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We obtain estimation error rates and sharp oracle inequalities for regu-
larization procedures of the form

f̂ ∈ argmin
f ∈F

(
1

N

N∑
i=1

�f (Xi,Yi) + λ‖f ‖
)

when ‖ · ‖ is any norm, F is a convex class of functions and � is a Lipschitz
loss function satisfying a Bernstein condition over F . We explore both the
bounded and sub-Gaussian stochastic frameworks for the distribution of the
f (Xi)’s, with no assumption on the distribution of the Yi ’s. The general re-
sults rely on two main objects: a complexity function and a sparsity equation,
that depend on the specific setting in hand (loss � and norm ‖ · ‖).

As a proof of concept, we obtain minimax rates of convergence in the
following problems: (1) matrix completion with any Lipschitz loss function,
including the hinge and logistic loss for the so-called 1-bit matrix completion
instance of the problem, and quantile losses for the general case, which en-
ables to estimate any quantile on the entries of the matrix; (2) logistic LASSO
and variants such as the logistic SLOPE, and also shape constrained logistic
regression; (3) kernel methods, where the loss is the hinge loss, and the regu-
larization function is the RKHS norm.

1. Introduction. Many classification and regression problems are solved in
practice by regularized empirical risk minimizers (RERM). The risk is measured
via a loss function. The quadratic loss function is the most popular function for
regression. It has been extensively studied (cf. [23, 31] among others). Still many
other loss functions are popular among practitioners and are indeed extremely use-
ful in specific situations.

First, let us mention the quantile loss in regression problems. The 0.5-quantile
loss (also known as absolute or L1 loss) is known to provide an indicator of con-
ditional central tendency more robust to outliers than the quadratic loss. An alter-
native to the absolute loss for robustification is provided by the Huber loss. On the
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other hand, general quantile losses are used to estimate conditional quantile func-
tions and are extremely useful to build confidence intervals and measures of risk,
like Values at Risk (VaR) in finance.

Let us now turn to classification problems. The natural loss in this context,
the so-called 0/1 loss, leads very often to computationally intractable estimators.
Thus, it is usually replaced by a convex loss function, such as the hinge loss or
the logistic loss. A thorough study of convex loss functions in classification can be
found in [46].

All the aforementioned loss functions (quantile, Huber, hinge and logistic) share
a common property: they are Lipschitz functions. This motivates a general study
of RERM with any Lipschitz loss. Note that some examples were already studied
in the literature: the ‖ · ‖1-penalty with a quantile loss was studied in [9] under
the name “quantile LASSO” while the same penalty with the logistic loss was
studied in [45] under the name “logistic LASSO” (cf. [44]). The ERM strategy
with Lipschitz proxys of the 0/1 loss are studied in [25]. The loss functions we
will consider in the examples of this paper are:

1. hinge loss: �f (x, y) = (1 − yf (x))+ = max(0,1 − yf (x)) for every y ∈
{−1,+1}, x ∈ X , f : X →R,

2. logistic loss: �f (x, y) = log(1 + exp(−yf (x))) for every y ∈ {−1,+1},
x ∈ X , f :X →R;

3. quantile regression loss: for some parameter τ ∈ (0,1), �f (x, y) = ρτ (y −
f (x)) for every y ∈ R, x ∈ X , f : X → R where ρτ (z) = z(τ − I (z ≤ 0)) for all
z ∈R.

The two main theoretical results of the paper, stated in Section 2, are general in
the sense that they do not rely on a specific loss function or a specific regularization
norm. We develop two different settings that handle different assumptions on the
design. In the first one, we assume that the family of predictors is sub-Gaussian;
in the second setting, we assume that the predictors are uniformly bounded. This
setting is well suited for classification tasks, including the 1-bit matrix completion
problem. The rates of convergence rely on quantities that measure the complexity
of the model and the “size” of the subdifferential of the norm (note that the subdif-
ferential of a norm at a nonzero point is a subset of the dual sphere. We informally
say that it is large when it covers a large part of the dual sphere without quantifying
it).

To be more precise, the method works for any regularization function as long
as it is a norm. Following [30], our approach will show a connection between the
excess risk bounds and the size of the subdifferential of the regularization norm
around the best predictor (the oracle). For example, when the oracle f ∗ is sparse,
the subdifferential of the �1 norm at f ∗ is large, and the excess risk bound is small.
We refer to these bounds as sparsity dependent bounds. In general, good excess
risk bounds will be obtained using a regularizer that has some “sparsity inducing
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power,” like the �1 or nuclear norms, and this will be expressed through the size of
the subdifferential of the regularizer around the oracle.

We study many applications that give new insights on diverse problems: the
first one is a classification problem with logistic loss and LASSO or SLOPE reg-
ularizations. We prove that the �2 estimation rate achieved by the logistic SLOPE
estimator is the classical rate s log(p/s)/N . The second one is about matrix com-
pletion. We derive new excess risk bounds for the 1-bit matrix completion issue
with both logistic and hinge loss. We also study the quantile loss for matrix com-
pletion and prove it reaches sharp bounds. We show several examples in order to
assess the general methods as well as simulation studies. The last example involves
the SVM and proves that “classic” regularization method with no special sparsity
inducing power can be analyzed in the same way as sparsity inducing regulariza-
tion methods. Note that all those results are obtained for a random design.

A remarkable fact is that no assumption on the output Y is needed (while most
results for the quadratic loss rely on—restrictive—assumptions of the tails of the
distribution of Y ). Neither do we assume any statistical model relating the “output
variable” Y to the “input variable” X.3

Mathematical background and notation. The observations are N i.i.d. pairs
(Xi, Yi)

N
i=1 where (Xi, Yi) ∈ X × Y are distributed according to P . We consider

the case where Y is a subset of R and let μ denote the marginal distribution of Xi .
Let L2 be the set of real valued functions f defined on X such that Ef (X)2 <

+∞ where the distribution of X is μ. In this space, we define the L2-norm as
‖f ‖L2 = (Ef (X)2)1/2 and the L∞ norm such that ‖f ‖L∞ = esssup(|f (X)|). We
consider a set of predictors F ⊆ E, where E is a subspace of L2 and ‖ · ‖ is
a norm over E (actually, in some situations we will simply have F = E, but in
some natural examples we will consider bounded set of predictors, in the sense
that supf ∈F ‖f ‖L∞ < ∞, which implies that F cannot be a subspace of L2).

For every f ∈ F , the loss incurred when we predict f (x), while the true out-
put/label is actually y, is measured using a loss function �: �(f (x), y). It will
actually be convenient to use the notation �f (x, y) = �(f (x), y). In this work, we
focus on loss functions that are nonnegative, and Lipschitz, in the following sense.

ASSUMPTION 1.1 (Lipschitz loss function). For every f1, f2 ∈ F , x ∈ X and
y ∈ Y , we have |�(f1(x), y) − �(f2(x), y)| ≤ |f1(x) − f2(x)|.

Note that we chose a Lipschitz constant equal to one in Assumption 1.1. This
can always be achieved by a proper normalization of the loss function.

3Of course, if Y and X are independent, our results are valid but useless. Our prediction risk
bounds (like Theorem 2.1) state that we learn to predict Y by the best possible f (X) for f in a given
class F . If there is no f ∈ F such that f (X) predicts Y well, our results are useless. On the other
hand, we point out that it is not necessary to make (restrictive) parametric assumptions on (X,Y ) to
ensure that there is a function f in a given class F that will lead to acceptable predictions.
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REMARK 1.1. Examples were provided above: quantile losses, the hinge loss
or the Huber loss. Note that assuming that for any f ∈ F , ‖f ‖∞ ≤ Cf < ∞ and
that |Y | ≤ CY is bounded a.s, the squared loss �(f (X),Y ) = (Y −f (X))2 satisfies
|(y − f1(x))2 − (y − f2(x))2| = |2y − f1(x) − f2(x)||f1(x) − f2(x)| ≤ 2(CF +
CY )|f1(x) − f2(x)|. It is then possible to use our results in this context. However,
we do not recommend this in general: this case excludes classical examples such as
Gaussian noise. Our study was partly motivated by [31] that was dedicated to the
square loss: in [31], sparse linear regression is covered with a wide set of noises,
including Gaussian but also heavy-tailed noise.

We define the oracle predictor as

f ∗ ∈ argmin
f ∈F

P�f where4 P�f = E�f (X,Y )

and (X,Y ) is distributed like the (Xi, Yi)’s. One of the objectives of machine
learning is to provide an estimator f̂ that predicts almost as well as f ∗. We
usually formalize this notion by introducing the excess risk E(f ) of f ∈ F by
Lf = �f − �f ∗ and E(f ) = PLf . Thus we consider the estimator of the form

(1) f̂ ∈ argmin
f ∈F

{
PN�f + λ‖f ‖}

,

where PN�f = (1/N)
∑N

i=1 �f (Xi, Yi) and λ is a regularization parameter to be
chosen. Such an estimator is usually called a Regularized Empirical Risk Mini-
mization procedure (RERM).

For the rest of the paper, we will use the following notation: let rB and rS

denote the radius r ball and sphere for the norm ‖ · ‖, that is, rB = {f ∈ E : ‖f ‖ ≤
r} and rS = {f ∈ E : ‖f ‖ = r}. For the L2-norm, we write rBL2 = {f ∈ L2 :
‖f ‖L2 ≤ r} and rSL2 = {f ∈ L2 : ‖f ‖L2 = r} and so on for the other norms.

Even though our results are valid in the general setting introduced above, we
will develop the examples mainly in two directions that we will refer to vector
and matrix. The vector case involves X as a subset of Rp; we then consider the
class of linear predictors, that is, E = {〈t, ·〉, t ∈ R

p}. In this case, we denote for
q ∈ [1,+∞], the lq -norm in R

p as ‖ · ‖lq . The matrix case is also referred as the
trace regression model: X is a random matrix in R

m×T and we consider the class
of linear predictors E = {〈M, ·〉,M ∈ R

m×T } where 〈A,B〉 = Trace(A�B) for

4Note that without any assumption on Y it might be that P�f = E�f (X,Y ) = ∞ for any
f ∈ F . Our results remain valid in this case, but it is no longer possible to use the defini-
tion f ∗ ∈ argminf ∈F P�f . A general definition is as follows: fix any f0 ∈ F . For any f ∈ F ,
E[�f (X,Y ) − �f0 (X,Y )]] ≤ E|(f − f0)(X)| < ∞ under the assumptions on F that will be stated
in Section 2. It is then possible to define f ∗ as any minimizer of E[�f (X,Y ) − �f0 (X,Y )]]. This
definition obviously coincides with the definition f ∗ ∈ argminf ∈F P�f when P�f is finite for some
f ∈ F .
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any matrices A, B in R
m×T . The norms we consider are then, for q ∈ [1,+∞[,

the Schatten-q-norm for a matrix: ∀M ∈ R
m×T ,‖M‖Sq = (

∑
σi(M)q)1/q where

σ1(M) ≥ σ2(M) ≥ · · · is the family of the singular values of M . The Schatten-1
norm is also called trace norm or nuclear norm. The Schatten-2 norm is also known
as the Frobenius norm. The S∞ norm, defined as ‖M‖S∞ = σ1(M) is known as the
operator norm.

The notation C will be used to denote positive constants that might change from
one instance to the other. For any real numbers a, b, we write a � b when there
exists a positive constant C such that a ≤ Cb. When a � b and b � a, we write
a ∼ b.

The rest of the paper is organized as follows. In Section 2, we introduce the con-
cepts necessary to the general study of (1): namely, a complexity parameter, and
a sparsity parameter. Thanks to these parameters, we define the assumptions nec-
essary to our general results: the Bernstein condition, which is classic in learning
theory to obtain fast rates [31], and a stochastic assumption on F (sub-Gaussian
or bounded). Our two general theorems themselves are eventually presented; note
that the proofs of the two main theorems (and extended versions of them) are post-
poned to Section 9 of Supplement A [3]. The remaining sections are devoted to
applications of our results to different estimation methods: the logistic LASSO
and logistic SLOPE in Section 3, matrix completion in Section 4 and Support Vec-
tor Machines (SVM) in Section 7 of Supplement A. For matrix completion, the
minimax-optimality of the rates for the logistic and the hinge loss, that were not
known, is also stated in Section 4; note that the proof of the optimality is postponed
to Section 10 in Supplement A and that an extensive simulation study5 may also
be found in Section 6 of Supplement A. In Section 8 of Supplement A, we discuss
the Bernstein condition for the three main loss functions of interest: hinge, logistic
and quantile (the corresponding proofs are in Section 11 of Supplement A). Finally,
Section 12 of Supplement A contains the study of the (nonpenalized) ERM, that
is, the case λ = 0 under the same assumptions. We also provide a short application
to shape-constrained estimation in Section 12.

2. Theoretical results.

2.1. Applications of the main results: The strategy. The two main theorems in
Sections 2.5 and 2.6 below are general in the sense that they allow the statistician
to deal with any (nonnegative) Lipschitz loss function and any norm for regular-
ization, but they involve quantities that depend on the loss and the norm. The aim
of this subsection is first to provide the definition of these objects and some hints
on their interpretation, through examples. The main theorems are then stated in
both settings. Basically, the assumptions for the theorems are of three types:

5The code may be downloaded on the page https://sites.google.com/site/vincentcottet/code.

https://sites.google.com/site/vincentcottet/code
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1. The so-called Bernstein condition, which is a quantification of the identifi-
ability condition or a curvature assumption of the objective function f → P�f at
its minimum f ∗. Formally, it relates the excess risk E(f ) = PLf = P(�f − �f ∗)
to the L2 norm ‖f −f ∗‖L2 through an inequality of the form PLf � ‖f −f ∗‖2κ

L2
.

2. A stochastic assumption on the distribution of the f (X)’s for f ∈ F . In
this work, we consider both a sub-Gaussian assumption and a uniform bounded-
ness assumption. Analysis of the two setups differ only on the way the “statistical
complexity of F ” is measured [cf. below the functions r(·) in Definition 2.5 and
Definition 2.7].

3. Finally, we consider the sparsity parameter as introduced in [31]. It reflects
how the norm ‖ · ‖ used as a regularizer can induce sparsity; for example, think of
the “sparsity inducing power” of the l1-norm used to construct the LASSO estima-
tor.

Given a scenario, that is a loss function �, a random design X, a convex class F

and a regularization norm, statistical results (exact oracle inequalities and estima-
tion bounds w.r.t. the L2 and regularization norms) for the associated regularized
estimator together with the choice of the regularization parameter follow from the
derivation of the three parameters (κ, r, ρ∗) as follows:

1. Find the Bernstein parameters κ ≥ 1 and A > 0 associated to the loss and
the class F ;

2. Compute the Complexity function

r(ρ) =
[
Aρ comp(B)√

N

]1/2κ

,

where comp(B) is defined either through the Gaussian mean width w(B), in the
sub-Gaussian case, or the Rademacher complexity Rad(B), in the bounded case;

3. Compute the subdifferential ∂‖ · ‖(f ∗) of ‖ · ‖ at the oracle f ∗ [or in the
neighborhood f ∗ + (ρ/20)B for approximately sparse oracles] and solve the spar-
sity equation “find ρ∗ such that 	(ρ∗) ≥ 4ρ∗/5”, where 	(·) is defined in Defini-
tion 2.1 below.

4. Apply Theorem 2.1 in the sub-Gaussian framework and Theorem 2.2 in
the bounded framework. In each case, with large probability,∥∥f̂ − f ∗∥∥ ≤ ρ∗,

∥∥f̂ − f ∗∥∥
L2

≤ r
(
2ρ∗)

and E(f̂ ) ≤ C
[
r
(
2ρ∗)]2κ

.

For the sake of simplicity, we present the two settings in different subsections
with both the exact definition of the complexity function and the theorem. As the
sparsity equation is the same in both settings, we define it before even though it
involves the complexity function.

2.2. The Bernstein condition. The first assumption needed is called Bernstein
assumption and is very classic in order to deal with Lipschitz losses.
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ASSUMPTION 2.1 (Bernstein condition). There exist κ ≥ 1 and A > 0 such
that for every f ∈ F , ‖f − f ∗‖2κ

L2
≤ APLf .

The most important parameter is κ and will be involved in the rate of conver-
gence. As usual, fast rates will be derived when κ = 1. In many situations, this
assumption is satisfied and we present various cases in Section 8 in Supplement A.
In particular, it is satisfied with κ = 1 for the logistic loss in both bounded and
Gaussian framework, and we exhibit explicit conditions to ensure that Assump-
tion 2.1 holds for the hinge and the quantile loss functions.

We call Assumption 2.1 a Bernstein condition following [7] and that it is differ-
ent from the margin assumption from [34, 43]: in the so-called margin assumption,
the oracle f ∗ in F is replaced by the minimizer f of the risk function f → P�f

over all measurable functions f , sometimes called the Bayes rules. We refer the
reader to Section 8 in Supplement A and to the discussions in [28] and Chapter 1.3
in [27] for more details on the difference between the margin assumption and the
Bernstein condition.

REMARK 2.1. The careful reader will actually realize that the proof of Theo-
rem 2.1 and Theorem 2.2 requires only a weaker version of this assumption, that
is, there exist κ ≥ 1 and A > 0 such that for every f ∈ C, ‖f − f ∗‖2κ

L2
≤ APLf ,

where C is defined in terms of the complexity function r(·) and the sparsity param-
eter ρ∗ to be defined in the next subsections,

(2) C := {
f ∈ F : ∥∥f − f ∗∥∥

L2
≥ r

(
2
∥∥f − f ∗∥∥)

and
∥∥f − f ∗∥∥ ≥ ρ∗}

.

Note that the set C appears to play a central role in the analysis of regularization
methods; cf. [31]. However, in all the examples presented in this paper, we prove
that the Bernstein condition holds on the entire set F .

2.3. The complexity function r(·). The complexity function r(·) is defined by

∀ρ > 0, r(ρ) =
[
Aρ comp(B)√

N

]1/2κ

,

where A is the constant in Assumption 2.1 and where comp(B) is a measure of the
complexity of the unit ball B associated to the regularization norm. Note that this
complexity measure will depend on the stochastic assumption of F . In the bounded
setting, comp(B) = C Rad(B) where C is an absolute constant and Rad(B) is the
Rademacher complexity of B (whose definition will be reminded in Section 2.6).
In the sub-Gaussian setting, comp(B) = CLw(B) where C is an absolute constant,
L is the sub-Gaussian parameter of the class F − F and w(B) is the Gaussian
mean-width of B [here again, exact definitions of L and w(B) will be reminded in
Section 2.5].

Note that sharper (localized) versions of r(·) are provided in Section 9 in Sup-
plement A. However, as it is the simplest version that is used in most examples,
we only introduce this (global) version for now.



2124 P. ALQUIER, V. COTTET AND G. LECUÉ

2.4. The sparsity parameter ρ∗. The size of the subdifferential of the regular-
ization function ‖ · ‖ in a neighborhood of the oracle f ∗ play a central role in our
analysis. We recall now its definition: for every f ∈ F

∂‖ · ‖(f ) = {
g ∈ E : ‖f + h‖ − ‖f ‖ ≥ 〈g,h〉 for all h ∈ E

}
.

It is well known that ∂‖ · ‖(f ) is a subset of the unit sphere of the dual norm of
‖ · ‖ when f �= 0. Note also that when f = 0, ∂‖ · ‖(f ) is the entire unit dual
ball, a fact we will also use in two situations, either when the regularization norm
has no “sparsity inducing power,” in particular, when it is a smooth function as in
the RKHS case treated in Section 7 in Supplement A; or when one wants extra
norm dependent upper bounds (cf. [30] for more details where these bounds are
called complexity dependent) in addition to sparsity dependent upper bounds. In
the latter, the statistical bounds that we get are the minimum between an error rate
that depends on the notion of sparsity naturally associated to the regularization
norm (when it exists) and an error rate that depends on ‖f ∗‖.

DEFINITION 2.1 (From [31]). The sparsity parameter is the function 	(·)
defined for any ρ > 0 by

	(ρ) = inf
h∈ρS∩r(2ρ)BL2

sup
g∈
f ∗ (ρ)

〈h,g〉,

where 
f ∗(ρ) = ⋃
f ∈f ∗+(ρ/20)B ∂‖ · ‖(f ).

Note that there is a slight difference with the definition of the sparsity parameter
from [31] where there 	(ρ) is defined taking the infimum over the sphere ρS in-
tersected with a L2-ball of radius r(ρ) whereas in Definition 2.1, ρS is intersected
with a L2-ball of radius r(2ρ). Up to absolute constants this has no effect on the
behavior of 	(ρ) and the difference comes from technical details in our analysis
(a peeling argument that we use below whereas a direct homogeneity argument
was enough in [31]).

In the following, estimation rates with respect to the regularization norm ‖ · ‖,
the norm ‖ · ‖L2 as well as sharp oracle inequalities are given. All the convergence
rates depend on a single radius ρ∗ that satisfies the sparsity equation as introduced
in [31].

DEFINITION 2.2. The radius ρ∗ is any solution of the sparsity equation

(3) 	
(
ρ∗) ≥ (4/5)ρ∗.

Since ρ∗ is central in the results and drives the convergence rates, finding a
solution to the sparsity equation will play an important role in all the examples
that we worked out in the following. Roughly speaking, if the regularization norm
induces sparsity, a sparse element in f ∗ + (ρ/20)B [i.e., an element f for which
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∂‖ · ‖(f ) is almost extremal—that is almost as large as the entire dual sphere]
yields the existence of a small ρ∗ satisfying the sparsity equation.

In addition, if one takes ρ = 20‖f ∗‖ then 0 ∈ 
f ∗(ρ) and since ∂‖ · ‖(0) is the
entire dual ball associate to ‖ · ‖, one has directly that 	(ρ) = ρ and so ρ satisfies
the sparsity equation (3). We will use this observation to obtain norm dependent
upper bounds, that is, rates of convergence depending on ‖f ∗‖ and that do not
depend on any sparsity parameter. Such a bound holds for any norm; in particular,
for norms with no sparsity inducing power as in Section 7 in Supplement A.

2.5. Theorem in the sub-Gaussian setting. First, we introduce the sub-
Gaussian framework (then we will turn to the bounded case in the next section).

DEFINITION 2.3 (Sub-Gaussian class). We say that a class of functions F is
L-sub-Gaussian (w.r.t. X) for some constant L ≥ 1 when for all f ∈ F and all
λ ≥ 1,

(4) E exp
(
λ
∣∣f (X)

∣∣/‖f ‖L2

) ≤ exp
(
λ2L2)

,

where ‖f ‖L2 = (Ef (X)2)1/2.

We will use the following operations on sets: for any F ′ ⊂ E and f ∈ E,

F ′ + f = {
f ′ + f : f ′ ∈ F ′}, F ′ − F ′ = {

f ′
1 − f ′

2 : f ′
1, f

′
2 ∈ F ′}

and dL2(F
′) = sup(‖f ′

1 − f ′
2‖L2 : f ′

1, f
′
2 ∈ F ′).

ASSUMPTION 2.2. The class F − F is L-sub-Gaussian.

Note that there are many equivalent formulations of the sub-Gaussian property
of a random variable based on ψ2-Orlicz norms, deviations inequalities, expo-
nential moments, moments growth characterization, etc. (cf., for instance, Theo-
rem 1.1.5 in [15]). The one we will use later is as follows: there exists some abso-
lute constant C such that F − F is L-sub-Gaussian if and only if for all f,g ∈ F

and t ≥ 1,

(5) P
[∣∣f (X) − g(X)

∣∣ ≥ CtL‖f − g‖L2

] ≤ 2 exp
(−t2)

.

There are several examples of sub-Gaussian classes. For instance, when F is
a class of linear functionals F = {〈·, t〉 : t ∈ T } for T ⊂ R

p and X is a random
variable in R

p then F − F is L-sub-Gaussian in the following cases:

1. X is a Gaussian vector in R
p ,

2. X = (xj )
p
j=1 has independent coordinates that are sub-Gaussian, that is,

there are constants c0 > 0 and c1 > 0 such that ∀j , ∀t > c0,P[|xj | ≥ t (Ex2
j )1/2] ≤

2 exp(−c1t
2),



2126 P. ALQUIER, V. COTTET AND G. LECUÉ

3. for 2 ≤ q < ∞, X is uniformly distributed over p1/qBlq (cf. [5]),
4. X = (xj )

p
j=1 is an unconditional vector [meaning that for every signs

(εj )j ∈ {−1,+1}p , (εjxj )
p
j=1 has the same distribution as (xj )

p
j=1], Ex2

j ≥ c2

for some c > 0 and ‖X‖l∞ ≤ R almost surely then one can choose L ≤ CR/c (cf.
[29]).

In the sub-Gaussian framework, a natural way to measure the statistical com-
plexity of the problem is via Gaussian mean-width that we introduce now.

DEFINITION 2.4. Let H be a subset of L2. Let (Gh)h∈H be the canonical
centered Gaussian process indexed by H [in particular, the covariance structure
of (Gh)h∈H is given by (E(Gh1 − Gh2)

2)1/2 = (E(h1(X) − h2(X))2)1/2 for all
h1, h2 ∈ H ]. The Gaussian mean-width of H is w(H) = E suph∈H Gh.

We refer the reader to Section 12 in [18] for the construction of Gaussian pro-
cesses in L2. There are many natural situations where Gaussian mean-widths can
be derived explicitly; cf. [20] or the examples in Section 3.

We are now in position to define the complexity parameter as announced previ-
ously.

DEFINITION 2.5. The complexity parameter is the nondecreasing function
r(·) defined for every ρ ≥ 0 by

r(ρ) =
(

ACLw(B)ρ√
N

) 1
2κ

,

where κ (the Bernstein parameter) and A are defined in Assumption 2.1, L is the
sub-Gaussian parameter from Assumption 2.2 and C > 0 is an absolute constant
(the exact value of C can be deduced from the proof of Proposition 9.2 in Supple-
ment A).

After the computation of the Bernstein parameter κ , the complexity function
r(·) and the radius ρ∗, it is now possible to explicit our main result in the sub-
Gaussian framework.

THEOREM 2.1. Assume that Assumption 1.1, Assumption 2.1 and Assump-
tion 2.2 hold and let C > 0 from the definition of r(·) in Definition 2.5. Let the
regularization parameter λ be

λ = 5

8

CLw(B)√
N

and ρ∗ satisfying (3). Then, with probability larger than

(6) 1 − C exp
(−CN1/2κ(

ρ∗w(B)
)(2κ−1)/κ)
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we have∥∥f̂ − f ∗∥∥ ≤ ρ∗,
∥∥f̂ − f ∗∥∥

L2
≤ r

(
2ρ∗) =

[
ACLw(B)2ρ∗

√
N

]1/2κ

and

E(f̂ ) ≤ r(2ρ∗)2κ

A
= CLw(B)2ρ∗

√
N

,

where C denotes positive constants that might change from one instance to the
other and depend only on A, κ , L and C.

REMARK 2.2 (Deviation parameter). Replacing w(B) by any upper bound
does not affect the validity of the result. As a special case, it is possible to increase
the confidence level of the bound by replacing w(B) by w(B) + x: then, with
probability at least

1 − C exp
(−CN1/2κ(

ρ∗[
w(B) + x

])(2κ−1)/κ)
we have in particular

∥∥f̂ − f ∗∥∥
L2

≤ r
(
2ρ∗) =

[
ACL[w(B) + x]2ρ∗

√
N

]1/2κ

and

E(f̂ ) ≤ r(2ρ∗)2κ

A
= CL[w(B) + x]2ρ∗

√
N

.

REMARK 2.3 (Norm and sparsity dependent error rates). Theorem 2.1 holds
for any radius ρ∗ satisfying the sparsity equation (3). We have noticed in Sec-
tion 2.4 that ρ∗ = 20‖f ∗‖ satisfies the sparsity equation since in that case 0 ∈

f ∗(ρ∗) and so 	(ρ∗) = ρ∗. Therefore, one can apply Theorem 2.1 to both
ρ∗ = 20‖f ∗‖ (this leads to norm dependent upper bounds) and to the smallest ρ∗
satisfying the sparsity equation (3) (this leads to sparsity dependent upper bounds)
at the same time. Both will lead to meaningful results (a typical example of such a
combined result is Theorem 9.2 from [23] or Theorem 3.1 below).

2.6. Theorem in the bounded setting. We now turn to the bounded framework,
that is, we assume that all the functions in F are uniformly bounded in L∞. This
assumption is very different in nature than the sub-Gaussian assumption which is
in fact a norm equivalence assumption (i.e., Definition 2.3 is equivalent to ‖f ‖L2 ≤
‖f ‖ψ2 ≤ L‖f ‖L2 for all f ∈ F where ‖ · ‖ψ2 is the ψ2 Orlicz norm; cf. [37]).

ASSUMPTION 2.3 (Boundedness assumption). There exist a constant b > 0
such that for all f ∈ F , ‖f ‖L∞ ≤ b.
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The main motivation to consider the bounded setup is for sampling over the
canonical basis of a finite dimensional space like R

m×T or R
p . Note that this

type of sampling is stricto sensu sub-Gaussian, but with a constant L depending
on the dimensions m and T , which yields suboptimal rates. This is the reason
why the results in the bounded setting are more relevant in this situation. This
is especially true for the 1-bit matrix completion problem that will be studied in
depth in Section 4. For this example, the Xi’s are chosen randomly in the canonical
basis (E1,1, . . . ,Em,T ) of R

m×T . Moreover, in that example, the class F is the
class of all linear functionals indexed by bB∞: F = {〈·,M〉 : maxp,q |Mpq | ≤ b}
and, therefore, the study of this problem falls naturally in the bounded framework
studied in this section.

Under the boundedness assumption, the “statistical complexity” cannot be any-
more characterized by Gaussian mean width. We therefore introduce another com-
plexity parameter known as Rademacher complexity. This complexity measure has
been extensively studied in the learning theory literature (cf., for instance, [6, 22,
23]).

DEFINITION 2.6. Let H be a subset of L2. Let (εi)
N
i=1 be N i.i.d. Rademacher

variables (i.e., P[εi = 1] = P[εi = −1] = 1/2) independent of the Xi’s. The
Rademacher complexity of H is

Rad(H) = E sup
f ∈H

∣∣∣∣∣ 1√
N

N∑
i=1

εif (Xi)

∣∣∣∣∣.
REMARK 2.4. The Rademacher complexity is often defined in the literature

as Rad′(H) = E supf ∈H | 1
N

∑N
i=1 εif (Xi)|, namely, a factor

√
N smaller than

Rad(H). We chose to use Rad(H) = √
N Rad′(H) as this allow a unified pre-

sentation with the sub-Gaussian case where the complexity is measured with the
Gaussian mean width.

Note that when (f (X))f ∈H is a version of the isonormal process over L2

(cf. Chapter 12 in [18]) restricted to H then the Gaussian mean-width and the
Rademacher complexity coincide: w(H) = Rad(H). But, in that case, H is not
bounded in L∞ and, in general, the two complexity measures are different.

There are many examples where Rademacher complexity have been calculated
(cf. [36]). Like in the previous sub-Gaussian setting the statistical complexity is
given by a function r(·). Note that we use the same notation r(·) in the two scenarii,
namely the bounded and sub-Gaussian case. We do this because this r(·) function
plays exactly the same role in both cases. However, its definition is not the same
in each scenario, as can be seen below.
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DEFINITION 2.7. The complexity parameter is the nondecreasing function
r(·) defined for every ρ ≥ 0 by

r(ρ) =
(

CARad(B)ρ√
N

) 1
2κ

, where C = 1920

7
.

THEOREM 2.2. Assume that Assumption 1.1, Assumption 2.1 and Assump-
tion 2.3 hold. Let the regularization parameter λ be chosen as λ = 720 Rad(B)/

7
√

N . Then, with probability larger than

(7) 1 − C exp
(−CN1/2κ(

ρ∗ Rad(B)
)(2κ−1)/κ)

we have∥∥f̂ − f ∗∥∥ ≤ ρ∗,
∥∥f̂ − f ∗∥∥

L2
≤ r

(
2ρ∗) =

[
CARad(B)2ρ∗

√
N

]1/2κ

and

E(f̂ ) ≤ r(2ρ∗)2κ

A
= C Rad(B)2ρ∗

√
N

,

where C denotes positive constants that might change from one instance to the
other and depend only on A, b, κ and r(·) is the function introduced in Defini-
tion 2.7.

In Sections 3, 4 and Section 7 in Supplement A, we compute r(ρ) either in
the sub-Gaussian setup or in the bounded setup and solve the sparsity equation in
various examples, showing the versatility of the main strategy.

3. Application to logistic LASSO and logistic SLOPE. The first example
of application of the main results in Section 2 involves one very popular method
developed during the last two decades in binary classification which is the Logistic
LASSO procedure (cf. [19, 33, 35, 39, 42]).

We consider the vector framework, where (X1, Y1), . . . , (XN,YN) are N i.i.d.
pairs with values in R

p × {−1,1} distributed like (X,Y ). Both bounded and sub-
Gaussian frameworks can be analyzed in this example. Since an example in the
bounded case is provided in the next section, only the sub-Gaussian case is con-
sidered here and we leave the bounded case to the interested reader. We therefore
shall apply Theorem 2.1 to get estimation and prediction bounds for the well-
known logistic LASSO and the new logistic SLOPE.

In this section, we consider the class of linear functionals indexed by RBl2 for
some radius R ≥ 1 and the logistic loss:

(8) F = {〈·, t〉 : t ∈ RBl2

}
, �f (x, y) = log

(
1 + exp

(−yf (x)
))

.

As usual the oracle is denoted by f ∗ = argminf ∈F E�f (X,Y ), we also introduce
t∗ ∈ RB�2 such that f ∗ = 〈·, t∗〉.
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3.1. Logistic LASSO. The logistic loss function is Lipschitz with constant 1,
so Assumption 1.1 is satisfied. It follows from Proposition 8.2 in Supplement A
that Assumption 2.1 is satisfied when the design X is the standard Gaussian vari-
able in R

p and the class F defined in (8); note that this fact is not obvious, and
is new up to our knowledge. In that case, the Bernstein parameter is κ = 1 and
A = c0/R

3 for some absolute constant c0 > 0 which can be deduced from the proof
of Proposition 8.2. We consider the l1 norm ‖〈·, t〉‖ = ‖t‖l1 for regularization. We
will therefore obtain statistical results for the RERM estimator f̂L = 〈t̂L, ·〉 that is
defined by

t̂L ∈ argmin
t∈RBl2

(
1

N

N∑
i=1

log
(
1 + exp

(−Yi〈Xi, t〉) + λ‖t‖l1

)
,

where λ is a regularization parameter to be chosen according to Theorem 2.1.
The two final ingredients needed to apply Theorem 2.1 are (1) the computation

of the Gaussian mean width of the unit ball Bl1 of the regularization function ‖ · ‖l1

(2) find a solution ρ∗ to the sparsity equation (3).
Let us first deal with the complexity parameter of the problem. If one assumes

that the design vector X is isotropic, that is, E〈X, t〉2 = ‖t‖2
l2

for every t ∈ R
p

then the metric naturally associated with X is the canonical l2-distance in R
p . In

that case, it is straightforward to check that w(Bl1) ≤ c1
√

logp for some (known)
absolute constant c1 > 0 and so we define, for all ρ ≥ 0,

(9) r(ρ) = C
(
ρ

√
logp

N

)1/2

for the complexity parameter of the problem (from now and until the end of Sec-
tion 3, the constants C depends only on L, C, c0 and c1).

Now let us turn to a solution ρ∗ of the sparsity equation (3). First, note that
when the design is isotropic the sparsity parameter is the function

	(ρ) = inf
{

sup
g∈
t∗ (ρ)

〈h,g〉 : h ∈ ρSl1 ∩ r(2ρ)Bl2

}
,

where 
t∗(ρ) = ⋃
f ∈t∗+(ρ/20)Bl1

∂‖ · ‖(f ).
A first solution to the sparsity equation is ρ∗ = 20‖t∗‖l1 because it leads to

0 ∈ 
t∗(ρ∗). This solution is called norm dependent.
Another radius ρ∗ solution to the sparsity equation (3) is obtained when t∗ is

close to a sparse-vector, that is a vector with a small support. We denote by ‖v‖0 :=
|supp(v)| the size of the support of v ∈ R

p . Now, we recall a result from [31].

LEMMA 3.1 (Lemma 4.2 in [31]). If there exists some v ∈ t∗ +(ρ/20)Bl1 such
that ‖v‖0 ≤ c0(ρ/r(ρ))2 then 	(ρ) ≥ 4ρ/5 where c0 is an absolute constant.
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In particular, we get that ρ∗ ∼ s
√

(logp)/N is a solution to the sparsity equation
if there is a s-sparse vector which is (ρ∗/20)-close to t∗ in l1. This radius leads to
the so-called sparsity dependent bounds.

After the derivation of the Bernstein parameter κ = 1, the complexity w(B) and
a solution ρ∗ to the sparsity equation, we are now in a position to apply Theo-
rem 2.1 to get statistical bounds for the Logistic LASSO.

THEOREM 3.1. Assume that X is a standard Gaussian vector in R
p . Let s ∈

{1, . . . , p}. Assume that there exists a s-sparse vector in t∗ + Cs
√

(logp)/NBl1 .
Then, with probability larger than 1 − C exp(−Cs logp), for every 1 ≤ q ≤ 2, the
logistic LASSO estimator t̂L with regularization parameter

λ = 5c1CL

8

√
logp

N

satisfies

∥∥t̂L − t∗
∥∥
lq

≤ C min
(
s1/q

√
logp

N
,
∥∥t∗∥∥1/q

l1

(
logp

N

) 1
2 − 1

2q
)

and the excess logistic risk of t̂L is such that

Elogistic(t̂L) = R(t̂L) − R
(
t∗

) ≤ C min
(

s log(p)

N
,
∥∥t∗∥∥

l1

√
log(p)

N

)
.

Note that an estimation result for any lq -norm for 1 ≤ q ≤ 2 follows from results

in l1 and l2 and the interpolation inequality ‖v‖lq ≤ ‖v‖−1+2/q
l1

‖v‖2−2/q
l2

.
Estimation results for the logistic LASSO estimator in the generalized linear

model have been obtained in [45] under the assumption that the basis functions
and the oracle are bounded. This assumption does not hold here since the basis
functions—defined here by ψk(·) = 〈ek, ·〉 where (ek)

p
k=1 is the canonical basis

of Rp—are not bounded when the design is X ∼ N (0, Ip×p). Moreover, we do
not make the assumption that f ∗ is bounded in L∞. Nevertheless, we recover the
same estimation result for the l2-loss and l1-loss as in [45]. But we also provide a
prediction result since an excess risk bound is also given in Theorem 3.1.

Note that Theorem 3.1 recovers the classical rates of convergence for the logistic
LASSO estimator that have been obtained in the literature so far in the case of the
square loss (see, [31]). This rate is the minimax rate obtained over all s-sparse
vectors w.r.t. the �q distance for every 1 ≤ q ≤ 2 as long as log(p/s) behaves like
logp when the oracle t∗ is the one associated with the square loss (see, [8]). This
is indeed the case when s � p, which is the classic setup in high-dimensional
statistics. But when s is proportional to p this rate is not minimax since there is a
logarithmic loss. To overcome this issue, we introduce a new estimator: the logistic
SLOPE.
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3.2. Logistic slope. The construction of the logistic Slope is similar to the one
of the logistic LASSO except that the regularization norm used in this case is the
SLOPE norm (cf. [10, 41]): for every t = (tj ) ∈ R

p ,

(10) ‖t‖SLOPE =
p∑

j=1

√
log(ep/j)t


j ,

where t

1 ≥ t


2 ≥ · · · ≥ 0 is the nonincreasing rearrangement of the absolute val-

ues of the coordinates of t and e is the base of the natural logarithm. Using this
estimator with a regularization parameter λ ∼ 1/

√
N, we recover the same result

as for the logistic LASSO case except that one can get, in that case, the classical
(minimax, for the square loss) rate

√
(s/N) log(ep/s)) for any s ∈ {1, . . . , p}.

Indeed, it follows from Lemma 5.3 in [31] that the Gaussian mean width of the
unit ball BSLOPE associated with the SLOPE norm is of the order of a constant.
The sparsity equation is satisfied by the radius

(11) ρ∗ ∼ s√
N

log
(

ep

s

)
as long as there is a s-sparse vector in t∗ + (ρ∗/20)BSLOPE. The norm dependent
radius is as usual of order ‖t∗‖SLOPE. Then the next result follows from Theo-
rem 2.1. It improves the best known bounds on the logistic LASSO.

THEOREM 3.2. Assume that X is a standard Gaussian vector in R
p . Let s ∈

{1, . . . , p}. Assume that there exists a s-sparse vector in t∗ + (ρ∗/20)BSLOPE for
ρ∗ as in (11). Then, with probability larger than 1 − C exp(−Cs log(p/s)), the
logistic SLOPE estimator

t̂S ∈ argmin
t∈RBl2

(
1

N

N∑
i=1

log
(

1 + exp
(−Yi〈Xi, t〉) + C√

N
‖t‖SLOPE

)
satisfies ∥∥t̂S − t∗

∥∥
SLOPE ≤ C min

(
s√
N

log
(

ep

s

)
,
∥∥t∗∥∥

SLOPE

)
and

∥∥t̂S − t∗
∥∥
l2

≤ C min
(√

s

N
log

(
ep

s

)
,

√‖t∗‖SLOPE√
N

)
and the excess logistic risk of t̂S is such that

Elogistic(t̂S) = R(t̂S) − R
(
t∗

) ≤ C min
(

s log(ep/s)

N
,
∥∥t∗∥∥

l1

√
log(ep/s)

N

)
.
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TABLE 1
Key quantities involved in the study of the Logistic LASSO and SLOPE

LASSO SLOPE

w(B)
√

logp 1

ρ∗ s√
N

√
logp s√

N
log ep

s

r(ρ∗) s
N

logp s
N

log ep
s

Let us comment on Theorem 3.2 together with the fact that we do not make
any assumption on the output Y all along this work. Theorem 3.2 proves that there
exists an estimator achieving the rate s log(ep/s)/N for the �2-estimation risk (to
the square) with absolutely no assumption on the output Y . In the case where a
statistical model Y = sign(〈X, t∗〉 + ξ) holds, where ξ is independent of X then
Theorem 3.2 shows that the RERM with logistic loss and SLOPE regularization
achieves the rate s log(ep/s)/N under no assumption on the noise ξ . In partic-
ular, ξ does not need to have any moment and, for instance, the mimimax rate
s log(ep/s)/N can still be achieved when the noise has a Cauchy distribution.
Moreover, this estimation rate holds with exponentially large probability as if the
noise had a Gaussian distribution (cf. [29]).

In Table 1, the different quantities playing an important role in our analysis
have been collected for the �1 and SLOPE norms: the Gaussian mean width w(B)

of the unit ball B of the regularization norm, a radius ρ∗ satisfying the sparsity
equation, and finally the L2 estimation rate of convergence r(ρ∗) summarizing
the two quantities. As mentioned in Figure 1, having a large subdifferential at
sparse vectors and a small Gaussian mean-width w(B) is a good way to construct

FIG. 1. Gaussian complexity and size of the subdifferential for the �1 and SLOPE norms: A “large”
subdifferential at sparse vectors and a small Gaussian mean width of the unit ball of the regulariza-
tion norm is better for sparse recovery. In this figure, G represents a “typical” Gaussian vector used
to compute the Gaussian mean width of the unit regularization norm ball.
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“sparsity inducing” regularization norms as it is, for instance, the case of “atomic
norms” (cf. [16]).

4. Application to matrix completion via S1-regularization. The second ex-
ample involves matrix completion and uses the bounded setting from Section 2.6.
The goal is to derive new results on two ways: the 1-bit matrix completion problem
where entries are binary, and the quantile completion problem. The main theorems
in this section yield upper bounds on completion in Sp norms (1 ≤ p ≤ 2) and on
various excess risks. We also propose algorithms in order to compute efficiently
the RERM in the matrix completion issue but with nondifferentiable loss and pro-
vide a simulation study that is postponed to Section 6. We first present a general
theorem and then turn to specific loss functions because they induce a discussion
about the Bernstein assumption and the κ parameter and lead to more particular
theorems.

4.1. General result. In this section, we consider the matrix completion prob-
lem. The class is F = {〈·,M〉 : M ∈ bB∞}, where bB∞ = {M = (Mpq) ∈ R

m×T :
maxp,q |Mpq | ≤ b} and b > 0. In matrix completion, we write the observed loca-
tion as a mask matrix X: it is an element of the canonical basis (E1,1, . . . ,Em,T ) of
R

m×T where for any (p, q) ∈ {1, . . . ,m}× {1, . . . , T } the entry of Ep,q is 0 every-
where except for the (p, q)th entry where it equals to 1. We assume that there are
constants 0 < c ≤ c̄ < ∞ such that, for any (p, q), c/(mT ) ≤ P(X = Ep,q) ≤
c̄/(mT ) (this extends the uniform sampling distribution for which c = c̄ = 1).
These assumptions are encompassed in the following definition.

ASSUMPTION 4.1 (Matrix completion design). The variable X takes value
in the canonical basis (E1,1, . . . ,Em,T ) of Rm×T . There are positive constants c,
c̄ such that for any (p, q) ∈ {1, . . . ,m} × {1, . . . , T }, c/(mT ) ≤ P(X = Ep,q) ≤
c̄/(mT ).

As the design X takes its values in the canonical basis of Rm×T , the bounded-
ness assumption is satisfied. The penalty is taken as the nuclear norm. Thus, the
RERM is given by

(12) M̂ ∈ argmin
M∈bB∞

(
1

N

N∑
i=1

�
(〈Xi,M〉, Yi

) + λ‖M‖S1

)
.

Statistical properties of (12) will follow from Theorem 2.2 since one can recast
this problem in the setup of Section 2.6. The oracle matrix M∗ is defined by f ∗ =
〈·,M∗〉, that is, M∗ = argminM∈bB∞ E�(〈M,X〉, Y ).

Let us also introduce the matrix M = argminM∈Rm×T E�(〈M,X〉, Y ). Note that
〈M, ·〉 = f = arg minf measurable E�(f (X),Y ) (because X takes its values in a fi-
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nite set). Our general results usually are on f ∗ rather than on f as it is usu-
ally impossible to provide rates on the estimation of f without stringent as-
sumptions on Y and F . However, M̄p,q = P[Y = 1|X = Ep,q] ∈ [0,1] for all
p, q and so M = M∗ without any extra assumption when b = 1 (this is a fa-
vorable case). On the other hand, to get fast rates in matrix completion with
quantile loss requires that M = M∗ (which is a stringent assumption in this set-
ting).

Complexity function. We first compute the complexity parameter r(·) as in-
troduced in Definition 2.7. To that end, one just needs to compute the global
Rademacher complexity of the unit ball of the regularization function which is
BS1 = {A ∈ R

m×T : ‖A‖S1 ≤ 1}:

Rad(BS1) = E sup
‖A‖S1≤1

∣∣∣∣∣ 1√
N

N∑
i=1

εi〈Xi,A〉
∣∣∣∣∣

= E

∥∥∥∥∥ 1√
N

N∑
i=1

εiXi

∥∥∥∥∥
S∞

(13)

≤ c0(c, c̄)

√
log(m + T )

min(m,T )
,

where ‖ ·‖S∞ is the operator norm (i.e., the largest singular value), the last inequal-
ity follows from Lemma 1 in [24] and c0(c, c̄) > 0 is some constant that depends
only on c and c̄.

The complexity parameter r(·) is derived from Definition 2.7: for any ρ ≥ 0,

(14) r(ρ) =
[
CAρ Rad(BS1)√

N

] 1
2κ = C

[
ρ

√
log(m + T )

N min(m,T )

] 1
2κ

,

where from now the constants C depend only on c, c̄, b, A and κ .

Sparsity parameter. The next important quantity is the sparsity parameter. Its
expression in this particular case is such that, for any ρ > 0,

	(ρ) ≥ inf
{

sup
G∈
M∗ (ρ)

〈H,G〉 : H ∈ ρSS1 ∩ (
(
√

mT /c)r(2ρ)
)
BS2

}
,

where 
M∗(ρ) is the union of all the subdifferential of ‖ · ‖S1 of points in a S1-ball
of radius ρ/20 centered in M∗. Note that the normalization factor

√
mT in the

localization (
√

mT r(2ρ))BS2 comes from the “nonnormalized isotropic” property
of X: c‖M‖2

S2
/(mT ) ≤ E〈X,M〉2 ≤ c̄‖M‖2

S2
/(mT ) for all M ∈ R

m×T . Now, we
use a result from [31] to find a solution to the sparsity equation.
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LEMMA 4.1 (Lemma 4.4 in [31]). There exists an absolute constant c1 > 0 for
which the following holds. If there exists V ∈ M∗+(ρ/20)BS1 such that rank(V ) ≤
(c1ρ/(

√
mT r(ρ)))2 then 	(ρ) ≥ 4ρ/5.

It follows from Lemma 4.1 that the sparsity equation (3) is satisfied by ρ∗
when it exists V ∈ M∗ + (ρ∗/20)BS1 such that rank(V ) = c1(ρ

∗/(
√

mT r(ρ∗)))2.
Note obviously that V can be M∗ itself, in this case, ρ∗ can be taken such that
rank(M∗) = c1(ρ

∗/(
√

mT r(ρ∗)))2. However, when M∗ is not low-rank, it might
still be that a low-rank approximation V of M∗ is close enough to M∗ w.r.t. the S1-
norm. As a consequence, if for some s ∈ {1, . . . ,min(m,T )} there exists a matrix
V with rank at most s in M∗ + (ρ∗

s /20)BS1 where

(15) ρ∗
s = C(smT )

κ
2κ−1

(
log(m + T )

N min(m,T )

) 1
2(2κ−1)

then ρ∗
s satisfies the sparsity equation.

Following the remark at the end of Section 2.4, another possible choice is
ρ∗ = 20‖M∗‖S1 in order to get norm dependent rates. In the end, we choose
ρ∗ = C min[ρ∗

s ,‖M∗‖S1]. We are now in a position to apply Theorem 2.2 to derive
statistical properties for the RERM M̂ defined in (12).

THEOREM 4.1. Assume that Assumption 1.1, 4.1 and 2.1 hold. Consider the
estimator in (12) with regularization parameter

(16) λ = c0(c, c̄)720

7

√
log(m + T )

N min(m,T )
,

where c0(c, c̄) are the constants in Assumption 4.1. Let s ∈ {1, . . . ,min(m,T )} and
assume that there exists a matrix with rank at most s in M∗ + (ρ∗

s /20)BS1 . Then,
with probability at least 1 − C exp(−Cs(m + T ) log(m + T )), we have∥∥M̂ − M∗∥∥

S1

≤ C min
{
(smT )

κ
2κ−1

(
log(m + T )

N min(m,T )

) 1
2(2κ−1)

,
∥∥M∗∥∥

S1

}
,

‖M̂ − M∗‖S2√
mT

≤ C min
{(

s(m + T ) log(m + T )

N

) 1
2(2κ−1)

,

(∥∥M∗∥∥
S1

√
log(m + T )

N min(m,T )

) 1
2κ

}
,

E(M̂) ≤ C min
{(

s(m + T ) log(m + T )

N

) κ
2κ−1

,
∥∥M∗∥∥

S1

√
log(m + T )

N min(m,T )

}
.
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Note that the interpolation inequality also allows to get a bound for the Sp norm,
when 1 ≤ p ≤ 2:

‖M̂ − M∗‖Sp

(mT )
1
p

≤ C min
{[(

s2(p−1)+κ(2−p)(m + T )p−1

min(m,T )
2−p

2

) 1
p

√
log(m + T )

N

] 1
2κ−1

,

∥∥M∗∥∥p−1+κ(2−p)
pκ

S1

(
log(m + T )

N min(m,T )

)p−1
2κp

(
1

mT

) 2−p
p

}
.

Theorem 4.1 shows that the sparsity dependent error rate in the excess risk
bound is [for s = rank(M∗)](

rank(M∗)(m + T ) log(m + T )

N

) κ
2κ−1

which is the classic excess risk bound under the margin assumption up to a log
factor (cf. [4]). As for the S2-estimation error, when κ = 1, we recover the classic
S2-estimation rate √

rank(M∗)(m + T ) log(m + T )

N

which is minimax in general (up to log terms, for example, take the quadratic loss
when Y is bounded and compare to [38]).

4.2. 1-bit matrix completion. In this subsection, we assume that Y ∈ {−1,+1},
and we challenge two loss functions: the logistic loss, and the hinge loss. It is worth
noting that the minimizer M = argminM∈Rm×T E�(〈M,X〉, Y ) is not the same for
both losses. For the hinge loss, it is known that it is the matrix formed by the Bayes
classifier. This matrix has entries bounded by 1 so M∗ = M as soon as b = 1. In
opposite to this case, the logistic loss leads to a matrix M with entries formed by
the odds ratio. It may even be infinite when there is no noise.

Logistic loss. Let us start by assuming that � is the logistic loss. Thanks to
Proposition 8.2 in Supplement A we know that κ = 1 for any b [A is also known,
A = 4 exp(2b)] and, therefore, the next result follows from Theorem 4.1. Note that
we do not assume that M is in F and, therefore, our results provides estimation
and prediction bounds for the oracle M∗.

THEOREM 4.2 (1-bit Matrix Completion with logistic loss). Assume that As-
sumption 4.1 holds. Let s ∈ {1, . . . ,min(m,T )} and assume that there exists a ma-
trix with rank at most s in M∗ + (ρ∗

s /20)BS1 where ρ∗
s is defined in (15). With

probability at least 1 − C exp(−Cs max(m,T ) log(m + T )), the estimator

(17) M̂ ∈ argmin
M∈bB∞

(
1

N

N∑
i=1

log
(
1 + exp

(−Yi〈Xi,M〉)) + λ‖M‖S1

)
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with λ as in equation (16) satisfies

‖M̂ − M∗‖S1

mT
≤ C min

{
s

√
log(m + T )

N min(m,T )
,
‖M∗‖S1

mT

}
,

‖M̂ − M∗‖S2√
mT

≤ C min
{√

s max(m,T ) log(m + T )

N
,
∥∥M∗∥∥ 1

2
S1

(
log(m + T )

N min(m,T )

) 1
4
}
,

Elogistic(M̂) ≤ C min
{
s max(m,T ) log(m + T )

N
,
∥∥M∗∥∥

S1

√
log(m + T )

N min(m,T )

}
.

Using an interpolation inequality, it is easy to derive estimation bound in Sp for
all 1 ≤ p ≤ 2 as in Theorem 4.1 so we do not reproduce it here. Also, note that our
bound on ‖M̂ − M∗‖S2 is of the same order as the one in [26]. We actually now
prove that this rate is minimax-optimal (up to log terms).

THEOREM 4.3 (Lower bound with logistic loss). For a given matrix M ∈ B∞,
define P

⊗N
M as the probability distribution of the N -uplet (Xi, Yi)

N
i=1 of i.i.d. pairs

distributed like (X,Y ) such that X is uniformly distributed on the canonical basis
(Ep,q) of Rm×T and PM(Y = 1|X = Ep,q) = exp(Mpq)/[1+exp(Mpq)] for every
(p, q) ∈ {1, . . . ,m}×{1, . . . , T }. Fix s ∈ {1, . . . ,min(m,T )} and assume that N ≥
s(m + T ) log(2)/(8b2). Then

inf
M̂

sup
M∗∈bB∞

rank(M∗)≤s

P
⊗N
M∗

(
1√
mT

∥∥M̂ − M∗∥∥
S2

≥ c

√
(m + T )s

N

)
≥ β

for some universal constants β, c > 0.

Also, as pointed out in the Introduction, the quantity of interest is not the logistic
excess risk, but the classification excess risk: let us remind that R0/1(M) = P[(Y �=
sign(〈M,X〉)] for all M ∈R

m×T . Even if we assume that M∗ = M , all that can be
deduced from Theorem 2.1 in [46] is that

E0/1(M̂) = R0/1(M̂) − inf
M∈Rm×T

R0/1(M)

≤ C
√
Elogistic(M̂)

≤ C

√
rank(M)(m + T ) log(m + T )

N
.

But this rate on the excess 0/1-risk may be much better under the margin assump-
tion [34, 43] [cf. equation (36) in Supplement A]. This motivates the use of the
hinge loss instead of the logistic loss, for which the results in [46] do not lead to a
loss of a square root in the rate.
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Hinge loss. As explained above, the choice b = 1 ensures M = M∗ without
additional assumption. Thanks to Proposition 8.3 in Supplement A we know that
as soon as infp,q |Mp,q − 1/2| ≥ τ for some τ > 0, the Bernstein assumption is
satisfied by the hinge loss with κ = 1 and A = 1/(2τ). This assumption seems
very mild in many situations and we derive the results with it.

THEOREM 4.4 (1-bit Matrix Completion with hinge loss). Assume that As-
sumption 4.1 holds. Assume that infp,q |P(Y = 1|X = Ep,q) − 1/2| ≥ τ for some
τ > 0. Let s ∈ {1, . . . ,min(m,T )} and assume that there exists a matrix with rank
at most s in M + (ρ∗

s /20)BS1 where ρ∗
s is defined in (15). With probability at least

1 − C exp(−Cs max(m,T ) log(m + T )), the estimator

(18) M̂ ∈ argmin
M∈B∞

(
1

N

N∑
i=1

(
1 − Yi〈Xi,M〉)+ + λ‖M‖S1

)

with λ as in equation (16) satisfies

1

mT
‖M̂ − M‖S1 ≤ C min

{
s

√
log(m + T )

N min(m,T )
,
‖M‖S1

mT

}
,

1√
mT

‖M̂ − M‖S2

≤ C min
{√

s(m + T ) log(m + T )

N
,‖M‖

1
2
S1

(
log(m + T )

N min(m,T )

) 1
4
}
,

Ehinge(M̂) ≤ C min
{
s(m + T ) log(m + T )

N
,‖M‖S1

√
log(m + T )

N min(m,T )

}
.

In this case, [46] implies that the excess risk bound for the classification error
(using the 0/1-loss) is the same as the one for the hinge loss: it is therefore of the
order of rank(M)(m + T ) log(m + T )/N .

First, note that [40], obtained a rate in
√

rank(M)(m + T )/N up to log terms
without this assumption infp,q |P(Y = 1|X = Ep,q) − 1/2| ≥ τ for some τ > 0,
and proved that this rate is optimal in this case; [11] also obtained a rate in 1/

√
N .

The rate rank(M)(m + T ) log(m + T )/N for the classification excess error was
only reached in [17] up to our knowledge (using the PAC-Bayesian technique from
[1, 2, 13, 14, 32]), in the very restrictive noiseless setting, that is, P(Y = 1|X =
Ep,q) ∈ {0,1} which is equivalent to P(Y = sign(〈M,X〉) = 1. Here, this rate is
proved to hold in a much general case infp,q |P(Y = 1|X = Ep,q)−1/2| ≥ τ even
when τ > 0 is very small. Finally, we prove that our rate is actually the minimax
rate in this case.
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THEOREM 4.5 (Lower bound with hinge loss). For a given matrix M ∈
B∞, let E

⊗N
M be the expectation w.r.t. the N -uplet (Xi, Yi)

N
i=1 of i.i.d. pairs

distributed like (X,Y ) such that X is uniformly distributed on the canonical
basis (Ep,q) of R

m×T and PM(Y = 1|X = Ep,q) = Mpq for every (p, q) ∈
{1, . . . ,m} × {1, . . . , T }. Fix s ∈ {1, . . . ,min(m,T )} and assume that N ≥
s max(m,T ) log(2)/8. Then, for some universal constant c > 0,

inf
M̂

sup
M∗ ∈ B∞

rank(M∗) ≤ s

E
⊗N
M∗

(
Ehinge(M̂)

) ≥ c
s max(m,T )

N
.

Theorem 4.5 provides a minimax lower bound in expectation whereas Theo-
rem 4.4 provides an excess risk bound with large deviation. The two residual
terms of the excess hinge risk from Theorem 4.5 and Theorem 4.4 match up to
the log(m + T ) factor.

4.3. Quantile loss and median matrix completion. The matrix completion
problem with continuous entries has almost always been tackled with a penalized
least squares estimator [12, 21, 24, 31, 32], but the use of other loss functions may
be very interesting in this case also. Our last result on matrix completion is a result
for the quantile loss ρτ for τ ∈ (0,1). Let us recall that ρτ (u) = u(τ − I (u ≤ 0))

for all u ∈ R and �M(x, y) = ρτ (y − 〈M,x〉). While the aforementioned refer-
ences provide ways to estimate the conditional mean of Y |X = Ep,q . Here, we
thus provide a way to estimate conditional quantiles of order τ . When τ = 0.5,
it actually estimates the conditional median, which is known to be an indicator
of central tendency that is more robust than the mean in the presence of outliers.
On the other hand, for large and small τ ’s (e.g., the 0.05 and 0.95 quantiles), this
allows to build confidence intervals for Y |X = Ep,q . Confidence bounds for the
entries of matrices in matrix completion problems are something new up to our
knowledge.

The following result studies a particular case in which the Bernstein Assump-
tion is proved in Proposition 8.4 in Supplement A. Following [44], it assumes that
the conditional distribution of Y given X is continuous and that the density is not
too small on the domain of interest—this ensures that Bernstein’s condition is sat-
isfied with κ = 1 and A depending on the lower bound on the density; see Section 7
in Supplement A for more details. It can easily be derived for a specific distribu-
tion such as Gaussian, Student and even Cauchy. But we also have to assume that
M ∈ bB∞, or in other words M = M∗, which is a more stringent assumption: in
practice, it means that we should know a priori an upper bound b on the quantiles
to be estimated.

THEOREM 4.6 (Quantile matrix completion). Assume that Assumption 4.1
holds. Let b > 0 and assume that M ∈ bB∞. Assume that for any (p, q),
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Y |(X = Ep,q) has a density g with respect to the Lebesgue measure such that
g(u) > 1/c for some constant c > 0 for any u such that |u − Mp,q | ≤ 2b. Let
s ∈ {1, . . . ,min(m,T )} and assume that there exists a matrix with rank at most s

in M + (ρ∗
s /20)BS1 where ρ∗

s is defined in (15). Then, with probability at least
1 − C exp(−Cs max(m,T ) log(m + T )), the estimator

(19) M̂ ∈ argmin
M∈bB∞

(
1

N

N∑
i=1

ρτ

(
Yi − 〈Xi,M〉) + λ‖M‖S1

)

with λ = c0(c, c̄)
√

log(m + T )/(N min(m,T )) satisfies

1

mT
‖M̂ − M‖S1 ≤ C min

{
s

√
log(m + T )

N min(m,T )
,
‖M‖S1

mT

}
,

1√
mT

‖M̂ − M‖S2 ≤ C min
{√

s(m + T ) log(m + T )

N
,

‖M‖
1
2
S1

(
log(m + T )

N min(m,T )

) 1
4
}
,

Equantile(M̂) ≤ C min
{
s(m + T ) log(m + T )

N
,‖M‖S1

√
log(m + T )

N min(m,T )

}
.

We obtain the same rate as for the penalized least squares estimator that is√
s(m + T ) log(m + T )/N (cf. [24, 38]).

5. Discussion. This paper covers several aspects of the regularized empirical
risk estimator (RERM) with Lipschitz loss. This Lipschitz property is commonly
shared by many loss functions used in practice for robust estimation such as the
hinge loss, the logistic loss or the quantile regression loss. This work offers a gen-
eral method to derive estimation bounds as well as excess risk upper bounds. Two
main settings are covered: the sub-Gaussian framework and the bounded frame-
work. The first one is illustrated by the classification problem with logistic loss.
In particular, the s log(p/s)/N �2-estimation rate can be achieved when using the
SLOPE regularization norm for estimating an approximately sparse oracle. The
second framework is used to derive new results on matrix completion. Finally,
Kernel methods are analyzed in Supplement A.

A possible extension of this work is to study other regularization norms. In order
to do that, one has to compute the complexity parameter in one of the settings and
a solution of the sparsity equation. The latter usually involves to understand the
subdifferential of the regularization norm and in particular its singularity points
which are related to the sparsity equation and to the general sparsity structure we
aim at recovering.
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SUPPLEMENTARY MATERIAL

Supplementary material to “Estimation bounds and sharp oracle inequali-
ties of regularized procedures with Lipschitz loss functions” (DOI: 10.1214/18-
AOS1742SUPP; .pdf). In the supplementary material, we provide a simulation
study on the different procedures that have been introduced for matrix comple-
tion. The example of kernel estimation is also developed. All the proofs have been
gathered in this supplementary material. We finally propose a brief study of the
ERM without penalization.
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