
r-packing number:

N(C, dG, r) = max
{|S| | S ⊆ C, S is r-packing

}
,

that is, N(C, dG, r) is the maximum cardinality of an r-packing set.

A large r-packing number implies that the set C has a large collection of edges
that are far away from each other. Hence the packing number can be understood
as a complexity measure of an edge set. The final definition before we state our
first result formalizes constructions of graphs belonging to the null and alternative
hypothesis and differing in a single edge.

5The geodesic distance between u and v is the number of edges on the shortest path connecting u

and v.
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DEFINITION 2.3 (Null-alternative divider). For a binary graph property P , let
G0 = ([d],E0) ∈ G0(P). We refer to an edge set

C = {e1, . . . , em},
as a null-alternative divider (or simply divider for short) with a null base G0 if for
any e ∈ C the graphs Ge := ([d],E0 ∪ {e}) ∈ G1(P).

Intuitively, a large divider set C implies that testing P is difficult since there
exist multiple graphs Ge with which one can confuse the graph G0. We make this
intuition precise in the following.

THEOREM 2.4 (Signal strength general lower bound). Given a binary graph
property P , let G0 ∈ G0(P), and the set C be a divider set with a null base G0.
Suppose that |C| → ∞ asymptotically. If we have

θ ≤ 1

2

√
logN(C, dG0, log log |C|)

n
∧ atanh

(
e−2

maxdeg(G0) + 1

)
,

then lim infn→∞ Rn(P, θ) = 1.

Theorem 2.4 gives a strategy for obtaining lower bounds on θ using purely
combinatorial constructions. Its proof utilizes Dobrushin’s comparison theorem
(Föllmer (1988)) to bound the χ2 divergence between Ising measures deferring
in a single edge. The second inequality on θ is required to ensure that the system
is in a “high-temperature regime” which is where Dobrushin’s theorem holds. If
one can select a graph G0 of constant maximum degree, the real obstruction on
θ will be given by the entropy term. Theorem 2.4 is reminiscent of Theorem 2.1
of Neykov, Lu and Liu (2016); remarkably, similar constructions can be used to
give lower bounds on the signal strength in both the Gaussian and Ising models.
Even though the statements of the two results are related, their proofs are vastly
different. The proof in the Gaussian case heavily relies on the fact that the partition
functions can be evaluated in closed form, which is generally impossible in Ising
models. We demonstrate the usefulness of Theorem 2.4 in Section 2.2 where we
apply it to a connectivity testing example.

We complement Theorem 2.4 by an upper bound on the inverse temperature
θ above which the minimax risk cannot be controlled. The need for such bounds
arises due to identifiability issues in Ising models at low temperatures. In such
regimes, the model develops long range correlations, that is, even spins which are
not neighbors on the graph can become highly correlated. A simple implication
of this fact for instance is that it is challenging to tell apart a triangle graph from
a vertex with its two disconnected neighbors at low temperatures (see Figure 2).
To formalize the statement, we first define a class of graph properties. To this end,
recall the distinction between the spanning subgraph and subgraph inclusions �,
⊆ introduced in Section 1.3.
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DEFINITION 2.5 (Monotone and strongly monotone properties). A binary
graph property P : Gd �→ {0,1}, is called monotone, if for any two graphs G′ � G

we have P(G′) ≤ P(G). A binary property P is called strongly monotone if for
any two graphs G′ ⊆ G we have P(G′) ≤ P(G).

By definition, any strongly monotone property is monotone; however, the con-
verse is not true. An example of a strongly monotone property is the size of the
largest clique in a graph. On the other hand, an example of a monotone property
which is not strongly monotone is graph connectivity. We now state our result giv-
ing an upper bound on θ when testing strongly monotone properties. We have the
following.

THEOREM 2.6 (Strongly monotone properties upper bound). Let P be a
strongly monotone property, and H0 ∈ G0(P). Assume there exists an l × r bi-
clique6 B with r ≥ 2 such that B � H0. Suppose there are two vertices u, v be-
longing to the right-hand side of B , so that adding (u, v) to H0 gives a graph
H1 ∈ G1(P). Let θ satisfy θ ≥ 2

l
and θ ≥ 3

r−2 when r > 2 or θ ≥ log 2 for r = 2.
Then if for some κ > 1, we have

(2.4) θ ≥ log 2κnr
log�d/(l+r)�

l
,

it holds that lim infn→∞ Rn(P, θ) = 1.

Theorem 2.6 shows how to prove upper bounds on θ using graph constructions.
One needs to find a graph H0 containing a large biclique B , so that adding edges
to H0 transfers it to an alternative graph. The number of “left” vertices l of B

appears in (2.4) and, therefore, the larger B is the harder it is to test P in the worst
case. The intuition behind this is as follows. The existence of the biclique B is a
measure of how dense H0 is. The denser H0 is the harder it is to tell it apart from
H1 when θ is large. On the other hand, the strong monotonicity of P ensures that if
a subgraph H1 of G satisfies P(H1) = 1 then P(G) = 1. Therefore, if G contains
H0 as a subgraph it becomes hard to test for P when the value of θ is large.

We end this section with a result, which shows a simple lower bound on θ for
strongly monotone properties. One may use this result in place of Theorem 2.4,
when handling strongly monotone properties.

PROPOSITION 2.7 (Strongly monotone properties lower bound). Let P be a
strongly monotone property, and the graph H0 = ([m],E0) ∈ G0(P), be such that

6A complete bipartite graph.
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if one adds the edge e to H0 the resulting graph H1 = ([m],E0 ∪ {e}) ∈ G1(P).
Suppose log�d/m� ≤ n. Then if

(2.5) θ < atanh
(√

log�d/m�
n

)
,

we have lim infn→∞ Rn(P, θ) = 1. Furthermore, lim infn→∞ Rn(P, θ) = 1 if
log�d/m� � n for a sufficiently large constant.

Notice that for positive θ one has θ > tanh(θ) and, therefore, (2.5) implies that

θ >

√
log�d/m�

n
in order for cycle testing to be possible. Examples 2.9 and 2.10 of

the following section illustrate how to apply Theorem 2.6 and Proposition 2.7 in
practice.

2.2. Examples. In this section, we apply Theorems 2.4, 2.6 and Proposi-
tion 2.7 to establish necessary conditions on θ for the three examples discussed
in the Introduction. In the first example, we derive a lower bound on θ for graph
connectivity testing.

EXAMPLE 2.8 (Connectivity). Define “graph connectivity” P as P(G) = 0 if
G is disconnected and P(G) = 1 otherwise. Then if

(2.6) θ < κ
√

logd/n ∧ atanh
(
1/

(
3e2))

,

we have lim infn→∞ Rn(P, θ) = 1. Furthermore, if logd � n for a sufficiently
large absolute constant and if

(2.7) tanh(θ) < 1,

we have lim infn→∞ Rn(P, θ) = 1.

PROOF OF EXAMPLE 2.8. Note that since connectivity is not a strongly mono-
tone property we cannot apply Proposition 2.7, and will use Theorem 2.4 instead.
Construct a base graph G0 := ([d],E0) where

E0 := {
(j, j + 1)

�d/2�−1
j=1 ,

(�d/2�,1
)
, (j, j + 1)dj=�d/2�+1,

(�d/2� + 1, d
)}

,

and let

C := {(
j, �d/2� + j

)�d/2�
j=1

}
(see Figure 1).

Adding any edge from C to G0 results in a connected graph, so C is a divider with
a null base G0. To construct a packing set of C, we collect all edges (j, �d/2�+ j)

for j ≤ �d/2� − �log log |C|� satisfying �log log |C|� divides j . This procedure
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FIG. 1. The graph G0 with two edges e, e′ ∈ C : dG0 (e, e
′) = 2, d = 10.

results in a packing set with radius at least �log log |C|� and cardinality of at least
� |C|

�log log |C|� � − 1. Therefore,

logN
(
C, dG0, log log |C|) ≥ log

[⌊ |C|
�log log |C|�

⌋
− 1

]
� log |C| � logd.

By Theorem 2.4, we conclude that the asymptotic risk of connectivity testing is 1
if for some absolute constant κ > 0 we have that (2.6) holds. The second conclu-
sion of this example does not follow directly from our general results. Its proof is
deferred to Appendix B. �

EXAMPLE 2.9 (Cycle presence). Consider testing the property P “cycle pres-
ence,” that is, P(G) = 0 if G is a forest and P(G) = 1 otherwise. Suppose
log�d/3� ≤ n. If either

(2.8) θ < atanh
(√

log�d/3�/n
)

or

(2.9) θ ≥ 2 ∨ log
4κn

log�d/3� ,

for some absolute constant κ > 0, we have lim infn→∞ Rn(P, θ) = 1. Further-
more, lim infn→∞ Rn(P, θ) = 1 if for some sufficiently large constant, we have
logd � n.

PROOF OF EXAMPLE 2.9. By definition, cycle presence is a strongly mono-
tone property. Figure 2 shows an example of a graph H0 satisfying the conditions
of Theorem 2.6 and Proposition 2.7. Concretely, H0 is a 1 × 2 biclique which con-
tains no cycle and has the property that adding one edge on its right side gives a
graph with a cycle. By Proposition 2.7, we immediately confirm (2.8) and the final
conclusion. Furthermore, by a direct application of Theorem 2.6 it follows that if
there exists a constant κ > 1 such that if (2.9) holds the minimax risk of cycle
testing is asymptotically 1. �
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FIG. 2. The graph H0 in the left panel is a triangle with a missing edge. H0 contains a biclique
with no cycles. On the other hand, if we add the dashed edge we obtain a triangle graph H1, which
has a cycle. In terms of the notation of Theorem 2.6, we have l = 1 and r = 2.

EXAMPLE 2.10 (Clique size). In our final example, we consider testing the
“maximum clique size” property P , where P is such that P(G) = 0 if G has
no m-clique and P(G) = 1 otherwise. Suppose that the maximum degree of G

satisfies maxdeg(G) ≤ s where s is a known integer such that m ≤ s + 1. Let
log�d/m� ≤ n. If either

(2.10) θ < atanh
(√

log�d/m�/n
)
,

or

(2.11) θ � 12

s − 9
∨ log κns

log�2d/s�
(s − 1)/4

,

for some absolute constant κ > 0, we have lim infn→∞ Rn(P, θ) = 1. Furthermore,
lim infn→∞ Rn(P, θ) = 1 if log�d/m� � n for a sufficiently large constant.

PROOF OF EXAMPLE 2.10. Since P is a strongly monotone property, we can
apply Theorem 2.6 and Proposition 2.7 to upper and lower bound θ respectively.
We start first with the lower bound. Construct H0 as an m-clique with a missing
edge, as shown in Figure 3. By Proposition 2.7, we immediately deduce (2.10) and
the final conclusion of the statement.

The following construction of the graph H0 from the statement of Theorem 2.6
is inspired by Turán’s theorem (e.g., Bollobás (2004)). We build H0 by taking
� s−1

m−2�(m − 1) + 1 vertices, splitting them in m − 1 approximately equally sized
groups (one group will have 1 more vertex than the others) and connecting any two
vertices belonging to different groups; see Figure 4 for a visualization of H0. It is

FIG. 3. For this figure, let m = 4. In the left panel, we show an example of a graph H0, while on
the right panel we add one edge to transfer H0 to H1 which satisfies the property P .
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FIG. 4. In the left panel, we show an example of the graph H0. The concrete values of s and m

used are s = 7 and m = 4. H0 contains no 4-clique, and its maximum degree is 7. On the other hand,
adding any edge on the rightmost side (such as the dashed edge in the figure on the right) to H0
results in a graph H1 which contains a 4-clique, and whose maximum degree remains bounded by 7.
The graph H0 contains a 3 × 7 biclique, whose left side consists of taking the three leftmost vertices.

simple to check that H0 does not contain an m-clique, and adding certain edges
to H0, gives a graph containing an m-clique with maximum degree bounded by s.
Furthermore, H0 contains a � s−1

m−2��m−1
2 � × (� s−1

m−2��m−1
2 � + 1) biclique; to see

this split, the m − 1 vertex groups into 2 vertex groups: one with all vertices in the
first �m−1

2 � groups, and the other with all remaining vertices.
We are now in a position to apply Theorem 2.6. To render bound (2.4) in a reader

friendly form, we use that the terms � s−1
m−2��m−1

2 � ≥ s−1
4 and � s−1

m−2��m−1
2 � + 1 ≥

s+3
4 . We have that the minimax risk is asymptotically 1 if for any κ > 1/2 (2.11)

holds. �

Notably, the maximum degree s of the graph appears in (2.11) unlike in the
previous two examples. The bigger the maximum degree is allowed to be, the
smaller the signal θ has to be in order for meaningful clique size tests to exist.

3. Correlation screening for ferromagnets. In this section, we formulate
and study the limitations of a greedy correlation screening algorithm on mono-
tone property testing problems. We pay special attention to the examples discussed
in Section 2.2. Unlike correlation based decoders, such as the ones studied by
Santhanam and Wainwright (2012), this algorithm is designed to directly target
the graph property of interest, and also has polynomial runtime for many instances.
Moreover, for different properties, the regimes in which the algorithm works dif-
fer vastly from graph recovery algorithms. For generality, we expand model class
(2.1) to include all zero-field ferromagnetic models such that

(3.1) Pθ,Gw(X = x)∝ exp
(
θ

∑
(u,v)∈E(G)

wuvxuxv

)
,

where x ∈ {±1}d , θ ≥ 0, Gw := (G,w) is a weighted graph, and for (u, v) ∈ E(G):
wuv > 0. In contrast to (2.1), in (3.1) the weights w allow for the interactions to
have different magnitude.
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3.1. General correlation screening algorithm. We now define a class of
graphs “witnessing” the alternative. For a monotone property P , define the col-
lection of graphs

W(P) := {
G ∈ Gd | P(G) = 1

}
.7

We refer to graphs in W(P) as witnesses of P . It is clear by the monotonicity
of P for two graphs G and G′ such that P(G) = 0 and G′ ∈ W(P) that the set
E(G′) \ E(G) �=∅. Define the sets of weighted graphs

G0(P) := {
Gw | w ∈R+(d

2),P(G) = 0
}
,

G1(P) :=
{
Gw | w ∈ R+(d

2),P(G) = 1, max
G′∈W(P),G′�G

min
(u,v)∈E(G′)

wuv ≥ 1
}
.

The set G0(P) imposes no signal strength restrictions, while G1(P) requires the
existence of at least one witness of P , each edge of which corresponds to an inter-
action with magnitude at least θ . For future reference, we omit the dependency on
P if this does not cause confusion. In Section 2.2, we saw that some property tests,
such as cycle testing and clique size testing, necessitate further restrictions on their
parameters [see (2.9) and (2.11)]. Let R be an appropriately chosen for the prop-
erty P restriction set on the weighted graph pair Gw. For instance, an appropriate
set R for cycle testing could be R = {Gw|‖w‖∞ ≤ �/θ} for some � ≥ θ .

To this end, it is useful to first define the extremal correlation

(3.2) T := T (P,R, θ) = min
Gw∈G1∩R

max
G′∈W

min
(u,v)∈E(G′)

Eθ,GwXuXv.

T is the maximal smallest possible correlation between neighboring vertices in a
witness graph given any model from the alternative. In the following, we give a
simple universal lower bound on T .

LEMMA 3.1. For any monotone property P , we have

T ≥ tanh(θ).

PROOF OF LEMMA 3.1. Observe that by Griffith’s inequality (see Theo-
rem A.2 in Appendix A) deleting any edge can only reduce the correlation be-
tween a pair of vertices. Therefore, one can prune the graph G without in-
creasing T , until it becomes a minimal witness W , that is, if we delete any
edge from W the resulting graph does not satisfy P . On the graph W , we have
T ≥ min(u,v)∈E(W)Eθ,WwXuXv . Next, one can prune further edges from W until
only the minimum edge remains. Since the correlation of a pair of vertices with a
graph consisting of the single edge between them is precisely tanh(θ) (see Lemma
A.7 in Appendix A) the inequality follows. �

7This is simply a redefinition of the set G1(P) from (2.2).
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Since, in practice, T might be hard to estimate, we assume that we have a lower
bound on T : T in closed form (we allow for T = T ). Provided that we have suffi-
ciently many samples, and the data is generated under an alternative model, many
empirical correlations between neighboring vertices should be approximately at
least T (and hence at least T ). To formally define the empirical correlations,
let X(1),X(2), . . . ,X(n) ∼ Pθ,Gw be n i.i.d. samples from the ferromagnetic Ising
model (3.1). Define the empirical measure P̂, so that for any Borel set A ⊂ Rd :
P̂(A) = n−1 ∑n

i=1 1(X(i) ∈ A). Put Ê for the expectation under P̂. To this end, for
a given δ > 0 define the universal threshold

(3.3) τ := τ(n, d, δ) =
√

4 logd + log δ−1

n
,

and consider the following correlation screening Meta-Algorithm 1 for monotone
property testing in ferromagnetic Ising models.

Algorithm 1 Correlation Screening Test

Input: {X(i)}i∈[n], θ,R,P
Set ψ = 0
Calculate the matrix M := {ÊXuXv}u,v∈[d]
Solve

Ĝ = argmax
G′∈W

min
(u,v)∈E(G′)

Muv(3.4)

Set ψ = 1 if mine∈Ĝ Me > T − τ .
return ψ

The only potentially computationally intensive task in Algorithm 1 is optimiza-
tion (3.4), which aims to find a witness whose smallest empirical correlation is
the largest. However, for many properties solving (3.4) can be done in polynomial
time via greedy procedures. We remark that step (3.4) treats Muv as a surrogate of
θwuv . Instead, one could opt to substitute Muv with an estimate of the parameter
θwuv , which can be obtained via a procedure such as �1-regularized vertex-wise
logistic regressions (Ravikumar, Wainwright and Lafferty (2010)), for example.
Here, we prefer to focus on correlation screening due to its simplicity, while we
recognize that the estimate Muv may not be a good proxy of θwuv in models at
low temperature regimes, which are known to develop long range correlations. To
this end, define the extremal quantity

Q(P,R, θ) := max
Gw∈G0∩R

max
G′∈W

min
(u,v)∈E(G′)

Eθ,GwXuXv

The term Q, selects a weighted graph Gw under the null and a witness G′, which
yields the largest possible minimal correlation on any of the edges of G′. The
following result holds regarding the performance of Algorithm 1.
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THEOREM 3.2 (Correlation screening sufficient conditions). Suppose that
(θ, n, d) satisfy

(3.5) T −Q > 2τ.

Then Algorithm 1 satisfies

(3.6) sup
Gw∈G0∩R

Pθ,Gw(ψ = 1) ≤ δ and sup
Gw∈G1∩R

Pθ,Gw(ψ = 0) ≤ δ.

Condition (3.5) ensures that the gap between the minimal correlations in mod-
els under the null and alternative hypothesis is sufficiently large even in worst case
situations. Theorem 3.2 is a straightforward consequence of Hoeffding’s inequal-
ity, and the real difficulty when applying it is controlling the quantities T and Q.
Recall that Lemma 3.1 showed a simple universal lower bound on T . Below we
give two general upper bounds on Q. Given a sparsity level s and a real number
�, define the ratio

R(s,�) := cosh(2s�) + 2se−2(s−1)� cosh(2(s − 1)�)

2se−2(s−1)� cosh(2�) + 1
.

The following holds.

PROPOSITION 3.3 (No edge correlation upper bounds). Assume that the
graph Gw ∈R, where the restriction set R is R = {Gw | maxdeg(G) ≤ s,‖w‖∞ ≤
�/θ}. Then the following two results hold:

(i) Let s ≥ 3.8 Then

Q ≤ R(s,�) − 1

R(s,�) + 1
.

(ii) Let (s − 1) tanh(�) < 1. Then

Q ≤ s tanh2(�)

1 − (s − 1) tanh(�)
.

REMARK 3.4. We will now argue that Proposition 3.3(ii) and Lemma 3.1
ensure that Algorithm 1 satisfies (3.6) in the high-temperature regime s tanh(�) �
1 when the entries of w are approximately equal. By Lemma 3.1, we have

T ≥ tanh(θ).

Suppose now that θ = � (equivalently wuv = 1 for all nonzero weights). If
s tanh(θ) < 1/3 and tanh(θ) > 4τ , by (ii),

T −Q ≥ tanh(θ) − tanh(θ)/2 > 2τ.

8Similar bound on Q holds for the case s = 2. For details, refer to the proof.



PROPERTY TESTING IN ISING MODELS 2489

Hence when tanh(θ) > 4τ , we have that (3.5), and consequently (3.6) hold. More
generally, if θ � �, tanh(θ) ≥ �(τ) and s tanh(�) is sufficiently small, implies
that Algorithm 1 controls the type I and type II errors. This fact, coupled with the
results of Section 2 suggests that correlation screening is optimal up to scalars for
many properties in the high-temperature regime (where s tanh(θ) is small).

Below we study three specific instances of Algorithm 1 to obtain better under-
standing of its limitations. Importantly, we observe that the correlation screening
test can be constant optimal beyond the high-temperature regime for some proper-
ties.

3.2. Examples. We now revisit the three examples of Section 2.2.

EXAMPLE 3.5 (Connectivity). Here, we implement the correlation screening
algorithm for connectivity testing (see Algorithm 2), and we take the opportunity to
contrast property testing to graph recovery. We will argue that correlation screen-
ing can test graph connectivity even in graphs of unbounded degree. In contrast,
correlation based algorithms fail to learn the structure even in unconnected graphs
when the signal strength θ ≥ �(1

s
), where s denotes the maximum degree of the

graph, as argued by Montanari and Pereira (2009).

Algorithm 2 Connectivity Test

Input: {X(i)}i∈[n]
Set ψ = 0
Calculate the matrix M := {ÊXuXv}u,v∈[d]
Estimate T̂ the maximum spanning tree (MST) on M9// Equivalent to solving
(3.4)
Set ψ = 1 if mine∈T̂ Me > tanh(θ) − τ

return ψ

It is simple to see that G0,G1 reduce to

G0 := {Gw | G is disconnected}, G1 :=
{
Gw | max

T
tree

�G
min

(u,v)∈T
wuv ≥ 1

}
,

and there are no further parameter restrictions, that is, R is all weighted graphs.
We have the following.

COROLLARY 3.6 (Connectivity). Assume that tanh(θ) > 2τ . Then Algorithm
2 satisfies (3.6).

9Finding an MST can be done efficiently.



2490 M. NEYKOV AND H. LIU

Corollary 3.6 underscores the difference between property testing and structure
learning. Montanari and Pereira (2009) and Santhanam and Wainwright (2012),
showed that one cannot recover the graph structure in a ferromagnetic model
when the parameter θ exceeds a critical threshold. We also note that the condi-
tion tanh(θ) ≥ 2τ matches the lower bound prediction (2.6) up to constant terms
when τ is sufficiently small.

It is worth mentioning that Algorithm 2 is no longer optimal when logd � n

due to lack of concentration. If logd � n for a sufficiently large constant, by (2.7)
tanh(θ) has to equal 1 asymptotically. It is simple to devise a test that works when
tanh(θ) = 1, namely: reject the null hypothesis if all spins have the same signs
through each of the n trials. If the graph is connected this will happen with prob-
ability 1; if the graph is disconnected this event happens with probability at most
1/2n. Finally, we remark that whether one can devise a finite sample connectiv-
ity test when logd � n and tanh(θ) < 1 remains an open question which merits
further investigation.

EXAMPLE 3.7 (Cycle presence). Here, we revisit cycle testing. The sets G0
and G1 reduce to

G0 := {Gw | G is a forest}, G1 :=
{
Gw | max

C
cycle

⊆G
min

(u,v)∈C
θuv ≥ 1

}
.

Motivated by (2.9), we take the restriction set as R = {w|‖w‖∞ ≤ �/θ}. The
correlation screening algorithm for cycle testing is given in Algorithm 3. We have
the following corollary of Theorem 3.2.

Algorithm 3 Cycle Test

Input: {X(i)}i∈[n], θ
Set ψ = 0
Calculate the matrix M := {ÊXuXv}u,v∈[d]
Add edges with weights from M from high to low until a cycle Ĉ emerges10//
that is, solve (3.4)
Set ψ = 1 if mine∈Ĉ Me > tanh(θ) − τ

return ψ

COROLLARY 3.8 (Cycle presence). Assume that tanh(θ) − tanh2(�) > 2τ .
Then Algorithm 3 satisfies (3.6).

Below we derive a more direct result for the special case when θ ≡ �.

10Finding the cycle Ĉ takes at most d steps, and can be done efficiently.
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COROLLARY 3.9 (Cycle presence θ = �). Suppose θ = �. When τ is suffi-
ciently small, if

(3.7) τ � θ � log(1/τ),

Algorithm 3 satisfies (3.6).

PROOF OF COROLLARY 3.9. In this setting, the condition of Corollary 3.8
reduces to the quadratic inequality t − t2 > 2τ , where we put t := tanh(θ) for
brevity. Equivalently, the feasible values of θ satisfy

1 − √
1 − 8τ

2
≤ t ≤ 1 + √

1 − 8τ

2
.

To make the calculation more accessible, we will now use the notation f (x) ≈
g(x) in the sense that limx↓0

f (x)
g(x)

= 1. When τ is sufficiently small, it is simple to

check that 1−√
1−8τ
2 ≈ 2τ and 1+√

1−8τ
2 ≈ 1 − 2τ . It therefore follows that Algo-

rithm 3 is successful when

2τ ≈ atanh(2τ) ≤ θ ≤ atanh(1 − 2τ) ≈ log(1/τ)/2. �

Up to scalars, (3.7) agrees with bounds (2.8) and (2.9) given in Section 2.2. An
alternative correlation based cycle test which works for general models is given in
Section 4.3.

EXAMPLE 3.10 (Clique size). Finally, we revisit clique size testing. The pa-
rameter sets reduce to

G0 := {Gw | G has no m-clique}, G1 :=
{
Gw | max

C
m-clique

⊆G
min

(u,v)∈C
wuv ≥ 1

}
,

and let the restriction set R = {Gw | ‖w‖∞ ≤ �/θ,maxdeg(G) ≤ s}, where 2 ≤
m ≤ s +1. We summarize the correlation screening implementation for clique size
testing in Algorithm 4. To this end, for a Z ∼ N(0,1) define

r(m, θ) := e2θE coshm−2(
√

θZ + 2θ)

E coshm−2(
√

θZ)
.

The following holds.

11In this footnote, we show an example of an algorithm for checking for m-clique presence. When a
new edge (u, v) is added, walk over common neighbors of both u and v, and check for an m-clique.
There are at most ds

2 steps and at each step we have to check at most
( s−1
m−2

)
m-cliques, giving a

runtime bound of O(ds(s + m2( s−1
m−2

)
)).
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Algorithm 4 Clique Size Test

Input: {X(i)}i∈[n], θ
Set ψ = 0
Calculate the matrix M := {ÊXuXv}u,v∈[d]
Add edges with weights from M from high to low until an m-clique Ĉ

emerges11// that is, solve (3.4)
Set ψ = 1 if mine∈Ĉ Me > r(m,θ)−1

r(m,θ)+1 − τ

return ψ

COROLLARY 3.11 (Clique size). For Gw ∈ G1 ∩ R, we have T = r(m,θ)−1
r(m,θ)+1 .

Hence if (s,m,d,n, θ,�) are such that either

T − R(s,�) − 1

R(s,�) + 1
≥ 2τ,

or

T − s tanh2(�)

1 − (s − 1) tanh(�)
≥ 2τ and (s − 1) tanh(�) < 1,

Algorithm 4 satisfies (3.6).

Below we derive a more direct result for the special case when θ ≡ �.

COROLLARY 3.12 (Clique size θ = �). Suppose θ = � and that τ and 1
s

are
sufficiently small. Then if

(3.8) τ � θ � 1

s
,

Algorithm 4 satisfies (3.6). Next, suppose that m = s + 1. If esθ � s and

(3.9) θ ≤ log (2/τ)

4(s − 1)
,

Algorithm 4 satisfies (3.6).

PROOF OF COROLLARY 3.12. In Remark 3.4, we already argued that if 4τ ≤
tanh(θ) ≤ 1

3s
, Algorithm 4 controls the type I and type II errors. Since tanh(x) ≈ x

when x is small inequality (3.8) follows. To show the second part, we resort to
the first bound of Corollary 3.11. Since the proof is more involved, we show it in
Remark C.4 of Appendix C. �

From (3.8), it follows that in the high-temperature regime Algorithm 4 matches
the lower bound (2.10). Furthermore, note that (3.9) matches bound (2.11) up to
scalars. Hence the special case of clique size testing when m = s + 1 is yet another
example confirming that correlation screening can be useful for property testing
even at low temperatures.
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4. Results for general models. So far we studied model classes admitting
only ferromagnetic interactions. The situation drastically changes if one considers
the general class of zero-field Ising models, which includes models with antiferro-
magnetic, that is, negative interactions.

4.1. Minimax bounds. The main result of this section is an impossibility theo-
rem, which shows that testing strongly monotone properties over the general class
of models requires boundedness of a certain maximum functional of the property.
We also argue more specifically, that unlike in the ferromagnetic case, connectivity
testing is not feasible at low temperatures over the general case unless the degree
of the graph is bounded. Both of these results sharply contrast what we have seen
in the previous sections of the paper.

Concretely, we will work with the simple zero-field models specified by the

parameters θ > 0 and w ∈ {±1}(d
2) as

(4.1) Pθ,Gw(X = x)∝ exp
(
θ

∑
(u,v)∈E(G)

wuvxuxv

)
.

Expression (4.1) has more degrees of freedom compared to (2.1) since the spin-
spin interactions in (4.1) are allowed to be negative. Intuitively, interactions corre-
sponding to wuv = −1 have a “repelling” effect on the corresponding spins u and
v, whereas interactions with wuv = 1 have an “attracting” effect.

Given a monotone property P , recall definition (2.2) of the collections of graphs
G0(P),G1(P) (below we omit the dependence on P). Let R be a suitable restric-
tion set on the graph G. We redefine the minimax risk to reflect the model class
expansion as follows. Let

(4.2)

Rn(P,R, θ)

:= inf
ψ

[
sup

w
sup

G∈G0∩R
P⊗n

θ,Gw
(ψ = 1) + sup

w
sup

G∈G1∩R
P⊗n

θ,Gw
(ψ = 0)

]
,

where P⊗n
θ,Gw

denotes the product measure of n i.i.d. observations of (4.1) and the
supremum on w is taken over the set {±1}(d

2). Armed with this new definition, we
have the following.

THEOREM 4.1 (Strongly monotone properties general lower bound). Assume
Gw belongs to the restriction set Rs = {Gw|maxdeg(G) ≤ s}, where s = o(

√
d).

Suppose that the strongly monotone property P satisfies P(∅) = 0 and P(Cs) = 1,
where Cs denotes an s-clique graph. Then if for some small ε > 0,

(4.3)
s logd/s2

n
> 2 + ε and

s logd/(2s)

n log
√

2s
≥ 1 + ε,

we have lim infn→∞ infθ≥0 Rn(P,Rs, θ) = 1.



2494 M. NEYKOV AND H. LIU

REMARK 4.2. We would like to contrast our result with similar known bounds
such Theorem 1 of Santhanam and Wainwright (2012) and Theorem 1 of Bresler,
Mossel and Sly (2008). The key differences between our result and these known
bounds are that, first (4.3) is valid for property testing and even more generally for
a certain detection problem (see the proof in Section D of the supplement for more
details), while previous results are valid only for structure recovery; and, therefore,
second, the worst cases are very different. In fact, both previously known bounds
remain valid in the smaller class of ferromagnetic models, while as we saw in
Section 3, some strongly monotone property tests such as cycle presence do not
exhibit such limitations.

Note that for any nonconstant strongly monotone P one has P(∅) = 0. Further,
the requirement that P holds true on Cs is mild, since for any non-zero strongly
monotone P one can always find a sufficiently large s for which P is satisfied. The
only true restriction of Theorem 4.1 on P is thus that one has to be able to find s

in the sparse regime s � √
d .

Loosely speaking, Theorem 4.1 shows that when the quantity s logd/s
n

(up to a
log factor) is large, strongly monotone property testing over the model class (4.1)
is very difficult in the sparse regime when s � √

d . What is more, this statement
remains valid regardless of the magnitude of the signal strength parameter θ ≥ 0.
This contrasts sharply with our results in the ferromagnetic case, where we have
already seen an example which did not require such a condition. Take the cycle
testing example in Section 3.7. In this example, if s denotes the maximum degree
of the graph, we can always take an s-clique Cs (which certainly contains a cycle),
and hence s has to satisfy (4.3) in order for tests with reasonable minimax risk
(4.2) to exist. In contrast, Corollary 3.8 shows that controlling the minimax risk is
possible without requirements on the maximum degree of the graph. Theorem 4.1
shows that this is no longer the case over the broader model class (4.1).

Theorem 4.1 sheds some light on the complexity involved in testing within
model class (4.1). However, it also leaves something to be desired, namely it does
not quantify the effect θ has, and it does not address specific properties which
may potentially exhibit different complexity. Moreover, it only applies to strongly
monotone properties and not to all monotone properties, and thus in particular it
does not apply to connectivity testing. Below we give an explicit upper bound on
the parameter θ for connectivity testing within the model class (4.1). We show
a particularly hard case for connectivity testing in Figure 5 and include a brief
explanation in its caption.

PROPOSITION 4.3 (Connectivity testing general upper bound). Let P be
graph connectivity. Assume Gw belongs to the restriction set Rs = {Gw |
maxdeg(G) ≤ s}. Let s, n, d be sufficiently large, and suppose θ ≥ 3

2�s/4�−2 and
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FIG. 5. Testing connectivity on a model with a connected graph as above is difficult. Solid edges
correspond to positive interactions with magnitude θ , while the dashed edge corresponds to a neg-
ative interaction with magnitude −θ . The cliques are of size s so that the total degree remains at
most s. When the value of θ is large, the majority of the spins in each clique tend to have the same
sign. Hence the two interactions of the leftmost clique with the leftmost node in the path graph are
“likely” to cancel out, which will make it hard to tell this graph from the disconnected graph con-
sisting of the connected cliques and the path graph. We exploit this construction in the proof of
Proposition 4.3.

there exists a κ > 1 so that

(4.4) θ >
2 log κsn

log(ds)

s − 16
.

Then the minimax risk (4.2) satisfies lim infn→∞ Rn(P,Rs, θ) = 1.

Importantly, condition (4.4) implies that the maximum degree cannot be too
large with respect to the other parameters if we hope for a connectivity test with a
good control over both type I and type II errors to exist. Recall that no such condi-
tions were needed in Corollary 3.6 when testing connectivity in ferromagnets.

4.2. Correlation testing for general models. Section 4.1 made it apparent that
property testing is more challenging in the enlarged model space (4.1). In this
section, we work with an even larger class of zero-field models compared to (4.1)
which are specified as

(4.5) Pθ,Gw(X = x)∝ exp
(
θ

∑
(u,v)∈E(G)

wuvxuxv

)
,

where 1 ≤ |wuv| ≤ �/θ, (u, v) ∈ E(G) are unknown parameters and x ∈ {±1}d .
For a monotone property P , define the sets of weighted graphs

G0(P, θ,�) := {
Gw | 1 ≤ |wuv| ≤ �/θ,P(G) = 0

}
,

G1(P, θ,�) := {
Gw | 1 ≤ |wuv| ≤ �/θ,P(G) = 1

}
.

Different from Section 3, here we impose signal strength restrictions even in the
null set G0(P,�) and leave the more general setting for future work. We note
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that one can no longer rely on the screening algorithms of Section 3 to perform
a property test for data generated by (4.5); the success of correlation screening
hinges on the fact that in ferromagnets deleting edges reduces correlations, which
no longer holds in the model class (4.5). One alternative would be to perform exact
structure recovery, and check whether the graph property in question holds on the
desired graph. Possibilities of exact graph recovery include methods developed in
(Bresler, Mossel and Sly (2008), Ravikumar et al. (2011), Santhanam and Wain-
wright (2012), Anandkumar et al. (2012), Bresler (2015)).

Below we take a different route, and modify the correlation decoders of
Santhanam and Wainwright (2012) by specializing them to property testing.
Specifically, we consider a score test type of approach, which only involves model
fitting assuming the null hypothesis holds. Suppose there exists an algorithm A
mapping the data input as

(4.6) A
({

X(i)}
i∈[n], θ,�,P

) �→ G̃w̃,

so that the output G̃w̃ ∈ G0(P, θ,�) and in addition if the true underlying graph G

satisfies P(G) = 0 then

(4.7) max
u,v∈[d] |ÊXuXv −Eθ,G̃w̃

XuXv| ≤ ε(δ), 12

holds with probability at least 1 − δ. Define the test

(4.8) ψρ

({
X(i)}

i∈[n], θ, G̃w̃
) := 1

(
max
u,v

|ÊXuXv −Eθ,G̃w̃
XuXv| ≥ ρ

)
.

Recall the definition of the threshold τ (3.3) and let

(4.9) T := T (θ,�, s) = sinh2(θ/4)

2s�(3 exp(2s�) + 1)
.

The following holds.

PROPOSITION 4.4 (General tests sufficient conditions). Suppose that A is an
algorithm satisfying (4.7), and (s, n, d, θ,�) are such that

(4.10) T ≥ τ + ε(δ),

for a small δ > 0. Then the test ψε(δ) given in (4.8) satisfies

(4.11) sup
Gw∈G0(P,θ,�)

P(ψε(δ) = 1) ≤ δ and sup
Gw∈G1(P,θ,�)

P(ψε(δ) = 0) ≤ δ.

12Here, Ê is the empirical expectation defined in Section 3, while Eθ,G̃w̃
is the expectation with

respect to the measure Pθ,G̃w̃
from (4.5).
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A key component for the existence of a successful test (4.8) is the algorithm A
satisfying condition (4.7). One example how to construct such an algorithm, is to
solve the following optimization problem:

(4.12) A
({

X(i)}
i∈[n], θ,�,P

) = argmin
Gw∈G0(P,θ,�)

max
u,v∈[d] |ÊXuXv −Eθ,GwXuXv|.

In the following lemma, we show that (4.7) indeed holds.

LEMMA 4.5 (Algorithm (4.12) sufficient condition). If the algorithm A is de-
fined by (4.12), then (4.7) holds with ε(δ) = τ .

The proof of Lemma 4.5 is a direct consequence of Hoeffding’s inequality. By
combining the statements of Proposition 4.4 and Lemma 4.5, we arrive at an ab-
stract generic property test summarized in Algorithm 5.

Algorithm 5 Generic Property Test

Input: {X(i)}i∈[n], θ,�,P
Calculate the matrix {ÊXuXv}u,v∈[d]
Solve G̃w̃ = argminGw∈G0(P,θ,�) maxu,v∈[d] |ÊXuXv −Eθ,GwXuXv|
Output ψτ ({X(i)}i∈[n], θ, G̃w̃)

A sufficient condition for Algorithm 5 to satisfy (4.11) is T ≥ 2τ , where T is
defined in (4.9). One potential problem with Algorithm 5 is that solving (4.12) in
general requires combinatorial optimization, which will likely result in nonpolyno-
mial runtime complexity for most properties. However, unlike the structure learn-
ing procedure of Santhanam and Wainwright (2012) which also requires combina-
torial optimization, Algorithm 5 has the advantage that it does not need to optimize
over the entire set of graphs Gd but only over the smaller set {G ∈ Gd |P(G) = 0}.
We conclude this section by proposing a custom variant of this algorithm spe-
cialized to cycle testing which uses a different algorithm A and can be ran in
polynomial time.

4.3. A computationally efficient cycle test. In this section, we propose an effi-
cient algorithm A satisfying (4.7) for cycle testing. Having computationally effi-
cient algorithms for cycle testing is beneficial in practice, since if we have enough
evidence that the graph is a forest, we can recover its structure efficiently (Chow
and Liu (1968)). We summarize the algorithm A called “cycle test map” in Algo-
rithm 6.
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Algorithm 6 Cycle Test Map

Input: {X(i)}i∈[n], θ,�

Calculate the matrix M := {ÊXuXv}u,v∈[d]
Find a MST T̃ with edge weights |Muv|
for 1 ≤ u < v ≤ d do

if (u, v) /∈ E(T̃ ) or |Muv| < tanh(θ) − τ then
w̃uv ← 0; E(T̃ ) ← E(T̃ ) \ {(u, v)}

else
w̃uv ← sign(Muv)((atanh(|Muv|) ∧ �) ∨ θ)/θ

end if
end for
return T̃w̃

Given the output T̃w̃ of Algorithm 6, evaluating the expectations Eθ,T̃w̃
XuXv

needed in (4.8) can be done in polynomial time via the simple formula

Eθ,T̃w̃
XuXv = ∏

(k,�)∈P T̃
u→v

Eθ,T̃w̃
XkX� = ∏

(k,�)∈P T̃
u→v

tanh(θw̃k�),
13

where P T̃
u→v denotes the path between vertices u and v in the forest T̃ . Next, we

show the validity of the test in (4.8).

PROPOSITION 4.6 (Fast cycle test sufficient conditions). Suppose that
tanh(θ)(1 − tanh(�)) > 2τ . Then the output of Algorithm 6 satisfies (4.7) with

(4.13) ε(δ) = τ
2 − tanh(�)

1 − tanh(�)
.

By combining Propositions 4.4 and 4.6, we immediately conclude that if T ≥
τ 3−2 tanh(�)

1−tanh(�)
, and the constraints of Proposition 4.6 hold, using the output T̃w̃ of

Algorithm 6 with the test ψε(δ) of (4.8) with ε(δ) as in (4.13), satisfy (4.11).

5. Strongly monotone properties proofs from Section 2. In this section,
we give the proofs of the general results on strongly monotone properties: The-
orem 2.6 and Proposition 2.7. Other proofs from Section 2 including the proof of
Theorem 2.4 can be found in Appendix B. Since the signal strength is uniformly
equal to θ in all measures that we consider in this section, we will suppress the
dependency on θ whenever that does not cause confusion. For the convenience of
the reader, below is a definition of χ2-divergence which we use in the proofs.

13The validity of this formula follows by Proposition A.6 and Lemma A.7 which can be found in
the supplement.
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DEFINITION 5.1 (χ2-divergence). For two measures P and Q satisfying P �
Q, the χ2-divergence is defined by

Dχ2(P,Q) = EQ

(
dP

dQ
− 1

)2
.

Before we prove Theorem 2.6, we state a key lemma whose proof is given in
Appendix B.

LEMMA 5.2 (Low temperature bound). Let G = (V ,E) be a graph, and k, � ∈
V be vertices such that (k, �) /∈ E. Let r ≥ 2 and l be integers such that there exists
an l × r biclique B � G, containing k and � on its right (i.e., r side). Then for
values of θ ≥ 2

l
, θ ≥ 3

r−2 for r > 2 and θ ≥ log 2 when r = 2 we have

EGXkX� ≥ 1 − 2(r − 1)

exp(θl) + r − 1
.

PROOF OF THEOREM 2.6. First, we point out a simple implication of (2.4). If

θ ≥ log 2κnr
log�d/(l+r)�

l
, then certainly

(5.1) θ ≥ log[ 2κn(r−1)
log�d/(l+r)� − (r − 1)]

l
.

We will now argue that even if the above holds the asymptotic minimax risk is
still 1. Note that since B � H0 we have |V (H0)| = |V (B)| = l + r . Consider a
graph G0 based on the union of m = �d/(l + r)� disconnected copies of the graph
H0 (see Figure 6). Let ek = (uk, vk) be the local copy of the edge e = (u, v) in
the kth copy of H0. Since the property P can be represented as a maximum over
subgraphs of G0, by the assumption of the theorem P(G0) = 0, while adding the
edge ek for any k ∈ [m] to the kth copy of H0 transfers G0 to a graph Gk sat-
isfying P(Gk) = 1. For each graph in i ∈ {0,1, . . . ,m}, let Pi

14 be the measure
corresponding to Ising models with graphs {G0,G1, . . . ,Gm}, and Ek be the corre-
sponding expectation under Pk . Define the mixture measure P

⊗n = 1
m

∑
k∈[m] P⊗n

k .
Using Lemma A.4,

Dχ2
(
P

⊗n
,P⊗n

0

) + 1 ≤ 1

m2

∑
j,k∈[m]

(
1 + tanh(θ)[EjXuk

Xvk
−E0Xuk

Xvk
])n.

By Proposition A.6, since the copies of H0 are disconnected, for k �= j we have

EjXuk
Xvk

−E0Xuk
Xvk

= 0,

14That is, Pi is a shorthand for Pθ,Gi
as defined in (2.1).
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FIG. 6. For this figure, let P be cycle testing. The figure shows an example of d/3 incomplete
triangle graphs (G0), and takes a mixture of distributions adding one edge to complete the triangles
one at a time.

while by Lemma 5.2 if k ≡ j

EjXuk
Xvk

−E0Xuk
Xvk

≤ 1 −E0Xuk
Xvk

≤ 2(r − 1)

exp(θl) + r − 1
.

We conclude that

Dχ2
(
P

⊗n
,P⊗n

0

) + 1 ≤ m − 1

m
+ 1

m

(
1 + tanh(θ)

2(r − 1)

exp(θl) + r − 1

)n

≤ m − 1

m
+ 1

m

(
1 + 2(r − 1)

exp(θl) + r − 1

)n

≤ m − 1

m
+ exp( 2n(r−1)

exp(θl)+r−1)

m
.

Using (5.1), a simple calculation shows that

lim sup
n→∞

Dχ2
(
P

⊗n
,P⊗n

0

) = 0.

Recall that by Le Cam’s lemma we have the bound

(5.2) Rn(P, θ) ≥ inf
ψ

[
P⊗n

0 (ψ = 1) + P
⊗n

(ψ = 0)
] ≥ 1 − 1

2

√
Dχ2

(
P

⊗n
,P⊗n

0

)
,

which completes the proof. �

Below we prove Proposition 2.7. The proof utilizes a similar construction to the
one used in the proof of Theorem 2.6.

PROOF OF PROPOSITION 2.7. Construct a null graph G0 by repeating H0

�d/m� times. Let P
⊗n

be the mixture of measures P⊗n
j , where Pj is the measure

corresponding to adding an edge to one of the “clones” of H0, thus transferring
G0 to a graph Gj such that P(Gj ) = 1, and let P0 be the Ising measure under the
uniform signal model with graph G0. Let Ej and E0 be the expectations under Pj

and P0, respectively. Let ej = (uj , vj ) = E(Gj) \ E(G0) be the edge that distin-
guishes Gj from G0. An example of G0 and one of the alternative graphs Gj is
given on Figure 6.
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Using Lemma A.4, we can evaluate the divergence Dχ2 :

Dχ2
(
P

⊗n
,P⊗n

0

) = 1

�d/m�2

∑
j,k∈[�d/m�]

(
1 + tanh(θ)[EjXuk

Xvk
−E0Xuk

Xvk
])n − 1

= 1

�d/m�
(
1 + tanh(θ)[EjXuj

Xvj
−E0Xuj

Xvj
])n − 1

�d/m� .

By Lemma 4 of Shanmugam et al. (2014), we know that EjXuj
Xvj

−E0Xuj
Xvj

≤
tanh(θ). Therefore,

Dχ2
(
P

⊗n
,P⊗n

0

) ≤ 1

�d/m�
(
1 + tanh2(θ)

)n ≤ 2n

�d/m� ,

whereby by the first inequality if tanh(θ) < κ

√
log�d/m�

n
for some κ < 1 the above

→ 0. The second inequality proves the last implication of the Proposition after an
application of Le Cam’s argument (5.2). �

6. Discussion. In this paper we formalized necessary and sufficient condi-
tions for property testing in Ising models. Specifically, we showed lower and up-
per information-theoretic bounds on the temperature for ferromagnetic models.
Furthermore, we argued that greedy correlation screening works well at high-
temperature regimes, and can also be useful in low temperature regimes for certain
properties. We also demonstrated that testing strongly monotone properties over
the class of general Ising models is strictly more difficult than testing in ferro-
magnets. We discussed generic property tests based on correlation decoding, and
developed a computationally efficient cycle test.

Important problems that we plan to investigate in future work include—
searching for more sophisticated algorithms than correlation screening which will
work at low temperature regimes for testing any property in ferromagnets; relat-
ing the temperature of the system to the information-theoretic limits of strongly
monotone property testing in models with antiferromagnetic interactions; utilizing
computationally efficient structure recovery algorithms, such as those of Bresler
(2015), to obtain tractable algorithms for property testing in general models. Fi-
nally, several further problems merit further work: can one test for connectivity in
the regime logd � n if tanh(θ) < 1 in finite samples in ferromagnets; are there al-
gorithms matching the information-theoretic limitations when testing over general
models; is there a more general version of Theorem 2.6 which works for general
properties not only strongly monotone properties.
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Supplementary Material to “Property testing in high-dimensional Ising
models” (DOI: 10.1214/18-AOS1754SUPP; .pdf). The supplement contains sev-
eral auxiliary results, minimax risk lower bound proofs for ferromagnets (includ-
ing that of Theorem 2.4), proofs for the correlation screening algorithm, hardness
results for general Ising models and the proofs for the correlation testing algo-
rithms for general models.
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