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CONVERGENCE COMPLEXITY ANALYSIS OF ALBERT AND
CHIB’S ALGORITHM FOR BAYESIAN PROBIT REGRESSION
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The use of MCMC algorithms in high dimensional Bayesian problems
has become routine. This has spurred so-called convergence complexity anal-
ysis, the goal of which is to ascertain how the convergence rate of a Monte
Carlo Markov chain scales with sample size, n, and/or number of covari-
ates, p. This article provides a thorough convergence complexity analysis of
Albert and Chib’s [J. Amer. Statist. Assoc. 88 (1993) 669–679] data augmen-
tation algorithm for the Bayesian probit regression model. The main tools
used in this analysis are drift and minorization conditions. The usual pitfalls
associated with this type of analysis are avoided by utilizing centered drift
functions, which are minimized in high posterior probability regions, and by
using a new technique to suppress high-dimensionality in the construction of
minorization conditions. The main result is that the geometric convergence
rate of the underlying Markov chain is bounded below 1 both as n → ∞
(with p fixed), and as p → ∞ (with n fixed). Furthermore, the first com-
putable bounds on the total variation distance to stationarity are byproducts
of the asymptotic analysis.

1. Introduction. Markov chain Monte Carlo (MCMC) has become an indis-
pensable tool in Bayesian analysis, and it is now well known that the ability to
utilize an MCMC algorithm in a principled manner (e.g., with regard to choosing
the Monte Carlo sample size) requires an understanding of the convergence prop-
erties of the underlying Markov chain [see, e.g., Flegal, Haran and Jones (2008)].
Taking this a step further, in modern high dimensional problems it is also im-
portant to understand how the convergence properties of the chain change as the
sample size, n, and/or number of covariates, p, increases. Denote the data (i.e., re-
sponses and covariates) by D. If we imagine n or p (or both) increasing, this leads
to consideration of a sequence of data sets, {Dj }, and corresponding sequences
of posterior distributions and Monte Carlo Markov chains. A natural question to
ask is “What can we say about the convergence properties of the Markov chains
as j → ∞?” There is currently a great deal of interest in questions like this in
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the MCMC community [see, e.g., Durmus and Moulines (2016), Johndrow et al.
(2016), Rajaratnam and Sparks (2015), Yang and Rosenthal (2017), Yang, Wain-
wright and Jordan (2016)]. Rajaratnam and Sparks (2015) call this the study of
convergence complexity, and we will follow their lead.

Asymptotic analysis of the convergence properties of a sequence of Markov
chains associated with increasingly large finite state spaces has a long history in
the computer science literature, dating back at least to Sinclair and Jerrum (1989).
While the techniques developed in computer science have been successfully ap-
plied to a few problems in statistics [see, e.g., Yang, Wainwright and Jordan
(2016)], they are generally not applicable in situations where the state space is
high-dimensional and uncountable, which is the norm for Monte Carlo Markov
chains in Bayesian statistics. In this paper, we employ methods based on drift and
minorization conditions to analyze the convergence complexity of one such Monte
Carlo Markov chain.

Let π : X → [0,∞) denote an intractable probability density function (pdf),
where X ⊂ R

d , and let �(·) denote the corresponding probability measure, that is,
for measurable C, �(C) = ∫

C π(x)dx. Let K(x, ·), x ∈ X, denote the Markov tran-
sition function (Mtf) of an irreducible, aperiodic, Harris recurrent Markov chain
with invariant probability measure �. [See Meyn and Tweedie (2009) for defini-
tions.] The chain is called geometrically ergodic if there exist M : X → [0,∞) and
ρ ∈ [0,1) such that

(1)
∥∥Km(x, ·) − �(·)∥∥TV ≤ M(x)ρm for all x ∈ X and all m ∈ N,

where ‖·‖TV denotes total variation norm, and Km(x, ·) is the m-step Mtf. The
important practical benefits of basing one’s MCMC algorithm on a geometrically
ergodic Markov chain have been well documented by, for example, Roberts and
Rosenthal (1998), Jones and Hobert (2001), Flegal, Haran and Jones (2008) and
Łatuszyński, Miasojedow and Niemiro (2013). Define the geometric convergence
rate of the chain as

ρ∗ = inf
{
ρ ∈ [0,1] : (1) holds for some M : X → [0,∞)

}
.

Clearly, the chain is geometrically ergodic if and only if ρ∗ < 1.
Establishing the convergence rate of a practically relevant Monte Carlo Markov

chain can be quite challenging. A key tool for this purpose has been the technique
developed by Rosenthal (1995), which allows for the construction of an upper
bound on ρ∗ using drift and minorization conditions [see also Baxendale (2005),
Hairer and Mattingly (2011), Meyn and Tweedie (1994), Roberts and Tweedie
(1999)]. This method, which is described in detail in Section 2, has been used
to establish the geometric ergodicity of myriad Monte Carlo Markov chains [see,
e.g., Fort et al. (2003), Marchev and Hobert (2004), Roy and Hobert (2010), Vats
(2017)]. Since methods based on drift and minorization (hereafter, d&m) are still
the most (and arguably the only) reliable tools for bounding ρ∗ for practically rel-
evant Monte Carlo Markov chains on uncountable state spaces, it is important to
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know whether they remain useful in the context of convergence complexity analy-
sis. Unfortunately, it turns out that most of the upper bounds on ρ∗ that have been
produced using techniques based on d&m converge to 1 (often exponentially fast),
becoming trivial, as n and/or p grow [see, e.g., Rajaratnam and Sparks (2015)].
One example of this is Roy and Hobert’s (2007) analysis of Albert and Chib’s
(1993) data augmentation algorithm for the Bayesian probit model, which estab-
lishes geometric ergodicity of the underlying Markov chain, but also leads to an
upper bound on ρ∗ that converges to 1 as n → ∞.

There are, of course, many possible explanations for why the d&m-based upper
bounds on ρ∗ converge to 1. It could be that the associated Monte Carlo Markov
chains actually have poor asymptotic properties, or, if not, perhaps d&m-based
methods are simply not up to the more delicate task of convergence complexity
analysis. We show that, in the case of Albert and Chib’s (1993) chain, neither of
these potential explanations is correct. Indeed, our careful d&m analysis of Albert
and Chib’s (1993) chain (hereafter, A&C’s chain) leads to upper bounds on ρ∗ that
are bounded away from 1 in both the large n, small p case, and the large p, small
n case. We believe that this is the first successful convergence complexity analysis
of a practically relevant Monte Carlo Markov chain using d&m. The key ideas we
use to establish our results include “centering” the drift function to a region in the
state space that the chain visits frequently, and suppressing high-dimensionality
in the construction of minorization conditions. In particular, for two-block Gibbs
chains, we introduce a technique for constructing asymptotically stable minoriza-
tion conditions that is based on the well-known fact that the two marginal Markov
chains and the joint chain all share the same geometric convergence rate.

Recently, Yang and Rosenthal (2017) used a modified version of Rosenthal’s
(1995) technique to successfully analyze the convergence complexity of a Gibbs
sampler for a simple Bayesian linear mixed model. We note that, because one of
the variance components in their model is assumed known, it is actually straight-
forward to sample directly from the posterior distribution using a univariate rejec-
tion sampler [Jones (2001), Section 3.9]. Thus, while Yang and Rosenthal’s (2017)
results are impressive, and their methods may suggest a way forward, the Monte
Carlo Markov chain that they analyzed is not practically relevant.

Before describing our results for A&C’s chain, we introduce an alternative defi-
nition of geometric ergodicity. Let L2(�) denote the set of signed measures μ that
are absolutely continuous with respect to �, and satisfy

∫
X(dμ/d�)2 d� < ∞. As

in Roberts and Rosenthal (1997), we say that the Markov chain with Mtf K is L2-
geometrically ergodic if there exists ρ < 1 such that for each probability measure
ν ∈ L2(�), there exists a constant Mν < ∞ such that∥∥νKm(·) − �(·)∥∥TV ≤ Mνρ

m for all m ∈ N,

where νKm(·) = ∫
X Km(x, ·)ν(dx). We define the L2-geometric convergence rate,

ρ∗∗, to be the infimum of all ρ ∈ [0,1] that satisfy this definition. Not surprisingly,
ρ∗ and ρ∗∗ are closely related [see, e.g., Roberts and Tweedie (2001)].
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We now provide an overview of our results for Albert and Chib’s (1993) Markov
chain, starting with a brief description of their algorithm. Let {Xi}ni=1 be a set of
p-dimensional covariate vectors, and let {Yi}ni=1 be a corresponding sequence of
binary random variables such that Yi |Xi,B ∼ Bernoulli(�(XT

i B)) independently,
where B is a p×1 vector of unknown regression coefficients, and � is the standard
normal distribution function. Consider a Bayesian analysis using a prior density for
B given by

(2) ω(β) ∝ exp
{
−1

2
(β − v)T Q(β − v)

}
,

where v ∈ R
p , and Q ∈R

p×p is either a positive definite matrix (proper Gaussian
prior), or a zero matrix (flat improper prior). Assume for now that the posterior
is proper. (Propriety under a flat prior is discussed in Section 3.) As usual, let X

denote the n × p matrix whose ith row is XT
i , and let Y = (Y1 Y2 · · · Yn)

T denote
the vector of responses. The intractable posterior density is given by

(3) πB|Y,X(β|Y,X) ∝
{

n∏
i=1

(
�

(
XT

i β
))Yi

(
1 − �

(
XT

i β
))1−Yi

}
ω(β).

The standard method for exploring (3) is the classical data augmentation algorithm
of Albert and Chib (1993), which simulates a Harris ergodic (irreducible, aperiodic
and Harris recurrent) Markov chain, {Bm}∞m=0, that has invariant density πB|Y,X . In
order to state the algorithm, we require a bit of notation. For θ ∈ R, σ > 0, and i ∈
{0,1}, let TN(θ, σ 2; i) denote the N(θ, σ 2) distribution truncated to (0,∞) if i =
1, and to (−∞,0) if i = 0. The matrix � := XT X + Q is necessarily nonsingular
because of propriety. If the current state of A&C’s chain is Bm = β , then the new
state, Bm+1, is drawn using the two steps in Algorithm 1.

The convergence rate of A&C’s chain has been studied by several authors. Roy
and Hobert (2007) proved that when Q = 0, the chain is always geometrically
ergodic. (Again, we are assuming posterior propriety.) A similar result for proper
normal priors was established by Chakraborty and Khare (2017). Both results were
established using a technique that does not require construction of a minorization
condition [see Meyn and Tweedie (2009), Lemma 15.2.8], and consequently, does
not yield an explicit upper bound on ρ∗. Thus, neither paper addresses the issue of
convergence complexity. However, in Section 5 we prove that Roy and Hobert’s

Algorithm 1 Iteration m + 1 of the data augmentation algorithm

1. Draw {Zi}ni=1 independently with Zi ∼ TN(XT
i β,1;Yi), and let Z =

(Z1 Z2 · · · Zn)
T .

2. Draw

Bm+1 ∼ Np

(
�−1(

XT Z + Qv
)
,�−1)

.
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(2007) drift function cannot be used to construct an upper bound on ρ∗ that is
bounded away from 1 as n → ∞. Johndrow et al. (2016) recently established a
convergence complexity result for the intercept only version of the model (p = 1
and Xi = 1 for i = 1,2, . . . , n) with a proper (univariate) normal prior, under the
assumption that all the responses are successes (Yi = 1 for i = 1,2, . . . , n). Their
results, which are based on Cheeger’s inequality, imply that ρ∗∗ → 1 as n → ∞,
indicating that the algorithm is inefficient for large samples.

The results established herein provide a much more complete picture of the
convergence behavior of A&C’s chain. Three different regimes are considered:
(i) fixed n and p, (ii) large n, small p and (iii) large p, small n. Our analysis is
based on two different drift functions that are both appropriately centered (at the
posterior mode). One of the two drift functions is designed for regime (ii), and
the other for regime (iii). We establish d&m conditions for both drift functions,
and these are used in conjunction with Rosenthal’s (1995) result to construct two
explicit upper bounds on ρ∗. They are also used to construct two computable upper
bounds on the total variation distance to stationarity [as in (1)], which improves
upon the analyses of Roy and Hobert (2007) and Chakraborty and Khare (2017).

The goal in regime (ii) is to study the asymptotic behavior of the geometric
convergence rate as n → ∞, when p is fixed. To this end, we consider a sequence
of data sets, Dn := {(Xi, Yi)}ni=1. So, each time n increases by 1, we are are given
a new p × 1 covariate vector, Xi , and a corresponding binary response, Yi . To
facilitate the asymptotic study, we assume that the (Xi, Yi) pairs are generated
according to a random mechanism that is governed by very weak assumptions
(that are consistent with the probit regression model). We show that there exists a
constant ρ < 1 such that, almost surely, lim supn→∞ ρ∗(Dn) ≤ ρ. Apart from this
general result, we are also able to show that, in the intercept only model considered
by Johndrow et al. (2016), the A&C chain is actually quite well behaved as long
as the proportion of successes is bounded away from 0 and 1. To be specific, let
{Yi}∞i=1 denote a fixed sequence of binary responses, and let p̂n = n−1 ∑n

i=1 Yi .
Our results imply that, as long as 0 < lim infn→∞ p̂n ≤ lim supn→∞ p̂n < 1, there
exists ρ < 1 such that both ρ∗(Dn) and ρ∗∗(Dn) are eventually bounded above by
ρ, and there is a closed form expression for ρ.

In regime (iii), n is fixed and p → ∞. There are several important differences
between regimes (ii) and (iii). First, in regime (ii), since p is fixed, only a single
prior distribution need be considered. In contrast, when p → ∞, we must specify
a sequence of priors, {(Qp, vp)}∞p=1, where vp is a p × 1 vector, and Qp is a
p ×p positive definite matrix. (When p > n, a positive definite Qp is required for
posterior propriety.) Also, in regime (iii), there is a fixed vector of responses (of
length n), and it is somewhat unnatural to consider the new columns of X to be
random. Let {Dp} := {(vp,Qp,Xn×p,Y )} denote a fixed sequence of priors and
data sets, where Y is a fixed n×1 vector of responses, and Xn×p is an n×p matrix.
We show that, under a natural regularity condition on Xn×pQ−1

p XT
n×p , there exists

a ρ < 1 such that ρ∗(Dp) ≤ ρ for all p.
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The remainder of the paper is laid out as follows. In Section 2, we formally
introduce the concept of stable d&m conditions, and describe techniques that we
employ for constructing such. The centered drift functions that are used in our
analysis of A&C’s chain are described in Section 3. In Section 4, we provide results
for A&C’s chain in the case where n and p are both fixed. Two sets of d&m
conditions are established, and corresponding exact total variation bounds on the
distance to stationarity are provided. The heart of the paper is Section 5 where it
is shown that the geometric convergence rate of A&C’s chain is bounded away
from 1 as n → ∞ for fixed p, and as p → ∞ for fixed n. A good deal of technical
material is relegated to the Supplementary Material [Qin and Hobert (2018)].

2. Asymptotically stable drift and minorization. Let X be a set equipped
with a countably generated σ -algebra B(X). Suppose that K : X×B(X) → [0,1] is
an Mtf with invariant probability measure �(·), so that �(C) = ∫

X K(x,C)�(dx)

for all C ∈ B(X). Assume that the corresponding Markov chain is Harris ergodic.
Recall the definitions of geometric ergodicity and geometric convergence rate from
Section 1. The following result has proven extremely useful for establishing ge-
ometric ergodicity in the context of Monte Carlo Markov chains used to study
complex Bayesian posterior distributions.

THEOREM 1 [Rosenthal (1995)]. Suppose that K(x, ·) satisfies the drift con-
dition

(4)
∫

X
V

(
x′)K(

x,dx′) ≤ λV (x) + L, x ∈ X

for some V : X → [0,∞), λ < 1 and L < ∞. Suppose that it also satisfies the
minorization condition

(5) K(x, ·) ≥ εQ(·) whenever V (x) < d

for some ε > 0, probability measure Q(·) on X, and d > 2L/(1 − λ). Then as-
suming the chain is started according to the probability measure ν(·), for any
0 < r < 1, we have∥∥νKm(·) − �(·)∥∥TV ≤ (1 − ε)rm

+
(

1 + L

1 − λ
+

∫
X
V (x)ν(dx)

)

×
[(

1 + 2L + λd

1 + d

)1−r{
1 + 2(λd + L)

}r
]m

.

The function V is called the drift (or Lyapunov) function, and {x ∈ X : V (x) <

d} is called the small set associated with V . We will refer to ε as the minorization
number. Manipulation of the total variation bound in Theorem 1 leads to

∥∥νKm(·) − �(·)∥∥TV ≤
(

2 + L

1 − λ
+

∫
X
V (x)ν(dx)

)
ρ̂m,
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where

(6) ρ̂ := (1 − ε)r ∨
(

1 + 2L + λd

1 + d

)1−r{
1 + 2(λd + L)

}r
,

and r ∈ (0,1) is arbitrary. Then ρ̂ is an upper bound on the geometric convergence
rate ρ∗. It is easy to verify that when λ < 1, L < ∞ and ε > 0, there exists r ∈
(0,1) such that ρ̂ < 1.

The bound ρ̂ has a reputation for being too conservative. This is partly due to
the fact that there are toy examples where the true ρ∗ is known, and ρ̂ is quite
far off [see, e.g., Rosenthal (1995)]. There also exist myriad analyses of practical
Monte Carlo Markov chains where the d&m conditions (4) and (5) have been
established (proving that the underlying chain is indeed geometrically ergodic),
but the total variation bound of Theorem 1 is useless because ρ̂ is so near unity. Of
course, the quality of the bound ρ̂ depends on the choice of drift function, and the
sharpness of (4) and (5). Our results for the A&C chain suggest that poorly chosen
drift functions and/or loose inequalities in the d&m conditions are to blame for (at
least) some of the unsuccessful applications of Theorem 1. We now introduce the
concept of asymptotically stable d&m.

Consider a sequence of geometrically ergodic Markov chains, {�(j)}∞j=1, with

corresponding geometric convergence rates given by ρ
(j)∗ . (In practice, j is usually

the sample size, n, or number of covariates, p.) We are interested in the asymp-
totic behavior of the rate sequence. For example, we might want to know if it is
bounded away from 1. Suppose that for each chain, �(j), we have d&m condi-
tions defined through λ(j), L(j), and ε(j), and thus an upper bound on the conver-
gence rate, ρ̂(j) ∈ [ρ(j)∗ ,1). The following simple result (whose proof is left to the
reader) provides conditions under which these upper bounds are unstable, that is,
lim supj→∞ ρ̂(j) = 1.

PROPOSITION 2. Suppose that there exists a subsequence of {�(j)}∞j=0, call it

{�(jl)}∞l=0, that satisfies one or more of the following three conditions: (i) λ(jl) →
1, (ii) L(jl) → ∞, while ε(jl) is bounded away from 1 and λ(jl) is bounded away
from 0, (iii) ε(jl) → 0. Then the corresponding subsequence of the upper bounds,
ρ̂(jl), converges to 1.

If one (or more) of the conditions in Proposition 2 holds for some subsequence
of {�(j)}∞j=0, then we say that the d&m conditions are (asymptotically) unsta-

ble (in j ). On the other hand, if (i′) λ(j) is bounded away from 1, (ii′) L(j) is
bounded above and (iii′) ε(j) is bounded away from 0, then the sequence ρ̂(j) can
be bounded away from 1, thus giving an asymptotically nontrivial upper bound on
ρ

(j)∗ . We say that the drift conditions are stable if (i′) and (ii′) hold, and likewise,
that the minorization conditions are stable if (iii′) holds.
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Before moving on to describe the techniques that we use to develop stable d&m
for the A&C chain, we note that elementary linear transformations of the drift
function can affect the quality of ρ̂, and even stability. It is easy to show that,
while multiplying the drift function by a scale factor will affect L, it will not affect
the quality of the minorization inequality (5) in any nontrivial way. Subtracting
a positive number from V (while preserving its nonnegativity) will, on the other
hand, always lead to an improved bound ρ̂. Needless to say, we will only deal with
instability that cannot be prevented by these trivial transformations. In particular,
throughout the article, we consider only drift functions whose infimums are 0, that
is, we make the elementary transformation V (x) �→ V (x) − infx′∈X V (x′).

To obtain stable d&m for the A&C chain, we will exploit the notion of “cen-
tered” drift functions. Theorem 1 is based on a coupling construction, in which two
copies of the Markov chain coalesce with probability ε each time they (both) enter
the small set. The total variation distance between the two chains at time m is then
bounded above by 1 minus the probability of coalescence in m iterations. Thus,
loosely speaking, we want the chains to visit the small set as often as possible,
without making the small set too large. [Larger small sets usually result in smaller
ε, as indicated by (5).] So, it makes sense to use a drift function that is centered
in the sense that it takes small values in the part of the state space where the chain
spends the bulk of its time. Of course, if the chain is well suited to the problem,
then it should linger in the high posterior probability regions of X.

The idea of centering is not new, and has been employed without emphasis by
many authors. In this article, we illustrate the importance of centering to stable
d&m, especially when n is large. Indeed, in Section 5 it is shown that, for A&C’s
chain, in the large n, small p regime, the uncentered drift function employed by
Roy and Hobert (2007) cannot possibly lead to stable d&m, while a centered ver-
sion of the same drift function does. The intuition behind these results is as follows.
By (4), d > 2L/(1 − λ) ≥ 2�V , where �V := ∫

X V (x)�(dx). Hence, �V con-
trols the volume of the small set. In Bayesian models, as n increases, the posterior
is likely to concentrate around a single point in the state space. Consider a se-
quence of posterior distributions and drift functions, {(�(n),V (n))}, such that �(n)

concentrates around a point x0. Heuristically, we expect �(n)V (n) to be close to
V (n)(x0) for large n. Therefore, when n is large, if the drift functions are mini-
mized at or near x0, then we will have a better chance of controlling the volumes
of the small sets, and bounding the minorization numbers away from 0.

Another technique we use to achieve stable d&m for the A&C chain is a di-
mension reduction trick that is designed specifically for two-block Gibbs samplers
and data augmentation algorithms. We begin by describing a common difficulty
encountered in the convergence analysis of such algorithms. Suppose that X ⊂R

p ,
and K(x, ·) is associated with a Markov transition density (Mtd) of the form

(7) k
(
x, x′) =

∫
Rn

s
(
x′|z)h(z|x)dz,
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where n is the sample size, z = (z1 z2 · · · zn)
T ∈ R

n is a vector of latent data, and
s : X ×R

n → [0,∞) and h :Rn × X → [0,∞) are conditional densities associated
with some joint density on X ×R

n. Assume that h(z|x) can be factored as follows:

h(z|x) =
n∏

i=1

hi(zi |x),

where, for each i, hi : R × X → [0,∞) is a univariate (conditional) pdf. Usually,
s(·|z) and hi(·|x) are tractable, but there is no closed form for k(x, x′). However,
there is a well-known argument for establishing a minorization condition in this
case. Suppose that whenever V (x) < d ,

hi(t |x) > εiνi(t), i = 1,2, . . . , n

where εi > 0 and νi :R→ [0,∞) is a pdf. Then, whenever V (x) < d , we have

(8) k
(
x, x′) >

(
n∏

i=1

εi

)∫
Rn

s
(
x′|z) n∏

i=1

νi(zi)dz.

Since
∫
Rn s(x′|z)∏n

i=1 νi(zi)dz is a pdf on X, (8) gives a minorization condition
with ε = ∏n

i=1 εi . Unfortunately, this quantity will almost always converge to 0 as
n → ∞. Consequently, if our sequence of Markov chains are indexed by n, then
we have unstable minorization. This problem is well known [see, e.g., Rajaratnam
and Sparks (2015)].

The instability of the minorization described above is due to the fact that the
dimension of z is growing with n. However, it is often the case that s(x|z) depends
on z only through f (z), where f : Rn → Y is a function into some fixed space Y,
say Y ⊂ R

q , where q does not depend on n. Then integrating along f (z) = γ in
(7) yields

(9) k
(
x, x′) =

∫
Y
s̃
(
x′|γ )

h̃(γ |x)dγ,

where s̃(x′|f (z)) = s(x′|z), and∫
C

h̃(γ |x)dγ =
∫
{z:f (z)∈C}

h(z|x)dz

for all x ∈ X and any measurable C ⊂ Y. Note that this new representation of
k(x, x′) no longer contains n explicitly, and the high dimensionality problem for
z is resolved. However, we now have a new problem. Namely, h̃(γ |x) is likely to
be quite intractable. Fortunately, the following result provides a way to circumvent
this difficulty.

PROPOSITION 3. Assume that we have a drift condition for k(x, x′), that is,

(10)
∫

X
V

(
x′)k(

x, x′) dx′ ≤ λV (x) + L,
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where V : X → [0,∞), λ ∈ [0,1), and L is finite. Assume further that k(x, x ′) can
be written in the form (9). Define a Mtd k̃ : Y × Y → [0,∞) as follows:

k̃
(
γ, γ ′) =

∫
X
h̃
(
γ ′|x)

s̃(x|γ )dx.

If Ṽ (γ ) = ∫
X V (x)s̃(x|γ )dx + c is finite and nonnegative for all γ ∈ Y, where c is

some constant, then the following drift condition holds for k̃,

(11)
∫

Y
Ṽ

(
γ ′)k̃(

γ, γ ′) dγ ′ ≤ λṼ (γ ) + L̃,

where L̃ = L + c(1 − λ).

PROOF. Our assumptions imply that∫
X
V

(
x′) ∫

Y
s̃
(
x′|γ ′)h̃(

γ ′|x)
dγ ′ dx′ ≤ λV (x) + L.

Multiplying both sides of the inequality by s̃(x|γ ), and integrating out x yields the
result. �

REMARK 4. Note that if we set c ≤ 0 (while preserving the nonnegativity of
Ṽ ) in the above proposition, then (11) is stable whenever the original drift (10) is
stable.

As we now explain, Proposition 3 has important implications. Indeed, it is well
known that the Markov chains driven by k and k̃ (which we call the “flipped”
version of k) share the same geometric convergence rate [see, e.g., Diaconis, Khare
and Saloff-Coste (2008), Roberts and Rosenthal (2001)]. Thus, we can analyze k

indirectly through the flipped chain. Now, as mentioned above, s̃(x|f (z)) = s(x|z)
is often tractable. Suppose that there exists some ε̃ > 0 and pdf ν̃ : X → [0,∞)

such that s̃(x|γ ) ≥ ε̃ν̃(x) when Ṽ (γ ) < d̃ , where d̃ > 2L̃/(1 − λ). Then we have
the following minorization condition for the flipped chain:

k̃
(
γ, γ ′) ≥ ε̃

∫
X
h̃
(
γ ′|x)

ν̃(x)dx whenever Ṽ (γ ) < d̃,

which is stable as long as ε̃ is bounded away from 0 as n → ∞. This, along with
(11), allows us to construct potentially stable bounds on ρ

(n)∗ for the flipped chains,
and thus for the original chains on X as well. This is exactly how we analyze A&C’s
chain in the large n, small p regime. It turns out that the flipped chain argument
can also be used to establish d&m conditions that are stable in p, and we will
exploit this in our analysis of A&C’s chain in the large p, small n regime.

We end this section with a result that allows us to use information about a flipped
chain to get total variation bounds for the original. The following result follows
immediately from Proposition 27, which is stated and proven in Section 7.1 of the
Supplementary Material [Qin and Hobert (2018)].
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COROLLARY 5. Suppose we have d&m conditions for a flipped chain (which
is driven by k̃). Let λ, L̃ and ε̃ denote the drift and minorization parameters, and let
ρ̂f denote the corresponding bound on the geometric convergence rate obtained
through Theorem 1. Then, if the original chain is started at x ∈ X, we have, for
m ≥ 1,

∥∥Km(x, ·) − �(·)∥∥TV ≤
(

2 + L̃

1 − λ
+

∫
Y
Ṽ (γ )h̃(γ |x)dγ

)
ρ̂m−1

f .

In the next section, we begin our analysis of the A&C chain.

3. Albert and Chib’s Markov chain and the centered drift functions.

3.1. Basics. Let {Xi}ni=1, {Yi}ni=1, and B ∈ R
p be defined as in the Introduc-

tion, so that Yi |Xi,B ∼ Bernoulli(�(XT
i B)) independently. Suppose that, having

observed the data, D := {(Xi, Yi)}ni=1, we wish to perform a Bayesian analysis us-
ing a prior density for B given by (2). Recall that X and Y denote, respectively, the
design matrix and vector of responses. The posterior density (3) is proper precisely
when ∫

Rp

n∏
i=1

(
�

(
XT

i β
))Yi

(
1 − �

(
XT

i β
))1−Yiω(β)dβ < ∞.

When Q is positive definite, ω(β) is a proper normal density, and the posterior
is automatically proper. If Q = 0, then propriety is not guaranteed. Define X∗ as
the n × p matrix whose ith row is −XT

i if Yi = 1, and XT
i if Yi = 0. Chen and

Shao (2001) proved that when the prior is flat, that is, Q = 0, the following two
conditions are necessary and sufficient for posterior propriety:

(C1) X has full column rank;
(C2) There exists a vector a = (a1 a2 · · · an)

T ∈ R
n such that ai > 0 for all i,

and XT∗ a = 0.

Until further notice, we will assume that the posterior is proper.
A&C’s algorithm to draw from the intractable posterior is based on the follow-

ing latent data model. Given X and B , let {(Yi,Zi)}ni=1 be a sequence of indepen-
dent random vectors such that

Yi |Zi,X,B is a point mass at 1R+(Zi),

Zi |X,B ∼ N
(
XT

i B,1
)
.

Clearly, under this hierarchical structure, Yi |Xi,B ∼ Bernoulli(�(XT
i B)), which

is consistent with the original model. Thus, if we let πB,Z|Y,X(β, z|Y,X) denote
the corresponding (augmented) posterior density [where Z = (Z1 Z2 · · · Zn)

T ],
then it is clear that∫

Rn
πB,Z|Y,X(β, z|Y,X)dz = πB|Y,X(β|Y,X),
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which is the target posterior from (3). Albert and Chib’s algorithm is simply a
two-variable Gibbs sampler based on πB,Z|Y,X(β,Z|Y,X). Indeed, the Mtd, kAC :
R

p ×R
p →R+, is defined as

kAC
(
β,β ′) := kAC

(
β,β ′;Y,X

)
=

∫
Rn

πB|Z,Y,X

(
β ′|z,Y,X

)
πZ|B,Y,X(z|β,Y,X)dz.

As pointed out by Albert and Chib (1993),

B|Z,Y,X ∼ Np

(
�−1(

XT Z + Qv
)
,�−1)

,

where, again, � = XT X+Q. Moreover, the density πZ|B,Y,X(z|β,Y,X) is a prod-
uct of n univariate densities, where

Zi |B,Y,X ∼ TN
(
XT

i B,1;Yi

)
.

Obviously, these are the conditional densities that appear in the algorithm de-
scribed in the Introduction.

3.2. A centered drift function. Roy and Hobert (2007) and Chakraborty and
Khare (2017) both used the drift function V0(β) = ‖�1/2β‖2. While this drift
function is certainly amenable to analysis, it is not “centered” in any practical
sense. Indeed, V0(β) takes on its minimum when β = 0, but, in general, there is no
reason to expect A&C’s chain to make frequent visits to the vicinity of the origin.
This heuristic is borne out by the result in Section 5 showing that V0 cannot lead to
stable d&m in the large n, small p regime. As an alternative to V0(β), we consider
drift functions of the form

(12) V (β) = ∥∥M(
β − β∗)∥∥2

,

where M = M(X,Y ) is a matrix with p columns, and β∗ = β∗(X,Y ) is a point in
R

p that is “attractive” to A&C’s chain. A candidate for β∗ would be the posterior
mode B̂ , which uniquely exists because of the well-known fact that the posterior
density πB|Y,X is log-concave. Setting β∗ = B̂ is, of course, not the only viable
centering scheme, and any β∗ in a close vicinity of B̂ would be equally effec-
tive. However, the following proposition shows that the posterior mode has a nice
feature that will be exploited in the sequel.

PROPOSITION 6. The posterior mode, B̂ , satisfies the following equation:

(13)
∫
Rp

βkAC(B̂, β)dβ = B̂.

PROOF. B̂ is the solution to the following equation:

d

dβ

(
logω(β) + logπY |B,X(Y |β,X)

) = 0.
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This implies that

(14)
n∑

i=1

(
φ(XT

i B̂)

�(XT
i B̂)

1{1}(Yi) − φ(XT
i B̂)

1 − �(XT
i B̂)

1{0}(Yi)

)
Xi − (QB̂ − Qv) = 0,

where φ(·) is the pdf of the standard normal distribution. On the other hand, it
follows from (27) in Section 6.2 of the Supplementary Material [Qin and Hobert
(2018)] that

E(Zi |B = B̂, Y,X) = XT
i B̂ + φ(XT

i B̂)

�(XT
i B̂)

1{1}(Yi) − φ(XT
i B̂)

1 − �(XT
i B̂)

1{0}(Yi).

This, along with (14), implies that

Qv +
n∑

i=1

XiE(Zi |B = B̂, Y,X) = �B̂.

But this is equivalent to∫
Rp

∫
Rn

β ′πB|Z,Y,X

(
β ′|z,Y,X

)
πZ|B,Y,X(z|B̂, Y,X)dz dβ ′ = B̂,

which is precisely (13). �

REMARK 7. We should emphasize that (13), while interesting, is not essential
to the proofs of our main results. It merely simplifies the process of establishing a
drift condition.

We will consider two different versions of (12), both centered at B̂ . The first,
which will be used in the large n-small p regime, is simply a centered version of
V0 given by

V1(β) = ∥∥�1/2(β − B̂)
∥∥2

.

In the large p-small n regime, we assume that Q is positive definite (which is
necessary for posterior propriety) and that X is full row rank, and we use the
following drift function:

V2(β) = ∥∥(
X�−1XT )−1/2

X(β − B̂)
∥∥2

.

In the next section, we establish two sets of d&m conditions for the A&C chain
based on V1 and V2.
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4. Results for the Albert and Chib chain Part I: Fixed n and p.

4.1. Drift inequalities for V1 and V2. Define g :R→R as

g(θ) = θφ(θ)

�(θ)
+

(
φ(θ)

�(θ)

)2
.

For any β ∈ R
p , let D(β) denote an n × n diagonal matrix with ith diagonal ele-

ment

1 − g
(
XT

i β
)
1{1}(Yi) − g

(−XT
i β

)
1{0}(Yi).

LEMMA 8. If V (β) = ‖M(β − B̂)‖2, β ∈ R
p , where M is any matrix with p

columns, then∫
Rp

V
(
β ′)kAC

(
β,β ′) dβ ′

≤ sup
t∈(0,1)

∥∥M�−1XT D
(
B̂ + t (β − B̂)

)
X(β − B̂)

∥∥2 + 2 tr
(
M�−1MT )

.

PROOF. Note that∫
Rp

V
(
β ′)πB|Z,Y,X

(
β ′|z,Y,X

)
dβ ′

= ∥∥M�−1(
XT z + Qv

) − MB̂
∥∥2 + tr

(
M�−1MT )

.

Moreover, ∫
Rn

∥∥M�−1(
XT z + Qv

) − MB̂
∥∥2

πZ|B,Y,X(z|β,Y,X)dz

= ∥∥M�−1{
XT

E(Z|B = β,Y,X) + Qv
} − MB̂

∥∥2(15)

+ tr
{
M�−1XT var(Z|B = β,Y,X)X�−1MT }

.

For two symmetric matrices of the same size, M1 and M2, we write M1 ≤ M2
if M2 − M1 is nonnegative definite. By Lemma 26 in Section 6.2 of the Supple-
mentary Material [Qin and Hobert (2018)], var(Z|B = β,Y,X) ≤ In. It follows
that

(16)
M�−1XT var(Z|B = β,Y,X)X�−1MT

≤ M�−1XT X�−1MT ≤ M�−1MT .

Therefore,

(17)

∫
Rp

V
(
β ′)kAC

(
β,β ′) dβ ′

=
∫
Rp

V
(
β ′) ∫

Rn
πB|Z,Y,X

(
β ′|z,Y,X

)
πZ|B,Y,X(z|β,Y,X)dz dβ ′

≤ ∥∥M�−1{
XT

E(Z|B = β,Y,X) + Qv
} − MB̂

∥∥2 + 2 tr
(
M�−1MT )

.
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Now, for α ∈ R
p , define

μ(α) = M�−1{
XT

E(Z|B = B̂ + α,Y,X) + Qv
} − MB̂.

By Proposition 6, we have

μ(0) = M

∫
Rp

βkAC(B̂, β)dβ − MB̂ = 0.

By the mean value theorem for vector-valued functions [see, e.g., Rudin (1976),
Theorem 5.19], for any α ∈ R

p ,

∥∥μ(α)
∥∥2 ≤

(
sup

t∈(0,1)

∥∥∥∥∂μ(tα)

∂t

∥∥∥∥
)2

.

Now, by results on truncated normal distributions in Section 6.2 of the Supplemen-
tary Material [Qin and Hobert (2018)],

∂μ(tα)

∂t
= M�−1

n∑
i=1

Xi

∂

∂t
E(Zi |B = B̂ + tα, Y,X)

= M�−1
n∑

i=1

Xi

∂

∂t

{
XT

i (B̂ + tα)
}

× d

dθ

(
θ + 1{1}(Yi)

φ(θ)

�(θ)
− 1{0}(Yi)

φ(θ)

1 − �(θ)

)∣∣∣∣
θ=XT

i (B̂+tα)

= M�−1XT D(B̂ + tα)Xα.

Hence,

(18)
∥∥μ(α)

∥∥2 ≤ sup
t∈(0,1)

∥∥M�−1XT D(B̂ + tα)Xα
∥∥2

.

The result then follows from (17) and (18) by taking α = β − B̂ . �

We now use Lemma 8 to establish explicit drift inequalities for V1 and V2. We
begin with V1.

PROPOSITION 9. For all β ∈R
p , we have∫

Rp
V1

(
β ′)kAC

(
β,β ′) dβ ′

≤
(

sup
t∈(0,1)

sup
α �=0

‖�−1/2XT D(B̂ + tα)Xα‖2

‖�1/2α‖2

)
V1(β) + 2p.
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PROOF. Taking M = �1/2 in Lemma 8 gives the result. �

In Section 7.2 of the Supplementary Material [Qin and Hobert (2018)], we prove
that

sup
t∈(0,1)

sup
α �=0

‖�−1/2XT D(B̂ + tα)Xα‖2

‖�1/2α‖2 < 1.

For a symmetric matrix M , let λmin(M) and λmax(M) denote the smallest and
largest eigenvalues of M , respectively. Here is the analogue of Proposition 9 for
V2.

PROPOSITION 10. Assume that X has full row rank. Then for all β ∈ R
p , we

have ∫
Rp

V2
(
β ′)kAC

(
β,β ′) dβ ′ ≤ {

λ2
max

(
X�−1XT )}

V2(β) + 2n.

PROOF. Taking M = (X�−1XT )−1/2X in Lemma 8 and applying Lemma 26
yields∫

Rp
V2

(
β ′)kAC

(
β,β ′) dβ ′

≤ sup
t∈(0,1)

∥∥(
X�−1XT )1/2

D
(
β + t (β − B̂)

)
X(β − B̂)

∥∥2 + 2n

≤ sup
t∈(0,1)

λ2
max

{(
X�−1XT )1/2

D
(
B̂ + t (β − B̂)

)(
X�−1XT )1/2}

V2(β) + 2n

≤ {
λ2

max
(
X�−1XT )}

V2(β) + 2n. �

4.2. Drift and minorization for the Albert and Chib chain based on V1. In this
subsection, we exploit the flipped chain idea described in Section 2. In particular,
V1 is used to establish d&m conditions for a flipped chain that has the same ge-
ometric convergence rate as A&C’s chain. Later, in Section 5, we will use these
results to prove asymptotic stability as n → ∞.

Note that πB|Z,Y,X(β|Z,Y,X) depends on the n-dimensional vector Z only
through XT Z, which is a one-to-one function of the following p-dimensional vec-
tor:

� := �1/2{
�−1(

XT Z + Qv
) − B̂

}
.

Hence, we can represent the Mtd of the A&C chain as follows:

kAC
(
β,β ′) =

∫
Rp

πB|�,Y,X

(
β ′|γ,Y,X

)
π�|B,Y,X(γ |β,Y,X)dγ.

Recalling the discussion in Section 2, this maneuver seems to represent progress
since we have replaced n with p. However, it is difficult to establish a minorization
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condition using this version of kAC(β,β ′) because π�|B,Y,X(γ |β,Y,X) lacks a
closed form. On the other hand, this chain has the same geometric convergence
rate as the flipped chain defined by the following Mtd:

k̃AC
(
γ, γ ′) := k̃AC

(
γ, γ ′;Y,X

)
=

∫
Rp

π�|B,Y,X

(
γ ′|β,Y,X

)
πB|�,Y,X(β|γ,Y,X)dβ.

Constructing a minorization condition for this Mtd is much less daunting since

B|�,Y,X ∼ N
(
�−1/2� + B̂,�−1)

.

Here is the main result of this subsection.

PROPOSITION 11. Let Ṽ1(γ ) = ‖γ ‖2. The Mtd k̃AC satisfies the drift condi-
tion ∫

Rp
Ṽ1

(
γ ′)k̃AC

(
γ, γ ′) dγ ′ ≤ λṼ1(γ ) + L,

where L = p(1 + λ), and

λ = sup
t∈(0,1)

sup
α �=0

‖�−1/2XT D(B̂ + tα)Xα‖2

‖�1/2α‖2 .

Moreover, for d > 2L/(1 − λ), k̃AC satisfies

k̃AC
(
γ, γ ′) ≥ εq

(
γ ′),

where q :Rp → [0,∞) is a pdf, and ε = 2−p/2e−d .

PROOF. We begin with the drift. It’s easy to verify that

Ṽ1(γ ) =
∫
Rp

V1(β)πB|�,Y,X(β|γ,Y,X)dβ − p.

We now use the techniques described at the end of Section 2 to convert the drift
inequality in Proposition 9 into a drift inequality for the flipped chain. We know
that ∫

Rp
V1

(
β ′)kAC

(
β,β ′) dβ ′ ≤ λV1(β) + 2p.

Then taking c = −p in Proposition 3 yields∫
Rp

Ṽ1
(
γ ′)k̃AC

(
γ, γ ′) dγ ′ ≤ λṼ1(γ ) + p(1 + λ).

As explained in Section 2, to establish the minorization condition, it suffices to
show that there exists a pdf ν(β) := ν(β|Y,X) such that

(19) πB|�,Y,X(β|γ,Y,X) ≥ εν(β)
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whenever Ṽ1(γ ) ≤ d . Recall that

B|�,Y,X ∼ N
(
�−1/2� + B̂,�−1)

.

Define

ν1(β) = inf
γ :Ṽ1(γ )≤d

πB|�,Y,X(β|γ,Y,X)

= inf
γ :Ṽ1(γ )≤d

|�|1/2

(2π)p/2 exp
{
−1

2

∥∥�1/2(
β − B̂ − �−1/2γ

)∥∥2
}
.

Then ν(β) = ν1(β)/
∫
Rp ν1(β

′)dβ ′ is a pdf, and whenever Ṽ1(γ ) ≤ d ,

πB|�,Y,X(β|γ,Y,X) ≥
(∫

Rp
ν1

(
β ′) dβ ′

)
ν(β).

This is (19) with

ε =
∫
Rp

ν1(β)dβ = (2π)−p/2
∫
Rp

inf
γ :‖γ ‖2≤d

exp
(
−1

2
‖β − γ ‖2

)
dβ.

Finally, since ‖β − γ ‖2 ≤ 2(‖β‖2 + ‖γ ‖2),

ε ≥ (2π)−p/2
∫
Rp

inf
γ :‖γ ‖2≤d

exp
(−‖β‖2 − ‖γ ‖2)

dβ = 2−p/2e−d . �

Mainly, Proposition 11 will be used to establish asymptotic stability results for
A&C’s chain in the large n, small p regime. Indeed, since the Markov chains de-
fined by kAC and k̃AC have the same geometric convergence rate, ρ̂ calculated using
(6) with λ, L, and ε from Proposition 11 is an upper bound on ρ∗ = ρ∗(X,Y ) for
the A&C chain. On the other hand, Proposition 11 can also be used in conjunction
with Theorem 1 and Corollary 5 to get computable bounds on the total variation
distance to stationarity for the A&C chain for fixed n and p. In order to state the
result, we require a bit of notation. For an integer m ≥ 1, let k

(m)
AC :Rp ×R

p →R+
be the chain’s m-step Mtd. For β ∈ R

p , let ϕ(β) = E(Z|B = β,Y,X) ∈ R
n. Then

results in Section 6.2 of the Supplementary Material [Qin and Hobert (2018)] show
that the ith element of ϕ(β) is given by

XT
i β + φ(XT

i β)

�(XT
i β)

1{1}(Yi) − φ(XT
i β)

1 − �(XT
i β)

1{0}(Yi).

PROPOSITION 12. If ρ̂ is calculated using (6) with λ, L, and ε from Proposi-
tion 11, then for m ≥ 1 and β ∈ R

p ,∫
Rp

∣∣k(m)
AC

(
β,β ′;Y,X

) − πB|Y,X

(
β ′|Y,X

)∣∣ dβ ′ ≤ H(β)ρ̂m−1,

where

H(β) = 2 + L

1 − λ
+ tr

(
X�−1XT ) + ∥∥�1/2{

�−1(
XT ϕ(β) + Qv

) − B̂
}∥∥2

.
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PROOF. We simply apply Corollary 5. Putting M = �1/2 in (15), we have∫
Rp

Ṽ1(γ )π�|B,Y,X(γ |β,Y,X)dγ

=
∫
Rn

∥∥�1/2{
�−1(

XT z + Qv
) − B̂

}∥∥2
πZ|B,Y,X(z|β,Y,X)dz

= ∥∥�1/2{
�−1(

XT ϕ(β) + Qv
) − B̂

}∥∥2

+ tr
{
�−1/2XT var(Z|B = β,Y,X)X�−1/2}

.

A calculation similar to (16) shows that

tr
{
�−1/2XT var(Z|B = β,Y,X)X�−1/2} ≤ tr

(
X�−1XT )

,

and the result follows. �

Calculating λ in Proposition 11 calls for maximization of a function on (0,1)×
R

p , which may be difficult. Here, we provide an upper bound on λ that is easy
to compute when p is small. Let {Sj }2p

j=1 denote the open orthants of R
p . For

instance, if p = 2, then S1, S2, S3 and S4 are the open quadrants of the real plane.
Define W(Sj ) = W(Sj ;X,Y ) as follows:

W(Sj ) = ∑
Xi∈Sj

Xi1{0}(Yi)X
T
i + ∑

Xi∈−Sj

Xi1{1}(Yi)X
T
i .

The following result is proven in Section 7.3 of the Supplementary Material [Qin
and Hobert (2018)].

PROPOSITION 13. An upper bound on λ1/2 in Proposition 11 is

λmax
(
�−1/2XT X�−1/2) − 2

π
min

1≤j≤2p
λmin

(
�−1/2W(Sj )�

−1/2)
.

If this upper bound is strictly less than 1 (which is always true when Q is pos-
itive definite), then one can replace λ with the square of this bound in Proposi-
tion 11.

4.3. Drift and minorization for the Albert and Chib chain based on V2. The
A&C chain has the same convergence rate as the flipped chain defined by the
following Mtd:

ǩAC
(
z, z′) := ǩAC

(
z, z′;Y,X

)
=

∫
Rp

πZ|B,Y,X

(
z′|β,Y,X

)
πB|Z,Y,X(β|z,Y,X)dβ.
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In this subsection, we use V2 to establish d&m conditions for this chain, and these
will be used later to prove asymptotic stability as p → ∞. First, for z ∈ R

n, define

w(z) = (
X�−1XT )−1/2

X
{
�−1(

XT z + Qv
) − B̂

}
.

Now define V̌2 :Rn → [0,∞) as V̌2(z) = ‖w(z)‖2.

PROPOSITION 14. The Mtd ǩAC satisfies the drift condition

(20)
∫
Rn

V̌2
(
z′)ǩAC

(
z, z′) dz′ ≤ λV̌2(z) + L,

where λ = λ2
max{X�−1XT } and L = n(1+λ). Moreover, for d > 2L/(1−λ), ǩAC

satisfies

ǩAC
(
z, z′) ≥ εq(z),

where q :Rn → [0,∞) is a pdf, and ε = 2−n/2e−d .

PROOF. It is easy to verify that

V̌2(z) =
∫
Rp

V2
(
β ′)πB|Z,Y,X

(
β ′|z,Y,X

)
dβ ′ − n.

We know from Proposition 10 that∫
Rp

V2
(
β ′){∫

Rn
πB|Z,Y,X

(
β ′|z′, Y,X

)
πZ|B,Y,X

(
z′|β,Y,X

)
dz′

}
dβ ′

≤ λV2(β) + 2n.

As in Proposition 3, multiplying both sides of the above inequality by the condi-
tional density πB|Z,Y,X(β|z,Y,X) and integrating with respect to β yields (20).

We now move on the the minorization condition. Note that πZ|B,Y,X(z|B,Y,X)

depends on B only through XB , which is a one-to-one function of the n-
dimensional vector

A := (
X�−1XT )−1/2

X(B − B̂).

Hence, ǩAC(z, z′) can be reexpressed as

ǩAC
(
z, z′) =

∫
Rn

πZ|A,Y,X

(
z′|α,Y,X

)
πA|Z,Y,X(α|z,Y,X)dα,

where A|Z,Y,X ∼ N(w(Z), In). To get the minorization condition, we will con-
struct a pdf ν(α) := ν(α|Y,X) such that

πA|Z,Y,X(α|z,Y,X) ≥ εν(α)

whenever V̌2(z) ≤ d . Define

ν1(α) = inf
z:V̌2(z)≤d

πA|Z,Y,X(α|z,Y,X) = inf
w:w2≤d

(2π)−n/2 exp
(
−1

2
‖α − w‖2

)
.
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Then ν(α) = ν1(α)/
∫
Rn ν1(α

′)dα′ is a pdf, and

ε = (2π)−n/2
∫
Rn

inf
w:w2≤d

exp
(
−1

2
‖α − w‖2

)
dα

≥ (2π)−n/2e−d
∫
Rn

exp
(−‖α‖2)

dα = 2−n/2e−d . �

The next result is the analogue of Proposition 12. The proof is omitted as it is
essentially the same as the proof of the said proposition.

PROPOSITION 15. Assume that X has full row rank. Let λ, L, and ε be as in
Proposition 14. If ρ̂ is calculated using (6), then for m ≥ 1 and β ∈ R

p ,∫
Rp

∣∣k(m)
AC

(
β,β ′;Y,X

) − πB|Y,X

(
β ′|Y,X

)∣∣ dβ ′ ≤ H(β)ρ̂m−1,

where

H(β) = 2 + L

1 − λ
+ tr

(
X�−1XT )

+ ∥∥(
X�−1XT )−1/2

X
{
�−1(

XT ϕ(β) + Qv
) − B̂

}∥∥2
.

Let ρ∗ = ρ∗(X,Y ) denote the geometric convergence rate of the A&C chain. In
the next section, which is the heart of the paper, we develop general convergence
complexity results showing that, under weak regularity conditions, ρ∗ is bounded
away from 1 both as n → ∞ (for fixed p), and as p → ∞ (for fixed n).

5. Results for the Albert and Chib chain Part II: Asymptotics.

5.1. Large n, small p. In this section, we consider the case where p is fixed
and n grows. In particular, we are interested in what happens to the geometric
convergence rate of the A&C chain in this setting. Recall that the prior on B is

ω(β) ∝ exp
{−(β − v)T Q(β − v)/2

}
.

Since p is fixed, so is the prior. Hence, the hyperparameters v and Q will re-
main fixed throughout this subsection. In Section 3.1, we introduced the data set
D := {(Xi, Yi)}ni=1. We now let n vary, and consider a sequence of data sets,
Dn := {(Xi, Yi)}ni=1, n ≥ 1. So, each time n increases by 1, we are are given a
new p × 1 covariate vector and a corresponding binary response. In order to study
the asymptotics, we assume that the (Xi, Yi) pairs are generated according to a ran-
dom mechanism that is consistent with the probit regression model. In particular,
we make the following assumptions:

(A1) The pairs {(Xi, Yi)}∞i=1 are i.i.d. random vectors such that

Yi |Xi ∼ Bernoulli
(
G(Xi)

)
,

where G : Rp → (0,1) is a measurable function;
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(A2) EX1X
T
1 is finite and positive definite;

(A3) for j ∈ {1,2, . . . ,2p} and β �= 0,

P
((

1Sj
(X1) + 1Sj

(−X1)
)
XT

1 β �= 0
)
> 0.

Assumption (A1) contains the probit model as a special case. Thus, our results
concerning the asymptotic behavior of A&C’s Markov chain do not require strict
adherence of the data to the probit regression model. The main reason for assuming
(A2) is to guarantee that, almost surely, X will eventually have full column rank.
This is a necessary condition for posterior propriety when Q = 0. While (A3) is
rather technical, it is clearly satisfied if X1 follows a distribution admitting a pdf
(with respect to Lebesgue measure) that is positive over some open ball {γ ∈ R

p :
‖γ ‖2 ≤ c}, where c > 0. It is shown in Section 7.4 of the Supplementary Material
[Qin and Hobert (2018)] that (A3) also allows for an intercept. That is, even if
the first component of X1 is 1 (constant), then as long as the remaining p − 1
components satisfy the density condition described above, (A3) is still satisfied.

It was assumed throughout Section 3 that the posterior distribution is proper. Of
course, for a fixed data set, this is check-able. All we need in the large n, small p

regime is a guarantee that the posterior is proper for all large n, almost surely. The
following result is proven in Section 7.5 of the Supplementary Material [Qin and
Hobert (2018)].

PROPOSITION 16. Under Assumptions (A1)–(A3), almost surely, the poste-
rior distribution is proper for all sufficiently large n.

For fixed n, Dn = {(Xi, Yi)}ni=1 represents the first n (random) covariate vectors
and responses. Let ρ∗(Dn) denote the (random) geometric convergence rate of the
corresponding A&C chain. Here is one of our main results.

THEOREM 17. If (A1)–(A3) hold, then there exists a constant ρ < 1 such
that, almost surely,

lim sup
n→∞

ρ∗(Dn) ≤ ρ.

PROOF. Let ρ̂(Dn) denote the upper bound on ρ∗(Dn) that is based on λ, L,
and ε from Proposition 11. We prove the result by showing that, almost surely,
lim supn→∞ ρ̂(Dn) ≤ ρ < 1. Note that L = p(1 + λ) and ε = 2−p/2e−d [where
d > 2L/(1 − λ)]. Thus, control over λ provides control over L and ε as well.
In particular, to prove the result it suffices to show that there exists a constant
c ∈ [0,1), such that, almost surely,

(21) lim sup
n→∞

λ(Dn) ≤ c.
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Noting that �−1/2XT X�−1/2 ≤ Ip , we have, by Proposition 13,

(22)

λ1/2 ≤ 1 − 2

π
min

1≤j≤2p
λmin

{(
�

n

)−1/2(
1

n

∑
Xi∈Sj

Xi1{0}(Yi)X
T
i

+ 1

n

∑
Xi∈−Sj

Xi1{1}(Yi)X
T
i

)(
�

n

)−1/2}
.

Fix j ∈ {1,2, . . . ,2p}. By (A1) and the strong law, almost surely,

lim
n→∞

(
�

n

)−1/2(
1

n

∑
Xi∈Sj

Xi1{0}(Yi)X
T
i + 1

n

∑
Xi∈−Sj

Xi1{1}(Yi)X
T
i

)(
�

n

)−1/2

= (
EX1X

T
1

)−1/2{
EX1X

T
1 1Sj

(X1)
(
1 − G(X1)

)
+EX1X

T
1 1Sj

(−X1)G(X1)
}(
EX1X

T
1

)−1/2
.

It follows from (26) and Lemma 25 of the Supplementary Material [Qin and Hobert
(2018)] that, almost surely,

(23)

lim
n→∞λmin

{(
�

n

)−1/2(
1

n

∑
Xi∈Sj

Xi1{0}(Yi)X
T
i

+ 1

n

∑
Xi∈−Sj

Xi1{1}(Yi)X
T
i

)(
�

n

)−1/2}

≥ λ−1
max

(
EX1X

T
1

)
λmin

{
EX1X

T
1 1Sj

(X1)
(
1 − G(X1)

)
+EX1X

T
1 1Sj

(−X1)G(X1)
}
.

By (A2), λ−1
max(EX1X

T
1 ) > 0. Hence by (22) and (23), to show that (21) holds,

almost surely, it is enough to show that

λmin
{
EX1X

T
1 1Sj

(X1)
(
1 − G(X1)

) +EX1X
T
1 1Sj

(−X1)G(X1)
}
> 0.

By (A3), for any β �= 0,

(24) P
(
1Sj

(X1)X
T
1 β �= 0 or 1Sj

(−X1)X
T
1 β �= 0

)
> 0.

Since 0 < G(X1) < 1, (24) implies that, for any β �= 0,

P
(
βT {

X1X
T
1 1Sj

(X1)
(
1 − G(X1)

)}
β + βT {

X1X
T
1 1Sj

(−X1)G(X1)
}
β > 0

)
> 0.

As a result, for any β ∈ R
p such that ‖β‖2 = 1,

(25) βT {
EX1X

T
1 1Sj

(X1)
(
1 − G(X1)

) +EX1X
T
1 1Sj

(−X1)G(X1)
}
β > 0.
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It follows from (A2) that the left-hand side of (25) is continuous in β . Hence, we
can take infimum on both sides of the inequality with respect to β and retain the
greater-than symbol, which yields

λmin
{
EX1X

T
1 1Sj

(X1)
(
1 − G(X1)

) +EX1X
T
1 1Sj

(−X1)G(X1)
}
> 0,

and the result follows. �

REMARK 18. From the proof of Theorem 17 it’s easy to see that the asymp-
totic bound ρ in the said theorem is unaffected by the precision matrix Q. This is
because the effect of the prior is overshadowed by the increasing amount of data
as n → ∞.

Theorem 17 shows that, under weak regularity conditions on the random mech-
anism that generates Dn = {(Xi, Yi)}ni=1, A&C’s MCMC algorithm scales well
with n. Johndrow et al. (2016) studied the convergence rate of the A&C chain as
n → ∞ for a particular fixed sequence of covariate vectors and responses. Suppose
that p = 1, Q > 0 is a constant, v = 0, and X1 = X2 = · · · = Xn = 1. They showed
that if all the Bernoulli trials result in success, that is, Y1 = Y2 = · · · = Yn = 1, then
limn→∞ ρ∗∗(Dn) = 1. That is, in terms of L2-geometric convergence rate, the con-
vergence is arbitrarily slow for sufficiently large n. As we now explain, our results
can be used to show that, in Johndrow et al.’s (2016) setting, almost any other se-
quence of responses leads to well behaved convergence rates. Let {Yi}∞i=1 denote a
fixed sequence of binary responses, and define p̂n = n−1 ∑n

i=1 Yi . It follows from
Propositions 11 and 13 that the A&C chain satisfies d&m conditions with

λ =
[

n

n + Q
− 2

π

n

n + Q

{
p̂n ∧ (1 − p̂n)

}]2
≤

[
1 − 2

π

{
p̂n ∧ (1 − p̂n)

}]2
,

L = 1 + λ, and ε = 2−1/2e−d for d > 2L/(1 − λ). For any fixed n, suppose that
there exist c1, c2 ∈ (0,1) such that c1 ≤ p̂n ≤ c2, then [using (6)] one can find
ρ < 1, which depends only on c1 ∧ (1 − c2), such that ρ∗(Dn) ≤ ρ. It now follows
that the geometric convergence rates, ρ∗(Dn), are eventually bounded away from
1 so long as 0 < lim infn→∞ p̂n ≤ lim supn→∞ p̂n < 1. (It is important to note that
Dn is not random here.) Moreover, an analogous result holds for ρ∗∗(Dn). Here is
a formal statement.

COROLLARY 19. For the intercept-only model described above, if

0 < lim inf
n→∞ p̂n ≤ lim sup

n→∞
p̂n < 1,

then for any

δ ∈
(

0,1 −
[
1 − 2

π

{
lim inf
n→∞ p̂n ∧

(
1 − lim sup

n→∞
p̂n

)}]2)
,
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lim supn→∞ ρ∗(Dn) ≤ ρ < 1, and lim supn→∞ ρ∗∗(Dn) ≤ ρ < 1, where ρ equals
ρ̂ in (6) with

λ =
[
1 − 2

π

{
lim inf
n→∞ p̂n ∧

(
1 − lim sup

n→∞
p̂n

)}]2
+ δ,

L = 1 + λ, and ε = 2−1/2e−d , where d > 2L/(1 − λ).

PROOF. It suffices to prove the result for ρ∗∗, since the argument for ρ∗ has
already been provided. Fix an arbitrary δ. By Proposition 12, when n is sufficiently
large, for any β ∈ R and m ≥ 1,∫

R

∣∣k(m)
AC

(
β,β ′;Y,X

) − πB|Y,X

(
β ′|Y,X

)∣∣ dβ ′ ≤ H(β)ρm−1,

where H(β) is given in the said proposition. Let � be the probability measure
corresponding to the posterior density, πB|Y,X(β|Y,X). Then for any probability
measure ν ∈ L2(�) and m ≥ 1,∫

R

∣∣∣∣
∫
R

k
(m)
AC

(
β,β ′;Y,X

)
ν(dβ) − πB|Y,X

(
β ′|Y,X

)∣∣∣∣ dβ ′

≤
∫
R

∫
R

∣∣k(m)
AC

(
β,β ′;Y,X

) − πB|Y,X

(
β ′|Y,X

)∣∣ dβ ′ν(dβ)

≤
(∫

R

H(β)ν(dβ)

)
ρm−1.

One can verify that H(β) can be bounded by polynomial functions. As a result, by
Theorem 2.3 in Chen and Shao (2001),

∫
R

H 2(β)πB|Y,X(β|Y,X)dβ < ∞. Then
by Cauchy–Schwarz,

∫
R

H(β)ν(dβ) < ∞. Therefore, ρ∗∗(Dn) ≤ ρ for all suffi-
ciently large n. �

As mentioned previously, the convergence rate analyses of Roy and Hobert
(2007) and Chakraborty and Khare (2017), which establish the geometric ergodic-
ity of the A&C chain for fixed n and p, are based on the uncentered drift function,
V0. We end this subsection with a result showing that, while this uncentered drift
may be adequate for nonasymptotic results, it simply does not match the dynamics
of the A&C chain well enough to get a result like Theorem 17. The following result
is proven is Section 7.6 of the Supplementary Material [Qin and Hobert (2018)].

PROPOSITION 20. Assume that (A1) and (A2) hold, and that there exists β∗ ∈
R

p such that β∗ �= 0 and G(γ ) = G∗(γ T β∗) for all γ ∈R
p , where G∗ :R → (0,1)

is a strictly increasing function such that G∗(0) = 1/2. Then, almost surely, any
drift and minorization based on V0(β) = ‖�1/2β‖2 is necessarily unstable in n.

REMARK 21. In the above proposition, if G∗(θ) = �(θ) for all θ ∈ R, then
the probit model is correctly specified, and the true parameter is β∗.
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5.2. Large p, small n. In this subsection, we consider the case where n is
fixed and p grows. In contrast with the strategy of the previous subsection, here
we consider a deterministic sequence of data sets. Also, since p is changing,
we need to specify a sequence of prior parameters {(Qp, vp)}∞p=1. Let Dp =
(vp,Qp,Xn×p,Y ), p ≥ 1, denote a sequence of priors and data sets, where Y

is a fixed n × 1 vector of responses, Xn×p is an n × p matrix, vp is a p × 1 vec-
tor, and Qp is a p × p positive definite matrix. (Note that positive definite-ness of
Qp is required for posterior propriety.) So, each time p increases by 1, we are are
given a new n × 1 column vector to add to the current design matrix. For the rest
of this subsection, we omit the p and n × p subscripts. We also assume that the
following conditions hold for all p:

(B1) X has full row rank;
(B2) There exists a finite, positive constant c, such that λmax(XQ−1XT ) < c.

Assumption (B1) is equivalent to X�−1XT being nonsingular. Assumption
(B2) regulates the eigenvalues of the prior variance, Q−1. More specifically, it
requires that the prior drives B toward v. For illustration, if X = (1 1 · · · 1),
then (B2) holds if for some τ > 0, Q−1 = diag(τ/p, τ/p, . . . , τ/p), or Q−1 =
diag(τ, τ/22, . . . , τ/p2). Assumption (B2) is satisfied by the generalized g-priors
used by, for example, Gupta and Ibrahim (2007), Yang and Song (2009), and
Baragatti and Pommeret (2012). It can be shown [see, e.g., Chakraborty and Khare
(2017)] that (B2) is equivalent to the existence of a constant c < 1 such that

λmax
(
X�−1XT )

< c.

While (B2) may seem like a strong assumption, we will provide some evidence
later in this subsection suggesting that it may actually be necessary. Here is our
main result concerning the large p, small n case.

THEOREM 22. If (B1) and (B2) hold, then there exists a constant ρ < 1 such
that ρ∗(Dp) ≤ ρ for all p.

PROOF. The proof is based on Proposition 14. Indeed, as in the proof of The-
orem 17, it suffices to show that there exists a c < 1 such that

λ(Dp) = λ2
max

(
X�−1XT )

< c

for all p. But this follows immediately from (B2). �

An important feature of Theorem 22 is that it holds for any sequence of prior
means, {vp}∞p=1. This is achieved by adopting a drift function that is centered
around a point that adapts to the prior mean. Although Gaussian priors with non-
vanishing means are not commonly used in practice, it is interesting to see that
Albert and Chib’s algorithm can be robust under location shifts in the prior, even
when the dimension of the state space is high.
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The following result, which is proven in Section 7.7 of the Supplementary Ma-
terial [Qin and Hobert (2018)], shows that (B2) is not an unreasonable assumption.

PROPOSITION 23. If n = 1 and v = 0, then as X�−1XT tends to 1,

1 − ρ∗∗ = O
(
1 − X�−1XT )

.

In particular, ρ∗∗ is not bounded away from 1 if (B2) does not hold.
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SUPPLEMENTARY MATERIAL

Supplementary material for “Convergence complexity analysis of Albert
and Chib’s algorithm for Bayesian probit regression” (DOI: 10.1214/18-
AOS1749SUPP; .pdf). Section 6 provides some basic results on Hermitian ma-
trices and truncated normal distributions. Section 7 gives some technical results,
and the proofs for Corollary 5, Proposition 13, Proposition 16, Proposition 20 and
Proposition 23.

REFERENCES

ALBERT, J. H. and CHIB, S. (1993). Bayesian analysis of binary and polychotomous response data.
J. Amer. Statist. Assoc. 88 669–679. MR1224394

BARAGATTI, M. and POMMERET, D. (2012). A study of variable selection using g-prior distribution
with ridge parameter. Comput. Statist. Data Anal. 56 1920–1934. MR2892387

BAXENDALE, P. H. (2005). Renewal theory and computable convergence rates for geometrically
ergodic Markov chains. Ann. Appl. Probab. 15 700–738. MR2114987

CHAKRABORTY, S. and KHARE, K. (2017). Convergence properties of Gibbs samplers for Bayesian
probit regression with proper priors. Electron. J. Stat. 11 177–210. MR3604022

CHEN, M.-H. and SHAO, Q.-M. (2001). Propriety of posterior distribution for dichotomous quantal
response models. Proc. Amer. Math. Soc. 129 293–302. MR1694452

DIACONIS, P., KHARE, K. and SALOFF-COSTE, L. (2008). Gibbs sampling, exponential families
and orthogonal polynomials (with discussion). Statist. Sci. 23 151–178. MR2446500

DURMUS, A. and MOULINES, E. (2016). High-dimensional Bayesian inference via the unadjusted
Langevin algorithm. arXiv:1605.01559.

FLEGAL, J. M., HARAN, M. and JONES, G. L. (2008). Markov chain Monte Carlo: Can we trust
the third significant figure? Statist. Sci. 23 250–260. MR2516823

FORT, G., MOULINES, E., ROBERTS, G. O. and ROSENTHAL, J. S. (2003). On the geometric
ergodicity of hybrid samplers. J. Appl. Probab. 40 123–146. MR1953771

GUPTA, M. and IBRAHIM, J. G. (2007). Variable selection in regression mixture modeling for the
discovery of gene regulatory networks. J. Amer. Statist. Assoc. 102 867–880. MR2411650

HAIRER, M. and MATTINGLY, J. C. (2011). Yet another look at Harris’ ergodic theorem for Markov
chains. In Seminar on Stochastic Analysis, Random Fields and Applications VI. Progress in Prob-
ability 63 109–117. Birkhäuser/Springer Basel AG, Basel. MR2857021

JOHNDROW, J. E., SMITH, A., PILLAI, N. and DUNSON, D. B. (2018). MCMC for imbalanced
categorical data. J. Amer. Statist. Assoc. To appear. Available at arXiv:1605.05798.

https://doi.org/10.1214/18-AOS1749SUPP
http://www.ams.org/mathscinet-getitem?mr=1224394
http://www.ams.org/mathscinet-getitem?mr=2892387
http://www.ams.org/mathscinet-getitem?mr=2114987
http://www.ams.org/mathscinet-getitem?mr=3604022
http://www.ams.org/mathscinet-getitem?mr=1694452
http://www.ams.org/mathscinet-getitem?mr=2446500
http://arxiv.org/abs/arXiv:1605.01559
http://www.ams.org/mathscinet-getitem?mr=2516823
http://www.ams.org/mathscinet-getitem?mr=1953771
http://www.ams.org/mathscinet-getitem?mr=2411650
http://www.ams.org/mathscinet-getitem?mr=2857021
http://arxiv.org/abs/arXiv:1605.05798
https://doi.org/10.1214/18-AOS1749SUPP


CONVERGENCE COMPLEXITY ANALYSIS 2347

JONES, G. L. (2001). Convergence Rates and Monte Carlo Standard Errors for Markov Chain Monte
Carlo Algorithms. ProQuest LLC, Ann Arbor, MI. Ph.D. thesis, Univ. Florida. MR2702583

JONES, G. L. and HOBERT, J. P. (2001). Honest exploration of intractable probability distributions
via Markov chain Monte Carlo. Statist. Sci. 16 312–334. MR1888447
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