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We study convergence and convergence rates for resampling schemes.
Our first main result is a general consistency theorem based on the notion
of negative association, which is applied to establish the almost sure weak
convergence of measures output from Kitagawa’s [J. Comput. Graph. Statist.
5 (1996) 1–25] stratified resampling method. Carpenter, Ckiffird and Fearn-
head’s [IEE Proc. Radar Sonar Navig. 146 (1999) 2–7] systematic resam-
pling method is similar in structure but can fail to converge depending on the
order of the input samples. We introduce a new resampling algorithm based
on a stochastic rounding technique of [In 42nd IEEE Symposium on Foun-
dations of Computer Science (Las Vegas, NV, 2001) (2001) 588–597 IEEE
Computer Soc.], which shares some attractive properties of systematic re-
sampling, but which exhibits negative association and, therefore, converges
irrespective of the order of the input samples. We confirm a conjecture made
by [J. Comput. Graph. Statist. 5 (1996) 1–25] that ordering input samples by
their states in R yields a faster rate of convergence; we establish that when
particles are ordered using the Hilbert curve in Rd , the variance of the resam-
pling error is O(N−(1+1/d)) under mild conditions, where N is the number
of particles. We use these results to establish asymptotic properties of par-
ticle algorithms based on resampling schemes that differ from multinomial
resampling.

1. Introduction. A resampling scheme is a randomized procedure that takes
as input random samples Xn with nonnegative weights Wn ≥ 0, n = 1, . . . ,N ,
such that

∑N
n=1 Wn = 1, and returns as an output resampled variables XAn

, where
An is a random index in {1, . . . ,N}, such that, in some sense,

(1)
1

N

N∑
n=1

δ
(
XAn) ≈

N∑
n=1

Wnδ
(
Xn)

.

Here, δ(x) denotes the Dirac measure at point x (this slightly unconventional no-
tation will make our equations more readable).

Resampling appears in various statistical procedures. The present work is pri-
marily motivated by resampling within Sequential Monte Carlo methods, also
known as particle filters [Doucet, de Freitas and Gordon (2001)]. Particle filters
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approximate recursively a sequence of probability distributions by propagating
N “particles” through weighting, resampling and mutation steps. The resampling
steps play a crucial role in stabilizing the Monte Carlo error over time [Gordon,
Salmond and Smith (1993)]. In particular, without resampling, the largest nor-
malised weight of the particle sample converges quickly to one as the number of
iterations increases [Del Moral and Doucet (2003)]. This means that most of the
computational effort is wasted on particles that contribute little to the end results.

Resampling also appears in survey sampling under the name of “unequal prob-
ability sampling” [Tillé (2006)], but in a context slightly different from the one
we consider in this paper. In survey sampling, only M < N “units” are selected
and the object of interest after the (re)sampling operation, the Horvitz–Thompson
empirical process [HTEP, see, e.g., Bertail, Chautru and Clémenc.on (2017)] is an-
other un-normalized weighted sum of Dirac measures. Adapting the statement and
the assumptions of our first main result, Theorem 1 in Section 2, in order to study
the asymptotic behaviour of the HTEP is possible but beyond the scope of this pa-
per. Yet another statistical procedure where resampling appears is the the weighted
bootstrap [Barbe and Bertail (1995)].

There are various existing resampling methods. Multinomial resampling is per-
haps the simplest technique, where given the weights, the indices An are generated
conditionally independently from the finite distribution that assigns probability
Wn to outcome n. In particle filtering it is common practice to replace multino-
mial resampling with techniques which are computationally faster and empirically
more accurate. However, these advanced resampling techniques are generally not
straightforward to analyse because they induce complicated dependence between
output samples, and various aspects of their behaviour are still not understood.

Following definitions and an account of what is known about existing resam-
pling techniques, our first main result, Theorem 1 in Section 2, is a general consis-
tency result for resampling based on the notion of negative association [Joag-Dev
and Proschan (1983)]. An application of this theorem gives, to our knowledge,
the first proof of almost sure weak convergence of the random probability mea-
sures output from the stratified resampling method of Kitagawa (1996). A notable
feature of Theorem 1 is that, although its assumptions do not require the input
particles to be algorithmically ordered in a particular way, its proof involves es-
tablishing a necessary and sufficient condition for almost sure weak convergence
involving ordering using the Hilbert space-filling curve. Here, we build on Gerber
and Chopin (2015), who used the Hilbert curve to derive and analyse a quasi-
Monte Carlo version of sequential Monte Carlo samplers.

The systematic resampling method of Carpenter, Clifford and Fearnhead
(1999), which involves a sampling technique first proposed by Madow and Madow
(1944), is a very popular and computationally cheap resampling technique, with
the property that the number of offspring of any sample with weight W in a pop-
ulation of size N is with probability 1 either �NW� or �NW� + 1. However,
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depending on the order of the input particles, the error variance for systematic re-
sampling can fail to converge to zero as N → +∞; see Douc, Cappé and Moulines
(2005) and L’Ecuyer and Lemieux (2000). We complement this insight by provid-
ing a counter-example to almost sure weak convergence. We then introduce a new
resampling method, called Srinivasan Sampling Process (SSP) resampling, which
corrects this deficiency: it also has the property that offspring numbers are of the
form either �NW� or �NW� + 1, but it provably converges irrespective of the
order of input particles, by another application of our Theorem 1.

Kitagawa (1996) conjectured that in the case that the state-space is R, ordering
the particles input to stratified resampling according to their states leads to faster
convergence. In particular, he suggested that the integrated square error between
empirical cdf’s before and after resampling behaves as O(N−2), compared to the
standard Monte Carlo rate O(N−1) in the un-ordered case. We confirm this conjec-
ture by proving, under mild conditions, that for stratified resampling on state-space
Rd with input particles ordered by their states using the Hilbert curve, the variance
of the resampling error is O(N−(1+1/d)). Kitagawa also examined the behaviour of
a deterministic resampling scheme; we identify the variant of it which is optimal
in terms of the Kolmogorov metric when the state-space is R. We also prove the
almost sure weak consistency of stratified and systematic when the particles are
Hilbert-ordered.

Finally, we discuss the implications of our results on particle filtering. In partic-
ular, we show that particle estimates are consistent when resampling schemes such
as, for example, SSP or stratified resampling are used. In addition, we show that
the ordered version of stratified resampling dominates other resampling schemes
in terms of asymptotic variance of particle estimates.

All the proofs are gathered in the Supplementary Material [Gerber, Chopin and
Whiteley (2019)].

2. Preliminaries.

2.1. Notation and conventions. Let X be an open subset of Rd , X its Borel
σ -algebra, P(X ) the set of probability measures on (X ,X), Pb(X ) ⊂ P(X ) the
subset of measures in P(X ) which admit a continuous and bounded density with
respect to λd , the Lebesgue measure on X and Pf (X ) ⊂ P(X ) the subset of mea-
sures in P(X ) whose support is a finite set.

For integers 1 ≤ a ≤ b, we will often use the index shorthand za:b = (za, . . . , zb)

and za:b = (za, . . . , zb), and let 1 : N = {1, . . . ,N}.
For any measurable mapping ϕ from (X ,X) to some measurable space (Y,Y)

and a probability measure π ∈ P(X ), we write πϕ for the push-forward of π by
ϕ. The set of continuous and bounded functions on X is denoted by Cb(X ) and we
use the symbol “ w=⇒” to denote weak convergence; that is, for sequence (πN)N≥1
in P(X ) and π ∈ P(X ),

πN w=⇒ π ⇔ lim
N→+∞πN(ϕ) = π(ϕ), ∀ϕ ∈ Cb(X ).
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Throughout the paper, we consider a fixed probability space (�,F,P) on which
all random variables are defined. With B([0,1]N) denoting the Borel σ -algebra on
[0,1]N, let U = (U1,U2, . . .) be a ([0,1]N,B([0,1]N))-valued random variable on
(�,F,P), such that P makes (U1,U2, . . .) independent of each other and all other
random variables, and such that each Ui is distributed uniformly on [0,1].

We note that one can choose a countable subset of Cb(X ) that completely
determines weak convergence, hence for random measures (πN)N≥1, the event
{πN w=⇒ π} is measurable.

For π ∈ P(X ), we denote by π(ϕ) the expectation
∫
X ϕ(x)π(dx), and for a

random variable Z = (Z1, . . . ,Zd) whose distribution is π we denote by Fπ(a) =
P(Z1 ≤ a1, . . . ,Zd ≤ ad), a = (a1, . . . , ad), its CDF (cumulative distribution func-
tion) and, when d = 1, by F−

π its generalized inverse: F−
π (u) = inf{x : Fπ(x) ≥ u}.

For each N ≥ 1, we consider a distinguished collection of random variables
ζN = (Xn,N ,Wn,N)Nn=1, with each Xn,N valued in X , each (Wn,N)Nn=1 valued
in R+, and such that P-a.s.,

∑N
n=1 Wn,N = 1. When no confusion may arise, we

suppress dependence on N and write ζN = (Xn,Wn)Nn=1. We associate with ζN

the random measure πN = ∑N
n=1 Wnδ(Xn), the (random) CDF

FN(n) =
N∑

m=1

Wm1(m ≤ n), n ∈ 1 : N,

and its inverse is denoted F−
N .

To lighten notation, we shall write PζN (·), EζN [·], VarζN [·], CovζN [·, ·] for con-
ditional probability, expectation, variance and covariance given ζN .

Let ZN = {(x,w) ∈ XN × RN+ : ∑N
n=1 wn = 1} and define the disjoint union

Z := ⋃+∞
N=1 ZN . So we may think of ζN as a random point in ZN , and hence Z .

DEFINITION 1. X ⊆ Rd is said to be cubifiable if there exist measurable sets
Xi ⊆ R, i = 1, . . . , d , such that:

1. X =×d
i=1 Xi ;

2. for any i ∈ 1 : d , there exists a C1-diffeomorphism ψi : Xi → (0,1) which is
strictly increasing on Xi .

We shall write ψ(x) = (ψ1(x1), . . . ,ψd(xd)), x = x1:d ∈ X , the resulting C1-
diffeomorphism from X into (0,1)d .

We recall for the reader that function ψ : X → (0,1)d is a C1-diffeomorphism
if it is a bijection and its inverse ψ−1 : (0,1)d → X is continuously differentiable.
In what follows, for a cubifiable set X we denote by D(X ) the set of all C1-
diffeomorphisms from X into (0,1)d that verify the conditions of Definition 1.

Cubifiable sets are sets that can be written as X =×d
i=1(ai, bi) for some ai, bi ∈

R∪ {−∞,+∞}. The point of these sets is to be able to work “as if” X = (0,1)d .
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The hypercube (0,1)d will play a key role below because the Hilbert space-filling
curve, which is essential in this work, is defined on this hypercube.

Most of the results presented below assume that the limiting distribution π ad-
mits a continuous and bounded density. Consequently, to work “as if” X = (0,1)d

we will often assume that π belongs to

P̃b(X ) = {
π ∈ Pb(X ) : ∃ψ ∈ D(X ) s.t. πψ ∈ Pb

(
(0,1)d

)}
.

The following result provides a sufficient condition to have π ∈ P̃b(X ). We
denote by pπ the density (w.r.t. λd ) of π ∈ Pb(X ) and, for I ⊂ 1 : d , we write
xI = (xi, i ∈ I ) and x\I = (xi, i /∈ I ).

LEMMA 1. Let X be a cubifiable set, δ > 0 and π ∈ Pb(X ) such that ∀I ⊆
1 : d and ∀x\I ∈×i /∈I Xi we have supxI ∈×i∈I Xi

pπ (x)
∏

i∈I |xi |1+δ ≤ C for some

C < +∞. Then π ∈ P̃b(X ).

Recall that supx∈R pπ(x)|x| < +∞ for any π ∈ Pb(R). Therefore, as δ > 0
is arbitrary in the lemma, very few extra conditions on the tails of π ∈ Pb(R)

are needed in order to have π ∈ P̃b(R) when d = 1. When d > 1, assuming that
π ∈ P̃b(R

d) is more restrictive since the lemma requires some uniformity in the
behaviour of tails. However, we note that members of P̃b(R

d) may not have a first
moment and, therefore, the sufficient condition of Lemma 1 appears to be quite
weak.

2.2. Resampling schemes: Definitions and properties.

DEFINITION 2. A resampling scheme is a mapping ρ : [0,1]N ×Z → Pf (X )

such that, for any N ≥ 1 and z = (xn,wn)Nn=1 ∈ ZN ,

ρ(u, z) = 1

N

N∑
n=1

δ
(
xan

N (u,z)),
where for each n, an

N : [0,1]N ×ZN → 1 : N is a measurable function.

Given u ∈ [0,1]N, the mapping ρ(u, ·) therefore takes as input a weighted point
set z = (xn,wn)Nn=1, selects N indices (an

N(u, z))Nn=1 in the set 1 : N and returns
a probability measure on (xn)Nn=1 with the property that each xan

N (u,z) has weight
N−1.

Instances of the function an
N are given below. We shall use the shorthand

ρ(z) for the random measure ρ(U, z), z ∈ ZN , and An for the random indices
an
N(U, ζN). Introducing the quantities

(2) #n(u, z) = card
{
i ∈ 1 : N s.t. ai

N(u, z) = n
}
, �n

ρ,z = #n(U, z) − Nwn,
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a resampling scheme ρ is said to be unbiased if, for any N ≥ 1, n ∈ 1 : N and
z ∈ ZN ,

E
[
�n

ρ,z

] = 0.

We now define the resampling schemes of primary interest in this work.

• Multinomial resampling: ρmulti such that

an
N

(
u, ζN ) = F−

N (un).

In this case, the an
N(U, ζN) are i.i.d. (independent and identically distributed)

draws from the distribution which assigns probability Wn to outcome n.
• Stratified resampling: ρstrat such that

an
N

(
u, ζN ) = F−

N

(
n − 1 + un

N

)
.

• Systematic resampling: ρsyst such that

an
N

(
u, ζN ) = F−

N

(
n − 1 + u1

N

)
.

The following definition captures the notion of almost sure weak convergence
of the random measures (πN)N≥1 which we shall study and is similar to condition
(9) in [Crisan and Doucet (2002)].

DEFINITION 3. Let P0 ⊆ P(X ). Then we say that a resampling scheme ρ :
[0,1]N ×Z → Pf (X ) is P0-consistent if, for any π ∈ P0 and (ζN)N≥1 such that
πN w=⇒ π , P-a.s., one has

ρ
(
ζN ) w=⇒ π, P-a.s.

It is well known that multinomial, stratified and systematic resampling are un-
biased. An account of various properties of these methods can be found in Douc,
Cappé and Moulines (2005).

Crisan and Doucet [(2002), Lemma 2] shows that multinomial resampling is
P(X )-consistent for any measurable set X ⊆ Rd .

It is easy to show [Stein (1987), Douc, Cappé and Moulines (2005)] that strati-
fied resampling dominates multinomial resampling in terms of variance, that is,

Var
[
ρstrat(z)(ϕ)

] ≤ Var
[
ρmulti(z)(ϕ)

]
, ∀z ∈ Z

for any measurable ϕ : X → R. Similar results are harder to derive for system-
atic resampling, owing to the strong dependencies between the resampled indices.
However, it is known [Douc, Cappé and Moulines (2005)] that the variance of
ρsyst(ζ

N)(ϕ) may not converge to 0 as N → +∞ [see also L’Ecuyer and Lemieux
(2000) for an explanation of this phenomenon].
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3. Convergence of resampling schemes based on negative association.

3.1. A general consistency result. Before stating the main result of this section
we recall the definition of negatively associated (NA) random variables [Joag-Dev
and Proschan (1983)].

DEFINITION 4. A collection of random variables (Zn)Nn=1 are negatively as-
sociated if, for every pair of disjoint subsets I1 and I2 of {1, . . . ,N},

Cov
(
ϕ1

(
Zn,n ∈ I1

)
, ϕ2

(
Zn,n ∈ I2

)) ≤ 0

for all coordinatewise nondecreasing functions ϕ1 and ϕ2 such that for k ∈ {1,2},
ϕk :R|Ik | →R, and such that the covariance is well defined.

THEOREM 1. Let X be a cubifiable set and ρ be an unbiased resampling
scheme such that the following conditions hold:

(H1) For any N ≥ 1 and z ∈ ZN , the random variables (#n(U, z))Nn=1 are neg-
atively associated.

(H2) There exists a sequence (rN)N≥1 of nonnegative real numbers such that
rN = O(N/ logN) and, for N large enough,

sup
z∈ZN

N∑
n=1

E
[(

�n
ρ,z

)2] ≤ rNN,

∞∑
N=1

sup
z∈ZN

P
(

max
n∈1:N

∣∣�n
ρ,z

∣∣ > rN

)
< +∞.

Then ρ is P̃b(X )-consistent.

The strategy of the proof is the following. In a first step, we show that when
σ ∗

N is a permutation of 1 : N which corresponds to ordering input particles using
the Hilbert space filling curve (details of which we postpone to Section 4), the
resampling scheme ρ is P̃b(X )-consistent if and only if

(3) lim
N→+∞ max

m∈1:N

∣∣∣∣∣
m∑

n=1

�
σ ∗

N(n)
ρ,zN

∣∣∣∣∣ = 0, P-a.s.

for any sequence (zN)N≥1 with zN ∈ ZN . In a second step, we show that the
hypotheses (H1) and (H2) are sufficient to establish (3), via a maximal inequality
for negatively associated random variables due to Shao (2000). We stress here
that the permutation σ ∗

N is introduced solely as a device in the proof; there is no
assumption in Theorem 1 that the input particles are algorithmically sorted in any
particular way. The reader should note, in fact, that (H1) must hold for all z, and
(H2) is uniform in z, and hence all permutations of the input particles.
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3.2. Discussion of (H1) and (H2). From the definition of #n(U, z) given in (2),
it follows that

∑N
n=1 #n(U, z) = N , P-a.s. Intuitively, this constraint suggests that

at least some random variables in the set (#n(U, z))Nn=1 are negatively correlated.
(H1) may be understood as imposing that all these random variables are negatively
correlated.

(H2) alone is not sufficient to guarantee the consistency of an unbiased resam-
pling scheme. If a resampling scheme ρ violates (H1), then it is indeed possible
to find examples where the offspring numbers are positively correlated in a way
that, with positive probability, prevents the limit in (3) from being zero. The next
result formalizes this assertion in the context of systematic resampling. Its proof
involves a somewhat technical construction of a counter-example.

PROPOSITION 1. The systematic resampling scheme ρsyst is unbiased, satis-
fies (H2) with rN = 1 but is not P̃b(X )-consistent.

On the other hand, (H1) alone is not enough to guarantee consistency. If we
consider the resampling scheme ρ such that #n(U, z) = N with probability wn, it
is easily checked ρ is unbiased and (H1) holds, but this resampling scheme is obvi-
ously not P̃b(X )-consistent. (H2) rules out this kind of situation via constraints on
the second moments and negligibility of the deviations of the offspring numbers
(#n(U, z))Nn=1 from their respective means (Nwn)Nn=1.

3.3. Some comments about systematic resampling. Systematic resampling
has the property that #n(U, z) is either �Nwn� or �Nwn� + 1, P-a.s., hence
|�n

ρsyst,zN | ≤ 1, P-a.s., so that (H2) holds with rN = 1 as stated in Proposition 1.

A corollary of this latter is that systematic resampling violates (H1). A simple
way to establish this result is to take a z ∈ ZN such that we have Nwn −�Nwn� =
1/2 for n = 1, . . . ,3. Then

P
(
#1(U, z) = #3(U, z) = 1

) = 1

2
> P

(
#1(U, z) = 1

)
P

(
#3(U, z) = 1

) = 1

4

showing that the collection of random variables (#n(U, z))Nn=1 is not NA.
To overcome the lack of consistency (in the sense of Definition 3) of systematic

resampling, we introduce below (Section 3.4.3) a new resampling scheme, named
SSP (for Srinivasan Sampling Process) resampling, which both satisfies the NA
condition (H1) and shares the property of systematic resampling that |�n

ρsyst,zN | ≤ 1

for all n ∈ 1 : N , P-a.s., so that (H2) also holds with rN = 1 for this new resampling
scheme.

3.4. Applications of Theorem 1.

3.4.1. Multinomial resampling. As already mentioned, it is a known result that
multinomial resampling is P(X )-consistent for any measurable X ⊆ Rd [Crisan
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and Doucet (2002), Lemma 2]. Theorem 1 may be applied to obtain a similar
result.

COROLLARY 1. Let X be a cubifiable set. Then the resampling scheme ρmulti
verifies conditions (H1) and (H2) of Theorem 1 and is therefore P̃b(X )-consistent.

Condition (H1) holds for multinomial resampling as shown by Joag-Dev and
Proschan (1983) while (H2) is verified using properties of the binomial distribution
and Hoeffding’s inequality.

For similar reasons, the conditions of Theorem 1 are also satisfied by the resid-
ual resampling scheme of Liu and Chen (1998).

3.4.2. Stratified resampling. To the best of our knowledge, the following
corollary of Theorem 1 is the first almost sure weak convergence result for
Kitagawa’s (1996) stratified resampling scheme.

COROLLARY 2. Let X be a cubifiable set. Then the resampling scheme ρstrat
verifies conditions (H1) and (H2) of Theorem 1 and is therefore P̃b(X )-consistent.

Verifying (H1) in this situation involves the observation that stratified resam-
pling is a “Balls and Bins” experiment [Dubhashi and Ranjan (1998)] in which N

balls are independently thrown into N bins, the total number of balls occupying
the nth bin is #n(U, z), and where the probability of falling in a given bin varies
across balls, due to the stratified nature of the sampling. The fact that (H1) holds is
then a direct consequence of Theorem 14 in Dubhashi and Ranjan (1998), which
establishes the NA of occupancy numbers in a slightly more general balls and bins
problem where the number of balls is not necessarily equal to the number of bins.
(H2) holds because |�ρstrat,z| ≤ 2, P-a.s.

It is worth noting that the conditions of Theorem 1 are also satisfied by the strat-
ified version of the residual resampling scheme of Liu and Chen (1998), where the
multinomial resampling part is replaced by a stratified resampling step. Denoting
these two resampling schemes by ρres/multi and ρres/strat, respectively, the stratified
version of residual resampling has the interesting property that, for any measur-
able ϕ : X → R we have [see Douc, Cappé and Moulines (2005) for the second
inequality]

Var
[
ρres/strat(z)(ϕ)

] ≤ Var
[
ρres/multi(z)(ϕ)

] ≤ Var
[
ρmulti(z)(ϕ)

]
, ∀z ∈ Z.

In addition, ρres/strat has the advantage to be easier and slightly cheaper to imple-
ment than ρres/multi.

3.4.3. SSP resampling. The underlying idea of SSP resampling is to see
the resampling scheme as a rounding operation, where the vector of “weights”
(Nw1, . . . ,NwN) is P-a.s. transformed into a point (Y1(U), . . . , YN(U)) in NN

satisfying the constraint
∑N

n=1 Yn(U) = N .
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Before proceeding further, we recall the terminology that, for ξ ∈ R+, a random
variable Y : � →N is called a randomized rounding of ξ if

P
(
Y = �ξ� + 1

) = ξ − �ξ�, P
(
Y = �ξ�) = 1 − (

ξ − �ξ�).
Hence, any algorithmic technique for constructing randomized roundings that
takes as input a vector (ξ1, . . . , ξN) ∈ RN+ and returns P-a.s. as output a vector
(Y1(U), . . . , YN(U)) ∈NN verifying

∑N
n=1 Yn(U) = ∑N

n=1 ξn may be used to con-
struct an unbiased resampling mechanism; systematic resampling can be viewed
as being constructed in this way.

The SSP resampling scheme ρssp : [0,1]N × Z → Pf (X ) is based on the
Srinivasan’s (2001) randomized rounding technique [also known as pivotal sam-
pling in the sampling survey literature, see, e.g., Deville and Tillé (1998)] and
is presented in Algorithm 1. To see that this latter indeed defines a randomized
rounding process it suffices to note that step (2) leaves unchanged the expecta-
tion of the vector (Y n

ssp(U))Nn=1 while, by construction, each iteration of the al-

gorithm leaves the quantity
∑N

n=1 Yn
ssp(U) unchanged with P-probability one. By

Dubhashi, Jonasson and Ranjan [(2007), Theorem 5.1; see also Brown Kramer,
Cutler and Radcliffe (2011)], the collection of random variables (Y n

ssp(U))Nn=1 pro-
duced by the SSP described in Algorithm 1 is NA. Together with Theorem 1, this
result allows to readily show the consistency of ρssp.

Algorithm 1 SSP resampling

Inputs: u ∈ [0,1]N and (ξ1, . . . , ξN) ∈ RN+ such that
∑N

n=1 ξn ∈ N.
Output: (Y 1

ssp(u), . . . , YN
ssp(u)) ∈ NN such that

∑N
n=1 Yn

ssp(u) = ∑N
n=1 ξn.

Initialization: (Y 1
ssp(u), . . . , YN

ssp(u)) ← (ξ1, . . . , ξN), (n,m, k) ← (1,2,1)

Iterate the following steps until (Y 1
ssp(u), . . . , YN

ssp(u)) ∈ NN :

(1) Let δ be the smallest number in (0,1) such that at least one of Yn
ssp(u) + δ or

Ym
ssp(u) − δ is an integer, and let ε be the smallest number in (0,1) such that at

least one of Yn
ssp(u) − ε or Ym

ssp(u) + ε is an integer.

(2) If uk ≤ ε/(δ+ε) set (Y n
ssp(u), Ym

ssp(u)) ← (Y n
ssp(u)+δ, Ym

ssp(u)−δ); otherwise
set (Y n

ssp(u), Ym
ssp(u)) ← (Y n

ssp(u) − ε,Ym
ssp(u) + ε).

(3) Update n and m as follows:

1. If (Y n
ssp(u), Ym

ssp(u)) ∈ N2, (n,m) ← (m + 1,m + 2);
2. If Yn

ssp(u) ∈ N and Ym
ssp(u) /∈ N set (n,m) ← (m,m + 1);

3. if Yn
ssp(u) /∈ N and Ym

ssp(u) ∈N set (n,m) ← (m,m + 1).

(4) k ← k + 1
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COROLLARY 3. Let X be a cubifiable set. Then the resampling scheme ρssp

verifies conditions (H1) and (H2) of Theorem 1 and is therefore P̃b(X )-consistent.

Algorithm 1 has complexity O(N), like other standard resampling schemes. An
open question is whether or not SSP resampling dominates multinomial resam-
pling in terms of variance. See Section 5.5 for a numerical comparison.

Lastly in this section, we note that a resampling scheme proposed in Crisan
(2001) may also be interpreted as a randomized rounding technique. However, to
the best of our knowledge, there are no convergence results for this resampling
scheme.

4. Convergence of ordered resampling schemes. Kitagawa [(1996), Ap-
pendix A] provided numerical results about the behaviour of stratified resampling
in the case that d = 1 and the input particles are ordered according to their states.
He conjectured that in this situation, the error of stratified resampling is of size
O(N−2), compared to O(N−1) without the ordering. He also considered a deter-
ministic resampling scheme, and found that in same d = 1 case and with ordered
particles, it also exhibited O(N−2) convergence.

The purpose of this section is to provide a rigorous investigation of this topic.
While Kitagawa (1996) measured the error introduced by a resampling scheme
by the integrated square error between empirical CDF’s before and after resam-
pling, we compare below the probability measures before and after resampling
by comparing their expectations for some test functions. Notably, we present in
this section results on the convergence rate of the variance of stratified resampling
when applied on ordered input particles. We first consider the case d = 1 and then
the general d ≥ 1 case in which particles input to resampling are ordered using the
Hilbert space filling curve.

4.1. Ordered resampling schemes on univariate sets. In this subsection, we
present results for a univariate set X , which is the setup considered by Kitagawa
(1996). The existence of a natural order in this context greatly facilitates the pre-
sentation and allows to derive more precise convergence results than in multivari-
ate settings.

We denote below by ρ∗
strat the ordered stratified resampling scheme; that is,

ρ∗
strat : [0,1]N ×Z → Pf (X ) is defined by

ρ∗
strat(u, z) = ρstrat

(
u, (zσ ∗

N(n))
N
n=1

)
, (u, z) ∈ [0,1]N ×ZN

with σ ∗
N a permutation of 1 : N such that zσ ∗

N(1) ≤ · · · ≤ zσ ∗
N(N). In words,

ρ∗
strat(ζ

N) simply amounts to apply the stratified resampling scheme ρstrat on the
ordered input point set ζN,σ ∗

N := (Xσ ∗
N(n),Wσ ∗

N(n))Nn=1. Notice that ρ∗
strat(ζ

N) is
such that

(4) XAn = F−
πN

(
n − 1 + Un

N

)
, n ∈ 1 : N;
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that is, the resampled particles (XAn
)Nn=1 are obtained by sampling from the em-

pirical distribution πN using the stratified point set ((n − 1 + Un)/N)Nn=1.
The following theorem shows that under mild conditions the variance induced

by ordered stratified resampling converges faster than N−1. In addition, it also
provides conditions under which one has a nonasymptotic bound of size N−2 for
this resampling method.

THEOREM 2. Let X ⊆ R be a cubifiable set. Then the following results hold:

1. Let π ∈ P̃b(X ) have a strictly positive density and (ζN)N≥1 be such that
πN w=⇒ π , P-a.s., and such that, limN→+∞(maxn∈1:N Wn,N) = 0, P-a.s. Then, for
any ϕ ∈ Cb(X ), VarζN [ρ∗

strat(ζ
N)(ϕ)] = O(1/N), P-a.s.

2. Let ϕ : X → R be a continuously differentiable function such that, for a
δ > 0, we have supx∈X

dϕ
dx

(x)|x|1+δ < +∞. Then there exists a constant Cϕ < +∞
such that, for all N ≥ 1,

Var
[
ρ∗

strat(z)(ϕ)
] ≤ CϕN−2, ∀z ∈ ZN.

The second observation of Kitagawa [(1996), page 23] is that deterministic re-
samplimg mechanisms may be used when applied to the ordered input particles
ζN,σ ∗

N . In particular, he considered a resampling scheme defined by (4) but with
the random variables (Un)

N
n=1 replaced by a deterministic point in α ∈ (0,1). In

the notation of this work, for α ∈ (0,1) Kitagawa (1996) considered the resam-
pling scheme ρ∗

α defined by ρ∗
α(u, z) = ρ∗

strat(α∞, z) with α∞ the vector in (0,1)N

having α in all its entries. The consistency of this deterministic resampling mech-
anism trivially follows from Corollary 4 (see below) and the fact that [Niederreiter
(1992), Theorem 2.6, page 15]

(5) ‖Fρ∗
α(ζN ) − FπN ‖∞ ≤ 1

2N
+

∣∣∣∣α − 1/2

N

∣∣∣∣.
Notice that the right-hand side of this expression is minimized for α = 0.5. In
fact, it is not difficult to check that the resampling scheme ρ∗

1/2 is optimal in the
sense that it minimises ‖Fρ(ζN ) − FπN ‖∞ among all resampling schemes ρ. One
rationale for trying to minimize this quantity when considering deterministic re-
sampling schemes is given by the generalized Koksma–Hlawka [Aistleitner and
Dick (2015), Theorem 1] which implies that

(6)
∣∣ρ(

ζN )
(ϕ) − πN(ϕ)

∣∣ ≤ V (ϕ)‖Fρ(ζN ) − FπN ‖∞

with V (ϕ) the variation of ϕ in X .
We end this subsection by noting that inequality (5) shows that systematic re-

sampling is consistent when applied on the ordered input particles ζN,σ ∗
N .
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FIG. 1. The Hilbert curve in dimension d = 2 is defined as the limit of this sequence (source: Marc
van Dongen).

4.2. Hilbert-ordered resampling schemes. In this subsection, we generalize
the results presented above to any dimension d ≥ 1. The main challenge when
d > 1 is to find an ordering of particles ζN which allows to improve upon the un-
ordered version of the resampling scheme. Below we consider an ordering based
on the Hilbert space filling curve.

4.2.1. Hilbert space filling curve and related definitions. For π,π ′ ∈ P(X ),
we use below the shorthand ‖π − π ′‖� = ‖Fπ − Fπ ′‖∞; note that the “star” met-
ric ‖ · ‖� is the multivariate generalization of the Kolmogorov metric. The star
discrepancy of the point set u1:N in [0,1]d is defined by

D�
N(u1:N) =

∥∥∥∥∥N−1
N∑

i=1

δui
− λd

∥∥∥∥∥
�

.

The Hilbert curve is a space-filling curve, that is a continuous surjective func-
tion H : [0,1] → [0,1]d . It is defined as the limit of the sequence of functions
depicted (for d = 2) in Figure 1. Precise details of the construction and some im-
portant properties of the Hilbert curve are given in Section S1.2 of the Supple-
mentary Material [Gerber, Chopin and Whiteley (2019)]. In particular, the func-
tion H : [0,1] → [0,1]d is Hölder continuous with exponent 1/d and is measure-
preserving in the sense that λd(H(I)) = λ1(I ) for any measurable set I ∈ [0,1].
This last property plays a crucial role in the derivation of the consistency results
presented in the next subsection while the Hölder continuity of the Hilbert curve
is central in our analysis of the variance of Hilbert-ordered stratified resampling
(Section 4.2.3).

In the construction of the Hilbert curve, one is free to choose the value of H(0),
and we shall take it to be (0, . . . ,0). The Hilbert curve admits a one-to-one Borel
measurable pseudo-inverse h : [0,1]d → [0,1] such that H(h(x)) = x for all x ∈
[0,1]d , as shown in the next proposition.

PROPOSITION 2. There exists a one-to-one Borel measurable function h :
[0,1]d → [0,1] such that H(h(x)) = x for all x ∈ [0,1]d .

For d = 1, we simply take H(x) = h(x) = x for x ∈ [0,1].
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For a cubifiable set X and diffeomorphism ψ ∈ D(X ), we denote by hX ,ψ

the one-to-one mapping x �→ h ◦ ψ(x). Remark that hX ,ψ(X ) = (0,1) under the
convention H(0) = (0, . . . ,0). To simplify the notation in what follows, we as-
sociate to a cubifiable set X a diffeomorphism ψX ∈ D(X ) and use the short-
hand hX = hX ,ψX . In particular, when X = (0,1)d we assume henceforth that
ψX (x) = x for all x ∈ X .

We now define σ ∗
N as a permutation of 1 : N such that

hX (zσ ∗
N(1)) ≤ · · · ≤ hX (zσ ∗

N(N))

and use it to extend the definition of the ordered stratified resampling scheme ρ∗
strat

introduced in the previous subsection to any d ≥ 1; that is, for any d ≥ 1 we define
ρ∗

strat : [0,1]N ×Z → Pf (X ) by

ρ∗
strat(u, z) = ρstrat

(
u, (zσ ∗

N(n))
N
n=1

)
, (u, z) ∈ [0,1]N ×ZN.

The resampling scheme ρ∗
strat(ζ

N) is such that

(7) XAn = ψ−1
X ◦ H

(
F−

πN
hX

(
n − 1 + Un

N

))
, n ∈ 1 : N

and thus ρ∗
strat amounts to first sample from the empirical distribution πN

hX using
the stratified point set ((n − 1 + Un)/N)Nn=1 and then to “project” the resulting
sample in the original set X using the mapping ψ−1

X ◦ H . Note that representation
(7) of ρ∗

strat extends the one given in (4) for d = 1 to any d ≥ 1.
The ordered systematic resampling scheme ρ∗

syst is defined in a similar way.
Although this is not apparent from the notation, when d > 1 the resampling

schemes ρ∗
strat and ρ∗

syst depend on ψX through σ ∗
N , and, therefore, different choices

for ψX lead to different resampling mechanisms. Consequently, convergence re-
sults for these two resampling schemes will assume that the limiting distribution
π on X belongs to the subset P∗

b (X ) of P̃b(X ) defined by P∗
b (X ) = {π ∈ Pb(X ) :

πψX ∈ Pb((0,1)d)}.
To fix the ideas, when X =Rd one can take for ψX the diffeomorphism ψ(x) =

(ψ̃(x1), . . . , ψ̃(xd)), with ψ̃ ∈ D(R) defined by

ψ̃(x) = 1

2
+

√
4 + x2 − 2

2x
1R\{0}(x), x ∈R.

In this case, following Lemma 1, it is easily checked that π ∈ P∗
b (X ) when π ∈

Pb(X ) is such that ∀I ⊆ 1 : d and ∀x\I ∈×i /∈I Xi we have, for some C < +∞,
supxI ∈×i∈I Xi

pπ (x)
∏

i∈I |xi |2 ≤ C.

4.2.2. Consistency. The following theorem provides a necessary and sufficient
condition for the consistency of a resampling scheme.
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THEOREM 3. Let X be a cubifiable set. Then a resampling scheme ρ is
P̃b(X )-consistent if and only if, for any π ∈ P̃b(X ) and sequence (ζN)N≥1 such
that πN w=⇒ π , P-a.s., we have

(8) lim
N→∞

∥∥ρ(
ζN )

hX ,ψ
− πN

hX ,ψ

∥∥
� = 0, P-a.s.

for a ψ ∈ D(X ) such that πψ ∈ Pb((0,1)d).

This result is a consequence of Theorem 9 (see the Appendix) that establishes
the equivalence between the weak convergence and the convergence in the sense of
star metric, and shows that the Hilbert curve H and its pseudo-inverse h preserve
these two modes of convergence.

A direct corollary of Theorem 3 is that any Hilbert-ordered resampling scheme
satisfying the discrepancy condition in (10) below is consistent, and in particular
the Hilbert-ordered versions of stratified and systematic resampling are consistent.

COROLLARY 4. Let X be a cubifiable set. For each N ≥ 1 and n ∈ 1 : N , let
φn

N : [0,1]N → [0,1] be a measurable function and consider a resampling scheme
of the form

(9) an
N(u, ζN) = F

σ ∗
N ,−

N

(
φn

N(u)
)

with F
σ ∗

N ,−
N the inverse of the CDF F

σ ∗
N

N (n) = ∑N
m=1 WσN(m)1(m ≤ n), n ∈ 1 : N .

Then a sufficient condition for such a resampling scheme to be P∗
b (X )-consistent

is that

(10) lim
N→+∞D�

N

(
φ1:N

N (U)
) = 0, P-a.s.

In particular, ρ∗
strat and ρ∗

syst, which correspond respectively to φn
N(u) = (n − 1 +

un)/N and φn
N(u) = (n − 1 + u1)/N , are P∗

b (X )-consistent.

4.2.3. Variance behaviour of Hilbert-ordered resampling. The main goal of
this subsection is to study in detail the convergence rate of the error variance for
Hilbert-ordered stratified resampling.

The next result generalizes the first part of Theorem 2 to any d ≥ 1.

THEOREM 4. Let X be a cubifiable set, π ∈ P∗
b (X ) have a strictly positive

density, and let (ζN)N≥1 be such that πN w=⇒ π , P-a.s., and such that

lim
N→+∞

(
max
n∈1:N Wn,N

)
= 0, P-a.s.

Then, for any ϕ ∈ Cb(X ),

VarζN

[
ρ∗

strat
(
ζN )

(ϕ)
] = O(1/N), P-a.s.
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Theorem 4 shows that under mild conditions Hilbert-ordered stratified resam-
pling outperforms multinomial resampling asymptotically. The following result
establishes its nonasymptotic behaviour under stronger assumptions on the test
function ϕ.

THEOREM 5. Let X be a cubifiable set and ϕ :X →R be a measurable func-
tion such that there exist constants Cϕ,ψ < +∞ and γ ∈ (0,1] verifying∣∣ϕ ◦ ψ−1

X (x) − ϕ ◦ ψ−1
X (y)

∣∣ ≤ Cϕ,ψX ‖x − y‖γ
2 , ∀(x, y) ∈ (0,1)d .

Then for any N ≥ 1 we have

Var
[
ρ∗

strat(z)(ϕ)
] ≤ (2

√
d + 3)2γ

C2
ϕ,ψX

N1+ γ
d

, ∀z ∈ ZN.

The key tool to establish this result is the generalized Koksma–Hlawka inequal-
ity of Aistleitner and Dick [(2015), Theorem 1] that we already used in (6).

Note that, because of the use of the Hilbert curve in the resampling mecha-
nism, the rate given in Theorem 5 cannot be improved by assuming differentia-
bility on ϕ. This is true because the Hilbert curve is nowhere differentiable [see,
e.g., Zumbusch (2003), Lemma 4.3, page 96]. We also note that the rate reported in
Theorem 5 for γ = 1 is in line with the one reported in He and Owen (2016), where
for a random quadrature based on the Hilbert curve a variance of size O(N−1−1/d)

is found for a class of discontinuous functions having a Lipschitz component.
It should also be clear that the power 1/d appearing in the upper bound of The-

orem 5 arises because the Hilbert curve is Hölder continuous with exponent 1/d .
This latter is “optimal” in the sense that 1/d is the best possible Hölder exponent
for measure-preserving mappings from [0,1] onto [0,1]d [Jaffard and Nicolay
(2009), Lemma 6]. For this reason, it seems hard to improve the upper bound of
Theorem 5 by considering an alternative ordering of the particles.

An interesting property of Theorem 5 is that it holds for any N ≥ 1 and re-
quires no conditions on the weights and on the existence of a π ∈ P(X ) such that
πN w=⇒ π . At the same time, this suggests that the rate of N1+γ /d is not optimal
when a limiting distribution π exists. Indeed, Theorem 5 does not take into ac-
count that, in the definition of ρ∗

strat(ζ
N) given in (7), the CDF FπN

hX
may converge

to FπhX
, the CDF of πhX , which is potentially a “smooth” function. This point is

corrected in the next result.

THEOREM 6. Consider the setup of Theorem 5, let (ζN)N≥1 and π ∈ P∗
b (X )

be as in Theorem 4 and assume that

(11) VarζN

[
1

N

N∑
n=1

F−
πhX

(
n − 1 + Un

N

)]
= O

(
N−2)

, P-a.s.
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Then, for any measurable function ϕ :X →R satisfying the condition of Theo-
rem 5, we have

(12) VarζN

[
ρ∗

strat
(
ζN )

(ϕ)
] = O

(
N−(1+ γ

d
)), P-a.s.

When there exists a constant c > 0 such that c−1λd(A) ≤ π(A) ≤ cλd(A) for all
measurable set A ⊆ X condition (11) is verified.

We note that the rate in (12) does not only depend on the underlying rate
in (11) but also on the speed at which πN converges (in some sense) to π .
More precisely, the rate in (12) depends on the rate at which the quantity vN :=
‖F−

πN
hX

(u) − F−
πhX

(u)‖∞ converges to 0 as N → +∞. In particular, under the

extra assumptions of the second part of the theorem, the rate in (12) becomes

O(N−(1+ 2γ
d

)) when vN =O(1/N).

5. Implications for particle algorithms. We apply in this section our previ-
ous results to the study of particle algorithms.

5.1. Setup. We consider a generic Feynman–Kac model, consisting of (a) a
Markov chain, with initial distribution μ(dx0), Markov kernels Mt : X → P(X ),
t ≥ 1, acting from X to itself; and (b) a sequence of measurable functions,
G0 : X → R+, Gt : X × X → R+ for t ≥ 1. The corresponding Feynman–Kac
distributions are defined as

Qt (dx0:t ) = 1

Lt

μ(dx0)G0(x0)

t∏
s=1

Mt(xt−1,dxt )Gs(xs−1, xs),

where

Lt =
∫
X t+1

μ(dx0)G0(x0)

t∏
s=1

Mt(xt−1,dxt )Gs(xs−1, xs),

assuming Lt > 0. In practice, we are usually interested in approximating the
so-called filtering distributions, that is, the marginal distributions πt(dxt ) =∫
x0:t−1∈X t Qt (dx0:t ). We also define �t = Lt/Lt−1 = (Qt−1Mt)(Gt) and the op-

erators, V0(ϕ) = η({ϕ − η(ϕ)}2), and for t ≥ 1,

Vt(xt−1, ϕ) = Mt

(
xt−1,

{
ϕ − Mt(ϕ)

}2)
,

where Mt(xt−1, ϕ) := ∫
X ϕ(xt )Mt(xt−1,dxt ), and Mt(ϕ) is the function xt−1 →

Mt(xt−1, ϕ).
The subsequent results will rely on the following assumptions:

(G) Functions Gt are continuous and upper bounded.
(M) The Markov kernels Mt define a Feller process, that is, Mt(ϕ) ∈ Cb(X ) for

all ϕ ∈ Cb(X ).



CONVERGENCE OF RESAMPLING METHODS 2253

Algorithm 2 Standard particle filter
At time 0:

(a) Generate (for n ∈ 1 : N ) Xn
0 ∼ μ(dx0).

(b) Compute (for n ∈ 1 : N ) wn
0 = G0(X

n
0) and Wn

0 = wn
0/

∑N
m=1 wm

0 .

Recursively, for times t = 1, . . . , T :

(a) Resample: for a given resampling scheme ρ, generate ancestor variables
A1:N

t , where An
t = an

N(Ut , ζ
N
t−1), Ut ∼ P, and ζN

t−1 = (Xn
t−1,W

n
t−1)

N
n=1 (as in

Definition 3).
(b) Generate (for n ∈ 1 : N ) Xn

t ∼ Mt(X
An

t

t−1,dxt ).

(c) Compute (for n ∈ 1 : N ) wn
t = Gt(X

An
t

t−1,X
n
t ) and Wn

t = wn
t /

∑N
m=1 wm

t .

A standard particle filter (Algorithm 2) generates at iteration t a weighted
sample, (Xn

t ,Wn
t )Nn=1, which approximates πt through the random measure

πN
t (dxt ) = ∑N

n=1 Wn
t δ(Xn

t ).

5.2. Consistency. We first state an almost sure weak convergence result for
Algorithm 2 under the condition that ρ is consistent for a suitable class of distri-
butions [see Crisan (2001), Theorem 2.3.2, page 23, for a proof].

PROPOSITION 3. Let P0 ⊆ P(X ) and assume that the Feynman–Kac model
defined by (Gt)t≥0, μ and (Mt)t≥1 is such that Assumptions (G) and (M)
hold, and that πt ∈ P0 for all t ≥ 0. Then, for any P0-consistent resampling
scheme ρ : [0,1]N × Z → Pf (X ) and t ≥ 0, the particle approximation πN

t :=∑N
n=1 Wn

t δ(Xn
t ) of πt generated by Algorithm 2 is such that

(13) πN
t

w=⇒ πt , P-a.s.

As a corollary, when X is a cubifiable set and the assumptions of the proposi-
tion are satisfied with P0 = P̃b(X ), this result shows that Algorithm 2 based on
stratified and SSP resampling is consistent in the sense that (13) holds for any
t ≥ 0.

We recall that (13) implies that, for any ϕ ∈ Cb(X ), πN
t (ϕ) → πt(ϕ), P-a.s.

When stratified resampling is used in Algorithm 2 we note that, because this re-
sampling mechanism dominates multinomial resampling in term of variance (see
Section 2.2), it also holds true that limN→+∞ NE[(πN

t (ϕ) − πt(ϕ))2] < +∞
for any ϕ ∈ Cb(X ). For unbounded measurable function ϕ : X → R such that
πt(ϕ) < +∞, the results in Cappé, Moulines and Rydén [(2005), Chapter 9] imply
that πN

t (ϕ) → πt(ϕ) in P-probability.
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5.3. Central limit theorem. As shown in the previous section, the “noise” in-
troduced by the Hilbert ordered stratified resampling scheme ρ∗

strat converges to
zero faster than the usual O(N−1) Monte Carlo rate. The next result formalises
the intuitive idea that, when Algorithm 2 is based on this resampling mechanism,
the resampling step does not contribute to the asymptotic variance of the quantity
N1/2(πN

t (ϕ) − πt(ϕ)). For sake of completeness, Theorem 7 also presents results
for the multinomial resampling (ρmulti) and residual reampling (ρres/multi) schemes
for which a central limit theorem also exists [see Chopin (2004), Künsch (2005),
Douc, Cappé and Moulines (2005)].

THEOREM 7. For Algorithm 2, assuming that X is a cubifiable set, πt ∈
P∗

b (X ) for all t ≥ 0, ρ ∈ {ρmulti, ρres/multi, ρ
�
strat} and that the Feynman–Kac model

fulfils assumptions (G) and (M), for any test function ϕ ∈ Cb(X ) we have that (for
any t ≥ 0)

N1/2

{
N∑

n=1

Wn
t ϕ

(
Xn

t

) − πt(ϕ)

}
w=⇒ Nd

(
0,Vt [ϕ]),

where the Vt (ϕ) are defined recursively as follows: Ṽ0[ϕ] = V0(ϕ),

Vt [ϕ] = 1

�2
t

Ṽt

[
Gt

{
ϕ − πt(ϕ)

}]
,

V̂t [ϕ] = Vt [ϕ] + Rt(ρ,ϕ),

Ṽt+1[ϕ] = V̂t

[
Mt+1(ϕ)

] + πt

[
Vt+1(ϕ)

]
and

0 = Rt

(
ρ�

strat, ϕ
) ≤ Rt(ρres/multi, ϕ) ≤ Rt(ρmulti, ϕ).

The proof is a simple combination of Theorem 4 and the proofs in the afore-
mentioned papers (see the Supplementary Material [Gerber, Chopin and Whiteley
(2019)]).

An obvious corollary of this theorem is that ordered stratified resampling dom-
inates multinomial and residual resampling, in terms of the asymptotic variance of
particle estimates generated by a particle filter. In fact, since the contribution of the
resampling step is zero when ordered stratified resampling is used, this particular
scheme may be declared as optimal (again, relative to the asymptotic variance for
any test function).

5.4. A note on the auxiliary particle filter. The auxiliary particle filter [APF,
Pitt and Shephard (1999)] is a variation on the standard particle filter, where the re-
sampling weights are “twisted” using some function ηt : X →R>0; that is, the re-
sampling weight of ancestor Xm

t−1 is W̃m
t ∝ Wm

t−1 × ηt−1(X
m
t−1);

∑N
n=1 W̃n

t−1 = 1.
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When a particle Xn
t originates from ancestor Xm

t−1, that is, An
t = m, it is assigned

(un-normalised) weight wn
t = Gt(X

m
t−1,X

n
t )Wm

t−1/W̃
m
t−1, so as to correct for the

discrepancy between the resampling weights and the actual weights.
Of particular interest is particle estimate

�N
t = 1

N

N∑
n=1

wn
t = 1

N

N∑
n=1

W
An

t

t−1

W̃
An

t

t−1

Gt

(
X

An
t

t−1,X
n
t

)
of normalising constant �t , and the cumulative product LN

t = ∏t
s=0 �N

t , which es-
timates Lt = ∏t

s=0 �t . The latter quantity usually corresponds to the likelihood of
the data observed up to time t (for a certain model) and thus plays a central role in
parameter estimation methods [e.g., particle Markov chain Monte Carlo, Andrieu,
Doucet and Holenstein (2010)].

THEOREM 8. Consider the APF Algorithm (as described above), a given
Feynman–Kac model such that Assumptions (G) and (M) hold, and assume
that functions η0, . . . , ηt−2 are fixed. For ρ = ρmulti, the function ηt−1(xt−1) =√

Mt(xt−1,G
2
t ) minimises the variance of particle estimates �N

t and LN
t .

For ρ = ρ�
strat, assuming in addition that X is a compact cubifiable set, the

quantities N Var[�N
t ] and N Var[LN

t ] converge to a limit which is minimal for
ηt−1 = η�

t−1, where η�
t−1(xt−1) = √

Vt(xt−1,Gt), among functions ηt−1 ∈ Cb(X )

that are positive almost everywhere. (In particular, η�
t−1 itself is assumed to be

positive everywhere.)

The usual recommendation [e.g., Johansen and Doucet (2008)] is to take
ηt−1(xt−1) = Mt(xt−1,Gt) (or some approximation of this quantity). Under multi-
nomial resampling, and in the “perfectly adapted” case (where Gt depends only
on xt−1), the proposition above shows that this choice is indeed optimal. Unfortu-
nately, it also shows that the choice of the auxiliary function in the APF should ac-
tually depend on the resampling scheme. This point deserves further study, which
we leave for future research. We refer to Douc, Moulines and Olsson (2009) for
related results on optimal auxiliary functions (relative to the asymptotic variance
for a given test function) and Cornebise, Moulines and Olsson (2008) for some
numerical scheme to approximate these optimal auxiliary functions within a para-
metric family. But again both papers assume multinomial resampling, and their re-
sults and proposed methodology should be adapted if another resampling scheme
is used.

5.5. Numerical experiments. We compare in this section the approximation
(πN

t )Tt=0 of (πt )
T
t=0 generated by Algorithm 2 under the resampling schemes ρstrat

(stratified resampling), ρ∗
strat (ordered stratified resampling) and ρssp (SSP resam-

pling).
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Following Guarniero, Johansen and Lee (2017), we consider the linear Gaussian
state-space models where X0 ∼Nd(0, Id), and, for t = 1, . . . , T ,

Xt = FXt−1 + Vt , Vt ∼ Nd(0, Id),

Yt = Xt + Wt, Wt ∼ Nd(0, Id),

with F = (α|i−j |+1)di,j=1, α = 0.4, T = 500 and d = 5. We focus on the problem
of estimating the log-likelihood of the model, logp(y1:T ), which is estimated from
the output of Algorithm 2 by logLN

T = ∑T
t=0 log�N

t (see Section 5.4).
We consider two Feynman–Kac models; a “bootstrap” model, where the

Markov kernel Mt(xt−1,dxt ) corresponds to the law of Xt |Xt−1 = xt−1, Gt(xt−1,

xt ) is the probability density of Yt |Xt = xt ; and a “guided” model, where
Mt(xt−1,dxt ) is the Gaussian distribution Nd((yt +Fxt−1)/2, Id/2), Gt(xt−1, xt )

is the probability density of Nd(Fxt−1,2Id) at point yt . Both Feynman–Kac for-
malisms are such that πt is the filtering distribution at time t of the model above.
The point of the guided formalism is to reduce the variance of the weights (at each
time t), and thus to reduce the variance of particle estimates.

Figure 2 shows the variance of the estimator logLN
T obtained under the two

above Feynman–Kac formalisms, as a function of t ∈ 1 : T , and for the resam-
pling schemes ρstrat, ρ∗

strat and ρssp. For each resampling scheme, the results of
Figure 2 are based on 1000 independent runs of the two particle algorithms we are
considering, with N = 213 particles.

FIG. 2. Estimation of the log-likelihood function as a function of t . The left (resp., right) plot gives
the variance of SMC based on unordered stratified resampling divided by that of SMC based on
Hilbert-ordered stratified resampling (resp. unordered SSP resampling). Continuous lines are for
SMC based on the guided proposal while the dotted line is for the bootstrap particle filter. Results
are based on 1000 independent runs of the algorithms with N = 213 particles.
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As expected from the results of Section 4, the variance of logLN
t is smaller

with ρ∗
strat than with ρstrat; the relative gains are larger when the guided formalism

is used (where the variances under ρstrat are about 40% higher than under ρ∗
strat).

The results presented in Figure 2 suggest that ρssp is preferable to ρstrat. This is par-
ticularly true with the guided formalism where the variances under ρstrat are about
20% higher than when ρssp is used. Lastly, the variances under SSP resampling
are larger than under ordered stratified resampling but ρssp has the advantage to be
faster. Indeed, SSP resampling requires O(N) operations against O(N logN) for
ρ∗

strat.

6. Conclusion. Our results support the practice in the SMC literature to aban-
don multinomial resampling for stratified resampling by providing strong theoret-
ical guarantees for this resampling scheme, which has the remarkable property to
be both cheaper and more accurate than multinomial resampling. For the same
reasons, our results should encourage practitioners to abandon residual resampling
for a version of this residual method where the multinomial resampling step is
replaced by a stratified resampling step.

The systematic resampling scheme fails to produce offspring numbers that are
negatively associated. As an alternative to it we have introduced the SSP resam-
pling algorithm which (1) is similar to systematic resampling in term of offspring
numbers and (2) verifies the conditions of our general consistency result. We also
built an example suggesting that any general consistency results for systematic re-
sampling would require to take into account the order of the input particles and
have established its validity when they are ordered along the Hilbert curve.

Our practical recommendation is to prefer SSP resampling to systematic resam-
pling since both have similar properties while only the former has been proven to
be consistent. Systematic resampling has the advantage to be faster than SSP re-
sampling but in most cases this gain is likely to be imperceptible. Our simulation
study suggests that SSP resampling outperforms also stratified resampling in term
of variance but no theoretical result exists to support this observation.

We have also derived various results showing that the variance of stratified re-
sampling goes to zero faster than N−1 when applied on an input point set ordered
along the Hilbert curve, and notably a nonasymptotic bound of size N−1− 1

d . Un-
surprisingly, when the dimension of the state-space is small and/or when a good
proposal distribution is available, our simulation results show that ordering the
particle before applying stratified resampling may lead to important variance re-
duction. These theoretical results on the variance of Hilbert ordered stratified re-
sampling are also of particular interest for sequential quasi-Monte Carlo [Gerber
and Chopin (2015)], a quasi-Monte Carlo version of SMC, that converges at a
faster but currently unknown rate.
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APPENDIX: CONVERGENT SEQUENCES OF PROBABILITY MEASURES:
STAR NORM AND TRANSFORMATIONS THROUGH THE HILBERT

CURVE AND ITS INVERSE

The following theorem is the main tool for establishing Theorem 3.

THEOREM 9. Let X be a cubifiable set, (πN)N≥1 be a sequence in P(X ),
π ∈ P̃b(X ) and ψ ∈ D(X ) be such that πψ ∈ Pb((0,1)d). Then the following
assertions are equivalent:

(i) πN w=⇒ π ;
(ii) limN→+∞ ‖πN − π‖� = 0;

(iii) limN→+∞ ‖πN
hX ,ψ

− πhX ,ψ
‖� = 0;

(iv) πN
hX ,ψ

w=⇒ πhX ,ψ
.

Implications (ii) ⇒ (iii) and (iii) ⇒ (ii), respectively, are due to Gerber and
Chopin [(2015), Theorem 3] and Schretter et al. [(2016), Theorem 1]. Implica-
tions (ii) ⇒ (i) and (iii) ⇒ (iv) are direct applications of the Portmanteau lemma
[e.g., van der Vaart (1998), Lemma 2.2, page 6]. Implication (i) ⇒ (ii) for d = 1
holds by Polyà’s theorem [Pólya (1920); see also Bickel and Millar (1992), result
(A.1)]; note that Polyà’s theorem only requires that π ∈ P(X ) is such that Fπ is
continuous. Implication (i) ⇒ (ii) for d > 1 is new and proved following a simi-
lar argument as in Kuipers and Niederreiter [(1974), Theorem 1.2, page 89] while
implication (iv) ⇒ (iii) is a consequence of Polyà’s theorem and of the continuity
of FπhX ,ψ

, which is established in the next lemma.

LEMMA 2. Let X be a cubifiable set, π ∈ P̃b(X ) and ψ ∈ D(X ) be such that
πψ ∈ Pb((0,1)d). Then πhX ,ψ

is a continuous probability measure on (0,1).

We also note the proofs of implications (ii) ⇒ (iii) and (iii) ⇒ (ii) in Gerber
and Chopin (2015), Gerber and Chopin (2017), Schretter et al. (2016) implicitly
assume that the sequence (πN)N≥1 is such that [with X = (0,1)d ]

πN(Hd) = 0 for all N large enough,

where Hd is the set of points of [0,1]d that have more than pre-image through H .
This point is corrected in the Supplementary Material [Gerber, Chopin and White-
ley (2019)] where a complete proof of Theorem 9 is provided.

Acknowledgements. We thank Patrice Bertail, Anthony Lee and Matthieu
Wihelm for useful comments.

SUPPLEMENTARY MATERIAL

Supplementary material: Proofs (DOI: 10.1214/18-AOS1746SUPP; .pdf).
This supplement contains all the proofs.

https://doi.org/10.1214/18-AOS1746SUPP
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