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LOCAL STATIONARITY AND TIME-INHOMOGENEOUS
MARKOV CHAINS

BY LIONEL TRUQUET

CREST-ENSAI, CNRS UMR 9194

A primary motivation of this contribution is to define new locally sta-
tionary Markov models for categorical or integer-valued data. For this ini-
tial purpose, we propose a new general approach for dealing with time-
inhomogeneity that extends the local stationarity notion developed in the time
series literature. We also introduce a probabilistic framework which is very
flexible and allows us to consider a much larger class of Markov chain models
on arbitrary state spaces, including most of the locally stationary autoregres-
sive processes studied in the literature. We consider triangular arrays of time-
inhomogeneous Markov chains, defined by some families of contracting and
slowly-varying Markov kernels. The finite-dimensional distribution of such
Markov chains can be approximated locally with the distribution of ergodic
Markov chains and some mixing properties are also available for these trian-
gular arrays. As a consequence of our results, some classical geometrically
ergodic homogeneous Markov chain models have a locally stationary version,
which lays the theoretical foundations for new statistical modeling. Statisti-
cal inference of finite-state Markov chains can be based on kernel smoothing
and we provide a complete and fast implementation of such models, directly
usable by the practitioners. We also illustrate the theory on a real data set.
A central limit theorem for Markov chains on more general state spaces is
also provided and illustrated with the statistical inference in INAR models,
Poisson ARCH models and binary time series models. Additional examples
such as locally stationary regime-switching or SETAR models are also dis-
cussed.

1. Introduction. Markov chains are one of the most basic examples of ran-
dom sequences used for the statistical modeling of dependent data. For instance,
finite-state Markov chains have important applications in queuing systems (see,
for instance, Bolch et al. [7]), for the modeling of DNA sequences (see Avery and
Henderson [3]) or in computer networks (see, for instance, Sarukkai [42]). More-
over, some classical time series models based on AR or ARCH processes can be
seen as particular examples of Markov chains on a continuous state space. Other
examples concern integer-valued time series modes such as the INAR process in-
troduced by Al-Osh and Alzaid [1] or the Poisson autoregressive process studied
for instance in Fokianos, Rahbek and Tjøstheim [25]. Another type of Markov
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FIG. 1. Local estimation of the probability to record a trade for the share “Anamint” (in blue) and
“Broadcares” (in red). The x-axis represents the time and the y-axis, the estimated local probability.

chain widely encountered in time series analysis is the Markov-switching process
introduced initially by Hamilton [31] in economics.

However, a crucial limitation of Markov chain models is their time homogene-
ity. In practice, this assumption is violated for many data sets. For instance, analyz-
ing the trading activity of a traded share on the Johannesburg Stock Exchange (the
data are binary and the sequence takes the value 1 if a trading has been recorded
at time t), we have estimated locally the probability of recording a trade at time t

for two traded shares (see Sections 5 and 6 for details on the data set and for the
smoothing used for this estimation). Figure 1 suggests that the marginal distribu-
tions of both sequences are far from being time-invariant.

Motivated by this type of problem, in this paper, we develop a probabilistic
framework for defining time-inhomogeneous Markov chain models on arbitrary
state spaces and which is can used for statistical inference. Time-inhomogeneous
Markov chains have received much less attention in the literature than their ho-
mogeneous analogues. Such chains have been studied mainly for their long-time
behavior, often in connection with the convergence of stochastic algorithms. An
introduction to inhomogeneous finite-state Markov chains can be found in Seneta
[43] and their use in Monte Carlo methods is discussed in Winkler [52]. More re-
cent quantitative results for their long-time behavior can be found, for instance, in
Douc, Moulines and Rosenthal [19] for general state spaces, and Saloff-Coste and
Zúñiga [40] or Saloff-Coste and Zúñiga [41] for finite state spaces. In this paper,
we consider inhomogeneous Markov chain models for applications in statistics,
in the spirit of the notion of local stationarity introduced by Dahlhaus [12]. Lo-
cally stationary processes have received considerable attention over the last twenty
years, in particular for their ability to model data sets for which time-homogeneity
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is unrealistic. Locally stationary, autoregressive processes (here with one lag for
simplicity) can be defined by modifying a recursive equation followed by a sta-
tionary process. If (Xk)k∈Z is a stationary process defined by Xk = Fθ(Xk−1, εk),
where (εk)k∈Z is a sequence of i.i.d. random variables and θ ∈ � is a parameter,
its locally stationary version is usually defined recursively by

(1) Xn,k = Fθ(k/n)(Xn,k−1, εk), 1 ≤ k ≤ n,

where θ : [0,1] → � is a smooth function. This formalism was exploited for defin-
ing locally stationary versions of classical time-homogeneous, autoregressive pro-
cesses. See for instance Dahlhaus and Subba Rao [14], Subba Rao [45] or Vogt
[51]. The term local stationarity comes from the fact that, under some regularity
conditions, if k/n is close to a point u of [0,1], Xn,k is close in some sense to
Xk(u) where (Xk(u))k∈Z is the stationary process defined by

(2) Xk(u) = Fθ(u)

(
Xk−1(u), εk

)
, k ∈ Z.

General Markov models of this type are considered in the recent paper of
Dahlhaus, Richter and Wu [13]. However, the models we will consider in this
paper can have a quite different structure. They can be defined by a conditional
distribution (finite-state Markov chains, Poisson ARCH processes, logistic autore-
gressive processes), the autoregressive representation may have different shape
(INAR processes) or some discontinuities (SETAR models). It is then unclear how
to define local stationarity in this context. Note also that the current approach for
defining locally stationary Markov chains consists in defining a family of autore-
gressive processes adapted the same sequence of innovations (εt )t∈Z. A general
result (see, for instance, Theorem 5.24 in Douc, Moulines and Stoffer [20]) as-
serts that on general state spaces, every Markov chain can be represented by an
autoregressive process. However, the function F will not display any useful prop-
erty in general. Moreover, existing constructions of locally stationary models such
as in Dahlhaus, Richter and Wu [13] or Vogt [51] assume some smoothness prop-
erties for the random function (u, x) �→ Fθ(u)(x, ε1). Clearly, this approach is not
adapted to finite-state Markov chains and then to more general models such as
Markov switching. Moreover, even with a natural autoregressive representation,
the contraction property in L

p-norms required in Dahlhaus, Richter and Wu [13]
is invalid for stationary SETAR processes.

On the other hand, some properties of time-homogeneous Markov chains are
derived more easily by analytical methods. For instance, the ergodicity properties
of finite-state Markov chains are easily derived form the transition matrix and this
example was a motivation to define a local stationarity notion by using properties
of the probability distributions instead an almost sure autoregressive representa-
tion.

Let us now give the framework used in the rest of the paper. Let (E,d) be
a metric space, B(E) its corresponding Borel σ -field and {Qu : u ∈ [0,1]} a



2026 L. TRUQUET

family of Markov kernels on (E,B(E)). By convention, we will assume that
Xn,0 has the probability distribution π0. We remind the reader that a Markov
kernel R : E × B(E) → [0,1] on (E,B(E)) is an application such that for all
(y,A) ∈ E × B(E), the application x �→ R(x,A) is measurable and the applica-
tion A �→ R(x,A) defines a probability measure. We will consider triangular ar-
rays {Xn,j : 1 ≤ j ≤ n,n ∈ Z

+} such that for all n ∈ Z
+, the sequence (Xn,j )1≤j≤n

is a nonhomogeneous Markov chain such that

P(Xn,k ∈ A|Xn,k−1 = x) = Qk/n(x,A), 1 ≤ k ≤ n.

The family {Qu : u ∈ [0,1]} of Markov kernels will always satisfy some regularity
conditions and contraction properties. Precise assumptions will be given in the
three following sections, but from now on, we assume here that for all u ∈ [0,1],
Qu has a single invariant probability measure denoted by πu. It could be also
convenient to define all the random variables Xn,k on the same probability space,
in particular for different values of the integer n. However, the dependence of two
Markov chains with distinct values of n has no importance in our study and one
can simply assume mutual independence between the lines of this triangular array.

For all positive integers j and k such that k + j − 1 ≤ n, we denote by π
(n)
k,j the

probability distribution of the vector (Xn,k,Xn,k+1, . . . ,Xn,k+j−1) and by πu,j the
corresponding finite dimensional distribution for the ergodic chain with Markov
kernels Qu. Loosely speaking, the triangular array will be said to be locally sta-
tionary if for all positive integer j , the probability distribution π

(n)
k,j is close to πu,j

when the ratio k/n is close to u. For compatibility and simplicity of our notation,
the measures π

(n)
k,1 (resp., πu,1) will be simply denoted by π

(n)
k (resp., πu). A for-

mal definition is given below. For all integers j ≥ 1, we denote by P(Ej ) the set
of probability measures on (Ej ,B(Ej )).

DEFINITION 1. Let ϑ = (ϑj )j≥1 ∈ ∏
j≥1 P(Ej ) be a sequence of probability

measures which define a stronger topology than weak convergence. The triangular
array of inhomogeneous Markov chains {Xn,k, n ∈ Z

+,1 ≤ k ≤ n} is said to be
ϑ-locally stationary if the two following conditions are satisfied:

1. For all j ≥ 1, the application u �→ πu,j is continuous from ([0,1], | · |) to
(P(Ej ),ϑj ).

2. For all j ≥ 1, limn→∞ sup1≤k≤n−j+1 ϑj (π
(n)
k,j , π k

n
,j

) = 0.

Note that Definition 1 is not restricted to Markov chains and can be used as a
general definition for local stationarity of time series. In this case, the πu,j ’s are
simply the finite dimensional distributions (f.d.d. in the sequel) of some station-
ary time series. Under the two conditions of Definition 1, for all continuous and
bounded functions f : Ej → R and some integers 1 ≤ k = kn ≤ n − j + 1 such
that limn→∞ k/n = u ∈ [0,1], we have

lim
n→∞Ef (Xn,k, . . . ,Xn,k+j−1) = Ef

(
X1(u), . . . ,Xj (u)

) =
∫

f dπu,j ,
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where (Xk(u))k∈Z denotes a stationary Markov chain with transition kernel Qu.
Note that the coordinates of this last Markov chain are defined for convenience but
the process need not to be defined on the same probability space as the triangu-
lar array. Definition 1 gives minimal conditions for defining triangular arrays of
random variables for which the f.d.d. are locally approximable by stationary pro-
cesses with continuously changing f.d.d. However, this definition is not sufficient
for statistical inference. Making a parallel with stationary processes, the simple
definition of stationarity is not sufficient for constructing a valid asymptotic theory
and mixing type conditions for the stochastic process are needed. Additionally, for
locally stationary processes, a rate is needed in point 2 of Definition 1 as well as
some regularity assumptions for the functions u �→ ∫

f dπu,j , j ≥ 1, for example,
Lipschitz continuity or existence of some derivatives.

Another important issue is to find some suitable probabilistic metrics ϑj for
which Definition 1 is satisfied. Of course, the metrics ϑj will be of the same nature
for different integers j , for example, the total variation distance on P(Ej ). In view
of the nonparametric estimation of the transition kernel u �→ Qu, it is necessary
to obtain a convergence rate in the condition 2 of Definition 1. In this paper, this
rate will be obtained using a contraction property for the Markov kernels function
Qu (sometimes after iteration) as well as Lipschitz continuity of the application
u �→ Qu for the metric ϑ1. Interestingly, the contraction properties will also guar-
antee some mixing properties for the triangular array and its stationary approxima-
tions at the same time. A direct consequence of these properties is a control of the
bias and the variance of localized partial sums of the process, which is basis for
deriving asymptotic properties of localized minimum of contrast estimators. See,
for instance, Theorem 4 in Section 4.

In the literature, there exists another recent contribution that defines local
stationarity using probability distances. In Birr et al. [6], the authors use the
Kolmogorov–Smirnov distance to control the approximation of a locally station-
ary process by a stationary one. However this metric is only interesting for finite-
dimensional state-spaces and more natural for E = R

d . Since this metric will not
provide additional examples of locally stationary Markov chains, we will not use
it and we will focus in this paper on three types of metrics of classical use for
studying geometric ergodicity properties of Markov chains. To this end, we will
extensively make use of the so-called Dobrushin’s contraction coefficient.

Let us also mention that our approach provides a rigorous framework to some
previous contributions devoted to the fitting of time-inhomogeneous, finite-state
Markov chains. The approach of Vergne [49] for modeling DNA sequences, Ra-
jagopalan, Lall and Tarboton [38] in hydrology or Brillinger et al. [10], are also
closely related to the concept of local stationarity but no precise statistical model
is introduced to support the applications considered in these papers. In a different
context, one can also mention the work of Hall and Bura [30] which is devoted to
the nonparametric estimation of nonhomogeneous continuous time Markov pro-
cess sampled at i.i.d. random times.
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The paper is organized as follows. In Section 2, we consider the total varia-
tion distance. This is the metric for which the contraction coefficient for Markov
kernels has been introduced originally by Dobrushin [17]. Contraction properties
of the kernels Qu or their iteration with respect to this metric is mainly adapted
to compact state spaces and will enable us to consider a model of inhomogeneous
finite-state space Markov chains for which we will study a nonparametric estimator
of the time-varying transition matrix. Our results in total variation apply when all
the Markov kernels Qu are absolutely continuous with respect to a given reference
measure.

In Section 3, we consider Markov kernels contracting in Wasserstein metrics.
The contraction coefficient for the Wasserstein metric of order 1 has been first
considered by Dobrushin [18] for giving sufficient conditions under which a sys-
tem of conditional distributions defines a unique joint distribution. Our goal in
this section will be simply to show that many autoregressive processes with time-
varying coefficients considered in the literature satisfy our assumptions and can
be seen as particular examples of our general approach. In Section 4, we extend
the results of Section 1 by considering some Markov kernels which satisfy clas-
sical drift/small set conditions. The results of Section 2 can be deduced from the
results of Section 4. However, for the reader’s convenience, we present a separate
result for compact state spaces with sharper mixing properties. Our third approach
is illustrated with several new examples of locally stationary processes, including
INAR processes, Markov switching autoregressive processes and SETAR models.
We also discuss statistical inference for some of these models, such as INAR, Pois-
son ARCH and binary time series, using local least-squares or local likelihood esti-
mators. Section 5 is devoted to the practical implementation of finite-state Markov
chains and in Section 6, we consider an illustration on a real data set. A discussion
of our results and a guideline for applying them is given in Section 7. The proofs of
all our results are available in the Supplementary Material [48] which also contains
additional examples of locally stationary Markov chains as well as a discussion of
the mixing properties of the Markov chains studied in Section 3.

2. Total variation distance and finite-state space Markov chains. This sec-
tion is mainly motivated by finite-state Markov chains. The limiting behavior of
finite-state Markov chains is often studied using the total variation distance. See
for instance Seneta [43] or Winkler [52]. However, the result stated in this section
can be used to construct locally stationary Markov chains on more general com-
pact state spaces. Let us first introduce some notations that we will extensively use
in the rest of the paper. If μ ∈ P(E) and R is a probability kernel from (E,B(E))

to (E,B(E)), we will denote by μR the probability measure defined by

μR(A) =
∫

R(x,A)dμ(x), A ∈ B(E).
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Moreover, if f : E → R is a measurable function, we set μf = ∫
f dμ and

Rf : E →R will be the function defined by Rf (x) = ∫
R(x, dy)f (y), x ∈ E, pro-

vided these integrals are well defined. Finally, the Dirac measure at point x ∈ E is
denoted by δx .

2.1. Contraction and approximation result for the total variation distance. We
remind the reader that the total variation distance between two probability mea-
sures μ,ν ∈ P(E) is defined by

‖μ − ν‖TV = sup
A∈B(E)

∣∣μ(A) − ν(A)
∣∣ = 1

2
sup

‖f ‖∞≤1

∣∣∣∣∫ f dμ −
∫

f dν

∣∣∣∣,
where for a measurable function f : E →R, ‖f ‖∞ = supx∈E |f (x)|.

For the family {Qu : u ∈ [0,1]}, the following assumptions will be needed.

A1 There exists an integer m ≥ 1 and r ∈ (0,1) such that for all (u, x, y) ∈
[0,1] × E2, ∥∥δxQ

m
u − δyQ

m
u

∥∥
TV ≤ r.

A2 There exists a positive real number L such that for all (u, v, x) ∈ [0,1]2 ×
E,

‖δxQu − δxQv‖TV ≤ L|u − v|.
The Dobrushin contraction coefficient of a Markov kernel R is defined by

c(R) = sup
μ	=ν∈P(E)

‖μR − νR‖TV

‖μ − ν‖TV
= sup

(x,y)∈E2
‖δxR − δyR‖TV.

See, for instance, Bartoli and Del Moral [4], Theorem 4.3.3, for a proof of
the second equality. Note that c(R) ∈ [0,1]. Hence, Assumption A1 means that
supu∈[0,1] c(Qm

u ) < 1. We will still denote by ‖ · ‖TV the total variation distance (or
the total variation norm if we consider the space of signed measures) on P(Ej ) for
any integer j . Moreover, let (Xk(u))k∈Z be a stationary Markov chain with transi-
tion kernels Qu, for u ∈ [0,1]. We remind the reader that for an integer j ≥ 1, π

(n)
k,j

(resp., πu,j ) denotes the probability distribution of the vector (Xn,k, . . . ,Xn,k+j−1)

[of the vector (Xk(u), . . . ,Xk+j−1(u)) resp.]. The following result is proved in the
Supplementary Material [48], Section 1.

THEOREM 1. Suppose that Assumptions A1–A2 hold. Then for all u ∈ [0,1],
the Markov kernel Qu has a unique invariant probability measure πu. The trian-
gular array of Markov chains {Xn,k, n ∈ Z

+, k ≤ n} is locally stationary for the
total variation distance. Moreover, all integers j ≥ 1, there exists a positive real
number Cj , not dependent on k, n, u and such that

(3)
∥∥π(n)

k,j − πu,j

∥∥
TV ≤ Cj

[∣∣∣∣u − k

n

∣∣∣∣ + 1

n

]
.
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Notes.

1. Assumption A1 is satisfied if there exist a positive real number ε, a positive
integer m and a family of probability measures {νu : u ∈ [0,1]} such that

Qm
u (x,A) ≥ ενu(A) for all (u, x,A) ∈ [0,1] × E ×B(E).

In the homogeneous case, this condition is the so-called Doeblin’s condition
(see Meyn and Tweedie [36], Chapter 16 for a discussion about this condition).
Note that the lower bound is uniform with respect to x and Doeblin’s condition
is then mostly interesting when E is compact. To show that this condition is
sufficient for A1, one can use the inequalities

Qm
u (x,A) − Qm

u (y,A) ≤ 1 − ε + ενu(E \ A) − Qm
u (x,E \ A) ≤ 1 − ε.

For a Markov chain with a finite state space, the Doeblin’s condition is satisfied
if min(x,y)∈E2 infu∈[0,1] Qm

u (x, y) > 0, with νu the counting measure on E.
2. One can also consider more general state spaces E. Set Qu(x, dy) = f (u, x,

y)μ(x, dy) where μ is a probability kernel and the family of conditional densi-
ties {(x, y) �→ f (u, x, y), u ∈ [0,1]} satisfies

inf
(u,x,y)∈[0,1]×E2

f (u, x, y) ≥ ε, sup
x,y∈E

∣∣f (u, x, y) − f (v, x, y)
∣∣ ≤ C|u − v|,

for positive constants ε and C. In this case, setting L = C/2 for A2, we have

‖δxQu − δxQv‖TV = 1

2

∫ ∣∣f (u, x, y) − f (v, x, y)
∣∣μ(x, dy) ≤ L|u − v|.

3. One can also consider higher-order Markov processes, in particular higher-
order finite-state Markov chains. For instance, if {S(u,x, dy) = f (u,x, ym) ×
γ (x, dym),u ∈ [0,1]} is a family of probability kernels from (Em,E⊗m) to
(E,E), we define Qu as the probability kernel from (Em,E⊗m) to itself such
that

Qu(x, dy) = f (u,x, ym)μ(x, dy), μ(x, dy) =
m−1∏
i=1

δxi+1(dyi)γ (x, dym).

If f is lower bounded, then the Doeblin condition is satisfied for Qm
u . See model

(4) discussed below for a particular example of this type. Note that this ap-
proach allows to define a nonparametric model in time and space.

2.2. Uniform mixing properties. In this subsection, we consider the problem
of mixing for the locally stationary Markov chains introduced previously. Such
mixing conditions will be crucial to control the limiting behavior of partial sums
of locally stationary Markov chains. Under our contraction assumptions (see As-
sumption A1), the stationary Markov chains with Markov kernels Qu are uni-
formly geometric ergodic and the following φ-mixing coefficients are adapted to
our purpose. If 1 ≤ i ≤ j ≤ n, we set

F (n)
i,j = σ(Xn,� : i ≤ � ≤ j).
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Now we set, for 0 ≤ j ≤ n − 1,

φn(j) = max
1≤i≤n−j

sup
{∣∣P(B|A) − P(B)

∣∣ : B ∈ F (n)
i+j,n,A ∈ F (n)

1,i ,P(A) 	= 0
}
.

We will say that the triangular array is φ-mixing (or uniformly mixing) if φ(j) =
supn≥j+1 φn(j) →j→∞ 0. For a time-homogeneous Markov chain, φ-mixing is
equivalent to uniform ergodicity (see Ibragimov and Linnik [33], page 368). Under
our assumptions, the φ-mixing coefficients decrease exponentially fast. A proof of
the following result is given in the Supplementary Material, Section 3.1.

PROPOSITION 1. Assume that Assumptions A1–A2 hold true. Then there exist
C > 0 and ρ ∈ (0,1), only depending on m, L and r such that

φ(j) ≤ Cρj .

2.3. Finite state space Markov chains. This part is devoted to the example of
finite-state Markov chains which was our main motivation for this paper. Let E be
a finite set. In this case, we obtain the following result. Its proof can be found in
the Supplementary Material [48], Section 3.2.

COROLLARY 1. Let {Qu : u ∈ [0,1]} be a family of transition matrices such
that for each u ∈ [0,1], the Markov chain with transition matrix Qu is irre-
ducible and aperiodic. Assume further that for all (x, y) ∈ E2, the application
u → Qu(x, y) is Lipschitz continuous. Then Theorem 1 applies and the φ-mixing
coefficients are bounded as given in Proposition 1.

2.4. Inference of finite-state Markov chains. We consider the nonparametric
kernel estimation of the invariant probability πu or the transition matrix Qu. To
this end, a classical method used for locally stationary time series is based on ker-
nel estimation. See for instance Dahlhaus and Subba Rao [14], Fryzlewicz, Sap-
atinas and Subba Rao [26], Vogt [51] or Zhang and Wu [53] for the nonparametric
kernel estimation of locally stationary processes. Let K : R→R+ be a probability
density, supported on [−1,1] and of bounded variation. For b = bn ∈ (0,1) and
Kb(·) = b−1K(·/b), we set

ei(u) = Kb(u − i/n)/

n∑
j=�

Kb(u − j/n), u ∈ [0,1], � ≤ i ≤ n.

Now we consider some estimators of πu and Qu. Let

π̂u(x) =
n∑

i=2

ei(u)1{Xn,i−1=x} and Q̂u(x, y) = π̂u,2(x, y)

π̂u(x)
,

where π̂u,2(x, y) = ∑n
i=2 ei(u)1{Xn,i−1=x,Xn,i=y}. Properties of these estimators,

which have standard nonparametric rates of convergence, are given in the Supple-
mentary Material, [48], Section 3.3.
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Notes.

1. The estimator Q̂u is a localized version of the standard estimator used in the
homogeneous case. Let us also mention that our estimators coincide with the
localized maximum likelihood estimator. Indeed the localized log-likelihood
function is defined by

�n(P ) =
n∑

k=2

Kb(u − k/n)
∑

(x,y)∈E2

1{Xn,k−1=x,Xn,k=y} log
(
P(x, y)

)
.

Maximizing this contrast with respect to P under the constraints
∑

y∈E P (x,

y) = 1, x ∈ E, we find a unique solution which is Q̂u. In the homogeneous
case, this result was derived in Billingsley [5]. We will give a general result for
local maximum likelihood estimators in Section 4.6 in a more general setup.

2. Assuming that u �→ Qu is of class C3 (i.e., three times continuously differen-
tiable), on can get a second-order approximation of the bias Eπ̂u(x) − πu(x),
u ∈ (0,1). Here, we assume that the kernel K is symmetric. Using the pertur-
bation result given in Cao [11], Section 2, one can show that u �→ πu(x) is also
of class C3. Then, using Theorem 1 and some standard properties for the kernel
K and setting bn(x) = Eπ̂u(x) − πu(x) and κj = ∫

vjK(v) dv, we get

bn(x) =
n∑

i=2

ei(u)
[
πi/n(x) − πu(x)

] + O(1/n)

= −bπ ′
u(x)κ1 + b2π ′′

u (x)

2
κ2 + O

(
b3 + 1/n

)
.

3. One can also study higher-order Markov chains. In this case, vectors of some
successive coordinates form a Markov chain of order one and one can apply
Theorem 1. However, the number of transitions increases exponentially fast
with the order of the Markov chain. A solution for getting parsimonious mod-
els is to consider the time-varying versions of the probit or logit models as in
Fokianos and Moysiadis [24] or Moysiadis and Fokianos [37]. For instance,
for binary time series taking values 0 or 1, one can consider triangular arrays
{Zn,k : 1 ≤ k ≤ n,n ≥ 1} of binary random variables such that

(4) P(Zn,k = 1|Zn,k−j , j ≤ 1) = F

[
a0(k/n) +

p∑
j=1

aj (k/n)Zn,k−j

]
,

where F is a Lipschitz cumulative distribution function taking values in (0,1)

and the aj ’s are Lipschitz continuous functions. Local stationarity and mixing
properties can be obtained for Xn,k = (Zn,k, . . . ,Zn,k−p+1) which defines a
time-inhomogeneous Markov chain satisfying the assumptions of Theorem 1.
Moreover, statistical inference in such models can be conducted using local
likelihood estimation as in Dahlhaus and Subba Rao [14] for time-varying
ARCH models or Dahlhaus, Richter and Wu [13]. See Section 4.6 for a dis-
cussion of local maximum likelihood estimation.
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3. Local stationarity in Wasserstein metrics. In this section, we consider
another metric for considering additional locally stationary Markov chains. This
part is more illustrative and only of theoretical interest in this paper. Our aim is
to show that many locally stationary autoregressive processes introduced in the
literature can be seen as particular examples of locally stationary Markov chains
in the sense of Definition 1, using Wasserstein metrics. Many examples are given
in the Supplementary Material (see Section 14) which also contain a discussion
about the mixing properties of such triangular arrays (see Section 5). However, the
statistical inference will not be developed for this part. In this sequel, we consider a
Polish space (E,d). For p ≥ 1, we consider the set Pp(E) of probability measures
μ on (E,d) such that

∫
d(x, x0)

pμ(dx) < ∞. Here, x0 is an arbitrary point in E.
It is easily seen that the set Pp(E) does not depend on x0. The Wasserstein metric
Wp of order p associated with the metric d is defined by

(5) Wp(μ,ν) = inf
γ∈�(μ,ν)

{∫
E×E

d(x, y)p dγ (x, y)

}1/p

,

where �(μ, ν) denotes the collection of all probability measures on E × E with
marginals μ and ν. It is well known that an optimal coupling always exists when
the state space is Polish. An optimal coupling is a coupling γ which realizes the
infimum in (5). See Villani [50] for the properties of Wasserstein metrics and the
existence of optimal couplings. Note that the total variation distance can be seen
as a particular example of the Wasserstein metric by setting d(x, y) = 1x 	=y and
the case of finite-state Markov chains can be treated with the results of this section.
However, in this section, we have in mind the case of an Euclidean norm on E =
R

p or more generally a Banach space (E,‖ · ‖). In this case, Dedecker and Prieur
[16] have defined some mixing coefficients for contracting Markov chains. But we
will keep a general metric d for the exposure. Note that for a real-valued Markov
chain defined by (2), we have Qu(x,A) = P(Fθ(u)(x, ε1) ∈ A) and

Wp(δxQu, δyQv) ≤ ∥∥Fθ(u)(x, ε1) − Fθ(u)(y, ε1)
∥∥
p.

This inequality shows that an autoregressive process contracting for the L
p-norm

[i.e., the right-hand term of the previous equation can be bounded by α|x −y| with
α ∈ (0,1)] entails a contraction of the corresponding Markov kernel in Wasserstein
metric. This will be a particular case of our general result.

In the sequel, we will use the following assumptions.

B1. For all (u, x) ∈ [0,1] × E, δxQu ∈ Pp(E).
B2. There exist a positive integer m and two real numbers r ∈ (0,1) and C1 ≥ 1

such that for all u ∈ [0,1] and all x ∈ E,

Wp

(
δxQ

m
u , δyQ

m
u

) ≤ rd(x, y), Wp(δxQu, δyQu) ≤ C1d(x, y).
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B3. The family of Markov kernels {Qu : u ∈ [0,1]} satisfies the following Lip-
schitz continuity condition. There exists C2 > 0 such that for all x ∈ E and all
u, v ∈ [0,1],

Wp(δxQu, δxQv) ≤ C2
(
1 + d(x, x0)

)|u − v|.

Note. If R is a Markov kernel, the Dobrushin contraction coefficient is now
defined by c(R) := supμ	=ν∈Pp(E)

Wp(μR,νR)

Wp(μ,ν)
= sup (x,y)∈E2

x 	=y

Wp(δxR,δyR)

d(x,y)
. The sec-

ond inequality is guaranteed using Lemma 5(2) given in the Supplementary Mate-
rial [48] and the equality Wp(δx, δy) = d(x, y). Then Assumption B2 means that
supu∈[0,1] c(Qu) < ∞ and supu∈[0,1] c(Qm

u ) < 1. Using straightforward arguments,
one can check that under Assumptions B1–B3, a chain with transition kernel Qu is
geometrically ergodic and its unique invariant probability measure πu is Lipschitz
continuous with respect to u, for the metric Wp . See Section 5 in the Supplemen-
tary Material [48].

Now let us present the main result of this section. For j ∈ N
∗, we endow the

space Ej with the distance dj (x, y) = (
∑j

s=1 d(xs, ys)
p)1/p , x, y ∈ Ej . We will

still denote by Wp the Wasserstein metric for Borel measures on Ej . The proof of
the following result can be found in the Supplementary Material [48], Section 4.

THEOREM 2. Assume that Assumptions B1–B3 hold true. Then the triangular
array of Markov chains {Xn,k : n ∈ Z

+, k ≤ n} is locally stationary. For all integers
j , there exists a real number C > 0 such that for all u ∈ [0,1] and 1 ≤ k ≤ n −
j + 1,

Wp

(
π

(n)
k,j , πu,j

) ≤ C

[∣∣∣∣u − k

n

∣∣∣∣ + 1

n

]
.

Notes.

1. Theorem 2 can be used to approximate some expectations
∫

f dπ
(n)
k,j when f :

Ej →R is a smooth function. For instance, assume that there exist C > 0 such
that for all (z1, z2) ∈ Ej × Ej ,∣∣f (z1) − f (z2)

∣∣ ≤ C
[
1 + dj (z1, x0)

p−1 + dj (z2, x0)
p−1] · dj (z1, z2)

and let γ
(n)
k,u be a coupling of (π

(n)
k,j , πu,j ). Using the Hölder inequality, we have,

setting q = p
p−1 ,∣∣∣∣∫ f dπ

(n)
k,j −

∫
f dπu,j

∣∣∣∣ ≤
∫ ∣∣f (z1) − f (z2)

∣∣dγk,n,u(z1, z2)

≤ C3
q−1
q d

(n)
k,u

(∫
dj (z1, z2)

p dγ
(n)
k,u (z1, z2)

)1/p

,
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d
(n)
k,u = 1 +

(∫
dj (z1, x0)

p dπ
(n)
k,j (z1)

)1/q

+
(∫

dj (z1, x0)
p dπu,j (z1)

)1/q

.

Then under the assumptions of Theorem 2, there exists a constant D > 0 such
that ∣∣∣∣∫ f dπ

(n)
k,j −

∫
f dπu,j

∣∣∣∣ ≤ D

[∣∣∣∣u − k

n

∣∣∣∣ + 1

n

]
.

2. When E is a separable Banach space, and a stationary Markov kernel is con-
tracting for the Wasserstein metric, Dedecker and Prieur [16] have defined
the coefficients of τ -dependence coefficients for the corresponding Markov
chains. Since we will not use these coefficients in the rest of the paper, we
defer the reader to the Supplementary Material [48], Section 7, for a dis-
cussion of these coefficients. Using these mixing coefficients and the pre-
vious point, a study of the asymptotic behavior of localized partial sums∑n−j

k=1 ei(u)f (Xn,k, . . . ,Xn,k+j−1) as in Section 2 or in Section 4 should be
possible. For autoregressive processes contracting in L

p , some results such as
Theorem 2.10 in Dahlhaus, Richter and Wu [13] can be also obtained from our
approach.

3.1. Examples of locally stationary Markov chains. In this part, we give two
examples different from the standard autoregressive processes considered in the
literature. Additional examples as well as some justifications can be found in the
Supplementary Material [48], Section 11.

A locally stationary functional time series. As suggested by one referee, we
give an example of locally stationary functional time series. Stationary functional
time series have received a considerable attention over the recent years. See, for in-
stance, Horváth and Kokoszka [32] for a recent survey. Here, we provide a locally
stationary version of a very simple functional autoregressive process. See Horváth
and Kokoszka [32], Chapter 13, for a more general stationary version. Let p = 2,
E = L

2([0,1]) and d(x, y)2 = ∫ 1
0 (x(s) − y(s))2 ds. Let B1,B2, . . . be a sequence

of independent Brownian motions over [0,1]. We assume that

Xn,k(t) =
∫ 1

0
ak/n(t, s)Xn,k−1(s) ds +

∫ 1

0
σk/n(t, s) dBk(s), t ∈ [0,1],

where the kernel functions au and σu satisfy, for a constant C > 0,

sup
u∈[0,1]

∫ 1

0

∫ 1

0
au(t, s)

2 ds dt < 1, sup
u∈[0,1]

∫ 1

0

∫ 1

0
σu(t, s)

2 ds dt < ∞,

∫ 1

0

∫ 1

0

[∣∣au(t, s) − av(t, s)
∣∣2 + ∣∣σu(t, s) − σv(t, s)

∣∣2]
ds dt < C2|u − v|2.
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Here, δxQu is defined as the probability distribution of the random variable∫ 1
0 au(t, s)x(s) ds + ∫ 1

0 σu(t, s) dB1(s). Additional justifications for this example
are given in the Supplementary Material [48], Section 6.

Poisson GARCH process. Stationary Poisson GARCH processes are widely
used for analyzing series of counts. See Fokianos, Rahbek and Tjøstheim [25] for
the properties and the statistical inference of such processes. In this paper, we con-
sider a time-varying version of this model. More precisely, we assume that the
conditional distribution Yn,k|σ(Yn,k−j , j ≥ 1) is a Poisson distribution of parame-
ter λn,k given recursively by

λn,k = γ (k/n) + α(k/n)Yn,k−1 + β(n, k)λn,k−1, max
u∈[0,1]

[
α(u) + β(u)

]
< 1,

where γ,α,β are positive Lipschitz functions such that to construct a Markov
chain, we consider Xn,k = (Yn,k, λn,k)

′. One can show that our assumptions are
satisfied for p = 1 and d(x, y) = ∑2

i=1 |xi − yi |. A coupling of different paths
can be obtained using Poisson processes. See the Supplementary Material [48],
Section 8, for details. However, let us mention that this result only guarantees the
approximation of integral

∫
f dπu,j for Lipschitz functions which seems to be

too restrictive for statistical inference. On the other hand, contraction for p > 1 is
unclear. Let us also mention that approximation in Wp-metric, p > 1, seems not
satisfying for the Poisson distribution. Indeed, suppose that μu denotes the Poisson
distribution of parameter λu. Since xp ≥ x for any nonnegative integer x, we have

Wp(μu,μv) ≥ W1(μu,μv)
1/p = |λu − λv|1/p.

Then if u �→ λu is differentiable, we have Wp(μu+h,μu) ∼ h1/p in a neighborhood
of point u. Then the regularity in Wp-metric is only of Hölder type even for a
smooth functional parameter which is an undesirable property. This is why for
integer-valued processes, we will use the results of the next section which will give
sharper results for the approximation of the stationary distributions. Unfortunately,
the assumptions will be only satisfied for the Poisson ARCH process (β = 0). See
Section 4.3 for details.

4. Local stationarity from drift and small set conditions. Our motivation
for this section is to define some locally stationary versions of Markov chains mod-
els that satisfy a drift and a small set condition. This approach will be interesting
for unbounded state spaces and models for which:

1. the Doeblin condition discussed in Section 2 does not hold,
2. it is difficult or even impossible to get a natural coupling of the Markov kernels

in such a way the contraction and continuity conditions B2–B3 are satisfied
when E is a separable Banach space.
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This is in particular the case for some integer-valued autoregressive processes such
as Poisson ARCH, for which we already mentioned the difficulties in using the
Wp-metric for p > 1. But we will also consider additional models such as Markov-
switching or SETAR processes for which contraction in Wassertein metric with the
Euclidean metric seems difficult to get. This section can be seen as an extension
of the Dobrushin’s contraction technique used in Section 2. A key point for this is
a result obtained by Hairer and Mattingly [29] who revisited geometric ergodic-
ity using contraction properties of Markov kernels with respect to some V -norms.
This result can also be found in Douc, Moulines and Stoffer [20], Lemma 6.29,
a reference in which the authors give many examples of autoregressive processes
satisfying the corresponding assumptions. From this important result (see Lemma
6 in the Supplementary Material [48] for a statement in our context), we will con-
sider additional examples of locally stationary Markov chains with unbounded
state spaces. For a positive real number ε and a positive integer m, we set

Im(ε) = {
(u1, . . . , um) ∈ [0,1]m : |ui − uj | ≤ ε,1 ≤ i 	= j ≤ m

}
.

For a function V : E → [1,∞), we define the V -norm of a signed measure μ

on (Ej ,B(Ej )) by

(6) ‖μ‖V = sup
{∫

f dμ : ∣∣f (x1, . . . , xj )
∣∣ ≤ V (x1) + · · · + V (xj )

}
.

4.1. General result. Let V : E → [1,∞) be a measurable function, ε a posi-
tive real number and m a positive integer. We will use the following assumptions:

F1. there exist λ ∈ (0,1) and two real numbers b > 0,K ≥ 1 such that for all
(u1, . . . , um) ∈ Im(ε),

Qu1V ≤ KV, Qu1 · · ·QumV ≤ λV + b.

F2. there exist η > 0, R > 2b/(1 − λ) (λ and b are defined in the previous
assumption) and a probability measure ν ∈ P(E) such that for

δxQu1 · · ·Qum ≥ ην if V (x) ≤ R,

F3. there exists a function Ṽ : E → (0,∞) such that supu∈[0,1] πuṼ < ∞ and
for all x ∈ E, ‖δxQu − δxQv‖V ≤ Ṽ (x)|u − v|.

We first give some properties of the Markov kernels Qu with respect to the
V -norm. The proof of the next proposition can be found in the Supplementary
Material [48], Section 12.

PROPOSITION 2. Suppose that Assumptions F1–F3 hold. Then the two follow-
ing statements are valid:

1. There exist C > 0 and ρ ∈ (0,1) such that for all x ∈ E,

sup
u∈[0,1]

∥∥δxQ
j
u − πu

∥∥
V ≤ CV (x)ρj , sup

u∈[0,1]
πuV < ∞.
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2. There exists C > 0 such that for all (u, v) ∈ [0,1]2, ‖πu − πv‖V ≤ C|u − v|.
Now we give our result about local stationarity. A proof can be found in the

Supplementary Material [48], Section 13.

THEOREM 3. 1. Suppose that Assumptions F1–F2 hold true. Then there exists
a positive real number C, only depending on m,λ,b,K and supu∈[0,1] πuṼ such
that ∥∥π(n)

k − πu

∥∥
V ≤ C

[∣∣∣∣u − k

n

∣∣∣∣ + 1

n

]
.

2. In addition, suppose that for all (u, v) ∈ [0,1]2,

‖δxQu − δxQv‖TV ≤ L(x)|u − v| with sup
u∈[0,1]
1≤�′≤�

E
[
L

(
X�(u)

)
V

(
X�′(u)

)]
< ∞.

Let j ≥ 1 be an integer. Then there exists Cj > 0, not depending on k,n,u and
such that

(7)
∥∥π(n)

k,j − πu,j

∥∥
V ≤ Cj

[∣∣∣∣u − k

n

∣∣∣∣ + 1

n

]
.

Moreover, the triangular array of Markov chains {Xn,k : n ∈ Z
+, k ≤ n} is locally

stationary.

Notes.

1. The continuity assumption F3 means that the application u �→ Qu is Lipschitz
continuous for a particular operator norm. More precisely, we set

‖Qu‖V,Ṽ := sup
‖μ‖Ṽ ≤1

‖μQu‖V = sup
|f |V ≤1

|Quf |Ṽ ,

where |f |V = supx∈E
|f (x)|
V (x)

. The equality between the two expressions given
above results from straightforward computations. Assumption F3 is then equiv-
alent to the continuity of the application u �→ Qu for the norm ‖ · ‖V,Ṽ . An
important remark is the following. For unbounded state spaces, the continuity
of the Markov kernel may not hold if V = Ṽ . For instance, Ferré, Hervé and
Ledoux [22] have shown that for an AR(1) and V (x) = 1 + |x|, the transition
kernel is never continuous for this simpler norm, whatever the density of the
absolutely continuous noise distribution. In general, it is necessary to choose
a function Ṽ larger than V to get the continuity of the Markov kernels with
respect to the parameters of the models.

2. Note that this result automatically gives the bound

P(Xn,k ∈ A) − P
(
Xk(u) ∈ A

) = O
(|u − k/n| + 1/n

)
for any measurable set A.
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3. In the stationary case, Conditions F1 and F2 are often satisfied for autoregres-
sive processes for which the regression function is contracting outside a ball.
Locally stationary versions of autoregressive processes satisfying this contrac-
tion “at infinity” have been studied by Vogt [51]. We claim that his conditions
more or less guarantee our assumptions when V is a suitable power function,
because his results are based on assumptions ensuring geometric ergodicity in
the stationary case. For stationary autoregressive models, we refer the reader
to Douc, Moulines and Stoffer [20], Chapter 6, for some examples satisfying
Assumptions F1–F2.

Assumptions F1–F2 also guarantee some mixing properties for the triangular
array of Markov chains. In our context, the notion of β-mixing is adapted. See
Doukhan [21] for the various mixing notions adapted to random sequences and in
particular the properties of β-mixing and φ-mixing sequences. In particular, the
φ-mixing property derived in Section 2 implies the β-mixing property discussed
in the present section. However, for Markov chains, the φ-mixing property is re-
lated to the Doeblin’s condition and rarely holds for unbounded state spaces. See
Bradley [8] for a discussion of different mixing conditions for Markov chains. For
Markov chains, the β-mixing coefficients can be defined as follows (see Proposi-
tion 3.22 in Bradley [9]). For an integer n ≥ 1 and 0 ≤ j ≤ n, we set

βn(j) = 1

2
max

1≤i≤n−j
E sup

‖f ‖∞≤1

∣∣E(
f (Xn,i+j )|Xn,i

) −Ef (Xn,i+j )
∣∣.

Similarly, we define the coefficients (β(u)(j))j≥0 of the stationary Markov chain
(Xk(u))k∈Z. The following result, the proof of which is straightforward, can be
obtained by bounding the larger coefficients:

β(V )
n (j) = sup

k≤n

E
∥∥π(n)

k − δXn,k−j
Qk−j+1

n
· · ·Qk

n

∥∥
V .

PROPOSITION 3. Assume that Assumptions F1–F2 hold true and that n ≥
m/ε. Then if j = mg + s, we have

(8) βn(j) ≤ δ−1 sup
k≤n

π
(n)
k V · Ksγ g, β(u)(j) ≤ δ−1 sup

u∈[0,1]
πuV · Ksγ g,

where δ, γ ∈ (0,1) are given in Lemma 6 of the Supplementary Material [48].

Notes.

1. In checking Assumptions F1–F2, one can find some conditions under which the
time-varying ARCH process is β-mixing. This gives a short alternative proof
to the result derived in Fryzlewicz and Subba Rao [27]. See the Supplementary
Material [48], Section 14, for precise assumptions.

2. From the drift condition in F1, we have π
(n)
k V ≤ b

1−λ
for n ≥ m/ε. Hence

supn∈Z+,k≤n π
(n)
k V < ∞.
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3. Assumptions F1–F2 guarantee a geometric decay for the β-mixing coefficients
of the triangular array of Markov chains and of the corresponding stationary
approximations. One can observe that the bound can be made uniform over
n ≥ 1 and u ∈ [0,1].
4.2. Example 1: Markov switching autoregressive processes. Markov switch-

ing autoregressive processes have been introduced by Hamilton [31] to analyze
business cycles in economics. These processes have been widely studied in the
literature. We consider a simple autoregressive process with one lag and regime
switching and which is a locally stationary version of the CHARME model con-
sidered in Stockis, Franke and Kamgaing [44]. Let {Zn,k : 1 ≤ k ≤ n,n ≥ 1} be a
triangular array of Markov chains on a finite state space E2 and associated with
a family {Qu : u ∈ [0,1]} of transition matrices which are assumed to satisfy the
assumptions of Corollary 1. We also consider a sequence (εn)n∈Z of i.i.d. random
variables with an absolutely continuous distribution. Then we define

Yn,k = m

(
k

n
,Zn,k, Yn,k−1

)
+ σ

(
k

n
,Zn,k, Yn,k−1

)
εk, 1 ≤ k ≤ n,

where m : [0,1]×E2 ×R →R and σ : [0,1]×E2 ×R →R
∗+ are given functions.

We assume that for each n ≥ 1, the Markov chain (Zn,k)k is independent of the
sequence (εk)k . We set E = R × E2 and Xn,k = (Yn,k,Zn,k)

′. Then as for the
homogeneous case, the bivariate process (Xn,k)k forms a Markov chain. One can
choose some power drift functions V (y, z) = 1 + |y|p . More precise assumptions
on the noise density fε and the functions m,σ that guaranty local stationarity can
be found in the Supplementary Material, Section 15. When the functions m,σ do
not depend on the time, weaker assumptions can be used. See the Supplementary
Material [48] for details.

4.3. Example 2: Integer-valued autoregressive processes. Stationary INAR
processes are widely used in the time series community for analyzing integer-
valued data. This time series model has been proposed by Al-Osh and Alzaid [1]
and a generalization to several lags was studied in Du and Li [23]. In this paper, we
introduce a locally stationary version of such processes, with one lag for simplic-
ity. For u ∈ [0,1], we consider a random binomial operator αu◦, that is, for each
integer x, αu ◦ x follows a binomial distribution with parameters (x,αu). One can
also set αu ◦x = ∑x

i=1 Yi(u) where (Yi(u))i≥1 is a sequence of i.i.d. Bernoulli ran-
dom variables. Moreover, let ζ(u) be the Poisson distribution on the nonnegative
integers with mean λ(u). Now let

Xn,k = αk/n ◦ Xn,k−1 + ηn,k, 2 ≤ k ≤ n,

where for each integer n ≥ 1, ηn,k , which is assumed to be independent of αk/n◦,
has probability distribution ζ(k/n). Note that if the Bernoulli random variables
are replaced with Poisson random variables, we obtain the Poisson ARCH process
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already discussed in the last section. In both cases, the parameters αu (λu, resp.) of
the counting sequence (the Poisson noise resp.) are assumed to be Lipschitz contin-
uous and maxu∈[0,1] αu < 1. One can then show that Theorem 3 applies with drift
functions Vp(x) = xp + 1 for an arbitrary integer p ≥ 1. Details are given in the
Supplementary Material [48], Section 16. Parameters αu and λu can be estimated
using a local least squares method. Details are given in the Supplementary Material
[48], Section 17. Note that, as in the homogeneous case, the Poisson GARCH pro-
cess does not satisfy a small set condition. See Fokianos, Rahbek and Tjøstheim
[25] for a discussion.

4.4. Example 3: A locally stationary version of SETAR processes. We assume
here that

Xn,k = (
a(k/n)Xn,k−1 + b(k/n)

)
1{Xn,k−1<r}

+ (
c(k/n)Xn,k−1 + d(k/n)

)
1{Xn,k−1≥r} + εk,

where (εk)k∈Z is a sequence of i.i.d. random variables with mean zero. This model
is a time-varying version of the stationary threshold model of Tong [46]. Note
that the threshold level r is not time-varying, otherwise Assumption F3 cannot
be checked. We assume that the functions a, b, c, d are Lipschitz continuous with
α = max(maxu∈[0,1] |a(u)|,maxu∈[0,1] |c(u)|) < 1 and the noise has a density fε

of class C1, positive everywhere and such that for a positive integer p > 0,∫
|z|p+1fε(z) dz < ∞,

∫
|z|p · ∣∣f ′

ε(z)
∣∣dz < ∞.

Then local stationarity in V -norm holds, with V (y) = 1 + |y|p . Justifications are
given in the Supplementary Material [48], Section 18. If the threshold parameter
r is known, local least-squares estimators for a, b, c, d can be shown to be asymp-
totically Gaussian, using Theorem 3 and Proposition 4 below. Details are omitted.
Estimating r is more difficult. One solution could be to estimate it in a second step
after plugging the estimates of the autoregressive parameters. See for instance Li
et al. [35], Section 3.1 for details in the stationary case.

4.5. Limiting behavior of partial sums. In this subsection, we show how our
results can be used to obtain some asymptotic normality properties for partial
sums. We will use the following terminology. The triangular array of Markov
chains {Xn,k : 1 ≤ k ≤ n,n ≥ 1} will be said to be locally stationary for the V -
norm if (7) holds and geometrically β-mixing if (8) holds. Conditions ensuring
both properties are given in Theorem 3. The following result is central to derive
asymptotic properties of local least-squares or local likelihood estimators. Its proof
uses a central limit theorem for strong mixing sequences and is given in the Sup-
plementary Material [48], Section 19.
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PROPOSITION 4. Let {Xn,k : 1 ≤ k ≤ n,n ≥ 1} be a triangular array of
Markov chains locally stationary for the V -norm and geometrically β-mixing. For
some integer j ≥ 1, let f : [0,1] × Ej → R be a measurable function continuous
with respect to its first argument and δ ∈ (0,1) such that

sup
u∈[0,1],x1,...,xj∈E

|f (u, x1, . . . , xj )|
[V (x1) + · · · + V (xj )] 1

2+δ

< ∞.

For j ≤ k ≤ n, we set Zn,k = f (k/n,Xn,k−j+1, . . . ,Xn,k) and Zk(u) = f (u,

Xk−j+1(u), . . . ,Xk(u)) for the stationary approximation. We have the two follow-
ing properties:

1. The partial sum Sn := 1√
n

∑n
i=j [Zn,i −EZn,i] is asymptotically Gaussian with

mean 0 and variance

σ 2 =
∫ 1

0

∑
k∈Z

Cov
(
Z0(u),Zk(u)

)
du.

2. If K is a kernel of bounded variation and with compact support [−1,1] and
b = bn is such that b → 0 and nb → ∞, then the weighted partial sum Sn(u) :=

1√
nb

∑n
i=j K(

u−i/n
b

)[Zn,i −EZn,i] is asymptotically Gaussian with mean 0 and
variance

σ(u)2 =
∫ 1

−1
K2(v) dv · ∑

k∈Z
Cov

(
Z0(u),Zk(u)

)
.

4.6. Statistical inference of local parameters. For models satisfying the as-
sumptions of Theorem 3, we derive the asymptotic properties of the local maxi-
mum likelihood estimator in the spirit of the recent approach used in Dahlhaus,
Richter and Wu [13] for autoregressive processes. We assume that the family of
Markov kernels {Qu : u ∈ [0,1]} satisfies the Assumptions F1–F3 and that

Qu(x, dy) = exp
(
S
(
θ0(u), x, y

))
μ(x, dy),

where θ0 : [0,1] �→ � is a function taking values in a subset � of R
d , S : � ×

E2 → R is a known function and μ is a measure kernel from (E,E) to itself. The
local MLE at point u ∈ (0,1) is defined by

θ̂ (u) = arg max
θ∈�

Ln(θ), Ln(θ) = n−1
n∑

j=2

Kb(u − j/n)S(θ,Xn,j−1,Xn,j ).

Let ∇1f , ∇2
1f be the gradient vector and the Hessian matrix with respect to the

first argument of a real-valued function f . The following assumptions will be
needed:

L1(�) For all (x, y) ∈ E2, the function θ �→ S(θ, x, y) is of class C�.
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L2 There exist a constant C > 0 such that for all (x, y) ∈ E2,

sup
θ∈�

∣∣S(θ, x, y)
∣∣2+δ ≤ C

[
V (x) + V (y)

]
.

L3 � is a compact set and θ0(u) ∈ int (�) is the unique minimizer of θ �→
ES(θ,X0(u),X1(u)) over θ ∈ �.

L4 There exist a constant C > 0 such that for all (x, y) ∈ E2,

sup
θ∈�

[∣∣∇1S(θ, x, y)
∣∣2+δ + ∣∣∇2

1S(θ, x, y)
∣∣2+δ] ≤ C

[
V (x) + V (y)

]
.

L5 The function gu : v �→ E∇1S(θ0(u),Xk−1(v),Xk(v)) is of class C2.
Assumptions L2 and L4 (for the second derivative) are probably not optimal

because we did not prove a sharp law of large number for localized sums. However,
they are sufficient for illustrating our results. Here, we propose to expand the bias
of the local MLE up to the second order. A proof of the following result can be
found in the Supplementary Material [48], Section 20.

THEOREM 4. Let K be a symmetric kernel, supported on [−1,1] and of
bounded variation:

1. Let b → 0 and nb → ∞. If Assumptions L1(0) and L2–L3 hold true, then θ̂ (u)

is consistent.
2. If b → 0, nb → ∞, nb5 = O(1) and the Assumptions L1(2) and L2–L5 hold

true, then
√

nb

(
θ̂ (u) − θ0(u) − b2κ2

2
ζ(u)

)
⇒N

(
0,

∫
K2(v) dv · M(u)−1

)
,

with M(u) = E[−∇2
1S(θ0(u),X0(u),X1(u))], ζ(u) = M(u)−1g′′

u(u) and κ2 =∫
v2K(v)dv.

Notes.

1. In Section 20 of the Supplementary Material [48], we check the previous as-
sumptions for the binary time series (4) and the Poisson ARCH process. As-
sumption L5 is not guaranteed by our approximation results. In Dahlhaus,
Richter and Wu [13], an expression for the first-order approximation of the
bias of the local likelihood estimator is obtained by using a notion of derivative
process d

du
Xt(u). For categorical or integer-valued data, this notion does not

make sense. However, it is still possible to study the regularity of the function
u �→ ∫

f dπu,2 = Ef (X0(u),X1(u)). Using our results, it is only possible to
obtain the Lipschitz continuity of this function. However, in Truquet [47], we
give a general result which guarantees existence of derivatives for such func-
tions when power functions satisfy the drift condition. In the Supplementary
Material [48], we use this result to show that Assumption L5 is satisfied for bi-
nary time series and Poisson ARCH process as soon as u �→ θ(u) is two times
continuously differentiable.
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2. Theorem 4 can also be applied to some standard autoregressive models such
as ARCH processes for instance. However, the Assumptions F2–F3 can only
be checked using some smoothness assumptions for the noise density. Our as-
sumptions are then more restrictive than that of Dahlhaus, Richter and Wu [13]
which do not require existence of a density for the noise distribution. On the
other hand, considering for instance the EXPAR model studied in Dahlhaus,
Richter and Wu [13], Proposition 3 and the result of Section 4.3 in Truquet [47]
can be used to check Assumption L5 under suitable moment conditions on the
noise density and its derivatives. An expansion of the bias of the local MLE (or
QMLE for non-Gaussian inputs) up to any order is also possible. We will not
give precise assumptions in the present paper.

5. Practical implementation for finite-state Markov chains. This section
is devoted to the implementation of finite-state Markov chains. In particular, we
discuss bandwidth selection and prove the consistency of an adapted bootstrap
procedure for getting confidence intervals for the elements of the transition matrix.

5.1. Simulation study. One of the important issues for the practical implemen-
tation of our estimator is bandwidth selection. Interpreting our estimator as a least-
squares estimator, we propose a very simple procedure based on generalized cross
validation. The same approach can be used for local least-squares estimators in
other locally stationary Markov chain models such as the time-varying integer val-
ued process discussed in Section 4. For some y ∈ E, we know that

P(Xn,k = y|Xn,k−1) = Qk/n(Xn,k−1, y) = ∑
x∈E

Qk/n(x, y)1{Xn,k−1=x}.

Moreover, Q̂k/n is a minimizer of the loss function

P �→ ∑
y∈E

n∑
j=2

K

(
k − j

nb

)(
1{Xn,j=y} − P(Xn,k−1, y)

)2
.

Then Zy,j = 1{Xn,j=y} has a fitted value Ẑy,j = Q̂j/n(Xn,j−1, y). The hat matrix

H defined by the equality by Ẑ = HZ has diagonal elements not depending on y

and given by

gj = ∑
x∈E

K(0)1{Xn,j−1=x}∑n
i=2 K(k−i

nb
)1{Xn,i−1=x}

.

Then one can minimize the criterion C defined by

C(b) = ∑
y∈E

∑n
k=2(1{Xn,j=y} − Qk/n(Xn,k−1, y))2

(1 − 1
n−1

∑n
k=2 gk)2

.

Next, we perform a simulation study and approximate the mean squared error for
estimating the transition matrix for a binary Markov chain under two scenarios:
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TABLE 1
Approximation of the RMSE for several bandwidth choices and sample sizes n = 150,500

n = 150 n = 500

GCV n−1/3 1.5n−1/3 2n−1/3 GCV n−1/3 1.5n−1/3 2n−1/3

S1 0.1278 × 0.1340 0.1602 0.076 0.0847 0.0708 0.1103
S2 0.1002 0.1024 0.0904 0.0903 0.0602 0.0923 0.0657 0.0548

• For the first scenario S1, we set Qu(0,1) = 0.5 + 0.4 sin(2πu) and Qu(1,0) =
0.5 + 0.4 cos(2πu).

• For the second scenario S2, we set Qu(0,1) = 0.1 + 0.8u and Qu(1,0) = 0.9 −
0.8u.

We evaluate the RMSE
√
E

∫ 1
0 (Q̂u(0,1) − Qu(0,1))2 du using 5000 samples of

size n = 150 or n = 500. Results are reported in Table 1. With respect to other
possible bandwidths, the cross-validation works quite well even for the smallest
sample size. For the scenario S1 and n = 150, the case b = n−1/3 is not reported
because for some time subscripts t , we have Xn,s 	= 0 for s ∈ [t − nb, t + nb].
In practice, this problem can be avoided by considering bandwidth parameters
large enough so that for each time interval of the previous form, one can find the
realization 0 for the process.

5.2. Bootstrap procedure. In nonparametric estimation, asymptotic confi-
dence intervals are not very accurate when the sample size is moderate. Bootstrap
procedures are often used to bypass this problem. Asymptotic properties for boot-
strapping homogeneous Markov chains can be found in Kulperger and Prakasa
Rao [34] for the finite-state case and Athreya and Fuh [2] for the denumerable
case. In particular, a natural idea is to generate replicates of the path of the Markov
chain by using the estimation of the transition matrix. However in our case, the
data are nonstationary and we combine this approach with the bootstrap scheme
studied in Fryzlewicz, Sapatinas and Subba Rao [26] for locally stationary ARCH
processes. More precisely, for some u ∈ (0,1), an asymptotic confidence interval
for Qu can be obtained using the quantiles of the distribution of Q̂∗

u − Q̂u, where

Q̂∗
u(x, y) =

∑n
i=2 Kb(u − i/n)1{X∗

i−1=x,X∗
i =y}∑n

i=2 Kb(u − j/n)1{X∗
i−1=x}

.

Here, X∗
1, . . . ,X∗

n is, conditionally to the observations, a path of a Markov chain
with transition matrix Q̂u. We set P∗ = P(·|σ(Xn,k : 1 ≤ k ≤ n, k ≥ 1)). Asymp-
totic validity of this bootstrap is justified by the following result. For simplicity,
we only give a result for one entry of the stochastic matrix but a vectorial exten-
sion can be easily derived. The proof of the following result can be found in the
Supplementary Material [48], Section 21.
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PROPOSITION 5. Suppose that Assumptions A1–A2 hold true. Let K be
a kernel supported on [−1,1], symmetric and of bounded variation. If b → 0
and nb1+ε → ∞ for some ε > 0, then almost surely, the probability distribu-
tion of

√
nb(Q̂∗

u(x, y) − Q̂u(x, y)) under P
∗ converges to the Gaussian distri-

bution of mean 0 and variance
∫ 1
−1 K2(v) dv

Qu(x,y)
πu(x)

(1 − Qu(x, y)). Moreover,

if nb3 = O(1) and u �→ Qu is continuously differentiable, the distribution of√
nb(Q̂∗

u(x, y) − Q̂u(x, y)) under P
∗ and

√
nb(Q̂u(x, y) − Qu(x, y)) under P

are asymptotically equivalent.

6. Application to the analysis of trading activity. Our real data illustration
concerns the trading activity of six thinly traded shares at the Johannesburg Stock
Exchange from October 5, 1987, to June 3, 1991. These data are analyzed in
Fokianos and Moysiadis [24] using stationary logistic and probit models. The data
are binary, with a value equal to 1 if a trade has been recorded at time t and 0
otherwise. In Figure 1, given in Section 1, the function u �→ π̂u(1) is represented
for two shares which seems particularly inhomogeneous. While the probability to
have a trade for the share “Anamint” follows a strong increase at the end of the
period, that of the share “Broadcares” has the opposite behavior. In Fokianos and
Moysiadis [24], the autocorrelograms of these two time series seems to exhibit
significant correlations for large lags. For financial data, this kind of persistence is
quite usual and often due to nonstationarity problems. See, for instance, Granger
and Stărică [28] for a discussion of this phenomenon. We fit a time-inhomogeneous
binary Markov chain to model the dynamic of the share “Anamint.” An estimation
of the diagonal elements of the stochastic matrix is given in Figure 2. Our approach
suggests that the dynamic is strongly inhomogeneous.

One can also check that the graphs of the estimated local invariant probabil-
ity in Figure 1 are compatible with the graph given in Fokianos and Moysiadis
[24] with vertical bars for the presence of trading. The main advantage of time-
inhomogeneous Markov chains is to get a statistical model which at the time is
able to identify some trading patterns. Of course, one may think of using such mod-
els for prediction but this requires investigating higher order time-inhomogeneous
Markov chains and probably parsimonious versions of such models with for in-
stance the locally stationary versions of probit/logit models. This is outside the
scope of this paper.

7. Discussion. In this paper, we discussed various approaches for consider-
ing locally stationary versions of Markov chains models. The notion of local
stationarity introduced in the literature offers a nice approach to deal with time-
inhomogeneity but it is more adapted to continuous state space autoregressive
Markov processes. Existing works exclude categorical data or integer-valued time
series. We have defined a general notion of local stationarity based on a local ap-
proximation of the finite dimensional distributions using various probability met-
rics. This approach is quite flexible because various metrics can be used to define
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FIG. 2. Estimation of u �→ Qu(0,0) (left) and u �→ Qu(1,1) (right). The estimates are given by
the full line and the dashed lines (dotted lines, resp.) represent the bootstrap pointwise confidence
intervals at level 80% (90%, resp.) and which are estimated by using B = 5000 bootstrap samples of
a stationary Markov chain with transition matrix Q̂u. The x-axis represents the time and the y-axis,
the estimated local probability.

a locally stationary model. We now provide a guideline to precise what type of
metric can be used to define a locally stationary version of a Markov chain model:

1. If the stationary version satisfies the Doeblin condition, then the total variation
distance discussed in Section 2 is appropriate.

2. When the Doeblin condition is not satisfied but a drift and a small set condition
can be obtained for the homogeneous Markov chain, the V -norm discussed in
Section 4 could be used. Note that both approaches require the Markov kernels
to be absolutely continuous with respect to a measure not depending on the
parameters.

3. When a small set condition is too restrictive or cannot be checked, then a
Wasserstein metric can be interesting when the state space is a Banach space. In
this case, there is often a natural coupling of (δxQ, δyQ) for the Markov kernel
Q, as for autoregressive processes, to check the assumptions of Section 3.

Note that we did not develop statistical inference for the last case which gen-
eralizes a setup largely exploited in the literature. Let us also mention that the
φ,β-mixing coefficients are those already used for the stationary version of these
Markov chains and the τ -mixing coefficients were already discussed in Dedecker
and Prieur [16] for some time-homogeneous Markov chains satisfying similar as-
sumptions.

For the perspectives, bandwidth selection for the local contrast estimates studied
in this paper, in the spirit of the recent work of Richter and Dahlhaus [39], could be
investigated. Estimation of Markov-switching or SETAR models remain to do and
are quite challenging. Another issue could be to investigate some processes involv-
ing a latent process defined by recursive equations, such as the Poisson GARCH
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and its variants; see, for instance, in Davis et al. [15], or the categorical time se-
ries studied in Moysiadis and Fokianos [37]. In this case, the small set condition
is not satisfied and the contraction in Wassertein metric is difficult to obtain or too
restrictive.

SUPPLEMENTARY MATERIAL

Supplement to “Local stationarity and time-inhomogeneous Markov
chains.” (DOI: 10.1214/18-AOS1739SUPP; .pdf). Contains the proofs of all the
results as well as a discussion of various Markov chains models satisfying the
assumptions used in this paper.
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