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VALID CONFIDENCE INTERVALS FOR
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We consider inference post-model-selection in linear regression. In this
setting, Berk et al. [Ann. Statist. 41 (2013a) 802–837] recently introduced a
class of confidence sets, the so-called PoSI intervals, that cover a certain non-
standard quantity of interest with a user-specified minimal coverage prob-
ability, irrespective of the model selection procedure that is being used. In
this paper, we generalize the PoSI intervals to confidence intervals for post-
model-selection predictors.

1. Introduction and overview. In statistical practice, the model used for anal-
ysis is very often chosen after the data have been observed, either by ad hoc meth-
ods or by more sophisticated model selection procedures. Inference following such
a model selection step (inference post-model-selection) has proven to be a chal-
lenging problem. “Naive” procedures, which ignore the presence of model selec-
tion, are typically invalid (e.g., in the sense that the actual coverage probability
of “naive” confidence sets for the true parameter can be dramatically smaller than
the nominal one), and the construction of valid procedures is often nontrivial; see
Leeb and Pötscher (2005, 2006, 2017), Kabaila and Leeb (2006), Pötscher (2009)
and references therein for an introduction to the issues involved here. In these ref-
erences, inference is focused on the true parameter of the data-generating model
(or on components thereof). Shifting the focus away from the true parameter as
the target of inference, Berk et al. (2013a) recently introduced a class of confi-
dence sets, the so-called PoSI intervals, that guarantee a user-specified minimal
coverage probability after model selection in linear regression, irrespective of the
model selector that is being used; see also Berk et al. (2013b) and Leeb, Pötscher
and Ewald (2015). In this paper, we generalize the PoSI intervals to intervals for
post-model-selection predictors.

Prediction following model selection is obviously also of great importance. In
the case where the selected model is misspecified, parameter estimates are typ-
ically biased or at least difficult to interpret; cf. Remark 2.7. But even a mis-
specified model may perform well for prediction. In particular, Greenshtein and
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Ritov (2004) derive, under appropriate sparsity assumptions, feasible predictors
that asymptotically perform as well as the (infeasible) best candidate predictor
even if the available number of explanatory variables by far exceeds the sample
size. These feasible predictors are also covered by the results in the present paper,
among others. Like Greenshtein and Ritov (2004), our analysis does not rely on
the assumption that the true data generating model is among the candidates for
model selection. We develop confidence intervals for such predictors, that are easy
to interpret and that are optimal in an appropriate sense; cf. Remarks 2.7(ii), 2.8
and 3.2, as well as Greenshtein and Ritov (2004). A further rationale for extending
the PoSI-approach of Berk et al. (2013a) to problems related to prediction is that
this framework seems to provide a more natural habitat for considering nonstan-
dard targets; see the discussion in Remark 2.1 of Leeb, Pötscher and Ewald (2015)
as well as in Remarks 2.7 and 3.1 given further below.

The crucial feature of the approach of Berk et al. (2013a) is that the coverage
target, that is, the quantity for which a confidence set is desired, is not the standard
target, that is, the parameter in an overall model (or components thereof), but a
nonstandard quantity of interest that depends on the selected model, and thus on
the data. This nonstandard quantity of interest is denoted by β

(n)

M̂
throughout the

paper (cf. Section 2 for details). Here, M̂ stands for the (data-dependent) model
chosen by the model selector and n stands for sample size. The nonstandard tar-
get β

(n)

M̂
provides a certain vector of regression coefficients for those explanatory

variables that are “active” in the model M̂ (more precisely, β
(n)

M̂
represents the co-

efficients of the projection of the expected value vector of the dependent variable
on the space spanned by the regressors included in M̂); for a precise definition see
equations (2.3) and (2.4) in Section 2.

For a new set of explanatory variables x0, we first extend the PoSI-approach
to obtain confidence intervals for the predictor x′

0[M̂]β(n)

M̂
. Here, x0[M̂] denotes

the set of explanatory variables from x0 that correspond to the “active” regressors
in the model M̂ . We call x′

0[M̂]β(n)

M̂
the design-dependent (nonstandard) cover-

age target, because different design matrices in the training data typically result
in different values of x′

0[M̂]β(n)

M̂
even if both training data sets lead to selection

of the same model M̂ . We construct PoSI confidence intervals for x′
0[M̂]β(n)

M̂
that

guarantee a user-specified minimal coverage probability, irrespective of the model
selector that is being used. The design-dependent coverage target minimizes a cer-
tain “in-sample” prediction error; cf. Remark 2.8. However, when the goal is to
predict a new response corresponding to a new vector x0 of explanatory variables,
this “in-sample” optimality property may have little relevance, and thus the focus
on covering the design-dependent target x′

0[M̂]β(n)

M̂
may be debatable.

In view of this, we next consider an alternative coverage target that depends
on the selected model but not on the training data otherwise, and that we denote
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by x′
0[M̂]β(�)

M̂
; see (3.1). We call x′

0[M̂]β(�)

M̂
the design-independent (nonstandard)

coverage target. The design-independent coverage target minimizes a certain “out-
of-sample” prediction error, namely the mean-squared prediction error, over all
(infeasible) predictors of a future response y0 that are of the form x′

0[M̂]γ (M̂),
when x0 and the row-vectors of X are sampled from the same distribution; cf.
Remark 3.2. In particular, this target does not suffer from the issues that plague
the design-dependent coverage target, as discussed at the end of the preceding
paragraph. Certain optimality properties of a feasible counterpart of x′

0[M̂]β(�)

M̂
are

derived in Greenshtein and Ritov (2004), for a particular model selector M̂ and un-
der appropriate sparsity assumptions; a target closely related to x′

0[M̂]β(�)

M̂
is also

studied in Leeb (2009). For a large class of model selectors, we show that the PoSI
confidence intervals constructed earlier also cover the design-independent cover-
age target with minimal coverage probability not below the user-specified nominal
level asymptotically. In that sense, the PoSI confidence intervals are approximately
valid for the target x′

0[M̂]β(�)

M̂
, irrespective of the model selector M̂ in that class. In

simulations, we find that our asymptotic result is representative of the finite-sample
situation even for moderate sample sizes.

When extending the PoSI-approach to confidence intervals for both the design-
dependent and the design-independent coverage target, that is, for both x′

0[M̂]β(n)

M̂

and x′
0[M̂]β(�)

M̂
, we find that the resulting intervals necessarily depend not only on

x0[M̂] but also on those components of x0 that are “in-active” in the model M̂ .
This may appear surprising at first sight but turns out to be inherent to the PoSI-
approach (because of the need to take the maximum over all models M in (2.10)).
In any case, this is problematic in situations when, after having selected a given
model, only the “active” components of x0 are observed, for example, in situations
where observations are costly and model selection is carried out also with the goal
of reducing cost by not having to observe irrelevant components of x0. To resolve
this, we also develop PoSI confidence intervals that depend on the “active” vari-
ables x0[M̂] only. These intervals are obtained by maximizing over all inactive
variables and are hence larger than the intervals for the case where x0 is known en-
tirely. In simulations, we find that the excess width of these intervals is moderate.
We also provide analytic results regarding the excess width of these intervals in an
asymptotic setting where the number of regressors goes to infinity; see Section 2.4.

Inference post-model-selection is currently a very active area of research and
we can only give a selection of work relevant for, or related to, this paper. Con-
temporary analyses of confidence sets for (components of) the true parameter of
the underlying model include Andrews and Guggenberger (2009), Kabaila and
Leeb (2006), Leeb and Pötscher (2005), Pötscher (2009), Pötscher and Schnei-
der (2010) and Schneider (2016). These references also point to numerous earlier
results. Also, the work of Lockhart et al. (2014), Wasserman and Roeder (2009)
and Wasserman (2014) should be mentioned here. For the LASSO, in particular,
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a desparsifying method has recently been developed by Belloni, Chernozhukov
and Hansen (2011, 2014), van de Geer et al. (2014) and Zhang and Zhang (2014).
Another strand of literature that, like the PoSI approach, also focuses on β

(n)

M̂
as

the quantity of interest, is developed in Fithian, Sun and Taylor (2015), Lee et al.
(2016), Lee and Taylor (2014), Tian and Taylor (2015) and Tibshirani et al. (2015,
2016): In these papers, confidence sets for β

(n)

M̂
are considered that have a guar-

anteed coverage probability conditionally on the event that a particular model has
been selected by the model selection procedure. In contrast to PoSI procedures, the
confidence intervals obtained in these papers are specific to the model selection
procedure used (the LASSO, in particular, being considered in these references)
and generally rely on certain geometric properties of the specific model selection
procedure under consideration. In simulation experiments, we compare the con-
fidence intervals proposed in these references with the intervals developed here
and observe some interesting phenomena; see Appendix G. As prompted by a ref-
eree, we point out here that in the presence of a large number of regressors PoSI
intervals (including intervals considered in the present paper) typically are com-
putationally more burdensome than the confidence intervals proposed in Lee et al.
(2016) for the LASSO with a fixed value for the tuning parameter; see, however,
also the discussion towards the end of Appendix G.

The rest of the paper is organized as follows. In Section 2, we introduce
the models, the model-selection procedures, the design-dependent target and the
PoSI confidence intervals for both the case where all explanatory variables in
x0 are observed and the case where only the components of x0 corresponding
to the “active” explanatory variables are available; moreover, we analyze prop-
erties of these intervals in an asymptotic framework where the model dimen-
sion increases; cf. Section 2.4. In Section 3, we present the design-independent
target and show that the PoSI confidence intervals introduced earlier also cover
the design-independent target, with minimal coverage probability not below the
nominal one asymptotically when sample size increases. The results of a nu-
merical study are reported in Section 4. Conclusions are drawn in Section 5.
Appendix A, which like all the Appendices can be found in the Supplemen-
tary Material (Bachoc, Leeb and Pötscher (2018)), contains some comments on
the assumptions made on the error variance. The proofs of the results in Sec-
tions 2 and 3 are given in Appendices B and C. Appendix D contains some
comments on and extensions of the results in Section 3. In Appendix E we de-
scribe algorithms for computing the PoSI confidence intervals, that are com-
parable with those proposed by Berk et al. (2013a) in terms of computational
complexity. Appendix F contains details concerning the numerical calculations
used for the results in Section 4. Finally, Appendix G reports simulation re-
sults regarding the comparison of the confidence intervals of Lee et al. (2016)
with those proposed in the present paper. In the following, any reference to
an Appendix points to the Supplementary Material (Bachoc, Leeb and Pötscher
(2018)).
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2. Confidence intervals for the design-dependent nonstandard target.

2.1. The framework. Consider the model

(2.1) Y = μ + U,

where μ ∈ Rn is unknown and U follows an N(0, σ 2In)-distribution; here σ 2, 0 <

σ < ∞, is the unknown error variance and In is the identity matrix of size n ≥ 1.
An important instance of this model arises when μ is known to reside in a lower
dimensional linear subspace of Rn, but we do not make such an assumption at this
point. Apart from the data Y , we are given a (real) n×p matrix X, not necessarily
of full column rank, the columns of which represent potential regressors. This
setup allows for p > n as well as for 1 ≤ p ≤ n. The rank of X will be denoted
by d . The design matrix X is treated as fixed throughout Section 2.

We consider fitting (potentially misspecified) linear models with design matri-
ces that are obtained by deleting columns from X. Such a model will be repre-
sented by M , a subset of {1, . . . , p}, where the elements of M index the columns
of X that are retained. We use the following notation: For M ⊆ {1, . . . , p}, we
write Mc for the complement of M in {1, . . . , p}. It proves useful to allow M to be
the empty set. We write |M| for the cardinality of M . With m = |M|, let us write
M = {j1, . . . , jm} in case m ≥ 1. For M 	= ∅ and for an l × p matrix T , l ≥ 1,
let T [M] be the matrix of dimension l × m obtained from T by retaining only
the columns of T with indices j ∈ M and deleting all others; if M = ∅, we set
T [M] = 0 ∈ Rl . In abuse of notation, we shall, for a p × 1 vector v, write v[M]
for (v′[M])′, that is, v[M] = (vj1, . . . , vjm)′ for m ≥ 1 and v[M] = 0 ∈ R in case
M =∅. For a given model M , we denote the corresponding least squares estimator
by β̂M , that is,

(2.2) β̂M = (
X[M]′X[M])−1

X[M]′Y,

where the inverse is to be interpreted as the Moore–Penrose inverse in case X[M]
does not have full column rank. For any given model M , the corresponding least
squares estimator β̂M is obviously an unbiased estimator of

(2.3) β
(n)
M = (

X[M]′X[M])−1
X[M]′μ.

Note that β̂M as well as β
(n)
M reduce to 0 in case M = ∅.

As in Berk et al. (2013a), we further assume that, as an estimator for σ 2, we
have available an (observable) random variable σ̂ 2 that is independent of PXY and
that is distributed as σ 2/r times a chi-square distributed random variable with r

degrees of freedom (1 ≤ r < ∞), with PX denoting orthogonal projection on the
column space of X. This assumption is always satisfied in the important special
case where one assumes that d < n and μ ∈ span(X) hold, upon choosing for
σ̂ 2 the standard residual variance estimator obtained from regressing Y on X and
upon setting r = n−d . However, otherwise it is not an innocuous assumption at all
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and this is further discussed in Appendix A. Observe that our assumption allows
for estimators σ̂ 2 that not only depend on Y and X, but possibly also on other
observable random variables (e.g., additional data). The joint distribution of Y and
σ̂ 2 depends on μ and σ as well as on sample size n and will be denoted by Pn,μ,σ

(see also Appendix D.4).
We are furthermore given a (nonempty) collection M of admissible models

M ⊆ {1, . . . , p}, the “universe” of models considered by the researcher. Without
loss of generality, we will assume that any column of X appears as a regressor in
at least one of the models M in M, that is,

⋃{M : M ∈ M} = {1, . . . , p} holds
(otherwise we can just redefine X by discarding all columns that do not appear
in any of the models in M); of course, we have excluded here the trivial and
uninteresting case M = {∅}. For such a collection M, it is easy to see that the
assumed independence of σ̂ 2 and PXY is in fact equivalent to independence of σ̂ 2

from the collection {β̂M : M ∈ M} of least squares estimators. While not really
affecting the results, it proves useful to assume, throughout the following, that
the empty model belongs to M. We shall furthermore always assume that any
nonempty M ∈ M is of full-rank in the sense that rankX[M] = |M|. We point
out here that our assumptions on M imply that X cannot have a zero column, and
hence d ≥ 1 must hold. An important instance of a collection M satisfying our
assumptions is the collection of all full-rank submodels of {1, . . . , p} (enlarged by
the empty model) provided that no column of X is zero. Of course, there are many
other examples; see, for example, the list in Section 4.5 of Berk et al. (2013a).

A model selection procedure M̂ is now a (measurable) rule that associates with
every (X,Y, σ̂ 2) a (possibly empty) model M̂(X,Y, σ̂ 2) ∈ M. In the following,
we shall, in abuse of notation, often write M̂ for M̂(X,Y, σ̂ 2). Allowing explicitly
dependence of M̂ on σ̂ 2 is only relevant in case σ̂ 2 depends on extraneous data
beyond (X,Y ) and the model selection procedure actually makes use of σ̂ 2. (We
note here that in principle we could have allowed M̂ to depend on further extrane-
ous data, in which case Pn,μ,σ would have to be redefined as the joint distribution
of Y , σ̂ 2, and this further extraneous data.) The post-model-selection estimator
β̂

M̂
corresponding to the model selection procedure is now given by (2.2) with M

replaced by M̂ .
The nonstandard quantity of interest studied in Berk et al. (2013a) is the random

vector (with random dimension) β
(n)

M̂
obtained by replacing M by M̂ in (2.3). The

situation we shall consider in the present paper is related to Berk et al. (2013a), but
is different in several aspects: Consider a fixed (real) p × 1 vector x0 and suppose
we want to predict y0 which is distributed as N(ν,σ 2), independently of Y . If one
is forced to use a fixed model M for prediction, that is, to use predictors of the
form x′

0[M]γ , the predictor that would then typically be used is x′
0[M]β̂M , which

can be viewed as an estimator of the infeasible predictor x′
0[M]β(n)

M . Of course, for
this predictor to be reasonable there must be some relation between the training
data (X,Y ) and (x0, y0). This is further discussed in Remark 2.8. In the presence
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of model selection, the predictor x′
0[M]β̂M will then typically be replaced by the

post-model-selection predictor x′
0[M̂]β̂

M̂
which can in turn be seen as a feasible

counterpart to the infeasible predictor

(2.4) x′
0[M̂]β(n)

M̂
.

The quantity in (2.4) will be our target for inference throughout Section 2 and will
be called the design-dependent (nonstandard) target (to emphasize that it depends
on the design matrix X apart from its dependence on M̂ , cf. (2.3)). A discussion
of the merits of this target and its interpretation is postponed to Remarks 2.7 and
2.8 given below.

Let now 1−α ∈ (0,1) be a nominal confidence level. Throughout Section 2, we
are interested in confidence intervals for the design-dependent target x′

0[M̂]β(n)

M̂
that are of the form

(2.5) CI(x0) = x′
0[M̂]β̂

M̂
± K(x0, M̂)‖s

M̂
‖σ̂ ,

where ‖ · ‖ denotes the Euclidean norm (σ̂ of course representing the nonnegative
square root of σ̂ 2), where

(2.6) s′
M = x′

0[M](X[M]′X[M])−1
X[M]′,

where sM = 0 ∈ Rn for M = ∅ by our conventions, and where K(x0,M) =
K(x0,M, r) = K(x0,M, r,X,α,M) denotes a nonnegative constant which may
depend on x0, M , r , X, α and M, but does not depend on the observations on
Y and σ̂ 2. Here, we have used the notation a ± b for the interval [a − b, a + b]
(a ∈ R, b ≥ 0). The motivation for the form of the confidence interval stems from
the observation that for fixed M the interval x ′

0[M]β̂M ± qr,1−α/2‖sM‖σ̂ is a valid

1 − α confidence interval for x′
0[M]β(n)

M , where qr,1−α/2 is the (1 − α/2)-quantile
of Student’s t-distribution with r degrees of freedom. Furthermore, note that on the
event M̂ =∅ the target is equal to zero and the confidence interval reduces to {0},
thus always containing the target on this event. Finally, note that CI(x0) constitutes
a confidence interval for the predictor x′

0[M̂]β(n)

M̂
, and should not be mistaken for

a prediction interval for a new response y0.
We aim at finding quantities K(x0,M) such that the confidence intervals CI(x0)

satisfy

(2.7) inf
μ∈Rn,σ>0

Pn,μ,σ

(
x′

0[M̂]β(n)

M̂
∈ CI(x0)

) ≥ 1 − α.

Note that if one replaces K(x0, M̂) in (2.5) by Knaive = qr,1−α/2, then the confi-
dence interval (2.5) reduces to the so-called “naive” confidence interval which is
constructed as if M̂ were fixed a priori (thus ignoring the presence of model selec-
tion). It does not fulfill (2.7) as can be seen from the numerical results in Section 4,
which is in line with the results in Leeb, Pötscher and Ewald (2015).
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2.2. The various confidence intervals. For the construction of the quantities
K(x0,M), we distinguish two cases regarding the observation on x0: (i) The vector
x0 is observed in its entirety (regardless of which model M̂ is selected), or (ii) only
the subvector x0[M̂] of x0 is observed (note that only this subvector is needed for
the computation of the post-model-selection predictor x′

0[M̂]β̂
M̂

). The former case
will arise if measuring all the components of x0 is not too costly, whereas the latter
case will be relevant in practical situations where the selected model is determined
first and then only observations for x0[M̂] (and not for the other components of x0)
are collected, for example, out of cost considerations. For example, in a medical
application one may want to avoid measuring prognostic variables that require
invasive procedures or that incur high monetary costs; see, for example, Castera
et al. (2015). Cost considerations in the context of model selection or prediction
are also common in fields such as industrial process control or engineering (Jaupi
(2014), Souders and Stenbakken (1991)).

For the case (i), where x0 is entirely observed, the following straightforward
adaptation of the approach in Berk et al. (2013a) yields a constant K1(x0) =
K1(x0, r) = K1(x0, r,X,α,M) (not depending on M) such that the resulting con-
fidence interval (2.5) satisfies (2.7): Observe that

(2.8) x′
0[M̂]β̂

M̂
− x′

0[M̂]β(n)

M̂
= s′

M̂
(Y − μ),

define s̄M = sM/‖sM‖ if sM 	= 0, and set s̄M = 0 ∈ Rn if sM = 0. Then obviously
we have the upper bound

(2.9)
∣∣s̄′

M̂
(Y − μ)

∣∣/σ̂ ≤ max
M∈M

∣∣s̄′
M(Y − μ)

∣∣/σ̂ .

Define K1(x0) to be the smallest constant satisfying

(2.10) Pn,μ,σ

(
max
M∈M

∣∣s̄′
M(Y − μ)

∣∣/σ̂ ≤ K1(x0)
)

≥ 1 − α.

It is important to note that the probability on the left-hand side of the preced-
ing display neither depends on μ nor on σ ; it also depends on the estimator
σ̂ only through the “degrees of freedom” parameter r : To see this, note that
s̄′
M(Y − μ) = s̄′

MPX(Y − μ), since s̄M belongs to the column space of X. Con-
sequently, the collection of all the quantities s̄′

M(Y − μ) is jointly distributed as
N(0, σ 2C), independently of σ̂ 2 ∼ (σ 2/r)χ2(r), where the covariance matrix C

depends only on x0 and X. Hence the joint distribution of the collection of ra-
tios |s̄′

M(Y − μ)|/σ̂ does neither depend on μ nor σ , and depends on the estima-
tor σ̂ only through r . It is now plain that K1(x0) only depends on x0, r , X, α

and M. Furthermore, note that K1(x0) = 0 in case x0 = 0; otherwise, K1(x0) is
positive, equality holds in (2.10), and K1(x0) is the unique (1 − α)-quantile of the
distribution of the upper bound in (2.9). (This follows from Lemma B.1 in Ap-
pendix B and from the observation that, in view of our assumptions on M, s̄′

M = 0
for all M ∈ M holds if and only if x0 = 0.) Furthermore, observe that K1(x0)
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coincides with a PoSI1 constant of Berk et al. (2013a) in case x0 is one of the
standard basis vectors ei . (This can be seen by comparison with (4.14) in Berk
et al. (2013a) and noting that the maximum inside the probability in (2.10) effec-
tively extends only over models satisfying i ∈ M , since s̄M = 0 holds for models
M with i /∈ M if x0 = ei .) Finally, Knaive ≤ K1(x0) clearly holds provided x0 	= 0
(since s̄ ′

M(Y − μ)/σ̂ follows Student’s t-distribution with r degrees of freedom if
sM 	= 0).

As a consequence of (2.9) and the discussion in the preceding paragraph we
thus immediately obtain the following proposition.

PROPOSITION 2.1. Let M̂ be an arbitrary model selection procedure with
values in M, let x0 ∈ Rp be arbitrary, and let K1(x0) be defined by (2.10). Then the
confidence interval (2.5) with K(x0, M̂) replaced by K1(x0) satisfies the coverage
property (2.7).

The coverage in Proposition 2.1 is guaranteed for all model selection procedures
with values in M, and thus leads to “universally valid post-selection inference”
in case M is chosen to be the set of all full-rank submodels obtainable from X

(enlarged by the empty set and provided X does not have a zero column); cf.
Berk et al. (2013a), where similar guarantees are obtained for the components of
β

(n)

M̂
. (In fact, the construction of K1(x0) implies that the collection of intervals

x′
0[M]β̂M ±K1(x0)‖sM‖σ̂ with M ∈ M provides a simultaneous confidence band

for x′
0[M]β(n)

M .)
Consider next the case (ii) where only the components of x0[M̂] are observed.

In this case, the confidence interval of Proposition 2.1 is not feasible in that it
cannot be computed in general, because K1(x0) will depend on all components of
x0 (and not only on those appearing in x0[M̂]) due the maximum figuring in (2.10)
and our assumptions on M. A first solution is to define

(2.11) K2
(
x0[M],M) = sup

{
K1(x) : x[M] =x0[M]},

and then to use the confidence interval (2.5) with K(x0, M̂) replaced by K2(x0[M̂],
M̂). Note that K2(x0[M],M), and hence the corresponding confidence inter-
val, depends on x0 only via x0[M], and thus can be computed in case (ii). Of
course, K2(x0[M],M) also depends on r , X, α and M, and we shall write
K2(x0[M],M, r) if we want to stress dependence on r . It is easy to see that
K2(x0[M],M) is finite (as it is not larger than the Scheffé constant as we shall
see below). Because K2(x0[M],M) is never smaller than K1(x0), we have the
following corollary to Proposition 2.1.

COROLLARY 2.2. Let M̂ be an arbitrary model selection procedure with val-
ues in M, let x0 ∈ Rp be arbitrary, and let K2(x0[M],M) be defined by (2.11).
Then the confidence interval (2.5) with K(x0, M̂) replaced by K2(x0[M̂], M̂) sat-
isfies the coverage property (2.7).
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The computation of K2(x0[M̂], M̂) is more costly than that of K1(x0). Indeed,
it requires to embed the algorithm for computing K1(x0) in an optimization pro-
cedure. Thus, for the cases where the resulting computational cost is prohibitive,
we present in the subsequent proposition larger constants K3(x0[M̂], M̂), K4 and
K5 that are simpler to compute. Algorithms for computing these constants are dis-
cussed in Appendix E. The constant K4 is obtained by applying a union bound to
(2.10), whereas K3 is obtained by applying a more refined “partial” union bound.
(More precisely, for M ∈ M the complement of the probability in (2.10) (with
K1(x0) replaced by a generic variable t) can be expressed as in (B.2) in Ap-
pendix B. For given M ∈ M, and after conditioning on the variance estimator
(represented by G there), we apply a union bound by decomposing the maximum
over M into a maximum over the submodels of the given M and a maximum over
the models not nested in M . A further union bound is applied to the latter group
of models, giving rise to the bound (B.3) in Appendix B. Inspection of this bound
shows that the probability appearing in (2.12) below springs from the submodels
of M , whereas the models not nested in M give rise to the term in (2.12) involving
the Beta-distribution function.)

For x0 ∈ Rp and M ∈ M, define now the distribution function F ∗
M,x0

for t ≥ 0
via

(2.12)
F ∗

M,x0
(t) = 1 − min

[
1,Pr

(
max

M∗∈M,M∗⊆M

∣∣s̄′
M∗V

∣∣ > t
)

+ c(M,M)
(
1 − FBeta,1/2,(d−1)/2

(
t2))]

and via F ∗
M,x0

(t) = 0 for t < 0. Here c(M,M) denotes the number of models
M∗ ∈ M that satisfy M∗ � M , V is a random vector that is uniformly distributed
on the unit sphere in the column space of X, and FBeta,1/2,(d−1)/2 denotes the
Beta(1/2, (d − 1)/2)-distribution function, with the convention that in case d = 1
we use FBeta,1/2,0 to denote the distribution function of pointmass at 1. In view
of our assumptions on M, it follows that c(M,M) ≥ 1 always holds, except in
the case where M = {1, . . . , p} (and when this set belongs to M). Next, define the
distribution function FM,x0 via

(2.13) FM,x0(t) = EGF ∗
M,x0

(t/G),

where G denotes a nonnegative random variable such that G2/d follows an F -
distribution with (d, r)-degrees of freedom and EG represents expectation w.r.t.
the distribution of G. We stress that FM,x0 depends on x0 only through x0[M],
and hence the same is true for the constant K3(x0[M],M) we define next: For any
x0 ∈ Rp and any M ∈ M, define K3(x0[M],M) to be the smallest constant K

satisfying

(2.14) FM,x0(K) ≥ 1 − α.
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Furthermore, set K4 = K3(x0[∅],∅). Finally, K5 is the Scheffé constant, that is,
the (1 − α)-quantile of G (Scheffé (1959)); see the corresponding discussion in
Section 4.8 of Berk et al. (2013a). Recall that 1 − α ∈ (0,1) has been assumed.

PROPOSITION 2.3. Let x0 ∈ Rp be arbitrary. Then we have the following:

(a) K3(x0[M],M) exists and is well defined. If M = {1, . . . , p} ∈ M and x0 =
0, then K3(x0[M],M) = 0 (and FM,x0 is the c.d.f. of pointmass at zero). If M 	=
{1, . . . , p} or x0 	= 0, then (i) 0< K3(x0[M],M) < ∞ holds, and (ii) equality holds
in (2.14) if and only if K = K3(x0[M],M).

(b) For every M ∈ M, we have

(2.15) K2
(
x0[M],M) ≤ K3

(
x0[M],M) ≤ K4 ≤ K5.

Furthermore,

(2.16) K2
(
x0[M2],M2

) ≤ K2
(
x0[M1],M1

)
,

(2.17) K3
(
x0[M2],M2

) ≤ K3
(
x0[M1],M1

)

hold whenever M1 ⊆ M2, Mi ∈ M.

It is obvious that K3(x0[M],M) depends, besides x0[M] and M , only on r ,
X, α and M, whereas K4 only depends on r , d , α and M, and K5 depends
only on r , d and α. (Like with K1(x0), also the other constants introduced
depend on the estimator σ̂ only through r .) We shall write K3(x0[M],M, r),
K4(r), and K5(r) if we want to stress dependence on r . Note that K1(x0) =
K3(x0[Mfull],Mfull) = K3(x0,Mfull), provided Mfull := {1, . . . , p} belongs to M,
and that K3(x0[M],M) = K4 holds for any M ∈ M satisfying |M| = 1 and
s̄M 	= 0. (Indeed, in this case, the probability appearing in (2.12) equals 1 −
FBeta,1/2,(d−1)/2(t

2) as can be seen from the proof of Proposition 2.3.) Similarly,
K3(x0[M],M) = K4 holds for any M ∈ M in case d = 1 as is not difficult to
see. The proof of the inequalities involving the constants K3 and K4 in the above
proposition is an extension of an argument in Berk et al. (2013b) (not contained in
the published version Berk et al. (2013a)) to find—in the case p = d—an upper-
bound for their PoSI constant that does not depend on X, but only on d . (Note that
K4 is a counterpart to Kuniv in Berk et al. (2013b).) Inequalities (2.16) and (2.17)
simply reflect the fact that observing only x0[M] implies that fewer information
about x0 is provided for smaller models M . As a consequence of these inequalities,
it is possible that, on the event where a small model M1 is selected, the resulting
confidence interval is larger than it is on the event where a larger model M2 is
selected. Again, this simply reflects the fact that less information on x0 is available
under the smaller model. Note, however, that the just discussed phenomenon is
counteracted by the fact that the length of the confidence interval also depends on
‖sM‖ and that we have ‖sM1‖ ≤ ‖sM2‖ for M1 ⊆ M2; cf. Figure 1 in Section 4.
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Proposition 2.3 implies that (2.15) holds with M̂ replacing M , which together
with Corollary 2.2 immediately implies the following result. We stress that the con-
fidence intervals figuring in the subsequent corollary depend on x0 only through
x0[M̂], and thus are feasible in case (ii) discussed at the beginning of Section 2.2.

COROLLARY 2.4. Let M̂ be an arbitrary model selection procedure with val-
ues in M, and let x0 ∈ Rp be arbitrary. Then the confidence interval (2.5) with
K(x0, M̂) replaced by K3(x0[M̂], M̂) (K4, or K5, resp.) satisfies the coverage
property (2.7).

We conclude this section with a few remarks regarding extensions.

REMARK 2.5 (Infeasible variance estimators). (i) For later use, we note that
all results derived in Section 2 continue to hold if σ̂ 2 is allowed to also depend
on σ but otherwise satisfies the assumptions made earlier (e.g., if σ̂ 2 = σ 2Z/r

where Z is an observable chi-square distributed random variable with r degrees of
freedom that is independent of PXY ).

(ii) If we set σ̂ 2 = σ 2 and r = ∞, all results in Section 2 continue to hold with
obvious modifications. In particular, in Proposition 2.3 the random variable G2

then follows a chi-squared distribution with d degrees of freedom. We shall denote
the constants corresponding to K1(x0), K2(x0[M],M), K3(x0[M],M), K4 and
K5 obtained by setting σ̂ 2 = σ 2 and r = ∞ by K1(x0,∞), etc. We stress that
these constants do not depend on σ .

REMARK 2.6. (i) All results carry over immediately to the case where μ can
vary only in a subset M of Rn.

(ii) We have assumed that any nonempty M ∈ M is of full-rank. This assump-
tion could be dropped, but this would lead to more unwieldy results.

(iii) Since the development in Section 2 is based on the bound (2.9), it is obvi-
ous that all results in Section 2 also hold if M̂ = M̂(X,Y, σ̄ 2) for some arbitrary
estimator σ̄ 2, that may differ from the estimator σ̂ 2 that governs the length of the
confidence intervals considered.

2.3. On the merits of the nonstandard targets.

REMARK 2.7. (i) As already noted, the (nonstandard) coverage target in Berk
et al. (2013a) is β

(n)

M̂
(where these authors choose to represent it in what they call

“full model indexing”). While β
(n)

M̂
has a clear technical meaning as the coeffi-

cient vector that provides the best approximation of μ by elements of the form
X[M̂]γ w.r.t. the Euclidean distance, adopting this quantity as the target for in-
ference confronts one with the fact that the target then depends on the data Y via
M̂ (implying that the target as well as its dimension are random); furthermore,
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different model selection procedures give rise to different targets β
(n)

M̂
. Also note

that, for example, the meaning of the first component of the target β
(n)

M̂
depends on

the selected model M̂ . The target x′
0[M̂]β(n)

M̂
considered in this paper, while again

being random and sharing many of the properties of β
(n)

M̂
just mentioned, seems,

in our opinion, to be somewhat more amenable to interpretation since it is simply
the random convex combination

∑
M x′

0[M]β(n)
M 1(M̂ = M) of the (infeasible) pre-

dictors x′
0[M]β(n)

M (which one would typically use if model M is forced upon one
for prediction and which all have one and the same dimension, not depending on
the data).

(ii) In the classical case, that is, when μ = Xβ and d = p ≤ n, one can justly ar-
gue that the target for inference should be x′

0β rather than x′
0[M̂]β(n)

M̂
because x′

0β

is a better (infeasible) predictor in the mean-squared error sense than is x′
0[M̂]β(n)

M̂

provided y0 ∼ N(x′
0β,σ 2) is independent of M̂ (which will certainly be the case if

y0 is independent of Y and σ̂ 2, or if y0 is independent of Y and M̂ is only a func-
tion of X and Y ). (This is so since the mean-squared error of prediction of x ′

0β is

not larger than the one of x′
0[M]β(n)

M for every M and since M̂ is independent of
y0.) However, this argument does not apply if x0 is not observed in its entirety, but
only x0[M̂] is observed, because then x′

0β is not available. In this case, we thus

indeed have some justification for the target x′
0[M̂]β(n)

M̂
even in the classical case.

This is in contrast with the situation when, as in Berk et al. (2013a), one’s interest
focusses on parameters rather than predictors: Similarly as before, one can argue
that in the classical case the true parameter β should be the target rather than β

(n)

M̂

but there seems now to be less to justify the nonstandard target β
(n)

M̂
(as the preced-

ing argument justifying the target x′
0[M̂]β(n)

M̂
even in the classical case is obviously

not applicable to the target β
(n)

M̂
).

(iii) In view of the preceding discussion it seems that the nonstandard target β
(n)

M̂
of Berk et al. (2013a) mainly has a justification in a nonclassical setting where μ

is not assumed to belong to the column space of X (implying d < n), or where
d < p holds (subsuming in particular the important case p > n = d), because in
these cases β is no longer available as a target (being not defined or not uniquely
defined). However, in a setting, where μ is not assumed to belong to the column
space of X or where p > n = d holds, the assumption on the variance estimator σ̂ 2

made in Berk et al. (2013a) (as well as in the present paper) becomes problematic
and quite restrictive; see Remark 2.1(ii) in Leeb, Pötscher and Ewald (2015) as
well as Appendix A. Hence, there is some advantage in considering the targets
x′

0[M̂]β(n)

M̂
rather than β

(n)

M̂
as the former has a justification in the classical as well

as in the nonclassical framework.
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(iv) We note the obvious fact that if the target of inference is the standard target
x′

0β (assuming the classical case) then the reasoning underlying Proposition 2.1
does not apply since the difference between the post-model-selection predictor
and the standard target is not independent of β . For the same reason, the approach
in Berk et al. (2013a) cannot provide a solution to the problem of constructing
confidence sets for the standard target β .

REMARK 2.8 (On the optimality of the design-dependent target). (i) The in-
feasible predictor x′

0[M]β(n)
M (for fixed M) is the best predictor for y0 in the mean-

squared error sense among all predictors of the form x′
0[M]γ in case y0|ν, x0 ∼

N(ν,σ 2) and (ν, x′
0) is drawn from the empirical distribution of (μi, x

′
i) where x′

i

denotes the ith row of X (“in-sample prediction”). (More generally, this is so if
(ν, x′

0) is drawn from the empirical distribution of (μi + ai, x
′
i ) where a is a fixed

vector orthogonal to the column space of X.) Otherwise, it does in general not have
this optimality property (but nevertheless its feasible counterpart x′

0[M]β̂M would
typically be used if one is forced to base prediction on model M).

(ii) The optimality property in (i) carries over to the design-dependent target
x′

0[M̂]β(n)

M̂
provided (y0, x

′
0)

′ is independent of M̂ .

2.4. Behavior of the constants Ki as a function of p. In this section, we pro-
vide some results on the size of the constants Ki that govern the length of the con-
fidence intervals. In particular, these results help in answering the question how
tight a bound for K1 and K2 is provided by K3 or K4.

2.4.1. Orthogonal designs. Berk et al. (2013a) show that in the case p = d ≤
n their PoSI constant becomes smallest for the case of orthogonal design (provided
the model universe M is sufficiently rich, for example, M contains all submod-
els) and then has rate

√
logp as p → ∞, at least in the known-variance case; cf.

Proposition 5.5 in Berk et al. (2013a) (where the error term o(d) given in this re-
sult should read o(1)). In the next proposition, we study the order of magnitude
of K1(x0), the analogue of the PoSI constant and of the closely related constant
K2(x0[M],M) in the case of orthogonal design. Recall that K1(x0) is only feasible
if x0 is observed in its entirety, while K2(x0[M],M) is the ideal bound for K1(x0)

given only knowledge of x0[M]. Note that in the following result some of the ob-
jects depend on p, but we do not always show this in the notation. Furthermore, φ

and 
 denote the p.d.f. and c.d.f. of a standard normal variable, respectively, and
‖x‖0 denotes the l0-norm.

PROPOSITION 2.9. Consider the known-variance case (i.e., r = ∞ and
σ̂ 2 = σ 2) and assume that for every p ≥ 1 the model universe M used is the
power set of {1, . . . , p}. Let α, 0 < α < 1, be given, not depending on p. Set
ξ = supb>0 φ(b)/

√
1 − 
(b) ≈ 0.6363.
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(a) For any p ≥ 1, let X = X(p) be an n(p)×p matrix with (nonzero) orthog-
onal columns. For any such sequence X, one can find a corresponding sequence of
(nonzero) p × 1 vectors x0 such that K1(x0,∞) = K1(x0,∞,X,α,M) satisfies

lim inf
p→∞ K1(x0,∞)/

√
p ≥ ξ.

Furthermore, for any sequence X as above one can find another sequence of
(nonzero) p × 1 vectors x0 such that K1(x0,∞) = O(1) (e.g., any sequence of
(nonzero) p × 1 vectors x0 satisfying supp ‖x0‖0 < ∞ will do).

(b) Let γ ∈ [0,1) be given. Then K2(x0[M],M,∞) = K2(x0[M],M,∞,X,

α,M) satisfies

lim inf
p→∞ inf

x0∈Rp
inf

X∈X(p)
inf

M∈M,|M|≤γp
K2

(
x0[M],M,∞)

/
√

p ≥ ξ
√

1 − γ ,

where X(p) = ⋃
n≥p{X : X is n × p with nonzero orthogonal columns}.

The lower bounds given in the preceding proposition clearly also apply to
K3(x0[M],M,∞) and K4(∞) a fortiori. Part (a) of the above proposition shows
that, even in the orthogonal case, the growth of K1(x0,∞) is—in the worst-case
w.r.t. x0—of the order

√
p. This is in contrast to the above mentioned result of

Berk et al. (2013a) for the PoSI constant. Part (a) also shows that there are other
choices for x0 such that K1(x0,∞) stays bounded. In this context, also recall that
K1(x0,∞) with x0 equal to a p × 1 standard basis vector coincides with a PoSI1
constant, and thus equals the (1 − α)-quantile of the distribution of the absolute
value of a standard normal variable in the orthogonal case. Part (b) goes on to show
that regardless of x0 and X the growth of the constants K2(x0[M],M,∞) is of the
order

√
p (except perhaps for very large submodels M).

2.4.2. Order of magnitude of K3 and K4. The next proposition, which ex-
ploits results in Zhang (2013), shows that K4(∞) is a tight upper bound for
K3(x0[M],M,∞) at least if p is large. It also provides the growth rates for K4(∞)

and K3(x0[M],M,∞). As before, the dependence of several objects on p (or n)
will not always be shown in the notation. For the following, recall the constants
c(M,M) defined after (2.12).

PROPOSITION 2.10. Consider the known-variance case (i.e., r = ∞ and
σ̂ 2 = σ 2) and assume that for every p ≥ 1 a (nonempty) model universe
M = Mp is given that satisfies (i)

⋃{M : M ∈ M} = {1, . . . , p}, (ii) ∅ ∈ M,
(iii) c(M,M) ≥ τ |M| for every M ∈ M with M 	= {1, . . . , p}, where τ > 0 is a
given number (neither depending on M , M nor p), and (iv) |M| → ∞ as p → ∞.
For n ∈N, the set of positive integers, let Xn,p(M) denote the set of all n × p ma-
trices of rank min(n,p) with the property that X[M] has full column-rank for
every ∅ 	= M ∈ M. Furthermore, let α, 0 < α < 1, be given (neither depending
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on p nor n). Let n(p) ∈ N be a sequence such that n(p) → ∞ for p → ∞ and
such that Xn(p),p(M) 	= ∅ for every p ≥ 1. Then we have

(2.18)
lim

p→∞ sup
M∈M,M 	={1,...,p}

sup
x0∈Rp

sup
X∈Xn(p),p(M)

∣∣1 − (
K3

(
x0[M],M,∞)

/K4(∞)
)∣∣ = 0,

where K3(x0[M],M,∞) = K3(x0[M],M,∞,X,α,M) and K4(∞) = K4(∞,

min(n(p),p),α,M). Furthermore,

K4(∞)/

√
min

(
n(p),p

)(
1 − |M|−2/(min(n(p),p)−1)

) → 1

as p → ∞.

REMARK 2.11. (i) Xn(p),p(M) 	= ∅ implies Xn,p(M) 	= ∅ for n ≥ n(p).
(ii) Xn(p),p(M) is certainly nonempty for n(p) ≥ p, but—depending on M—

this can already be true for n(p) much smaller than p.

The assumptions (i)–(iv) on M in the preceding proposition are shown in Corol-
lary B.7 in Appendix B to be always satisfied in the important case where M is of
the form {M ⊆ {1, . . . , p} : |M| ≤ mp}. Furthermore, in the special case where M
is the universe of all submodels, a simple formula for the growth rate of K4(∞) is
found in that corollary.

In the important case, where p = d ≤ n and M is the entire power set of
{1, . . . , p}, Corollary B.7 shows that K4(∞) (and hence a fortiori all the con-
stants K1(x0,∞), . . . ,K3(x0[M],M,∞)) are “bounded away” from the Scheffé
constant K5 which clearly satisfies K5/

√
p → 1 for p → ∞. This is in line with a

similar finding in Berk et al. (2013a), Section 6.3, for their PoSI constant.

REMARK 2.12. In the proof of Proposition 2.3 union bounds were used to
obtain the results for K3(x0[M],M) and K4. Hence, one might ask whether or
not these constants as bounds for K2(x0[M],M) are overly conservative. We
now collect evidence showing that improving K3(x0[M],M) and K4 will not
be easy and is sometimes impossible: First, Lemma B.4 in Appendix B shows
that there exist n × p design matrices X with p = d = 2 and vectors x0 such
that K4 = K1(x0) in case M is the universe of all submodels. Hence, in this
case the union bounds used in the proof of Proposition 2.3 are all exact. Fur-
thermore, in the known-variance case with p = d ≤ n and where M again is the
universe of all submodels, the propositions given above and Corollary B.7 entail
that K4(∞) ∼ √

p
√

3/2 ≈ 0.866
√

p while K1(x0,∞) � ξ
√

p with ξ ≈ 0.6363 is
possible; for example, as the worst-case behavior in the orthogonal case, or with
x0 = ei and the design matrices constructed in the proof of Theorem 6.2 in Berk
et al. (2013a) (recall that K1(ei,∞) coincides with a PoSI1 constant). This again
shows that there is little room for improving K3 and K4. (Further evidence in that
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direction is provided by the observation that the proof of Theorem 6.3 in Berk et al.
(2013a) implies that K∗

1 /
√

p tends to
√

3/2 in probability as p → ∞, where K∗
1 is

an analogue of K1(x0,∞) that is obtained from (2.10) (with r = ∞) after replac-
ing the vectors s̄M by 2p independent random vectors, each of which is uniformly
distributed on the unit sphere of the column space of X (and these vectors being
independent of Y ). In other words, if one ignores the particular structure of the
vectors s̄M , then the bound K4(∞) is close to being sharp for large values of p.)

REMARK 2.13. The results for p → ∞ in this subsection (and Corollary B.7
in Appendix B) as well as the related results in Berk et al. (2013a) should be taken
with a grain of salt as they obviously are highly nonuniform w.r.t. α: Note that—for
fixed n and p—any one of the constants Ki will vary in the entire interval (0,∞)

as α varies in (0,1) (except for degenerate cases), while the limits in the results in
question do not depend on α at all.

3. Confidence intervals for the design-independent nonstandard target.
In this section, we again consider the model (2.1), but now assume that μ = Xβ for
some unknown β ∈ Rp holds and that the n×p matrix X is random, with X inde-
pendent of U , where U again follows an N(0, σ 2In)-distribution with 0 < σ < ∞.
We also assume that X has full column rank almost surely (implying p ≤ n) and
that each row of X is distributed according to a common p-dimensional distribu-
tion L (not depending on n) with a finite and positive definite matrix of (uncen-
tered) second moments, which we denote by . (We shall refer to the preceding
assumptions as the maintained model assumptions of this section.) Furthermore,
we assume again that we have available an estimator σ̂ 2 such that, conditionally
on X, σ̂ 2 is independent of PXY (or, equivalently, of β̂ = (X′X)−1X′Y ) and is dis-
tributed as σ 2/r times a chi-squared distributed random variable with r degrees of
freedom (1 ≤ r < ∞). The collection M of admissible models will be assumed to
be the power set of {1, . . . , p} in this section for convenience, but see Remark 3.8
for possible extensions. Observe that all the results of Section 2 remain valid in the
setup of the present section if formulated conditionally on X (and if x0 is treated as
fixed). (Alternatively, if x0 is random but independent of X, U , and σ̂ 2, the same
is true if the results in Section 2 are then interpreted conditionally on X and x0.)
The joint distribution of Y , X, and σ̂ 2 (and of σ̃ appearing below) will be denoted
by Pn,β,σ (see also Appendix D.4).

In this section, we shall consider asymptotic results for n → ∞ but where p is
held constant (for an extension to the case where p is allowed to diverge with n see
Appendix D.3). It is thus important to recall that all estimators, estimated models,
etc. depend on sample size n. Also note that r may depend on sample size n. We
shall typically suppress these dependencies on n in the notation. Furthermore, we
note that, while not explicitly shown in the notation, the rows of X and U (and
thus of Y ) may depend on n. (As the results in Section 2 are results for fixed n,
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this trivially also applies to the results in that section.) However, recall that L, and
hence , are not allowed to depend on n.

If M1 and M2 are subsets of {1, . . . , p} and if Q is a p × p matrix we shall
denote by Q[M1,M2] the matrix that is obtained from Q by deleting all rows i

with i /∈ M1 as well as all columns j with j /∈ M2; if M1 is empty but M2 is not,
we define Q[M1,M2] to be the 1 ×|M2| zero vector; if M2 is empty but M1 is not,
we define Q[M1,M2] to be the |M1| × 1 zero vector; and if M1 = M2 = ∅ we set
Q[M1,M2] = 0 ∈ R.

To motivate the target studied in this section, consider now the problem of pre-
dicting a new variable y0 = x′

0β + u0 where x0, u0, X, and U are independent and
u0 ∼ N(0, σ 2). For a given model M ⊆ {1, . . . , p}, we consider the (infeasible)
predictor x ′

0[M]β(�)
M where

(3.1) β
(�)
M = β[M] + (

[M,M])−1


[
M,Mc]β[

Mc],
with the convention that the inverse is to be interpreted as the Moore–Penrose
inverse in case M = ∅. Note that x′

0[M]β(�)
M = 0 if M = ∅ and that x′

0[M]β(�)
M =

x′
0β if M = {1, . . . , p}. A justification for considering this infeasible predictor is

given in Remark 3.2 below. For purpose of comparison, we point out that, under the
assumption μ = Xβ maintained in the present section, β

(n)
M defined in (2.3) can be

rewritten as β
(n)
M = β[M] + (X[M]′X[M])−1X[M]′X[Mc]β[Mc]. Given a model

selection procedure M̂ = M̂(X,Y, σ̂ 2), we define now the (infeasible) predictor

x′
0[M̂]β(�)

M̂

as our new target for inference. We call this target the design-independent (non-
standard) target as it does not depend on the design matrix X beyond its depen-
dence on M̂ . We discuss its merits in the subsequent remarks.

REMARK 3.1. As in Remark 2.7(ii) one can argue that the target for inference
should be x′

0β rather than x′
0[M̂]β(�)

M̂
because again x′

0β is a better (infeasible)

predictor than x′
0[M̂]β(�)

M̂
provided that (x′

0, u0) is independent of M̂ (which, in
particular, will be the case if (x′

0, u0) is independent of X, U , and σ̂ , or if (x ′
0, u0)

is independent of X, U and M̂ is only a function of X and Y ). But again, this
argument does not apply if x0 is not observed in its entirety, but only x0[M̂] is
observed.

REMARK 3.2 (On the optimality of the design-independent target). (i) As-
sume that additionally x′

0 ∼ L. If we are forced to use the (theoretical) predictors

of the form x′
0[M]γ , then straightforward computation shows that x′

0[M]β(�)
M pro-

vides the smallest mean-squared error of prediction among all the linear predic-
tors x′

0[M]γ . (Note that this result corresponds to the observation made in Re-
mark 2.8 with L corresponding to the empirical distribution of the rows of X.) If,
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furthermore, x0 is normally distributed, then x0 and u0 are jointly normal and thus
x′

0[M]β(�)
M is the conditional expectation of y0 given x0[M], and hence is also the

best predictor in the class of all predictors depending only on x0[M].
(ii) Again assume that x′

0 ∼ L. The discussion in (i) implies that x′
0[M̂]β(�)

M̂

has a mean-squared error of prediction not larger than the one of x′
0[M̂]γ (M̂) for

any choice of γ (M̂), provided (x′
0, u0) is independent of M̂ . If, additionally, x0 is

normally distributed, then x′
0[M̂]β(�)

M̂
is also the best predictor in the class of all

predictors depending only on x′
0[M̂] and M̂ .

After having motivated the design-independent target, we shall, in the remain-
der of this section, treat x0 as fixed (but see Remark D.2 in Appendix D.2 for
the case where x0 is random). We now proceed to show that the confidence inter-
vals constructed in Section 2 are also valid as confidence intervals for the design-
independent target x′

0[M̂]β(�)

M̂
in an asymptotic sense under some mild conditions.

While the results in Section 2 apply to any model selection procedure whatsoever
(in case that M is the power set of {1, . . . , p} as is the case in the present sec-
tion), we need here to make the following mild assumption on the model selection
procedure.

CONDITION 3.3. The model selection procedure satisfies: For any M ⊆
{1, . . . , p} with |M| < p and for any δ > 0,

sup
{
Pn,β,σ (M̂ = M|X) : β ∈ Rp, σ > 0,

∥∥β[
Mc]∥∥/σ ≥ δ

} → 0

in probability as n → ∞.

Condition 3.3 is very mild and typically holds for model selection procedures
such as AIC- and BIC-based procedures as well as Lasso-type procedures. (This
can be established along the lines of the proof of Corollary 5.4(a) in Leeb and
Pötscher (2003).) In addition, we assume the following condition on the behavior
of the design matrix.

CONDITION 3.4. The sequence of random matrices
√

n[(X′X/n) − ] is
bounded in probability.

Condition 3.4 holds, for example, when the rows of X are independent, or
weakly dependent, and when the distribution L has finite fourth moments for all
its components. We also introduce the following condition.

CONDITION 3.5. The degrees of freedom parameters r of the sequence of
estimators σ̂ 2 satisfy r → ∞ as n → ∞.
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Of course, if we choose for σ̂ 2 the usual variance estimator σ̂ 2
OLS then this con-

dition is certainly satisfied with r = n − p. We are now in the position to present
the asymptotic coverage result. Recall that the confidence intervals corresponding
to Ki with 2 ≤ i ≤ 5 depend on x0 only through x0[M̂] (or not on x0 at all).

THEOREM 3.6. Suppose Conditions 3.3 and 3.4 hold.

(a) Suppose also that Condition 3.5 is satisfied. Let CI(x0) be the confidence
interval (2.5) where the constant K(x0, M̂) is given by the constant K1(x0, r) de-
fined in Section 2. Then the confidence interval CI(x0) satisfies

(3.2) inf
x0∈Rp,β∈Rp,σ>0

Pn,β,σ

(
x′

0[M̂]β(�)

M̂
∈ CI(x0)|X) ≥ (1 − α) + op(1),

where the op(1) term above depends only on X and converges to zero in proba-
bility as n → ∞. Relation (3.2) a fortiori holds if the confidence interval CI(x0)

is based on the constants K2(x0[M̂], M̂, r), K3(x0[M̂], M̂, r), K4(r) or K5(r),
respectively.

(b) Let σ̃ be an arbitrary estimator satisfying

(3.3) sup
β∈Rp,σ>0

Pn,β,σ

(|σ̃ /σ − 1| ≥ δ|X) p→ 0

for any δ > 0 as n → ∞. Let further r∗ = r∗
n be an arbitrary sequence in

N∪{∞} satisfying r∗ → ∞ for n → ∞. Let CI∗(x0) denote the modified confi-
dence interval which is obtained by replacing σ̂ by σ̃ and K(x0, M̂) by K1(x0, r

∗)
(K2(x0[M̂], M̂, r∗), K3(x0[M̂], M̂, r∗), K4(r

∗) or K5(r
∗), respectively) in (2.5)

(while keeping M̂ unchanged). Then relation (3.2) holds with CI(x0) replaced by
CI∗(x0).

Theorem 3.6(a) shows that for any x0 ∈ Rp the interval CI(x0) is an asymptot-
ically valid confidence interval for the design-independent target and additionally
that the lower bound (1 − α) + op(1) for the minimal (over β and σ ) coverage
probability can be chosen independently of x0. Theorem 3.6(b) extends this re-
sult to a larger class of intervals. (Note that Part (a) is in fact a special case of
Part (b) obtained by setting σ̃ = σ̂ and r∗ = r and observing that σ̂ clearly sat-
isfies the condition on σ̃ in Part (b) under Condition 3.5.) We note that applying
Theorem 3.6(b) with σ̃ = σ̂ and r∗ = ∞ shows that Theorem 3.6(a) also contin-
ues to hold for the confidence interval that is obtained by replacing the constants
K1(x0, r) (K2(x0[M̂], M̂, r), K3(x0[M̂], M̂, r), K4(r), or K5(r), resp.) by the
constants K1(x0,∞) (K2(x0[M̂], M̂,∞), K3(x0[M̂], M̂,∞), K4(∞), or K5(∞),
resp.). Measurability issues regarding Theorem 3.6 are discussed in Appendix D.1.

Condition (3.3) is a uniform consistency property. It is clearly satisfied by
σ̂ 2

OLS (and more generally by the estimator σ̂ 2 under Condition 3.5 as already
noted above), but it is also satisfied by the post-model-selection estimator σ̂ 2

M̂
=
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‖Y −X[M̂]β̂
M̂

‖2/(n−|M̂|) provided the model selection procedure satisfies Con-
dition 3.3; see Lemma C.2 in Appendix C for a precise result. As a consequence,
Theorem 3.6(b) shows that the post-model-selection estimator σ̂ 2

M̂
can be used in-

stead of σ̂ 2 in the construction of the confidence interval.

REMARK 3.7 (Infeasible variance estimators). Theorem 3.6(a) remains valid
if σ̂ 2 is allowed to depend also on σ but otherwise satisfies the assumptions made
earlier or if σ̂ 2 = σ 2 and r = ∞. Similarly, Theorem 3.6(b) remains valid if σ̃ 2

is allowed to be infeasible. Furthermore, a remark similar to Remark 2.6(iii) also
applies here.

REMARK 3.8 (Restricted universe of selected models). Theorem 3.6 can eas-
ily be generalized to the case where a universe M different from the power set of
{1, . . . , p} is employed, provided the full model {1, . . . , p} belongs to M (and M
satisfies the basic assumptions made in Section 2).

4. Numerical study. We next present a numerical study of the lengths and the
minimal coverage probabilities of various confidence intervals. We begin, in Sec-
tion 4.1, with an investigation of the length of the confidence intervals introduced
in Section 2, including the “naive” confidence interval that ignores the model se-
lection step, as a function of the selected model. In Section 4.2, we then evaluate
numerically the minimal coverage probabilities of these confidence intervals. As
model selectors we consider here AIC, BIC, LASSO, SCAD (Fan and Li (2001))
and MCP (Zhang (2010)). Finally, in Appendix G we compare the intervals in-
troduced in Section 2 with those proposed recently in Lee et al. (2016), which are
specific to the LASSO model selector. Code for the computations is available from
the first author.

4.1. Lengths of confidence intervals. We consider the lengths of the con-
fidence intervals obtained from (2.5) standardized by σ̂ , that is, we consider
2K(x0, M̂)‖s

M̂
‖ for the six cases where K(x0, M̂) is replaced by either one

of the five constants K1(x0), K2(x0[M̂], M̂), K3(x0[M̂], M̂), K4, K5 of Sec-
tion 2 or by the constant Knaive = qr,1−α/2, the (1 − α/2)-quantile of Student’s
t-distribution with r degrees of freedom. We recall that the constant Knaive yields
the “naive” confidence interval that ignores the model selection step and that we
have Knaive ≤ K1(x0) ≤ · · · ≤ K5 (the first inequality holding provided x0 	= 0).

For computing the standardized length, we set α = 0.05, n = 29, d = p = 10,
r = n − p, σ = 1 and obtain X and x0 from a data set of Rawlings, Pantula and
Dickey (1998) concerning the peak flow rate of watersheds. This data set contains
a 30 × 10 design matrix XRaw corresponding to ten explanatory variables. For
a description of these variables, see Appendix F. This data set is also studied in
Kabaila and Leeb (2006) and Leeb, Pötscher and Ewald (2015). We refer to it as
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FIG. 1. Standardized lengths of various confidence intervals as function of model size. Dashed
lines are added to improve readability.

the watershed data set, and x0 and X are chosen such that (x0,X
′)′ is equal to the

watershed design matrix XRaw. It is easily checked that the so-obtained matrix X

is indeed of full column rank (and x0 	= 0). Furthermore, the model universe M is
chosen to be the power set of {1, . . . , p}.

For the so chosen values of α, n, p, r , σ , X, x0 and M, we compute the stan-
dardized lengths 2K(x0,M)‖sM‖ of the confidence intervals obtained by replacing
K(x0,M) by Knaive, K1(x0), K2(x0[M],M), K3(x0[M],M), K4 and K5, respec-
tively. To ease the computational burden and to enable a simple presentation as in
Figure 1, we compute the standardized lengths of the confidence intervals only for
M belonging to the family {{1}, . . . , {1, . . . ,10}} consisting of ten nested submod-
els. (This does not mean that we compute the constants Ki under the assumption
of a restricted universe of models; recall that we use M equal to the power set
of {1, . . . , p}.) The computation of Knaive, K1(x0), K3(x0[M],M), K4 and K5 is
either straightforward or is obtained from the algorithms described in Appendix E.
However, computing K2(x0[M],M) for M 	= {1, . . . ,10} necessitates to compute
sup{K1(x) : x[M] = x0[M]}. We approximate this supremum by using a three-step
Monte Carlo procedure described in Appendix F.

The standardized lengths of the confidence intervals corresponding to the con-
stants Knaive, K1, . . . ,K5 are reported in Figure 1 for the ten nested submodels
mentioned before. We first see that, for each of the constants Knaive, K1, K4 and
K5, the standardized length of the confidence interval increases with submodel
size, which must hold since these constants do not depend on the submodel M
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and since the term ‖sM‖ increases with submodel size (for nested submodels as
considered in Figure 1). However, as discussed after Proposition 2.3, the values of
K2 and K3 decrease with increasing submodel size for nested submodels. Figure 1
shows that the combined effect of the increase of ‖sM‖ and the decrease of K2 and
K3 with submodel size can be an increase or a decrease of the standardized lengths
of the confidence intervals. Indeed, the standardized lengths increase globally (i.e.,
from submodel size 1 to 10), but can decrease locally (e.g., the standardized length
of the confidence interval obtained from K2 decreases from submodel size 6 to
submodel size 8; for the interval obtained from K3 the standardized length de-
creases from submodel size 9 to submodel size 10). In Figure 1, the decreases of
the standardized lengths occur only between submodel sizes for which ‖sM‖ is al-
most constant with M (which can be seen from the standardized lengths obtained
from, say, K5, since they are proportional to ‖sM‖). We also see from Figure 1
that the “naive” interval is much shorter than the other intervals (at the price of
typically not having the correct minimal coverage probability). The difference in
standardized length between the intervals based on K1 and K2, respectively, is no-
ticeable but not dramatic. A larger increase in standardized length is noted when
comparing the interval based on the costly-to-compute constant K2 with the one
obtained from K3, especially for submodel sizes 6 to 9. Furthermore, the standard-
ized lengths of the confidence intervals obtained from K3 are very close to those
obtained from K4 for model size 1 to 9; cf. (2.18). Finally, in Figure 1 we also see
that the confidence intervals obtained from K1, K2 and K3 have the same standard-
ized length when the model size is 10, and that the same is true for the confidence
intervals obtained from K3 and K4 when the model size is 1. This, of course, is
not a coincidence, but holds necessarily as has been noted in the discussion of
Proposition 2.3.

Additional computations of confidence interval lengths, with X and x0 now
randomly generated, yield results very similar to those in Figure 1. For the sake
of brevity, these results are not shown here. We find, in particular, that the stan-
dardized length of the confidence interval obtained from K3 always increases with
submodel size when averaged with respect to X and x0, but, as in Figure 1, can
decrease locally when not averaged. (In these additional numerical studies we did
not consider the constant K2 due to the high computational cost involved in its
evaluation.)

4.2. Minimal coverage probabilities. In this section, we consider the case
where μ = Xβ and d = p < n, that is, the case where the given matrix X has
full rank less than n and provides a correct linear model for the data Y . We then
investigate the minimal coverage probabilities (the minimum being w.r.t. β ∈ Rp

and σ ∈ (0,∞)) of the intervals obtained from the constants Knaive, K1, K3 and
K4 when used as confidence intervals for the target x′

0[M̂]β(n)

M̂
on the one hand as

well as for the target x′
0[M̂]β(�)

M̂
on the other hand. The constants K1, K3 and K4
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are computed based on M equal to the power set of {1, . . . , p}. We do not report
results for confidence intervals obtained from K2, since the computation of K2
is too costly for the study we present below. The results for confidence intervals
obtained from K5 would be qualitatively similar to those for confidence intervals
obtained from K4, so we do not report them for the sake of brevity.

We consider minimal coverage probabilities in the setting where α = 0.05, p =
10, n = 20 or n = 100, and the variance parameter is estimated by the standard
unbiased estimator using the full model, so that r = n − p. For model selection,
we consider AIC-, BIC-procedures, the LASSO, SCAD (Fan and Li (2001)) and
MCP (Zhang (2010)). Tuning parameters of the latter three procedures are chosen
by cross-validation. For all five procedures, we always protect the first explanatory
variable (which corresponds to an intercept term) from selection. However, note
that the information that the first variable is protected is not used in computing the
constants Ki , that is, we do not use a restricted universe of models but use M equal
to the power set of {1, . . . , p}. (Additional simulations with no intercept term and
no protected explanatory variable lead to results very similar to the ones given in
Table 1 below.) Computational details regarding these procedures can be found in
Appendix F.

The design matrix X and the vector x0 are generated in the following manner:
The 10× 10 matrix  of (uncentered) second moments is chosen to be of the form

 =

⎛
⎜⎜⎝

1 0 · · ·0
0
...
0

̃

⎞
⎟⎟⎠ ,

where we consider three choices for the 9 × 9 matrix ̃. For the first case, ̃ is
obtained by removing the first row and column of the 10×10 empirical covariance
matrix (standardized by 30 − 1 = 29) of the variables in the 30 × 10 watershed
design matrix XRaw. For the second case, we set ̃ = Ip̃ + (2a + p̃a2)Ep̃ with p̃ =
9, a = 10, and with Ep̃ the p̃ × p̃ matrix which has all entries equal to 1. For the
third case, ̃ coincides with the identity matrix Ip̃ , except that the zero elements in
the last row and column of Ip̃ are replaced by the constant c = √

0.8/(p̃ − 1) where
p̃ = 9. Similarly as in Berk et al. (2013a) and Leeb, Pötscher and Ewald (2015),
we refer to the data set obtained in the second case as the exchangeable data set (as
the covariance matrix ̃ is permutation-invariant), and to the one obtained in the
third case as the equicorrelated data set (as ̃ is the correlation matrix of a random
vector, the last component of which has the same correlation with all the other
components); see Appendix F for more details. For a given configuration of n and
, we then sample independently n + 1 vectors of dimension 10 × 1 such that for
each of these vectors the first component is 1 and the remaining nine components
are jointly normally distributed with mean zero and covariance matrix ̃. The
transposes of the first n of theses vectors now form the rows of the n × p design
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matrix X, while the (n+ 1)th of these vectors is used for the p-dimensional vector
x0. (It is easy to see that the mechanism just described generates matrices of full
column rank almost surely. The matrices X actually generated were additionally
checked to be of full column rank.)

Consider now a given configuration of n, , the model selection procedure, the
target (either the design-dependent or the design-independent target), as well as of
a matrix X and a vector x0 that have been obtained in the manner just described.
Then we estimate the minimal (over β and σ ) coverage probabilities (conditional
on X and x0) of the confidence intervals obtained from the constants Knaive, K1,
K3 and K4 for the given target under investigation. The minimal coverage proba-
bilities are estimated by a three-step Monte Carlo procedure similar to that of Leeb,
Pötscher and Ewald (2015), which is described in detail in Appendix F. We stress
here that the minimal coverage probabilities found by this Monte Carlo procedure
are simulation-based results obtained by a stochastic search over a 10-dimensional
parameter space, and thus only provide approximate upper bounds for the true
minimal coverage probabilities.

Table 1 summarizes the estimated minimal coverage probabilities for the vari-
ous confidence sets and targets, and for the model-selection procedures and data
sets considered in the study. The conclusions are pretty much the same for the three
data sets. First, we observe that, for n = 20, the differences of minimal coverage
probabilities between the design-dependent and independent targets can be sig-
nificant, especially for the “naive” intervals and for the other intervals in case the
LASSO, SCAD or MCP model selectors are used. However, for n = 100, these dif-
ferences are very small for all the configurations. This is in line with Lemma C.1
in Appendix C, which entails that for a large family of model selection proce-
dures, the difference of coverage probabilities between the two targets vanishes,
uniformly in β and σ , when n increases. For n = 100, the results are thus almost
identical for the two targets: For the five model selection procedures, the confi-
dence intervals obtained from the constants K1, K3 and K4 are valid, while the
“naive” confidence intervals are moderately too short, so that their minimal cover-
age probabilities are below the nominal level, with a minimum of 0.84.

For n = 20 and when AIC or BIC is used, the “naive” confidence intervals fail
to have the right coverage probabilities to a somewhat larger extent than in case
n = 100. Their minimal coverage probabilities can be as small as 0.81 for the
design-dependent target and 0.74 for the design-independent target. (Note that, for
the design-dependent target, for n = 20 and n = 100, the coverage probabilities
of the “naive” confidence interval are generally smaller for the equicorrelated data
set than for the exchangeable data set. This can possibly be explained by the fact
that Theorems 6.1 and 6.2 in Berk et al. (2013a) suggest that K1 should be larger
for the equicorrelated data set than for the exchangeable data set. Hence, for the
equicorrelated data set, larger confidence intervals seem to be needed to have the
required minimal coverage probability for all model selection procedures.) Fur-
thermore, again for n = 20 and when AIC or BIC is used, the confidence intervals
obtained from the constants K1, K3 and K4 remain valid here for both targets.
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TABLE 1
Monte Carlo estimates of the minimal coverage probabilities (w.r.t. β and σ ) of various confidence

intervals. The nominal coverage probability is 1 − α = 0.95 and p = 10

Target

Design-dependent Design-independent

x0[M̂]′β(n)

M̂
x0[M̂]′β(�)

M̂Model
Data set n selector Knaive K1 K3 K4 Knaive K1 K3 K4

Watershed 20 AIC 0.84 0.99 1.00 1.00 0.79 0.97 0.99 0.99
20 BIC 0.84 0.99 1.00 1.00 0.74 0.96 0.98 0.98
20 LASSO 0.90 1.00 1.00 1.00 0.18 0.48 0.61 0.61
20 SCAD 0.90 0.99 1.00 1.00 0.45 0.77 0.84 0.84
20 MCP 0.89 0.99 1.00 1.00 0.47 0.78 0.85 0.85

100 AIC 0.87 0.99 1.00 1.00 0.88 0.99 1.00 1.00
100 BIC 0.88 0.99 1.00 1.00 0.87 0.99 1.00 1.00
100 LASSO 0.88 0.99 1.00 1.00 0.87 0.99 1.00 1.00
100 SCAD 0.88 0.99 1.00 1.00 0.88 0.99 1.00 1.00
100 MCP 0.88 0.99 1.00 1.00 0.88 0.99 1.00 1.00

Exchangeable 20 AIC 0.83 0.99 1.00 1.00 0.80 0.98 0.99 0.99
20 BIC 0.84 0.99 1.00 1.00 0.76 0.97 0.99 0.99
20 LASSO 0.90 1.00 1.00 1.00 0.46 0.86 0.93 0.92
20 SCAD 0.91 1.00 1.00 1.00 0.55 0.90 0.94 0.94
20 MCP 0.91 1.00 1.00 1.00 0.54 0.89 0.94 0.94

100 AIC 0.89 0.99 1.00 1.00 0.90 0.99 1.00 1.00
100 BIC 0.90 0.99 1.00 1.00 0.90 0.99 1.00 1.00
100 LASSO 0.90 0.99 1.00 1.00 0.90 0.99 1.00 1.00
100 SCAD 0.90 0.99 1.00 1.00 0.90 0.99 1.00 1.00
100 MCP 0.90 0.99 1.00 1.00 0.90 0.99 1.00 1.00

Equicorrelated 20 AIC 0.83 0.99 1.00 1.00 0.79 0.98 0.99 0.99
20 BIC 0.81 0.99 1.00 1.00 0.74 0.98 0.99 0.99
20 LASSO 0.88 1.00 1.00 1.00 0.39 0.71 0.79 0.79
20 SCAD 0.88 0.99 1.00 1.00 0.67 0.92 0.95 0.96
20 MCP 0.86 0.99 1.00 1.00 0.66 0.93 0.96 0.96

100 AIC 0.84 0.99 1.00 1.00 0.84 0.99 1.00 1.00
100 BIC 0.86 0.99 1.00 1.00 0.86 0.99 1.00 1.00
100 LASSO 0.88 1.00 1.00 1.00 0.88 1.00 1.00 1.00
100 SCAD 0.88 0.99 1.00 1.00 0.89 1.00 1.00 1.00
100 MCP 0.88 0.99 1.00 1.00 0.89 0.99 1.00 1.00

However, when n = 20 and the LASSO model selector is used, the results for
the design-independent target are drastically different from those obtained with the
AIC- or BIC-procedures: All confidence intervals have minimal coverage proba-
bilities for the design-independent target that are below, and in most cases sig-
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nificantly below, the nominal level. The failure of all the confidence intervals is
here often more pronounced than the failure of the “naive” confidence intervals
when other model selectors are used. Especially for the watershed data set, the
estimated minimal coverage probability is 0.18 for the “naive” interval and 0.48
for the confidence interval based on K1. The reason for this phenomenon can be
traced to the observation that the LASSO model selector, as implemented here and
for the parameters used in the stochastic search for the smallest coverage proba-
bility, selects models that are significantly smaller than those AIC and BIC select.
In particular, the LASSO procedure often excludes regressors for which the corre-
sponding regression coefficients are not small. In our simulation study, selecting a
small model, that excludes regressors with significant coefficients, makes the dif-
ference between the design-dependent and design-independent targets larger. Since
the confidence intervals are designed to cover the former target, they hence have
a hard time to cover the latter when the two targets are significantly different. In
other words, for n = 20 the supremum in the display in Condition 3.3 is not small
for the LASSO procedure, so that the asymptotics in Theorem 3.6 does not pro-
vide a good approximation for the finite-sample situation. Finally, for n = 20 and
for the design-independent target, the results for the SCAD and MCP model selec-
tors lie somewhere in between those of the AIC and BIC and those of the LASSO
model selectors. Indeed, for SCAD and MCP, the confidence intervals often fail
to have the required minimal coverage probabilities, but less severely than for the
LASSO. We stress that the preceding conclusions hold for the LASSO, SCAD
and MCP procedures as implemented here where tuning parameters are chosen by
cross-validation. Other implementations of these procedures may of course give
different results.

The results in Table 1 concern the coverage probabilities conditional on the
design matrix X and on x0, and thus depend on the values of X and x0 used. In
additional (nonexhaustive) simulations we have repeated the above analysis for
other values of X and x0 and have found similar results.

5. Conclusion. We have extended the PoSI confidence intervals of Berk et al.
(2013a) to PoSI intervals for predictors. The coverage targets of our intervals, that
is, x′

0[M̂]β(n)

M̂
and x′

0[M̂]β(�)

M̂
, minimize a certain in-sample prediction error and,

under additional assumptions relating the training period to the prediction period, a
certain out-of-sample prediction error, respectively. For in-sample prediction, that
is, for the target x′

0[M̂]β(n)

M̂
, our intervals are valid, in finite samples, irrespective

of the model selection procedure that is being used. For out-of-sample prediction,
that is, for the target x′

0[M̂]β(�)

M̂
, the same is true asymptotically under very mild

assumptions on the underlying model selector.
Two types of confidence intervals were studied here: The first one (correspond-

ing to the constant K1(x0, M̂)) depends on all components of the vector x0 (even
if only a subset of these components is “active” in the selected model M̂), and thus
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is feasible only if x0 is observed completely. The intervals of the second type (cor-
responding to the constants K2(x0[M̂], M̂), K3(x0[M̂], M̂) and K4) depend only
on the active components in the selected model, that is, on x0[M̂]. The constants
K2, K3 and K4 correspond to successively larger confidence intervals.

Computing the constant K2 was found to be quite expensive in practice. For
computing the remaining constants, simple algorithms were presented in Ap-
pendix E. The computational complexity of our algorithms for computing K1 and
K3 is governed by the number of candidate models under consideration, limiting
computations to a few million candidate models in practice. Computation of K4 is
easy and not limited by complexity constraints (see, however, the warning about
numerical stability in Remark E.5 in Appendix E). Our algorithms are of similar
computational complexity as those proposed in Berk et al. (2013a).

We furthermore have studied the behavior of the constants Ki and of the corre-
sponding confidence intervals through analytic results in a setting where model di-
mension is allowed to grow with sample size, and also through simulations. These
results provide evidence that K4, which is relatively cheap to compute, is a reason-
ably tight bound for the computationally more expensive constants K1 to K3. Fur-
thermore, these results show that all the constants K1 to K4 are “bounded away”
from the Scheffé constant.

We have also provided simulation results regarding the coverage probabilities
of the various intervals introduced in the paper. We find that the asymptotic results
in Section 3 regarding the design-independent target already “kick-in” at moderate
sample sizes, and these results demonstrate that the PoSI confidence intervals for
the predictors maintain the desired minimal coverage probability. The simulation
study also shows that “naive” confidence intervals, which ignore the data-driven
model selection step and which use standard confidence procedures as if the se-
lected model were correct and given a priori, are invalid also in the setting con-
sidered here (which is in line with earlier findings in Leeb, Pötscher and Ewald
(2015), where inter alia “naive” confidence intervals for components of β

(n)

M̂
were

studied). Furthermore, studying in Appendix G the confidence intervals developed
for model selection with the LASSO by Lee et al. (2016), and others, we find
that these intervals are invalid if the LASSO penalty is chosen by cross-validation.
This contrasts the established fact that these intervals are valid (conditionally on
the event that a given model is selected), if the penalty is fixed in advance.
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SUPPLEMENTARY MATERIAL

Appendix: Proofs, algorithms, comments, details and extensions (DOI:
10.1214/18-AOS1721SUPP; .pdf). The Appendix contains the following material:

https://doi.org/10.1214/18-AOS1721SUPP
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comments on the assumptions made on the error variance; proofs of the results
given in Sections 2 and 3; additional material for Sections 2 and 3; descriptions of
the algorithms for computing the PoSI confidence intervals; details concerning the
numerical calculations for Section 4; additional simulation results.
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