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Precision medicine is an emerging medical paradigm that focuses on
finding the most effective treatment strategy tailored for individual patients.
In the literature, most of the existing works focused on estimating the optimal
treatment regime. However, there has been less attention devoted to hypoth-
esis testing regarding the optimal treatment regime. In this paper, we first
introduce the notion of conditional qualitative treatment effects (CQTE) of a
set of variables given another set of variables and provide a class of equivalent
representations for the null hypothesis of no CQTE. The proposed definition
of CQTE does not assume any parametric form for the optimal treatment rule
and plays an important role for assessing the incremental value of a set of
new variables in optimal treatment decision making conditional on an exist-
ing set of prescriptive variables. We then propose novel testing procedures
for no CQTE based on kernel estimation of the conditional contrast func-
tions. We show that our test statistics have asymptotically correct size and
nonnegligible power against some nonstandard local alternatives. The empir-
ical performance of the proposed tests are evaluated by simulations and an
application to an AIDS data set.

1. Introduction. Precision medicine is an emerging medical paradigm for
finding the best treatment for individual patients by taking their characteristics
into consideration. The goal is to find the optimal treatment regime that will give
the most favorable clinical outcome of interest on average. A number of meth-
ods have been developed for estimating the optimal treatment regime as a func-
tion of prognostic covariates, including Q-learning [Watkins and Dayan (1992),
Chakraborty, Murphy and Strecher (2010)], A-learning [Murphy (2003), Robins,
Hernan and Brumback (2000)], direct value optimization methods [Zhang et al.
(2012, 2013)] and outcome-weighted learning [Zhao et al. (2012, 2015)]. Qian
and Murphy (2011) proposed to estimate the optimal treatment regime based on
the estimated mean outcome model with the lasso penalty. Zhang et al. (2015) and
Zhang et al. (2016) proposed to construct interpretable optimal treatment regimes
via decision lists.
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However, there has been less attention devoted to hypothesis testing regarding
the optimal treatment regime. Chang, Lee and Whang (2015) and Hsu (2017) con-
sidered testing whether the conditional treatment effects given a set of covariates
are always nonpositive. This amounts to testing the overall qualitative treatment
effects of the covariates. When the null hypothesis holds, the optimal treatment
regime will recommend the control treatment to all patients regardless of their
prognostic covariates. Such type of null hypothesis is closely connected to test-
ing conditional moment inequalities; see, for example, Andrews and Shi (2013,
2014), Armstrong and Chan (2016), Chernozhukov, Lee and Rosen (2013) and the
references therein.

In this work, we develop a novel testing procedure for conditional qualitative
treatment effects (CQTE) of a set of variables given another set of variables. The
contributions of this paper can be summarized as three-fold. First, we mathemati-
cally formalize the notion of CQTE without assuming any parametric form of the
treatment-covariates interactions and systematically characterize several equiva-
lent representations of no CQTE. Informally speaking, a variable is said to have
no qualitative treatment effects conditional on other variables if including it in
treatment decision cannot lead to a treatment regime that increases the value func-
tion. It naturally generalizes the definition for the qualitative interaction of a single
covariate and treatment given in Gunter, Zhu and Murphy (2011) and the definition
for the overall qualitative treatment effects.

Our second contribution is to propose robust test statistics based on a kernel
estimator for the conditional treatment effects for testing the existence of CQTE,
which do not require the specification of the outcome model and the parametric
form of treatment decision rules. To the best of our knowledge, this is the first
time that such hypothesis testing problems are formally studied. Gunter, Zhu and
Murphy (2011) proposed the S-score to quantify the magnitude of the qualitative
interaction between a single covariate and treatment. However, no theoretical jus-
tifications were provided for the proposed S-score.

Compared with the global tests in Chang, Lee and Whang (2015) and Hsu
(2017), our proposed tests for the CQTE can offer a new and important tool for
assessing the incremental value of a set of new variables in optimal treatment de-
cision making conditional on an existing set of qualitative covariates. Take the
AIDS Clinical Trials Group Protocol 175 (ACTG175) study as an example. Many
works in the literature have found that the age variable has significant qualitative
interaction with the treatment [Fan et al. (2017), Lu, Zhang and Zeng (2013)]. It
is therefore of great importance to explore the CQTE of a new variable or a set of
new variables given the age variable. The proposed tests can also help to construct
the optimal treatment regime. When the null hypothesis of no CQTE is rejected,
we conclude that including the new variables in treatment decision can increase the
value function. Therefore, it is more desirable to construct the optimal treatment
regime based on both the new and existing sets of variables.
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Using the Poissonization technique [Giné, Mason and Zaitsev (2003)], we show
that our test statistic has correct size under the null and nonnegligible powers
against some nonstandard local alternatives. To deal with data from observational
studies, we further introduce a doubly-robust test statistic that is consistent when
either the propensity score model or the conditional mean models for the response
are correctly specified.

Third, the proposed test can help to discover new variables with the CQTE.
Specifically, we develop a procedure for selecting qualitative variables in a se-
quential order based on the p-values of the proposed CQTE test. For simplicity,
we only consider forward selection in this paper. The backward or stepwise selec-
tion procedure can be similarly developed.

The rest of the paper is organized as follows. We present the definition of CQTE
and a class of equivalent representations for the null hypothesis of no CQTE in
Section 2. Our proposed testing statistic and its asymptotic properties under the
null, fixed alternative and nonstandard local alternatives are given in Section 3. In
Section 4, we extend our testing procedure to the case where the propensity score
is unknown and needs to be estimated from data, and introduce a doubly-robust
version of the test statistic. Some implementation issues are discussed in Section 5.
Simulations studies are conducted to evaluate the empirical performance of the
proposed test in Section 6, followed by an application to an AIDS clinical trial
data in Section 7. Here, variables with qualitative treatment effects are selected in
a forward selection procedure based on the proposed test. A discussion is given in
Section 8 and all technical proofs are given in the Supplementary Material [Shi,
Song and Lu (2019)].

2. Conditional qualitative treatment effects.

2.1. Optimal treatment regime. For simplicity, we focus on a single stage
study with two treatment options. Assume data are summarized as Oi = (Xi,Ai,

Yi), i = 1, . . . , n, where, for subject i, Xi ∈ R
p denotes the baseline covariates,

Ai = 0/1 denotes the treatment received, and Yi denotes the patient’s response
of interest. Here, a larger value of Yi represents a better clinical outcome. We as-
sume Oi ’s are i.i.d. copies of the triplet O = (X,A,Y ). Consider the following
semiparametric model for Y :

(2.1) Y = h0(X) + Aτ0(X) + e,

where E(e|X,A) = 0, h0(·) is the baseline effect function, and τ0(x) = E(Y |X =
x,A = 1) − E(Y |X = x,A = 0) is referred to as the contrast function.

The optimal treatment regime is defined in the potential outcome framework.
Let Y ∗(0) and Y ∗(1) be the potential outcomes that might be observed under
treatment 0 and 1, respectively. A treatment regime d(x) is a map defined on
R

p → {0,1}. For a given regime d , consider the potential outcome

Y ∗(d) = Y ∗(0)
{
1 − d(X)

}+ Y ∗(1)d(X).
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The optimal treatment regime is the map that maximizes the expected potential
outcome, named the value function,

dopt = arg max
d

E
{
Y ∗(d)

}
.

As in [Rubin (1974)], we assume the following two assumptions hold: (i) sta-
ble unit treatment value assumption (SUTVA), Y = Y ∗(1)A + Y ∗(0)(1 − A); and
(ii) no unmeasured confounders assumption, (Y ∗(0), Y ∗(1)) are independent of A

given X. Under model (2.1), we have τ0(x) = E{Y ∗(1) − Y ∗(0)|X = x}, and

dopt(x) = I
{
τ0(x) ≥ 0

}
,

where I (·) denotes the indicator function.

2.2. Conditional qualitative treatment effects. In treatment decision making,
Gunter, Zhu and Murphy (2011) made a distinction between predictive and pre-
scriptive variables. In particular, the prescriptive variables have qualitative inter-
action with treatment, which are important for treatment prescription. They gave
a formal definition of the qualitative interaction between a single covariate and
treatment. We first extend the definition by introducing the notion of conditional
qualitative treatment effects (CQTE). Let B and C be two disjoint subsets of
I ≡ {1,2, . . . , p}, denoted by pB and pC the number of elements in B and C,
respectively. For any D ⊆ I , we use XD to denote the subvector of X, formed
by the elements indexed in D. When D is a single-element set, that is, D = j0 for
some j0 ∈ I , we write XD as X(j0). Moreover, we use |D| to denote the cardinality
of D.

DEFINITION 2.1 (CQTE). Variables in C have qualitative treatment effect
conditional on variables in B if there exist some nonempty sets C1, C2 ⊆ R

pC ,
B ⊆ R

pB , such that (i)

Pr
{(

XB,XC) ∈ B × C1
}
> 0 and Pr

{(
XB,XC) ∈ B × C2

}
> 0;

and (ii) for any xC1 ∈ C1, xC2 ∈ C2 and xB ∈ B, we have

arg max
a

E
{
Y ∗(a)|XB = xB,XC = xC1

}
�= arg max

a
E
{
Y ∗(a)|XB = xB,XC = xC2

}
.

(2.2)

REMARK 2.1. For any j = 1,2, when

E
{
Y ∗(1)|XB = xB,XC = xCj

}= E
{
Y ∗(0)|XB = xB,XC = xCj

}
,

the argmax in (2.2) is not unique. For any two functions ψ1(a) and ψ2(a), we de-
fine arg maxa ψ1(a) �= arg maxa ψ2(a) if any maximizer of ψ1 is not the maximizer
of ψ2 or vice versa.
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Restricting B = ∅ and pC = 1, we obtain a similar definition of the qualitative
interaction between a single covariate and treatment as in Gunter, Zhu and Murphy
(2011). For an arbitrary subset D ⊆ I , let

τD
0 (xD) = E

{
τ0(X)|XD = xD

}
.

We now introduce the optimal treatment regime dD
opt based on covariates in a subset

D ⊆ I . Similar to the definition of dopt, we define dD
opt to be the treatment regime

that maximizes the value function among the class of treatment regimes based only
on covariates XD . Specifically,

dD
opt = arg max

dD
E
{
Y ∗(dD)},

where the maximum is taken over all possible maps dD : XD → {0,1}.
Under Model (2.1), along with the SUTVA and no unmeasured confounders

assumptions, for a given treatment regime dD , we have

E
{
Y ∗(dD)}= E

{
Y ∗(0) + τ0(X)dD(XD)}

= E
{
Y ∗(0)

}+ E
[
E
{
τ0(X)|XD = XD}dD(XD)](2.3)

= E
{
Y ∗(0)

}+ E
{
τD

0
(
XD)dD(XD)}.

It follows from (2.3) that

dD
opt(xD) = I

{
τD

0 (xD) ≥ 0
}
.

The aim of this paper is to test the following null hypothesis:

H0 : XC does not have CQTE given XB,

against the alternative

H1 : XC has CQTE given XB.

Let W = B ∪C. To better understand the null, we introduce some examples below.

EXAMPLE 1 (Testing unconditional qualitative treatment effects). Let B = ∅.
Then for any set C ⊆ I and we are testing whether XC has qualitative treatment
effects. When it does, we can find two nonempty sets �1 and �2 such that Pr(XC ∈
�1) > 0, Pr(XC ∈ �2) > 0, and τC

0 (·) > 0 on �1 while τC
0 (·) < 0 on �2. Hence,

it is equivalent to test the null hypothesis

τC
0
(
XC)≥ 0 a.s., or τC

0
(
XC)≤ 0 a.s.

EXAMPLE 2 (Testing conditional qualitative treatment effects). Assume we
know covariates XB have qualitative treatment effects. Our focus is to test whether
some additional variables XC are “important” in decision making given XB .
Here, the “importance” is measured by the difference of the value functions un-
der regimes dW

opt and dB
opt. As we will see below, this definition is equivalent to the

conditional qualitative treatment effects of XC given XB .
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Define the error rate

ERW,B =

⎧⎪⎪⎨⎪⎪⎩
0 if τW

0
(
XW )= 0, a.s.

E[|dW
opt(X

W) − dB
opt(X

B)|I {τW
0 (XW) �= 0}]

Pr{τW
0 (XW) �= 0} otherwise,

and the difference of the value function

VDW,B = E
{
Y ∗(dW

opt
)}− E

{
Y ∗(dB

opt
)}

= E
[
τ0(X)

{
dW

opt
(
XW )− dB

opt
(
XB)}](2.4)

= E
[
τW

0
(
XW ){dW

opt
(
XW )− dB

opt
(
XB)}].

The error rate measures the proportion that the treatment regime dB
opt makes a

different decision compared with dW
opt. When τW

0 (XW) �= 0, a.s., ERW,B is equal
to

(2.5) ERW,B∗ = E
∣∣dW

opt
(
XW )− dB

opt
(
XB)∣∣.

For the value difference, it follows from (2.4) that VDW,B ≥ 0.
Denoted by �W = �B × �C the support of XW . We assume �B and �C are

open subsets in R
pB and R

pC , respectively. In addition, the density f W of XW is
absolutely continuous with respect to the Lebesgue measure ν. We use subscripts
and write xW (or xB , xC ) to refer to an arbitrary |W |-dimensional (or |B|, |C|-
dimensional) vector. For any xW ∈ �W , we write xW,B and xW,C to denote the
corresponding sub-vectors of xW formed by elements in B and C. If B (or C) is a
single-element set, that is, B = {j0}, we write xB , xW,B as x(j0) and xW,(j0). When
W = I , we omit the subscript W and write xW,B as xB . For notational convenience,
we write τW

0 (xW ) = τW
0 (xW,B, xW,C) for any xW ∈ �W .

THEOREM 2.2 (Characterization of the null). Assume that τW
0 (·) and τB

0 (·)
are continuous, and E{τW

0 (XW)}2 < ∞. Then the following are equivalent:

(i) H0 holds.
(ii) VDW,B = 0.

(iii) ERW,B = 0.
(iv) For any xW such that τW

0 (xW ) �= 0, we have dW
opt(xW ) = dB

opt(xW,B).

(v) For any xB ∈ �B , we have τW
0 (xW ) ≥ 0 for all xW ∈ �W such that xW,B =

xB or τW
0 (xW ) ≤ 0 for all xW ∈ �W such that xW,B = xB .

REMARK 2.3. Theorem 2.2 provides the sufficient and necessary conditions
for CQTE. Results in (iv) and (v) hold for any x, instead of almost surely. This
is due to the continuity of τW

0 (·) and f W(·). Result (ii) suggests VDW,B > 0 if
H1 holds. By definition, this means that variables in XC have CQTE given XB if
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and only if the optimal regime obtained based on XB and XC together can yield a
larger value function than that based on XB only.

REMARK 2.4. Result (iii) implies when H0 holds, we have ERW,B = 0. How-
ever, it cannot guarantee that ERW,B∗ defined in (2.5) is equal to 0. We provide a
counterexample below. Let p = 2, B = {2}, C = {1}, and hence W = I = {1,2}.
Let τ0(x) = τW

0 (xW ) = [x(1)]+(x(2) − 1), where [y]+ = max(0, y) for any y ∈ R.
Apparently, H0 holds under this setting. When X(1) and X(2) are independent, we
obtain τB

0 (x(2)) = (x(2) − 1)E[X(1)]+. Suppose X(2) < 1 a.s. and E[X(1)]+ > 0. If
Pr(X(1) ≤ 0) > 0, we have

Pr
(
X(1) ≤ 0

)= Pr
{
τW

0
(
XW )≥ 0

}= EdW
opt
(
XW )

�= EdB
opt
(
XB)= Pr

{
τB

0
(
X(2))≥ 0

}= 0.

Thus, ERW,B∗ �= 0 if Pr(X(1) ≤ 0) > 0.

REMARK 2.5. Assertion (iv) motivates us to consider the following test statis-
tic for H0:

SW,B =
∫
xW ∈�W

φ
{
τW

0 (xW )
}{

dW
opt(xW ) − dB

opt(xW,B)
}
ω0(xW )dxW ,

where φ(·) is a monotonically increasing function with φ(0) = 0 and ω0(xW )

is a nonnegative weight function. Obviously, we have SW,B ≥ 0. When H0
holds, by Theorem 2.2, we obtain SW,B = 0. Taking φ to be the identity func-
tion and ω0(xW ) = f W(xW), we obtain SW,B = VDW,B . When ω0(xW ) =
f W(xW )/Pr{τW

0 (XW) �= 0} and φ(z) = sgn(z) where

sgn(z) =

⎧⎪⎪⎨⎪⎪⎩
1, z > 0,

0, z = 0,

−1, z < 0,

we have SW,B = ERW,B . More generally, we can let φ(z) = sgn(z)|z|q for some
q ≥ 0. The defined SW,B then becomes an Lq+1 type functional. Alternatively, we
can consider the following supremum-type test statistic:

(2.6) sup
xW ∈�W

φ
{
τW

0 (xW )
}{

dW
opt(xW ) − dB

opt(xW,B)
}
ω0(xW ).

In Section 13 of the Supplementary Material [Shi, Song and Lu (2019)], we de-
velop a consistent testing procedure based on (2.6). In these statistics, function
φ{τW

0 (xW )} represents the magnitude of treatment effects, while the difference of
two indicators characterizes the discrepancy between the regimes dB

opt and dW
opt. We

formally introduce our test statistic in the next section.
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3. Testing procedure. We first introduce nonparametric estimators of τW
0 and

τB
0 . Define the propensity score π(x) = Pr(A = 1|X = x). In a randomized study,

πi ≡ π(Xi) is a constant and known. In this section, we assume the propensity
score is correctly specified. In the next section, we propose a doubly robust test,
which allows the misspecification of the propensity score. Consider the following
nonparametric estimator of τW

0 (xW )f W(xW):

τW
n (xW ) = 1

n

n∑
i=1

(
Ai

πi

− 1 − Ai

1 − πi

)
YiK

W
hW

(
xW − XW

i

)
,

where KW
hW

(·) is a multivariate kernel function. In general, KW
hW

(·) can be taken
as a pW -variate density function with pW = pB + pC and hW being a symmetric
positive definite matrix as discussed in Wand and Jones (1993). In practice, for
simplicity, we may take KW

hW
(·) as a product of component-wise kernel functions,

that is, KW
hW

(xW −XW
i ) =∏

j∈W(hW,j )
−1K(

xW,(j)−X
(j)
i

hj
), where K(·) is a symmet-

ric density function. For notational convenience, we set hW,1 = · · ·hW,p = hW ,

and write KW
hW

(xW − XW
i ) = (hW )−pW KW(

xW −XW
i

hW
). Note that the propensity

score πi is a function of Xi not just XW
i . Under the SUTVA and no unmeasured

confounders assumptions, we can show that τW
n (xW ) is a consistent estimator of

τW
0 (xW )f W(xW).

Let f B(·) denote the density function of XB . Similarly, a nonparametric esti-
mator of τB

0 (xB)f B(xB) is given by

τB
n (xB) = 1

n

n∑
i=1

(
Ai

πi

− 1 − Ai

1 − πi

)
YiK

B
hB

(
xB − XB

i

)
.

Based on Remark 2.5, it is natural to consider the test statistic based on

(3.1) SW,B
n =

∫
xW ∈�W

τW
n (xW )

{
dW
n (xW ) − dB

n (xW,B)
}
dxW ,

where dW
n (xW ) = I {τW

n (xW ) ≥ 0} and dB
n (xW,B) = I {τB

n (xW,B) ≥ 0}, are corre-
sponding estimators for dW

opt(xW ) and dB
opt(xW,B), respectively.

REMARK 3.1. When some of the covariates are discrete, we need to modify
the integral in (3.1) by some product measure of Lebesgue and counting measures.
For notational convenience, in Sections 3 and 4, we assume XW is continuous.
In numerical studies, we allow some covariates to be discrete when implementing
our test. Details about the test statistic with discrete covariates can be found in
Section 5.

Under certain regularity conditions, we will show that there exist some positive
sequences {an} and {σn} such that√

nSW,B
n − an

σn

d→ N(0,1),
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under the null. To construct the test statistic, we replace an and σn by some ap-
propriate estimators ān and σ̄n, and reject the null when T W,B

n = (
√

nSW,B
n −

ān)/σ̄n > zα where zα is the upper α-quantile of a standard normal distribution.
Below we introduce our test statistic which is a slightly modified version of T W,B

n .

3.1. Test statistic. Consider the following test statistic:

(3.2) S̃W,B
n =

∫
xW ∈�W

τW
n (xW )

{
dW
n (xW ) − dB

n (xW,B)
}
I (xW /∈ Ê) dxW ,

where

Ê =
{
xW ∈ �W :

∣∣∣∣ τW
n (xW )

f̂ W (xW )

∣∣∣∣≤ ηn,

∣∣∣∣ τB
n (xW,B)

f̂ B(xW,B)

∣∣∣∣≤ ηn

}
,

for some sequence ηn → 0. Here, f̂ W and f̂ B are the kernel density estimators of
f W and f B , respectively. Specifically,

f̂ W (xW ) = 1

n

n∑
i=1

KW
hW

(
xW − XW

i

)
, f̂ B(xB) = 1

n

n∑
i=1

KB
hB

(
xB − XB

i

)
.

Estimators τW
n (xW )/f̂ W (xW ) and τB

n (xB)/f̂ B(xB) are referred to as the Nada-
raya–Watson estimators for τW

0 (xW ) and τB
0 (xB).

Similar to SW,B
n , we can show (

√
nS̃W,B

n − ãn)/σ̃n
d→ N(0,1), for some ãn and

σ̃n. The tests based on SW,B
n and S̃W,B

n have nontrivial power against certain local
alternative as defined later. However, the one based on S̃W,B

n is more powerful. To
see this, note that

√
n
(
SW,B

n − S̃W,B
n

)
= √

n

∫
xW ∈�W

τW
n (xW )

{
dW
n (xW ) − dB

n (xW,B)
}
I (x ∈ Ê) dxW .

(3.3)

With proper choice of ηn, the right-hand side (RHS) of (3.3) is equivalent to

(3.4)
√

n

∫
xW ∈�W

τW
n (xW )

{
dW
n (xW ) − dB

n (xW,B)
}
I (xW ∈ E0) dxW ,

where E0 = {xW : τW
0 (xW ) = 0, τB

0 (xW,B) = 0}.
The asymptotic mean of (3.4) remains the same under the null and local alter-

native. However, it has nondegenerate variance and is asymptotically independent
of S̃W,B

n . This implies that
√

nSW,B
n − an and

√
nS̃W,B

n − ãn have the same shifted
mean under the local alternative, but the variance of S̃W,B

n is smaller than SW,B
n

when the set E0 has nonzero measure. From now on, we focus on the test statistic
S̃W,B

n .
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3.2. Consistency of the test. Define

μW(xW) = E
[{

A

π(X)
− 1 − A

1 − π(X)

}2
Y 2
∣∣∣XW = xW

]
f W(xW)KW∗ (0),

where

KW∗ (t) =
∫
xW

KW(xW)KW(xW + t) dxW .

For each fixed xW , μW(xW) is the asymptotic variance of
√

n(hW)pW τW
n (xW ).

Define F0 = {xW ∈ �W : τW
0 (xW ) = 0, τB

0 (xB) �= 0}. The asymptotic mean and
variance of

√
nS̃W,B

n are given by

ãn = 1√
2π(hW)pW

∫
xW ∈F0

√
μW

n (xW)dxW ,

σ̃ 2 =
∫

xW ∈F0
t∈[−1,1]pW

μW(xW )

× cov
(
max

{√
1 − ρ2(t)Z1 + ρ(t)Z2,0

}
,max{Z2,0})dxW dt,

where Z1 and Z2 are independent standard normal random variables, ρ(t) =
KW∗ (t)/KW∗ (0), and

μW
n (xW) = 1

(hW )pW KW∗ (0)
E
[
μW(XW)

f W(XW)

{
KW

(
xW − XW

hW

)}2]
.

To estimate ãn and σ̃ 2, we first provide nonparametric estimators for μW(xW)

and F0. Define

μ̂W
n (xW ) = 1

n(hW)pW

n∑
i=1

{(
Ai

πi

− 1 − Ai

1 − πi

)
Yi

}2{
KW

(
xW − XW

i

hW

)}2
,

F̂ = {
xW ∈ �W : ∣∣τW

n (xW )/f̂ W (xW )
∣∣≤ ηn,

∣∣τB
n (xW,B)/f̂ B(xW,B)

∣∣> ηn

}
,

where ηn is defined in (3.2). For any set F ⊆ �, define ân(F ) and σ̂ 2
n (F ) as

ân(F ) = 1√
2π(hW)pW

∫
xW ∈F

√
μ̂W

n (xW )dxW ,

σ̂ 2
n (F ) =

∫
xW ∈F

t∈[−1,1]pW

μ̂W
n (xW )

× cov
(
max

{√
1 − ρ2(t)Z1 + ρ(t)Z2,0

}
,max{Z2,0})dxW dt.

We estimate ãn and σ̃ 2
n by ân(F̂ ) and σ̂ 2

n (F̂ ), respectively.



2358 C. SHI, R. SONG AND W. LU

Let ν(·) be the Lebesgue measure. Define the test statistic

T̃ W,B
n =

{{√
nS̃W,B

n − ân(F̂ )
}
/σ̂n(F̂ ) if ν(F̂ ) �= 0,{√

nS̃W,B
n − ân

(
�W )}/σ̂n

(
�W ) otherwise.

We reject the null when T̃ W,B
n > zα .

REMARK 3.2. When ν(F̂ ) = 0, σ̂n(F̂ ) = 0, and hence the test statistic
{√nS̃W,B

n − ân(F̂ )}/σ̂n(F̂ ) is not well-defined. Therefore, in this case we con-
sider {√nS̃W,B

n − ân(�
W)}/σ̂n(�

W) instead. When F0 is a strict subset of �, the
test statistic based on {√nS̃W,B

n − ân(�
W)}/σ̂n(�

W) will be conservative.

We write an  bn for two sequences {an}, {bn} if there exist some universal
constants c,C > 0 such that cbn ≤ an ≤ Cbn. To study the theoretical properties
of the test, we first introduce some conditions.

(A1.) Assume that �W is a bounded subset in R
pW . Assume f W is continuous

and satisfies infxW ∈�W f W(xW ) > 0, and supxW ∈�W f W(xW) < ∞. Assume τW
0

and τB
0 are continuous. Moreover, f W , τW

0 , f B and τB
0 are s-times differentiable

almost everywhere with uniformly bounded derivatives, for some integer s > 0.
(A2.) Assume KW(xW) =∏pW

j=1 Kj(x(j)), and KB(xB) =∏pB

j=1 Kj+pW
(x(j)),

where each Kj is an s-order kernel function with support {μ ∈ R : |μ| ≤ 1/2} and
bounded, and is of bounded variation and integrates to 1.

(A3.) Assume E exp(t |Y |) < ∞ for some t > 0, and supxW ∈�W E(Y 4|XW =
xW ,A = a) < ∞ for a = 0,1.

(A4.) Assume there exist some constants c0 and c1 that 0 < c0 ≤ π(x) ≤ c1 <

1, ∀x.
(A5.) Assume that μW(xW) is uniformly continuous and bounded on �W , and

infxW ∈�W μW(xW) > 0.
(A6.) Assume n(hW)2pW / logn → ∞, n(hW)2s → 0, h

pB

B  h
pW

W .
(A7.) Assume ν(∂F0) = 0, ν(�W ∩ Fc

0 ) > 0. Assume there exist some con-
stants ξ0, c̄0 > 0 such that for any sufficiently small t, ε > 0,

ν
({

xW : 0 <
∣∣τW

0 (xW )
∣∣≤ t

})= O
(
tξ0
)
, ν

({
xB : 0 <

∣∣τB
0 (xB)

∣∣≤ t
})= O

(
tξ0
)
,

ν
({

xW : 0 <
∣∣τW

0 (xW )
∣∣≤ t,

∣∣τB
0
(
xB)∣∣> (1 + ε)t

})≥ c̄0t
ξ0 .

(A8.) Assume ηn satisfies η
2ξ0
n � logξ0+1 n/{n(hW)pW }ξ0 and nη

2ξ0+2
n → 0.

REMARK 3.3. Condition (A1) requires �W to be bounded. In practice, if it is
unbounded, we can perform monotone transformations on each component of X

to make the support of the transformed variables bounded. Otherwise, we need to
focus on a bounded subset �W

0 = �B
0 × �C

0 ⊆ �W , and write S̃W,B
n as∫

xW ∈�W
0

τW
n (xW )

{
dW
n (xW ) − dB

n (xW,B)
}
I (xW /∈ Ê) dxW .



CONDITIONAL QUALITATIVE TREATMENT EFFECTS 2359

In addition, we modify H0 as “For any fixed xB ∈ �B
0 , τ0(xB, xC) ≥ 0, ∀xC ∈ �C

0 ,
or τ0(xB, xC) ≥ 0, ∀xC ∈ �C

0 .”

REMARK 3.4. Condition (A2) requires each Kj to be of order s. The order of
the kernel is defined as the first nonzero moment. Condition (A6) requires nh2 →
∞ and nh2s/pW → 0. This implies s > pW . When pW > 2, this condition requires
each kernel Kj to be of high orders. Such kernels are typically referred to as the
bias-reducing kernels. Unlike standard kernel functions, these kernels allow Kj(z)

to be negative for some z ∈ R. Moreover, we assume h
pW

W  h
pB

B in (A6). This
guarantees τW

n (xW ) and τB
n (xW,B) converge at the same rate.

REMARK 3.5. Conditions (A7) is not restrictive. Obviously, this condition
holds when infxW ∈�W |τW

0 (xW )| > 0. In that case, we can set the constants ξ0 and
c̄0 to be any positive constants. Moreover, these conditions are satisfied in many
other cases. For example, let p = 2, B = {2}, C = {1}. Consider

τ0(x(1), x(2)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−(x(1) + x(2))

1/ξ0 if x(1), x(2) > 0,

−(x(1))
1/ξ0 if x(1) > 0, x(2) ≤ 0,

−(x(2))
1/ξ0 if x(1) ≤ 0, x(2) > 0,

0 otherwise.

Then, with some calculation, we can show

ν
({

x : 0 <
∣∣τ0(x(1), x(2))

∣∣≤ t
})

= ν
({x : x(1), x(2) > 0, x(1) + x(2) ≤ t})

+ ν
({x : 0 < x(1) ≤ t, x(2) ≤ 0})+ ν

({x : x(1) ≤ 0,0 < x(2) ≤ t})
= c1t

2ξ0 + c2t
ξ0,

for some constants c1, c2 > 0.
Note that |τ {2}

0 (x(2))| ≥ min(x(2))
1/ξ0 when x(2) > 0, and τ

{2}
0 (x(2)) is a nonzero

constant c3 < 0 for all x(2) ≤ 0. For sufficiently small t > 0, we obtain

ν
({

x : 0 <
∣∣τ {2}

0 (x(2))
∣∣≤ t

})≤ ν
({

x : (x(2))
1/ξ0 ≤ t, x(2) > 0

})= O
(
tξ0
)
.

Besides, for any small ε0 > 0, we have

ν
({

x : 0 <
∣∣τ0(x(1), x(2))

∣∣≤ t,
∣∣τ {2}

0 (x(2))
∣∣> (1 + ε0)t

})
≥ ν

({
x : 0 <

∣∣τ0(x(1), x(2))
∣∣≤ t, τ

{2}
0 (x(2)) = −c3

})
= ν

({
x : 0 < (x(1))

1/ξ0 ≤ t, x(2) ≤ 0
})= c4t

ξ0,

for some constant c4 > 0. This verifies (A7).
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THEOREM 3.6. Assume Conditions (A1)–(A8) hold. Then, under H0, we have

lim
n

Pr
(
T̃ W,B

n > zα

)≤ α,

for 0 < α ≤ 0.5, where the equality holds when ν(F0) > 0.

REMARK 3.7. Theorem 3.6 shows T̃ W,B
n has correct size under H0. When

ν(F0) = 0, we can show with probability tending to 1,
√

nS̃W,B
n ≤ ân, and hence

lim
n

Pr
(
T̃ W,B

n > zα

)= 0.

When ν(F0) �= 0, we will show that T̃ W,B
n is asymptotically normal. The proof

is based on the well-known Poissoinization technique which introduces a Pois-
sonized version of S̃W,B

n and transforms the integral into summation of mean zero
1-dependent random fields [see, e.g., Chang, Lee and Whang (2015), Giné, Mason
and Zaitsev (2003), Mason and Polonik (2009)]. The asymptotic normality thus
follows by standard central limit theorem for m-dependent random fields [Shergin
(1990)]. The details are given in the Supplementary Material [Shi, Song and Lu
(2019)].

THEOREM 3.8. Assume Conditions (A1)–(A8) hold. Then, under H1, we have

lim
n

Pr
(
T̃ W,B

n > zα

)→ 1.

REMARK 3.9. Theorem 3.8 shows T̃ W,B
n having power going to 1 against

fixed alternatives. Together with Theorem 3.6, Theorem 3.8 suggests that our test-
ing procedure is consistent.

3.3. Local alternatives. In this subsection, we investigate the power of the
proposed test under local alternatives. We write τn,0(x) as the contrast function
and τD

n,0(xD) = E{τn,0(X)|XD = xD} for a given subset D ⊆ I , with the intention
that these functions are allowed to vary with n. Consider the following sequence
of local alternatives:

Ha : τW
n,0(xW ) = τW

0 (xW ) + n−1/2δW
0 (xW ),

for some continuous functions τW
0 and δW

0 on �W , where for any fixed xB ∈ �B ,

τW
0 (xB, xC) ≤ 0 for any xC ∈ �C, or

τW
0 (xB, xC) ≥ 0 for any xC ∈ �C,

and

δW
0 (xB, xC) ≤ 0 for any xC ∈ �C, or

δW
0 (xB, xC) ≥ 0 for any xC ∈ �C.
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In addition,

δW
0 (xB, xC)τW

0 (xB, xC) ≤ 0 ∀xB ∈ �B,xC ∈ �C.

Recall that F0 = {xW ∈ �W : τW
0 (xW ) = 0, τB

0 (xW,B) �= 0}. Let Ḟ0 and ∂F0 denote
its interior and boundary, respectively. Since the contrast function τW

n,0 varies with
n, we state a more precise definition of conditional qualitative treatment effects
below.

DEFINITION 3.1 (CQTE, continued). Variables in C have qualitative treat-
ment effects conditional on variables in B if there exists some nonempty sets C1,
C2 ∈ R

pC , B ∈R
pB , such that (i)

Pr
{(

XB,XC)T ∈ B × C1
}
> 0, and Pr

{(
XB,XC)T ∈ B × C2

}
> 0;

and (ii) for any xC1 ∈ C1, xC2 ∈ C2 and xB ∈ B, there exists a sequence nk → ∞ as
k → ∞, such that

(3.5) arg max
a=0,1

{
aτW

nk,0(xB, xC1)
} �= arg max

a=0,1

{
aτW

nk,0(xB, xC2)
}
.

REMARK 3.10. It is immediate to see that (3.5) is a modified version of (2.2)
where we allow the conditional expectation E{Y ∗(a)|XB,XC} to vary with n. By
the definition of τW

0 and δW
0 , we can see that the magnitude of δW

0 affects CQTE.
We provide a theorem which formally characterizes such results below.

THEOREM 3.11. Assume δW
0 is continuous and bounded on �W . Assume

ν(∂F0) = 0. Under conditions in Theorem 2.2, the following statements are equiv-
alent:

(i) XC does not have QTE conditional on XB .
(ii) For any ε > 0, there exist a set Nε and a positive integer nε such that

ν(Nε) ≤ ε, and for all n ≥ nε , the following holds: for any fixed xB , we have
τn,0(xW ) ≥ 0 for any xW /∈ Nε such that xW,B = xB or τn,0(xW ) ≤ 0 for any xW /∈
Nε such that xW,B = xB .

(iii) For all xW ∈ Ḟ0, δW
0 (xW ) = 0.

(iv)
∫
xW ∈F0

|δW
0 (xW )|f W(xW )dxW = 0.

REMARK 3.12. Result (iv) implies H0 holds when Pr(XW ∈ F0) = 0, or
Pr{τW

0 (XW) = 0} = 0. This implies that the local alternatives are nonstandard and
only exist in the nonregular cases, that is, there is a positive probability such that
the optimal treatment decision based on XW is not defined.

REMARK 3.13. Theorem 3.11 suggests the quantity∫
xW ∈F0

∣∣δW
0 (xW )

∣∣f W(xW )dxW
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plays a role in determining CQTE of XC conditional on XB . In the theorem below,
we establish the power of our test statistic T̃ W,B

n under the local alternatives. It can
be seen that this quantity is closely related to the power of our test.

THEOREM 3.14. Assume Conditions (A1)–(A8) hold and that δW
0 is bounded

on �W . Then, under Ha with
∫
xW ∈F0

|δW
0 (xW )|f W(xW )dxW > 0, we have

lim
n

Pr
(
T̃ W,B

n > zα

)= 1 − �

(
zα − 1

2σ̃

∫
xW ∈F0

∣∣δW
0 (xW )

∣∣f W(xW )dxW

)
,

where �(z) = Pr(Z0 ≤ z) for a standard normal random variable Z0.

4. Doubly robust test statistic. In an observational study, the propensity
score πi ’s are usually unknown. In practice, we posit a parametric model π(x,α)

for the propensity score, for example, a logistic regression model π(x,α) =
exp(xT α)/{1 + exp(xT α)}. We can obtain an estimator α̂ of α based on data
{(Ai,Xi), i = 1, . . . , n}, by either maximizing the likelihood function or solving
estimating equations. The estimator α̂ will converge to some population-level pa-
rameters α0. When the model π(x,α) is correctly specified, α0 is the true param-
eter in the model. When the model is wrong, α0 corresponds to some least false
parameters that have been widely studied in the literature [cf. Li and Duan (1989),
White (1982)].

We also posit some parametric models �0(x, θ) and �1(x, ζ ) for E(Y |X =
x,A = 0) and E(Y |X = x,A = 1), respectively. Let θ̂ and ζ̂ denote the estimator
of θ and ζ , respectively, which converge to some parameters θ0 and ζ0, under
potential model misspecification. Let π̂i = π(Xi, α̂), �̂0i = �0(Xi, θ̂) and �̂1i =
�1(Xi, ζ̂ ). Define the following doubly robust estimators for τW

n,0(xW )f W(xW )

and τB
n,0(xB)f B(xB):

τW
n,DR(xW ) = 1

n

n∑
i=1

[{
Ai

π̂i

Yi −
(

Ai

π̂i

− 1
)
�̂1i

}

−
{

1 − Ai

1 − π̂i

Yi −
(

1 − Ai

1 − π̂i

− 1
)
�̂0i

}]
KW

hW

(
xW − XW

i

)
,

τB
n,DR(xB) = 1

n

n∑
i=1

[{
Ai

π̂i

Yi −
(

Ai

π̂i

− 1
)
�̂1i

}

−
{

1 − Ai

1 − π̂i

Yi −
(

1 − Ai

1 − π̂i

− 1
)
�̂0i

}]
KB

hB

(
xB − XB

i

)
.

REMARK 4.1. We can show that estimators τW
n,DR(xW ) and τB

n,DR(xB) are con-
sistent when either π(x,α) or �0(x, θ) and �1(x, ζ ) are correctly specified.
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Let dW
n,DR(xW ) = I {τW

n,DR(xW ) ≥ 0} and dB
n,DR(xB) = I {τB

n,DR(xB) ≥ 0}. Con-
sider

S̃
W,B
n,DR =

∫
xW ∈�W

τW
n,DR(xW )

{
dW
n,DR(xW ) − dB

n,DR(xW,B)
}
I (xW /∈ ÊDR) dxW ,

where

ÊDR =
{
xW ∈ �W :

∣∣∣∣τW
n,DR(xW )

f̂ W (xW )

∣∣∣∣≤ ηn,

∣∣∣∣τB
n,DR(xW,B)

f̂ B(xW,B)

∣∣∣∣≤ ηn

}
.

For any set F , define

ân,DR(F ) = 1√
2π(hW)pW

∫
xW ∈F0

√
μ̂W

n,DR(xW )dxW ,

σ̂ 2
n,DR(F ) =

∫
xW ∈F

∫
t∈[−1,1]pW

μ̂W
n,DR(xW )

× cov
(
max

{√
1 − ρ2(t)Z1 + ρ(t)Z2,0

}
,max{Z2,0})dxW dt,

where

μ̂W
n,DR(xW ) = 1

n(hW)pW

n∑
i=1

[{
Ai

π̂i

Yi −
(

Ai

π̂i

− 1
)
�̂1i

}

−
{

1 − Ai

1 − π̂i

Yi −
(

1 − Ai

1 − π̂i

− 1
)
�̂0i

}]2{
KW

(
xW − XW

i

hW

)}2
.

We estimate the asymptotic mean and variance of
√

nS̃
W,B
n,DR by ân,DR(F̂DR) and

σ̂ 2
n,DR(F̂DR), respectively, with

F̂DR = {
xW ∈ �W : ∣∣τW

n,DR(xW )/f̂ W (xW )
∣∣≤ ηn,

∣∣τB
n,DR(xW,B)/f̂ B(xW,B)

∣∣> ηn

}
.

Define

T̃
W,B
n,DR =

⎧⎨⎩
{√

nS̃
W,B
n,DR − ân,DR(F̂DR)

}
/σ̂n,DR(F̂DR) if ν(F̂DR) = 0,{√

nS̃
W,B
n,DR − ân,DR

(
�W )}/σ̂n,DR

(
�W ) otherwise.

We reject the null when T̃
W,B
n,DR > zα .

To establish the asymptotic distributions of T̃
W,B
n,DR under the null and local alter-

native, we impose the following conditions.

(A4′.) Assume there exist some constants c′
0 and c′

1 such that 0 < c′
0 ≤

π(x,α0) ≤ c′
1 < 1 for all x ∈ �.

(A5′.) Assume that μW
DR(xW ) is uniformly continuous and bounded on �W ,

and infxW ∈�W μW
DR(xW ) > 0, where

μW
DR(xW ) = E

[{(
A

π(X,α0)
− 1 − A

1 − π(X,α0)

)
Y −

(
A

π(X,α0)
− 1

)
�1(X, θ0)

+
(

1 − A

1 − π(X,α0)
− 1

)
�0(X, ζ0)

}2
|XW = xW

]
f W(xW )KW∗ (0).
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(A9.) Assume that π(x,α) is twice continuously differentiable with respect
to α; ‖∂π(x,α0)/∂α‖2 is uniformly bounded for all x ∈ �; and the elements in
∂2π(x,α)/∂α∂αT are uniformly bounded for all x ∈ � and α in a small neighbor-
hood of α0.

(A10.) Assume that �0(x, θ) and �1(x, ζ ) are twice continuously differen-
tiable with respect to θ and ζ , respectively; �0(x, θ0), �1(x, ζ0), ‖∂�0(x, θ0)/

∂θ‖2 and ‖∂�1(x, ζ )/∂ζ0‖2 are uniformly bounded for all x ∈ �; and the ele-
ments in the matrices ∂2�0(x, θ)/∂θ∂θT and ∂2�1(x, ζ )/∂ζ∂ζ T are uniformly
bounded for all x ∈ � and θ , ζ in small neighborhoods of θ0 and ζ0, respectively.

(A11.) Assume that the estimators α̂, θ̂ and ζ̂ have the following linear repre-
sentations:

α̂ − α0 = 1

n

∑
i

ξ1(Oi) + op

(
1√
n

)
,

θ̂ − θ0 = 1

n

∑
i

ξ2(Oi) + op

(
1√
n

)
,

ζ̂ − ζ0 = 1

n

∑
i

ξ3(Oi) + op

(
1√
n

)
,

for some functions ξ1, ξ2 and ξ3 with E{ξj (Oi)} = 0 and E{ξj (Oi)ξ
T
j (Oi)} < ∞

for j = 1,2,3.

REMARK 4.2. Conditions (A4′) and (A5′) are similar to (A4) and (A5). Con-
ditions (A9)–(A11) are required for establishing the asymptotic normality of the
estimators for misspecified models [White (1982)].

THEOREM 4.3 (Double robustness of T̃
W,B
n,DR). Assume Conditions (A1)–(A3),

(A4′), (A5′) and (A6)–(A11) hold. In addition, assume either π(x,α) or �0(x, θ)

and �1(x, ζ ) are correctly specified. Then, under H0, for any 0 < α ≤ 0.5, we
have

lim
n

Pr
(
T̃

W,B
n,DR > zα

)≤ α,

where the equality holds when ν(F0) > 0. In addition, under H1, we have

lim
n

Pr
(
T̃

W,B
n,DR > zα

)→ 1.

REMARK 4.4. Theorem 4.3 establishes the consistency of the proposed dou-
bly robust test statistic T̃

W,B
n,DR. Next, we establish the power of the test under the

local alternative.
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THEOREM 4.5. Assume Conditions in Theorem 4.3 hold. Under Ha , assume
that δW

0 is continuous and bounded on �W , and∫
xW ∈F

∣∣δW
0 (xW )

∣∣f W(xW )dxW > 0.

Then we have

lim
n

Pr
(
T̃

W,B
n,DR > zα

)≥ 1 − �

(
zα − 1

2σ̃DR

∫
xW ∈F

∣∣δW
0 (xW )

∣∣f W(xW)dxW

)
.

REMARK 4.6. For a given function δ0, the power of T̃
W,B
n,DR increases as σ̃DR

decreases. When the propensity score model is correctly specified, it can be shown
that for each xW ∈ �W , μW

DR(xW ) achieves its minimum when

�0(x, θ0) = E(Y |X = x,A = 0), �1(x, ζ0) = E(Y |X = x,A = 1).(4.1)

Therefore, σ̃DR achieves its minimum if (4.1) holds. This suggests T̃
W,B
n,DR has the

greatest power when the posited models for the propensity score and conditional
means of Y given X and A are correctly specified.

5. Implementation details. In Sections 3 and 4, we only consider continuous
covariates for notational convenience. In this section, we present a more general
testing framework allowing both continuous and discrete covariates, and provide
some implementation details. Specifically, we consider the following two cases:
(i) all covariates are discrete and (ii) at least one covariate is continuous. The test
statistics are different in these two cases. We focus on randomized studies and
assume the propensity score is known. A doubly-robust version of the test statis-
tic can be similarly derived as in Section 4 to deal with data from observational
studies. We omit the details to save space.

5.1. All covariates are discrete. When all covariates are discrete, for each x,
we calculate

τW
n (xW ) = 1

n

n∑
i=1

(
Ai

πi

− 1 − Ai

1 − πi

)
YiI

(
XW

i = xW

)
,

τB
n (xB) = 1

n

n∑
i=1

(
Ai

πi

− 1 − Ai

1 − πi

)
YiI

(
XB

i = xB

)
,

f̂ W (xW ) = 1

n

n∑
i=1

I
(
XW

i = xW

)
, f̂ B(xB)= 1

n

n∑
i=1

I
(
XB

i = xB

)
,

μ̂W
n (xW ) = 1

n

n∑
i=1

{(
Ai

πi

− 1 − Ai

1 − πi

)
YiI

(
XW

i = xW

)− τW
n (xW )

}2
,

μ̂B
n (xB) = 1

n

n∑
i=1

{(
Ai

πi

− 1 − Ai

1 − πi

)
YiI

(
XB

i = xB

)− τB
n (xB)

}2
.
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Define

Ê =
{
xW ∈ �W :

∣∣∣∣ τW
n (xW )

f̂ W (xW )

∣∣∣∣≤ C1ηn,

∣∣∣∣ τB
n (xW,B)

f̂ B(xW,B)

∣∣∣∣≤ C2ηn

}
,(5.1)

F̂ =
{
xW ∈ �W :

∣∣∣∣ τW
n (xW )

f̂ W (xW )

∣∣∣∣≤ C1ηn,

∣∣∣∣ τB
n (xW,B)

f̂ B(xW,B)

∣∣∣∣> C2ηn

}
.(5.2)

Compute

S̃W,B
n = ∑

xW /∈Ê

τW
n (xW )

{
dW
n (xW ) − dB

n (xW,B)
}
.

Unlike results in Sections 3 and 4, the limiting distribution of S̃W,B
n is not normal.

If F̂ �= ∅, we reject the null when
√

nS̃W,B
n > ĉα(F̂ ) where ĉα(F ) is the upper

α-quantile of the random variable
∑

xW ∈F

√
μ̂W

n (xW )max(ZxW
,0) conditional on

{μ̂W
n (xW )}xW ∈�W , where {ZxW

}xW ∈�W are independent standard normal random
variables. Otherwise, we reject the null when

√
nS̃W,B

n > ĉα(�W). A formal jus-
tification of the aforementioned testing procedure is given in Section 14 of the
Supplementary Material [Shi, Song and Lu (2019)].

5.2. Not all covariates are discrete. Assume W = WC ∪ WD and B = BC ∪
BD , where WC , BC are the sets of continuous variables and WD , BD are the sets of
discrete covariates. Denoted by pWC

, pWD
, pBC

and pBD
the numbers of elements

in these sets. When pBC
> 0, define ωi = {Ai/πi − (1 − Ai)/(1 − πi)}Yi and

τW
n (xW ) = 1

n
∏

j∈WC
(ŝjhW )

n∑
i=1

ωi

∏
j∈WC

K

(
xW,(j) − X

(j)
i

ŝj hW

)
I
(
xWD

= X
WD

i

)
,

τB
n (xB) = 1

n
∏

j∈BC
(ŝjhB)

n∑
i=1

ωi

∏
j∈BC

K

(
xW,(j) − X

(j)
i

ŝj hB

)
I
(
xBD

= X
BD

i

)
,

μ̂W
n (xW ) = 1

n
∏

j∈WC
(ŝjhW )

n∑
i=1

{
ωi

∏
j∈WC

K

(
xW,(j) − X

(j)
i

ŝj hW

)
I
(
xWD

= X
WD

i

)}2
,

μ̂B
n (xB) = 1

n
∏

j∈BC
(ŝjhB)

n∑
i=1

{
ωi

∏
j∈BC

K

(
xW,(j) − X

(j)
i

ŝj hB

)
I
(
xBD

= X
BD

i

)}2
,

f̂ W (xW ) = 1

n
∏

j∈WC
(ŝjhW )

n∑
i=1

∏
j∈WC

K

(
xW,(j) − X

(j)
i

ŝj hW

)
I
(
xWD

= X
WD

i

)
,

f̂ B(xB) = 1

n
∏

j∈BC
(ŝjhB)

n∑
i=1

∏
j∈BC

K

(
xW,(j) − X

(j)
i

ŝj hB

)
I
(
xBD

= X
BD

i

)
,
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where ŝj denotes the sampling variance of the j th covariate. In our numerical
studies, we use a fourth-order Epanechnikov kernel for K , that is,

K(u) = 45

16

(
1 − 28

3
u2
)(

1 − 4u2).
It can be shown that

∫
u K(u)j du = 0 for j = 1,2,3. Then we calculate

S̃W,B
n = ∑

xW,WD

∫
xW,WC

τW
n (xW )

{
dW
n (xW ) − dB

n (xW,B)
}
I (xW /∈ Ê) dxW,WC

,

where xW,WC
and xW,WD

are the subvectors of xW formed by elements in WC and
WD .

When pWC
≤ 2, the integral in S̃W,B

n is computed via a midpoint rule with a uni-
form grid. Specifically, for each j ∈ W , denoted by mj and Mj the minimum and
maximum value of x(j). We divide the interval [mj,Mj ] into L = 200 subinter-
vals of equal width. Let zk,(j), k = 1, . . . ,L, denote the midpoints for these inter-
vals, z(k̄) = (zk1,(1), . . . , zkWC

,pWC
)T for k̄ = (k1, . . . , kWC

)T , and zW(k̄) and zB(k̄)
the subvectors formed by elements in WC and BC , respectively. We approximate
S̃W,B

n by

I ∗ ∑
xWD

,k̄

τW
n (zW(k̄), xWD

)
{
dW
n (zW(k̄), xWD

) − dB
n (zB(k̄), xWD,BD

)
}

× I
{
(zW(k̄), xWD

) /∈ Ê
}
,

where I ∗ = ∏
j∈WC(Mj − mj)/L

pWC , and τW
n (xW,WC

, xW,WD
) and τB

n (xB,BC
,

xB,BD
) are shorthand for τW

n (xW ) and τB
n (xB), dW

n (zW(k), xWD
) = I (τW

n (zW(k),

xWD
) ≥ 0) and dB

n (zB(k), xBD
) = I (τB

n (zB(k), xBD
) ≥ 0).

If pWC
> 2, we approximate the integral using Monte Carlo methods. Specif-

ically, we generate N = 5000 random numbers Z(k), uniformly distributed in∏
j [mj,Mj ], and calculate

I ′ ∑
xWD

N∑
k=1

τW
n

(
ZW(k), xWD

){
dW
n

(
ZW(k), xWD

)− dB
n

(
ZB(k), xWD,BD

)}
× I

{(
ZW(k), xWD

)
/∈ Ê

}
,

where I ′ = ∏
j∈WC(Mj − mj)/N , ZW(k) and ZB(k) are the subvectors of Z(k)

formed by elements in WC and BC .
When F̂ �=∅, we calculated ân and σ̂ 2

n by

ân = 1√
2π(hW)pW

∑
xW,WD

∫
xW,WC

√
μ̂W

n (xW )I (xW ∈ F̂ ) dxW,WC
,

σ̂ 2
n = ∑

xW,WD

∫
xW,WC

t∈[−1,1]pWC

μ̂W
n (xW )I (xW ∈ F̂ )

× cov
(
max

{√
1 − ρ2(t)Z1 + ρ(t)Z2,0

}
,max{Z2,0})dxW,WC

dt.
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Definitions of Ê and F̂ are given in (5.1) and (5.2). When F̂ = ∅, we replace F̂

by � in the integral. The above integrals are calculated similarly as for S̃W,B
n . We

reject the null when
√

nS̃W,B
n ≥ ân + σ̂nzα .

6. Simulations. To evaluate the numerical performance of the proposed test-
ing procedure, we consider simulation studies based on the following model:

Y = h0
(
X(1),X(2))+ Aτ0

(
X(1),X(2))+ e,

where h0 denotes the baseline, τ0 denotes the contrast, and e ∼ N(0,0.25) is inde-
pendent of A and X = (X(1),X(2))T . The objective is to test the CQTE of variable
X(2) conditional on X(1). Treatment A was generated from a Bernoulli distribution
with probability 0.5, independent of X. The baseline function h0 was set to be

(6.1) h0(x(1), x(2)) = 1 − x(1) − x(2)

2
.

The contrast function takes the form

(6.2) τ0(x(1), x(2)) = ϕ1(x(1))ϕ2(x(2)),

for some continuous functions ϕ1 and ϕ2.
Variables X(1) and X(2) are independently generated. It follows from The-

orem 3.6 that the null (no CQTE) holds if and only if ϕ2(x(2)) ≥ 0, ∀x(2) or
ϕ2(x(2)) ≤ 0, ∀x(2). We consider five scenarios. In the first four scenarios, X(1)

and X(2) are generated from Unif[−2,2], where Unif[a, b] stands for the uniform
distribution on the interval [a, b]. We set ϕ1(z) = z in the first two scenarios and
ϕ1(z) = max(z,0) in the last two scenarios. As for ϕ2, in Scenarios 1 and 3,

ϕ2(z) = z2 − δ,

for some δ ≥ 0. In Scenarios 2 and 4,

ϕ2(z) =

⎧⎪⎪⎨⎪⎪⎩
z 0 ≤ z ≤ 2,

0 δ − 2 ≤ z < 0,

2 + z − δ −2 ≤ z < δ − 2,

for some δ ≥ 0. In Figure 1, we plot functions ϕ2 with different δ.
In the last scenario, X(1) is generated from Unif[−2,2] while X(2) is from a

uniform discrete distribution. Specifically, X(2) has the following probability mass
function:

Pr
(
X(2) = a

)= 1

2
, a = 0,2.

The contrast function is set to be

τ0(x(1), x(2)) = ϕ1(x(1))ϕ2(x(2)) = x(1)(x(2) − δ).
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FIG. 1. Plots of function ϕ2 for Scenario 1 and Scenario 2, from left to right, with different choices
of δ.

In all scenarios, the parameter δ controls the degree of CQTE. When δ = 0, H0
holds; Otherwise, H1 holds. Moreover, it can be calculated that the value differ-
ences

VD = E
[
τ0
(
X(1),X(2)){dopt(X) − d

opt
{1}
(
X(1))}]

for Scenarios 1–5 are equal to δ3/2/3, δ2/8, δ3/2/6, δ2/16 and δ/3 for all
δ ≤ 1, respectively. In each scenario, we consider four settings by setting VD =
0,0.04,0.08 and 0.12. Hence, the null holds in the first setting and the alternative
holds in other settings. We also consider two different sample sizes, n = 300 and
n = 600.

When implementing our testing procedure, we first fit a logistic regression
model for the propensity score and linear models for the conditional means of Y

given A and X. The test statistics are constructed as discussed in Section 5. Based
on (6.1) and (6.2), the model for E(Y |X,A = 1) is always misspecified, however,
the propensity score model is correctly specified. Hence, our test statistics are con-
sistent. In Scenarios 1–4, we set the smoothing parameters as hW = cWn−1/7 and
hB = cBn−2/7 for some constants cW and cB . Condition (A6) holds for such a
choice of the bandwidth. In our implementation, we have tried a few values of cW

and cB , and find cW = 2
√

3 and cB = 6 working well for all scenarios. In Sce-
nario 5, we set hW = 6n−2/7. In (5.1) and (5.2), we set ηn = n−2/7, C1 = 3 and
C2 = 1. Such a choice of ηn satisfies Conditions (A8)–(A10) in our simulation
settings. We conduct 600 simulations for each setting and report the proportions
of rejecting the null hypothesis of the proposed test statistics in Table 1.

Under H0 (i.e., the cases with VD = 0), the empirical type-I error rates in Sce-
narios 2, 4 and 5 are close to the nominal level. In Scenarios 1 and 3, we have
ν(F0) = 0. The empirical type I error rates in Scenarios 1 and 3 are well below
the nominal level. This is in line with our theory which suggests the type-I error
rate should go to 0 in these settings. Under H1, the power increases as the value
difference or sample size increases, showing the consistency of our test statistics.
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TABLE 1
Simulation results

VD = 0 VD = 4% VD = 8% VD = 12%
α level α level α level α level

n 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

Scenario 1 300 4.3% 6.0% 24.0% 34.0% 58.7% 68.3% 82.2% 87.5%
600 1.5% 3.3% 36.7% 45.5% 75.8% 83.3% 95.7% 97.3%

Scenario 2 300 7.0% 11.1% 23.8% 32.7% 60.5% 69.3% 88.2% 92.5%
600 3.7% 7.8% 31.0% 41.8% 83.0% 90.5% 98.3% 99.5%

Scenario 3 300 3.8% 6.5% 37.5% 48.7% 76.5% 79.8% 93.5% 95.5%
600 2.7% 6.7% 52.5% 61.8% 99.1% 100.0% 99.8% 99.8%

Scenario 4 300 6.2% 10.2% 39.8% 47.7% 79.2% 87.3% 96.0% 97.8%
600 5.2% 8.8% 59.3% 68.2% 96.8% 98.3% 100.0% 100.0%

Scenario 5 300 5.2% 9.7% 29.3% 40.5% 68.0% 76.3% 94.0% 96.8%
600 5.3% 9.5% 46.2% 57.5% 92.2% 95.5% 100.0% 100.0%

7. Application with ACTG175 dataset. We apply our proposed method to
a data from AIDS Clinical Trials Group Protocol 175 (ACTG175) study. This
is a randomized trial where patients were randomly assigned to the following
four treatments, including zidovudine (ZDV) monotherapy, ZDV + didanosine
(ddI), ZDV + zalcitabine (zal) and ddI monotherapy. We focus on patients re-
ceiving treatments: ZDV + ddI (denoted as 1) and ZDV + zal (denoted as 0).
Among them, there are 522 receiving treatment 1 and 524 receiving treatment 0.
We choose the CD4 count (cells/mm3) at 20 ± 5 weeks after receiving the treat-
ment as the response. The baseline covariates include patient’s age and weight
at baseline, the CD4 and CD8 counts (coded as CD40 and CD80, resp.) at
baseline, hemophilia (hemo,0 = no,1 = yes), homosexual activity (homo,0 =
no,1 = yes), history of intravenous drug use (drug,0 = no,1 = yes), race
(0 = white,1 = nonwhite), gender (0 = female,1 = male), antiretroviral his-
tory (str2,0 = naive,1 = experienced) and symptomatic status (sympton,0 =
asymptomatic,1 = symptomatic). The first four variables are continuous while
others are binary. Our objective is to select those variables that have qualitative
treatment effects in a sequential order. Since the propensity score is known, we
consider the statistic T̃ W,B proposed in Section 3. Our procedure proceeds as fol-
lows:

1. Set D̂ = ∅. In the first step, for each variable i, define the set Wi = {i} and
calculate the p-value pi for each test statistic T̃ Wi,D̂ as described in Section 5.
Stop if mini pi > α. Include the variable that gives the smallest p-value in the set
D̂, that is,

D̂ ←
{
arg min

i
pi

}
.
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TABLE 2
P -values of each test statistic in all iterations

age weight hemo homo drug race gender str2 sympton CD40 CD80

0.022 0.087 0.793 0.827 0.817 0.831 0.808 0.825 0.825 0.823 0.772
NA 0.986 1.2e−8 0.028 0.288 0.308 0.175 0.257 0.191 0.982 0.975
NA 0.996 NA 0.033 0.067 0.447 0.091 0.155 0.196 0.999 0.998
NA 0.999 NA NA 0.118 0.116 0.405 0.533 0.066 0.999 0.999

2. In the second step, for each variable i /∈ D̂, define Wi = D̂ ∪ {i} and calcu-
late the p-value pi for each test statistic T̃ Wi,D̂ . Stop if mini pi > α. Include the
variable that gives the smallest p-value,

D̂ ← D̂ ∪
{
arg min

i
pi

}
.

3. Continue the second step until it stops. Output D̂.

It is immediate to see that the above algorithm uses a forward selection proce-
dure. Backward or stepwise selection can be similarly considered. The threshold α

determines the significance level for each test statistic. In our implementation, we
set α = 1 − Pr(Z0 ≥ n1/6/2) ≈ 0.056 where Z0 is a standard normal random vari-
able. Such a choice of α meets the conditions in Theorem 9.2 to achieve selection
consistency of the forward selection algorithm. As in simulations, we choose the
bandwidth h = 6n−2/7 when there is only one continuous variable in the kernel
estimation. Otherwise, we set h = 2

√
3n−1/7. Sets Ê and F̂ are estimated by

Ê =
{
xW ∈ �W :

∣∣∣∣ τW
n (xW )√
μ̂W

n (xW )

∣∣∣∣≤ C0ηn,

∣∣∣∣ τB
n (xW,B)√
μ̂B

n (xW,B)

∣∣∣∣≤ C0ηn

}
,

F̂ =
{
xW ∈ �W :

∣∣∣∣ τW
n (xW )√
μ̂W

n (xW )

∣∣∣∣≤ C0ηn,

∣∣∣∣ τB
n (xW,B)√
μ̂B

n (xW,B)

∣∣∣∣> C0ηn

}
,

where the constant C0 is set to be 0.03 in the implementation.
For the ACTG175 dataset, our algorithm stops after fourth iteration. At the first

iteration, only the variable age is significant and is thus selected. At the second
iteration, we find out that both hemo and homo have qualitative effects condi-
tional on age and variable hemo is chosen. At the third iteration, only homo is
significant given previously included variables. The algorithm stops at the fourth
iteration. We report all the p-values in each iteration in Table 2.

Our results indicate that variables age, hemo and homo have qualitative treat-
ment effects and are important for optimal treatment prescription. Denoted by DFS

the set of these three variables. We compare our algorithm with the sequential ad-
vantage selection [SAS, Fan, Lu and Song (2016)]. SAS uses a forward selection
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procedure based on a sequential S-score and selects the best candidate subset of
variables via a BIC-type criterion. For the ACTG175 dataset, SAS selects a total
of 10 variables including age, hemo and homo. Denoted by DSAS the set of these
10 variables.

To further examine the variable selection results, we evaluate the value func-
tions under the optimal treatment regimes based on the set of variables selected
by the proposed forward selection algorithm and SAS. For a given set D ⊆ I =
{1,2, . . . ,11}, we estimate the optimal value function

V D = E
{
Y ∗(dD

opt
)}

via the online estimator proposed by Luedtke and van der Laan (2016). More
specifically, for i = ln + 1, ln + 2, . . . , n, we first compute the estimated optimal
treatment regime d̂D

(i−1)(xD) = I {ĥD
1,(i−1)(xD) > ĥD

0,(i−1)(xD)} and the estimated

conditional mean functions �̂0,(i−1)(x) = xT θ̂0,(i−1) and �̂1,(i−1)(x) = xT θ̂1,(i−1)

based on data from patients 1 to i − 1.
For any j = 0,1 and i = ln + 1, ln + 2, . . . , n, ĥD

j,(i−1) is calculated via kernel
ridge regression, based on the dataset {(XD

k ,Yk)}k≤i−1,Ak=j . We use the Gaus-
sian radial basis function kernel. The estimating procedure is implemented by the
R package CVST. The tuning parameters in the kernel functions are selected via
5-folded cross-validation. Estimator θ̂j,(i−1) is computed via a penalized regres-
sion with the SCAD penalty function [Fan and Li (2001)], based on the dataset
{(XD

k ,Yk)}k≤i−1,Ak=j . The penalized regression is implemented by the R package
ncvreg, and the tuning parameters are selected via 10-folded cross-validation.
Let π0 = 0.5, we define for i = ln + 1, ln + 2, . . . , n, j = 1, . . . , n,

V̂ D
(i)(j) =

d̂D
(i−1),Aj ,Xj

π0
Yj −

( d̂D
(i−1),Aj ,Xj

π0
− 1

)
× (

�̂1,(i−1)

(
XD

j

)
d̂D
(i−1)

(
XD

j

)+ �̂0,(i−1)

(
XD

j

){
1 − d̂D

(i−1)

(
XD

j

)})
,

where d̂D
(i−1),Aj ,Xj

= Aj d̂
D
(i−1)(X

D
j ) + (1 − Aj){1 − d̂D

(i−1)(X
D
j )}.

The final estimator is given by

V̂ D =
∑n

i=ln+1{σ̂D(i)}−1V̂ D
(i)(i)∑n

i=ln+1{σ̂D(i)}−1 ,

with the estimated standard error

σ̂D =
√

n − ln∑n
i=ln+1{σ̂D(i)}−1 ,

where

{
σ̂D(i)

}2 = 1

i − 2

i∑
j=1

{
V̂ D

(i−2)(j)
}2 −

(
1

i − 1

i−1∑
j=1

V̂ D
(i)(j)

)2

.
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Under certain conditions, we have

V̂ D − V D

σ̂D

d→ N(0,1).

Set ln = 200. The estimated value functions V̂ DFS and V̂ DSAS are equal to
401.88 and 402.35, respectively, with estimated standard errors σ̂D

FS = 7.50 and
σ̂D

SAS = 7.19. Since DFS ⊆ DSAS, we have V DSAS ≥ V DFS . However, the differ-
ence V DSAS −V DFS is not significant. This implies the proposed forward selection
algorithm selects less variables than SAS, while achieves approximately the same
value function in optimal treatment decision.

8. Discussion. In this paper, we introduce the notion of conditional qualitative
treatment effects (CQTE) and present several equivalent definitions. We also pro-
pose a consistent testing procedure for the existence of CQTE. Our test has correct
size under the null hypothesis and nonnegligible power against some nonstandard
local alternatives.

8.1. More on the forward selection algorithm. The forward selection algo-
rithm introduced in Section 7 is a byproduct of the proposed testing procedure for
the existence of CQTE. While it is worthwhile to investigate its statistical prop-
erties, this is a very challenging task. In the literature, few works have studied
the asymptotic properties of a forward selection procedure. Wang (2009) estab-
lished the “sure screening property” of the classical forward linear regression in a
high dimensional setting. However, the proofs of the major theorems in that paper
(Theorems 1 and 2) rely heavily on the specific structure of linear regression and it
remains unknown whether the “sure screening property” holds for general forward
selection algorithms.

Our forward selection algorithm aims to identify a subset D0 ⊆ [1, . . . , p] with
minimum cardinality such that the optimal value function based on variables in
XD0 is the same as that based on X. In the Supplementary Material [Shi, Song and
Lu (2019)], we establish the “sure screening property” (Theorem 9.1) and selection
consistency (Theorem 9.2) of the considered forward selection algorithm based on
the p-values of the CQTE tests. Moreover, we conduct some simulation studies
to examine the empirical performance of the proposed algorithm and compare it
with SAS [Fan, Lu and Song (2016)]. Our forward selection algorithm achieves
better model selection results when compared to SAS in all considered simulation
scenarios. More details can be found in Section 9 of the Supplementary Appendix
[Shi, Song and Lu (2019)].

8.2. Fully nonparametric implementation. The proposed test statistic in Sec-
tion 3 requires the propensity score function to be correctly specified. In Section 4,
we introduce a doubly robust test statistic and posit some parametric models for the
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propensity score and conditional mean functions. In the Supplementary Appendix
[Shi, Song and Lu (2019)], we consider a fully nonparametric procedure based on
some nonparametric estimators of the propensity score and the conditional mean
functions.

We further conduct some simulation studies to examine the empirical perfor-
mance of the nonparametric testing procedure and compare it with the doubly
robust test describe in Section 4. We briefly summarize the results here: (i) The
nonparametric test statistic is more powerful than the doubly robust test statistic.
(ii) When the sample size is small, the empirical type I error rates of the nonpara-
metric test statistic are slightly larger than the nominal level in some cases. More
details can be found in Section 11 of the Supplementary Appendix [Shi, Song and
Lu (2019)].

Although it is interesting to investigate the theoretical properties of such a non-
parametric test statistic, it is beyond the scope of the current paper and is omitted
here.

8.3. Extensions to Lp-type and supremum-type functionals. As commented in
Remark 2.5, the test statistic for no CQTE can be constructed based on

SW,B =
∫
xW ∈�W

φ
{
τW

0 (xW )
}{

dW
opt(xW ) − dB

opt(xW,B)
}
ω0(xW )dxW .

In the current paper, we set φ(·) to be the identity function. More generally, we
can take φ(·) to be any monotonically increasing function with φ(0) = 0. In Sec-
tion 12 in the Supplementary Appendix [Shi, Song and Lu (2019)], we consider
the following class of functions φ(z) = sgn(z)|z|q , and derive the corresponding
test statistic T̃ W,B

n,q for any q ≥ 1.
We show in Theorem 12.1 that T̃ W,B

n,q have asymptotically correct size under H0
and provide its asymptotic power function in Theorem 12.2 under Ha . For different
q , the asymptotic power function increases as∫

xW ∈F0

2(q−3)/2q�(q/2)√
πσ̃q

{
μW(xW)

}(q−1)/2
δW

0 (xW )f W(xW )dxW

increases, where

σ̃ 2
q =

∫
xW ∈F0

t∈[−1,1]pW

μW(xW )

× cov
(
max

{√
1 − ρ2(t)Z1 + ρ(t)Z2,0

}q
,max{Z2,0}q)dxW dt,

and �(z) = ∫∞
0 xz−1 exp(−x)dx.

Besides, when q > 1, the assumptions on ηn and the moments of Y conditional
on X and A are slightly different compared to those in (A3) and (A8). More details
can be found in Section 12 of the Supplementary Appendix [Shi, Song and Lu
(2019)].
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In addition, in Section 13 of the supplementary article [Shi, Song and Lu
(2019)], we develop a supremum-type test based on studentized kernel estimators
of the contrast function, with many different bandwidth values. We show that the

test is valid and has nontrivial power against
√

logn/

√
nh

p
max-local alternatives,

where hmax denotes the maximum of the kernel bandwidth parameter.
Therefore, when compared to the supremum-type test, the Lp-type test is more

powerful since it allows for nontrivial testing against n−1/2-local alternatives.
However, the Lp-type test only uses one bandwidth value for the kernel estimates.
As a result, it might be sensitive to the choice of the bandwidth parameter.

8.4. Other issues. For simplicity, we only consider a single decision stage and
focus on binary treatments. It will be useful in practice to extend CQTE and its
associated testing procedure to multistages with multiple treatment options. More-
over, our test statistic relies on the kernel-based estimators of the contrast func-
tion. It is well known that the kernel-based estimations will behave poorly when
the dimension of the covariates is large. How to adapt our test statistics to handle
high-dimensional covariates remains challenging.

Our testing procedure requires the specification of the tuning parameters hW ,
hB and ηn (see Section 5). In general, one can set hW = cWn−κW , hB = cBn−κB

and ηn = n−κ0 for some cW , cB, κW , κB, κ0 > 0. In practice, we recommend to set
cW = 2

√
3, cB = 6, κW = 1/7, κB = 2/7 if pW ≥ 2, pB = 1 and cW = cB = 2

√
3,

κW = κB = 1/7 if pW,pB ≥ 2 and κ0 = 2/7. We have tried various values of
tuning parameters in our simulation studies and find such a choice works well in
all scenarios. In Section 10 of the supplementary article [Shi, Song and Lu (2019)],
we examine the performance of our test under other choices of tuning parameters.
The simulation results are very similar to those in Section 6.

Acknowledgments. We thank the Editor, the Associate Editor and two refer-
ees for providing helpful suggestions that significantly improved the quality of the
paper.

SUPPLEMENTARY MATERIAL

Supplement to “On testing conditional qualitative treatment effects” (DOI:
10.1214/18-AOS1750SUPP; .pdf). Supplementary material includes additional
simulation results and some proofs of asymptotic results.
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