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THE GEOMETRY OF HYPOTHESIS TESTING OVER CONVEX
CONES: GENERALIZED LIKELIHOOD RATIO TESTS

AND MINIMAX RADII

BY YUTING WEI, MARTIN J. WAINWRIGHT1 AND

ADITYANAND GUNTUBOYINA2

University of California, Berkeley

We consider a compound testing problem within the Gaussian sequence
model in which the null and alternative are specified by a pair of closed, con-
vex cones. Such cone testing problem arises in various applications, including
detection of treatment effects, trend detection in econometrics, signal detec-
tion in radar processing and shape-constrained inference in nonparametric
statistics. We provide a sharp characterization of the GLRT testing radius up
to a universal multiplicative constant in terms of the geometric structure of the
underlying convex cones. When applied to concrete examples, this result re-
veals some interesting phenomena that do not arise in the analogous problems
of estimation under convex constraints. In particular, in contrast to estimation
error, the testing error no longer depends purely on the problem complexity
via a volume-based measure (such as metric entropy or Gaussian complex-
ity); other geometric properties of the cones also play an important role. In
order to address the issue of optimality, we prove information-theoretic lower
bounds for the minimax testing radius again in terms of geometric quanti-
ties. Our general theorems are illustrated by examples including the cases of
monotone and orthant cones, and involve some results of independent inter-
est.

1. Introduction. Composite testing problems arise in a wide variety of ap-
plications and the generalized likelihood ratio test (GLRT) is a general purpose
approach to such problems. The basic idea of the likelihood ratio test dates back
to the early works of Fisher, Neyman and Pearson; it attracted further attention
following the work of Edwards [14], who emphasized likelihood as a general prin-
ciple of inference. Recent years have witnessed a great amount of work on the
GLRT in various contexts, including the papers [16, 17, 24, 25, 35]. However, de-
spite the wide-spread use of the GLRT, its optimality properties have yet to be
fully understood. For suitably regular problems, there is a great deal of asymptotic
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theory on the GLRT, and in particular when its distribution under the null is in-
dependent of nuisance parameters (e.g., [3, 37, 40]). On the other hand, there are
some isolated cases in which the GLRT can be shown to be dominated by other
tests (e.g., [24, 30, 32, 50]).

In this paper, we undertake an in-depth study of the GLRT in application to a
particular class of composite testing problems of a geometric flavor. In this class
of testing problems, the null and alternative hypotheses are specified by a pair of
closed convex cones C1 and C2, taken to be nested as C1 ⊂ C2. Suppose that we
are given an observation of the form y = θ + w, where w is a zero-mean Gaussian
noise vector. Based on observing y, our goal is to test whether a given parameter θ

belongs to the smaller cone C1—corresponding to the null hypothesis—or belongs
to the larger cone C2. Cone testing problems of this type arise in many different
settings, and there is a fairly substantial literature on the behavior of the GLRT
in application to such problems (e.g., see the papers and books [8, 13, 23, 31–33,
37–39, 41, 45, 50], as well as references therein).

1.1. Some motivating examples. Before proceeding, let us consider some con-
crete examples so as to motivate our study.

EXAMPLE 1 (Testing nonnegativity and monotonicity in treatment effects).
Suppose that we have a collection of d treatments, say different drugs for a par-
ticular medical condition. Letting θj ∈ R denote the mean of treatment j , one null
hypothesis could be that none of treatments has any effect, that is, θj = 0 for all
j = 1, . . . , d . Assuming that none of the treatments are directly harmful, a reason-
able alternative would be that θ belongs to the nonnegative orthant cone

K+ := {
θ ∈Rd | θj ≥ 0 for all j = 1, . . . , d

}
.(1)

This set-up leads to a particular instance of our general set-up with C1 = {0} and
C2 = K+. Such orthant testing problems have been studied by Kudo [23] and
Raubertas et al. [37], among other people.

In other applications, our treatments might consist of an ordered set of dosages
of the same drug. In this case, we might have reason to believe that if the drug has
any effect, then the treatment means would obey a monotonicity constraint, that
is, with higher dosages leading to greater treatment effects. One would then want
to detect the presence or absence of such a dose response effect. Monotonicity
constraints also arise in various types of econometric models, in which the effects
of strategic interventions should be monotone with respect to parameters such as
market size (e.g., [12]). For applications of this flavor, a reasonable alternative
would be specified by the monotone cone

M := {
θ ∈ Rd | θ1 ≤ θ2 ≤ · · · ≤ θd

}
.(2)

This set-up leads to another instance of our general problem with C1 = {0} and
C2 = M . The behavior of the GLRT for this particular testing problem has also
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been studied in past works, including papers by Barlow et al. [3], and Raubertas et
al. [37].

As a third instance of the treatment effects problem, we might like to include
in our null hypothesis the possibility that the treatments have some (potentially)
nonzero effect but one that remains constant across levels, that is, θ1 = θ2 = · · · =
θd . In this case, our null hypothesis is specified by the ray cone

R := {
θ ∈ Rd | θ = c1 for some c ∈ R

}
.(3)

Supposing that we are interested in testing the alternative that the treatments lead to
a monotone effect, we arrive at another instance of our general set-up with C1 = R

and C2 = M . This testing problem has also been studied by Bartholomew [4, 5]
and Robertson et al. [42] among other researchers.

In the preceding three examples, the cone C1 was linear subspace. Let us now
consider two more examples, adapted from Menendnez et al. [31], in which C1
is not a subspace. As before, suppose that component θi of the vector θ ∈ Rd

denotes the expected response of treatment i. In many applications, it is of interest
to test equality of the expected responses of a subset S of the full treatment set
[d] = {1, . . . , d}. More precisely, for a given subset S containing the index 1, let
us consider the problem of testing the the null hypothesis

C1 ≡ E(S) := {
θ ∈ Rd | θi = θ1 ∀i ∈ S, and θj ≥ θ1 ∀j /∈ S

}
(4)

versus the alternative C2 ≡ G(S) = {θ ∈ Rd | θj ≥ θ1 ∀j ∈ [d]}. Note that C1 here
is not a linear subspace.

As a final example, suppose that we have a factorial design consisting of two
treatments, each of which can be applied at two different dosages (high and level).
Let (θ1, θ2) denote the expected responses of the first treatment at the low and
high dosages, respectively, with the pair (θ3, θ4) defined similarly for the second
treatment. Suppose that we are interesting in testing whether the first treatment at
the lowest level is more effective than the second treatment at the highest level.
This problem can be formulated as testing the null cone

C1 := {
θ ∈ R4 | θ1 ≤ θ2 ≤ θ3 ≤ θ4

}
versus the alternative

C2 := {
θ ∈ R4 | θ1 ≤ θ2, and θ3 ≤ θ4

}
.

(5)

As before, the null cone C1 is not a linear subspace.

EXAMPLE 2 (Robust matched filtering in signal processing). In radar detec-
tion problems [43], a standard goal is to detect the presence of a known signal
of unknown amplitude in the presence of noise. After a matched filtering step, this
problem can be reduced to a vector testing problem, where the known signal direc-
tion is defined by a vector γ ∈ Rd , whereas the unknown amplitude corresponds to
a scalar pre-factor c ≥ 0. We thus arrive at a ray cone testing problem: the null hy-
pothesis (corresponding to the absence of signal) is given C1 = {0}, whereas the al-
ternative is given by the positive ray cone R+ = {θ ∈Rd | θ = cγ for some c ≥ 0}.
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In many cases, there may be uncertainty about the target signal, or jamming by
adversaries, who introduce additional signals that can be potentially confused with
the target signal γ . Signal uncertainties of this type are often modeled by various
forms of cones, with the most classical choice being a subspace cone [43]. In more
recent work (e.g., [8, 18]), signal uncertainty has been modeled using the circular
cone defined by the target signal direction, namely

C(γ ;α) := {
θ ∈ Rd | 〈γ, θ〉 ≥ cos(α)‖γ ‖2‖θ‖2

}
,(6)

corresponding to the set of all vectors θ that have angle at least α with the target
signal. Thus, we are led to another instance of a cone testing problem involving a
circular cone.

EXAMPLE 3 (Cone-constrained testing in linear regression). Consider the
standard linear regression model

y = Xβ + σZ where Z ∼ N(0, In),(7)

where X ∈ Rn×p is a fixed and known design matrix. In many applications, we
are interested in testing certain properties of the unknown regression vector β , and
these can often be encoded in terms of cone-constraints on the vector θ := Xβ . As
a very simple example, the problem of testing whether or not β = 0 corresponds
to testing whether θ ∈ C1 := {0} versus the alternative that θ ∈ C2 := range(X).
Thus, we arrive at a subspace testing problem. We note this problem is known
as testing the global null in the linear regression literature (e.g., [9]). If instead
we consider the case when the p-dimensional vector β lies in the nonnegative
orthant cone (1), then our alternative for the n-dimensional vector θ becomes the
polyhedral cone

P := {
θ ∈Rn | θ = Xβ for some β ≥ 0

}
.(8)

The corresponding estimation problem with nonnegative constraints on the coeffi-
cient vector β has been studied by Slawski et al. [46] and Meinshausen [29]; see
also Chen et al. [11] for a survey of this line of work. In addition to these preceding
two cases, we can also test various other types of cone alternatives for β , and these
are transformed via the design matrix X into other types of cones for the parameter
θ ∈Rn.

EXAMPLE 4 (Testing shape-constrained departures from parametric models).
Our third example is nonparametric in flavor. Consider the class of functions f

that can be decomposed as

f =
k∑

j=1

ajφj + ψ.(9)
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Here the known functions {φj }kj=1 define a linear space, parameterized by the

coefficient vector a ∈ Rk , whereas the unknown function ψ models a structured
departure from this linear parametric class. For instance, we might assume that
ψ belongs to the class of monotone functions, or the class of convex functions.
Given a fixed collection of design points {ti}ni=1, suppose that we make obser-
vations of the form yi = f (ti) + σgi for i = 1, . . . , n, where each gi is a stan-
dard normal variable. Defining the shorthand notation θ := (f (t1), . . . , f (tn))

and g = (g1, . . . , gn), our observations can be expressed in the standard form
y = θ + σg. If, under the null hypothesis, the function f satisfies the decomposi-
tion (9) with ψ = 0, then the vector θ must belong to the subspace {	a | a ∈ Rk},
where the matrix 	 ∈ Rn×k has entries 	ij = φj (xi).

Now suppose that the alternative is that f satisfies the decomposition (9) with
some ψ that is convex. A convexity constraint on ψ implies that we can write
θ = 	a + γ , for some coefficients a ∈ Rk and a vector γ ∈ Rn belonging to the
convex cone

V
({ti}ni=1

) :=
{
γ ∈ Rn

∣∣∣ γ2 − γ1

t2 − t1
≤ γ3 − γ2

t3 − t2
≤ · · · ≤ γn − γn−1

tn − tn−1

}
.(10)

This particular cone testing problem and other forms of shape constraints have
been studied by Meyer [33], as well as by Sen and Meyer [44].

1.2. Problem formulation. Having understood the range of motivations for our
problem, let us now set up the problem more precisely. Suppose that we are given
observations of the form y = θ + σg, where θ ∈Rd is a fixed but unknown vector,
whereas g ∼ N(0, Id) is a d-dimensional vector of i.i.d. Gaussian entries and σ 2

is a known noise level. Our goal is to distinguish the null hypothesis that θ ∈ C1
versus the alternative that θ ∈ C2 \ C1, where C1 ⊂ C2 are a nested pair of closed,
convex cones in Rd .

In this paper, we study both the fundamental limits of solving this composite
testing problem, as well as the performance of a specific procedure, namely the
generalized likelihood ratio test, or GLRT for short. By definition, the GLRT for
the problem of distinguishing between cones C1 and C2 is based on the statistic

T (y) := −2 log
(supθ∈C1

Pθ (y)

supθ∈C2
Pθ (y)

)
.(11a)

It defines a family of tests, parameterized by a threshold parameter β ∈ [0,∞), of
the form

φβ(y) := I
(
T (y) ≥ β

) =
{

1 if T (y) ≥ β,

0 otherwise.
(11b)

Thus far, our formulation of the testing problem allows for the possibility that
θ lies in the set C2 \ C1, but is arbitrarily close to some element of C1. Thus, un-
der this formulation, it is not possible to make any nontrivial assertions about the
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power of the GLRT nor any other test in a uniform sense. Accordingly, so as to
be able to make quantitative statements about the performance of different state-
ments, we exclude a certain ε-ball from the alternative. This procedure leads to
the notion of the minimax testing radius associated this composite decision prob-
lem. This minimax formulation was introduced in the seminal work of Ingster and
coauthors [20, 21]; since then, it has been studied by many authors (e.g., [2, 15,
26, 27, 47]).

For a given ε > 0, we define the ε-fattening of the cone C1 as

B2(C1; ε) :=
{
θ ∈ Rd

∣∣ min
u∈C1

‖θ − u‖2 ≤ ε
}
,(12)

corresponding to the set of vectors in Rd that are at most Euclidean distance ε

from some element of C1. We then consider the testing problem of distinguishing
between the two hypotheses

H0 : θ ∈ C1 and H1 : θ ∈ C2 \ B2(C1; ε).(13)

To be clear, the parameter ε > 0 is a quantity that is used during the course of our
analysis in order to titrate the difficulty of the testing problem. All of the tests that
we consider, including the GLRT, are not given knowledge of ε. Let us introduce
shorthand T (C1,C2; ε) to denote this testing problem (13).

Obviously, the testing problem (13) becomes more difficult as ε approaches
zero, and so it is natural to study this increase in quantitative terms. Letting ψ :
Rd → {0,1} be any (measurable) test function, we measure its performance in
terms of its uniform error

E(ψ;C1,C2, ε) := sup
θ∈C1

Eθ

[
ψ(y)

] + sup
θ∈C2\B2(ε;C1)

Eθ

[
1 − ψ(y)

]
,(14)

which controls the worst-case error over both null and alternative.
For a given error level ρ ∈ (0,1), we are interested in the smallest setting of ε

for which either the GLRT, or some other test ψ has uniform error at most ρ. More
precisely, we define

εOPT(C1,C2;ρ) := inf
{
ε

∣∣ inf
ψ
E(ψ;C1,C2, ε) ≤ ρ

}
and(15a)

εGLR(C1,C2;ρ) := inf
{
ε

∣∣ inf
β∈RE(φβ;C1,C2, ε) ≤ ρ

}
.(15b)

When the subspace-cone pair (C1,C2) are clear from the context, we occasion-
ally omit this dependence, and write εOPT(ρ) and εGLR(ρ) instead. We refer to
these two quantities as the minimax testing radius and the GLRT testing radius,
respectively.

By definition, the minimax testing radius εOPT corresponds to the smallest sep-
aration ε at which there exists some test that distinguishes between the hypotheses
H0 and H1 in equation (13) with uniform error at most ρ. Thus, it provides a
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fundamental characterization of the statistical difficulty of the hypothesis testing.
On the other hand, the GLRT testing radius εGLR(ρ) provides us with the smallest
radius ε for which there exists some threshold—say β∗—for which the associ-
ated generalized likelihood ratio test φβ∗ distinguishes between the hypotheses
with error at most ρ. Thus, it characterizes the performance limits of the GLRT
when an optimal threshold β∗ is chosen. Of course, by definition, we always have
εOPT(ρ) ≤ εGLR(ρ). We write εOPT(ρ) � εGLR(ρ) to mean that—in addition to
the previous upper bound—there is also a lower bound εOPT(ρ) ≥ cρεGLR(ρ) that
matches up to a constant cρ > 0 depending only on ρ.

1.3. Overview of our results. Having set up the problem, let us now provide a
high-level overview of the main results of this paper.

• Our first main result, stated as Theorem 1 in Section 3.1, gives a sharp
characterization—meaning upper and lower bounds that match up to universal
constants—of the GLRT testing radius εGLR for cone pairs (C1,C2) that are
nonoblique (we discuss the nonobliqueness property and its significance at length
in Section 2.2). We illustrate the consequences of this theorem for a number of
concrete cones, include the subspace cone, orthant cone, monotone cone, circular
cone and a Cartesian product cone.

• In our second main result, stated as Theorem 2 in Section 3.2, we derive a
lower bound that applies to any testing function. It leads to a corollary that provides
sufficient conditions for the GLRT to be an optimal test, and we use it to establish
optimality for the subspace cone and circular cone, among other examples. We
then revisit the Cartesian product cone, first analyzed in the context of Theorem 1,
and use Theorem 2 to show that the GLRT is suboptimal for this particular cone,
even though it is in no sense a pathological example.

• For the monotone and orthant cones, we find that the lower bound established
in Theorem 2 is not sharp, but that the GLRT turns out to be an optimal test. Thus,
Section 3.3 is devoted to a detailed analysis of these two cases, in particular using
a more refined argument to obtain sharp lower bounds.

The remainder of this paper is organized as follows: Section 2 provides back-
ground on conic geometry, including conic projections, the Moreau decomposition
and the notion of Gaussian width. It also introduces the notion of a nonoblique pair
of cones, which have been studied in the context of the GLRT. In Section 3, we
state our main results and illustrate their consequences via a series of examples.
Sections 3.1 and 3.2 are devoted, respectively, to our sharp characterization of the
GLRT and a general lower bound on the minimax testing radius. Section 3.3 ex-
plores the monotone and orthant cones in more detail. In Section 4, we provide
the proofs of our main results, with certain more technical aspects deferred to the
Appendices in Supplementary Material [52].
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Notation. Here in this paper, for functions f (σ, d) and g(σ, d), we write
f (σ, d) � g(σ, d) to indicate that f (σ, d) ≤ cg(σ, d) for some constant c ∈
(0,∞) that may only depend on ρ but independent of (σ, d), and similarly for
f (σ, d) � g(σ, d). We write f (σ, d) � g(σ, d) if both f (σ, d) � g(σ, d) and
f (σ, d) � g(σ, d) are satisfied.

2. Background on conic geometry and the GLRT. In this section, we pro-
vide some necessary background on cones and their geometry, including the no-
tion of a polar cone and the Moreau decomposition. We also define the notion of a
nonoblique pair of cones, and summarize some known results about properties of
the GLRT for such cone testing problems.

2.1. Convex cones and Gaussian widths. For a given closed convex cone C ⊂
Rd , we define the Euclidean projection operator �C :Rd → C via

�C(v) := arg min
u∈C

‖v − u‖2.(16)

By standard properties of projection onto closed convex sets, we are guaranteed
that this mapping is well defined. We also define the polar cone

C∗ := {
v ∈ Rd | 〈v,u〉 ≤ 0 for all u ∈ C

}
.(17)

Figure 1(b) provides an illustration of a cone in comparison to its polar cone. Us-
ing �C∗ to denote the projection operator onto this cone, Moreau’s theorem [34]
ensures that every vector v ∈ Rd can be decomposed as

v = �C(v) + �C∗(v) and such that
〈
�C(v),�C∗(v)

〉 = 0.(18)

We make frequent use of this decomposition in our analysis.
Let S−1 := {u ∈ Rd | ‖u‖2 = 1} denotes the Euclidean sphere of unit radius. For

every set A ⊆ S−1, we define its Gaussian width as

W(A) := E
[
sup
u∈A

〈u,g〉
]

where g ∼ N(0, Id).(19)

This quantity provides a measure of the size of the set A; indeed, it can be re-
lated to the volume of A viewed as a subset of the Euclidean sphere. The notion
of Gaussian width arises in many different areas, notably in early work on prob-
abilistic methods in Banach spaces [36]; the Gaussian complexity, along with its
close relative the Rademacher complexity, plays a central role in empirical process
theory [6, 22, 48].

Of interest in this paper are the Gaussian widths of sets of the form A = C ∩
S−1, where C is a closed convex cone. For a set of this form, using the Moreau
decomposition (18), we have the useful equivalence

W
(
C ∩ S−1) = E

[
sup

u∈C∩S−1

〈
u,�C(g) + �C∗(g)

〉] = E
∥∥�C(g)

∥∥
2,(20)
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where the final equality uses the fact that 〈u,�C∗(g)〉 ≤ 0 for all vectors u ∈ C,
with equality holding when u is a nonnegative scalar multiple of �C(g).

For future reference, let us derive a lower bound on E‖�Cg‖2 that holds for
every cone C strictly larger than {0}. Take some nonzero vector u ∈ C and let
R+ = {cu | c ≥ 0} be the ray that it defines. Since R+ ⊆ C, we have ‖�Cg‖2 ≥
‖�R+g‖2. But since R+ is just a ray, the projection �R+(g) is a standard normal
variable truncated to be positive, and hence

E‖�Cg‖2 ≥ E‖�R+g‖2 =
√

1

2π
.(21)

This lower bound is useful in parts of our development.

2.2. Cone-based GLRTs and nonoblique pairs. In this section, we provide
some background on the notion of nonoblique pairs of cones, and their signifi-
cance for the GLRT. First, let us exploit some properties of closed convex cones
in order to derive a simpler expression for the GLRT test statistic (11a). Using the
form of the multivariate Gaussian density, we have

T (y) = min
θ∈C1

‖y − θ‖2
2 − min

θ∈C2
‖y − θ‖2

2 = ∥∥y − �C1(y)
∥∥2

2 − ∥∥y − �C2(y)
∥∥2

2(22)

= ∥∥�C2(y)
∥∥2

2 − ∥∥�C1(y)
∥∥2

2,(23)

where we have made use of the Moreau decomposition to assert that∥∥y − �C1(y)
∥∥2

2 = ‖y‖2
2 − ∥∥�C1(y)

∥∥2
2 and∥∥y − �C2(y)

∥∥2
2 = ‖y‖2

2 − ∥∥�C2(y)
∥∥2

2.

Thus, we see that a cone-based GLRT has a natural interpretation: it compares the
squared amplitude of the projection of y onto the two different cones.

When C1 = {0}, then it can be shown that under the null hypothesis [i.e.,
y ∼ N(0, σ 2Id)], the statistic T (y) (after rescaling by σ 2) is a mixture of χ2-
distributions (see, e.g., [37]). On the other hand, for a general cone pair (C1,C2),
it is not straightforward to characterize the distribution of T (y) under the null hy-
pothesis. Thus, past work has studied conditions on the cone pair under which
the null distribution has a simple characterization. One such condition is a cer-
tain nonobliqueness property that is common to much past work on the GLRT
(e.g., [19, 31, 32, 50]). The nonobliqueness condition, first introduced by War-
rack et al. [50], is also motivated by the fact that are many instances of oblique
cone pairs for which the GLRT is known to dominated by other tests. Menendez
et al. [30] provide an explanation for this dominance in a very general context; see
also the papers [19, 31] for further studies of nonoblique cone pairs.

A nested pair of closed convex cones C1 ⊂ C2 is said to be nonoblique if we
have the successive projection property

�C1(x) = �C1

(
�C2(x)

)
for all x ∈ Rd .(24)
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For instance, this condition holds whenever one of the two cones is a subspace,
or more generally, whenever there is a subspace L such that C1 ⊆ L ⊆ C2; see
Hu and Wright [19] for details of this latter property. To be clear, these conditions
are sufficient—but not necessary—for nonobliqueness to hold. There are many
nonoblique cone pairs in which neither cone is a subspace; the cone pairs (4)
and (5), as discussed in Example 1 on treatment testing, are two such examples.
(We refer the reader to Section 5 of the paper [31] for verification of these proper-
ties.) More generally, there are various nonoblique cone pairs that do not sandwich
a subspace L.

The significance of the nonobliqueness condition lies in the following decom-
position result. For any nested pair of closed convex cones C1 ⊂ C2 that are
nonoblique, for all x ∈Rd we have

�C2(x) = �C1(x) + �C2∩C∗
1
(x) and

〈
�C1(x),�C2∩C∗

1
(x)

〉 = 0.(25)

This decomposition follows from general theory due to Zarantonello [53], who
proves that for nonoblique cones, we have �C2∩C∗

1
= �C∗

1
�C2 ; in particular, see

Theorem 5.2 in his paper.
An immediate consequence of the decomposition (25) is that the GLRT for any

nonoblique cone pair (C1,C2) can be written as

T (y) = ∥∥�C2(y)
∥∥2

2 − ∥∥�C1(y)
∥∥2

2 = ∥∥�C2∩C∗
1
(y)

∥∥2
2

= ‖y‖2
2 − min

θ∈C2∩C∗
1

‖y − θ‖2
2.

Consequently, we see that the GLRT for the pair (C1,C2) is equivalent to—that is,
determined by the same statistic as—the GLRT for testing the reduced hypothesis

H̃0 : θ = 0 versus H̃1 : θ ∈ (
C2 ∩ C∗

1
) \ B2(ε).(26)

Following the previous notation, write it as T ({0},C2 ∩ C∗
1 ; ε) and we make fre-

quent use of this convenient reduction in the sequel.

3. Main results and their consequences. We now turn to the statement of our
main results, along with a discussion of some of their consequences. Section 3.1
provides a sharp characterization of the minimax radius for the generalized likeli-
hood ratio test up to a universal constant, along with a number of concrete exam-
ples. In Section 3.2, we state and prove a general lower bound on the performance
of any test, and use it to establish the optimality of the GLRT in certain settings, as
well as its suboptimality in other settings. In Section 3.3, we revisit and study in
details two cones of particular interest, namely the orthant and monotone cones.

3.1. Analysis of the generalized likelihood ratio test. Let (C1,C2) be a nested
pair of closed cones C1 ⊆ C2 that are nonoblique (24). Consider the polar cone C∗

1
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as well as the intersection cone K = C2 ∩ C∗
1 . Letting g ∈ Rd denote a standard

Gaussian random vector, we then define the quantity

(27) δ2
LR(C1,C2) := min

{
E‖�Kg‖2,

(
E‖�Kg‖2

max{0, infη∈K∩S−1〈η,E�Kg〉}
)2}

.

Note that δ2
LR(C1,C2) is a purely geometric object, depending on the pair (C1,C2)

via the new cone K = C2 ∩ C∗
1 , which arises due to the GLRT equivalence (26)

discussed previously.
Recall that the GLRT is based on applying a threshold, at some level β ∈ [0,∞),

to the likelihood ratio statistic T (y); in particular, see equations (11a) and (11b).
In the following theorem, we study the performance of the GLRT in terms of the
the uniform testing error E(φβ;C1,C2, ε) from equation (14). In particular, we
show that the critical testing radius for the GLRT is governed by the geometric
parameter δ2

LR(C1,C2).

THEOREM 1. There are numbers {(bρ,Bρ), ρ ∈ (0,1/2)} such that for every
pair of nonoblique closed convex cones (C1,C2) with C1 strictly contained within
C2:

(a) For every error probability ρ ∈ (0,0.5), we have

inf
β∈[0,∞)

E(φβ;C1,C2, ε) ≤ ρ for all ε2 ≥ Bρσ 2δ2
LR(C1,C2).(28a)

(b) Conversely, for every error probability ρ ∈ (0,0.11], we have

inf
β∈[0,∞)

E(φβ;C1,C2, ε) ≥ ρ for all ε2 ≤ bρσ 2δ2
LR(C1,C2).(28b)

REMARKS. While our proof leads to universal values for the constants Bρ and
bρ , we have made no efforts to obtain the sharpest possible ones, so do not state
them here. In any case, our main interest is to understand the scaling of the testing
radius with respect to σ and the geometric parameters of the problem. In terms
of the GLRT testing radius εGLR previously defined (15b), Theorem 1 establishes
that

εGLR(C1,C2;ρ) � σδLR(C1,C2),(29)

where � denotes equality up to constants depending on ρ, but independent of all
other problem parameters. Since εGLR always upper bounds εOPT for every fixed
level ρ, we can also conclude from Theorem 1 that

εOPT(C1,C2;ρ) � σδLR(C1,C2).

It is worthwhile noting that the quantity δ2
LR(C1,C2) depends on the pair (C1,C2)

only via the new cone K = C2 ∩ C∗
1 . Indeed, as discussed in Section 2.2, for any
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pair of nonoblique closed convex cones, the GLRT for the original testing prob-
lem (13) is equivalent to the GLRT for the modified testing problem T ({0},K; ε).

Observe that the quantity δ2
LR(C1,C2) from equation (27) is defined via the

minima of two terms. The first term E‖�Kg‖2 is the (square root of the) Gaussian
width of the cone K , and is a familiar quantity from past work on least-squares
estimation involving convex sets [10, 49]. The Gaussian width measure the size
of the cone K , and it is to be expected that the minimax testing radius should
grow with this size, since K characterizes the set of possible alternatives. The
second term involving the inner product 〈η,E�Kg〉 is less immediately intuitive,
partly because no such term arises in estimation over convex sets. The second term
becomes dominant in cones for which the expectation v∗ := E[�Kg] is relatively
large; for such cones, we can test between the null and alternative by performing a
univariate test after projecting the data onto the direction v∗. This possibility only
arises for cones that are more complicated than subspaces, since E[�Kg] = 0 for
any subspace K .

Finally, we note that Theorem 1 gives a sharp characterization of the behavior
of the GLRT up to a constant. It is different from the usual minimax guarantee.
To the best of our knowledge, it is the first result to provide tight upper and lower
control on the uniform performance of a specific test.

3.1.1. Consequences for convex set alternatives. Although Theorem 1 applies
to cone-based testing problems, it also has some implications for a more general
class of problems based on convex set alternatives. In particular, suppose that we
are interested in the testing problem of distinguishing between

H0 : θ = θ0 versus H1 : θ ∈ S,(30)

where S is a not necessarily a cone, but rather an arbitrary closed convex set, and
θ0 is some vector such that θ0 ∈ S . Consider the tangent cone of S at θ0, which is
given by

TS(θ) := {
u ∈ Rd | there exists some t > 0 such that θ + tu ∈ S

}
.(31)

Note that TS(θ0) contains the shifted set S − θ0. Consequently, we have

E
(
ψ; {0},S − θ0, ε

) ≤ Eθ=0
[
ψ(y)

] + sup
θ∈TS (θ0)\B2(0;ε)

Eθ

[
1 − ψ(y)

]
= E

(
ψ; {0},TS(θ0), ε

)
,

which shows that the tangent cone testing problem

H0 : θ = 0 versus H1 : θ ∈ TS(θ0),(32)

is more challenging than the original problem (30). Thus, applying Theorem 1 to
this cone-testing problem (32), we obtain the following.
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COROLLARY 1. For the convex set testing problem (30), we have

ε2
OPT(θ0,S;ρ)

(33)

� σ 2 min
{
E‖�TS (θ0)g‖2,

(
E‖�TS (θ0)g‖2

max{0, infη∈TS (θ0)∩S−1〈η,E�TS (θ0)g〉}
)2}

.

This upper bound can be achieved by applying the GLRT to the tangent cone testing
problem (32).

This corollary offers a general recipe of upper bounding the optimal testing
radius. In Section 3.1.6, we provide an application of Corollary 1 to the problem
of testing

H0 : θ = θ0 versus H1 : θ ∈ M,

where M is the monotone cone [defined in expression (2)]. When θ0 �= 0, this is
not a cone testing problem, since the set {θ0} is not a cone. Using Corollary 1, we
prove an upper bound on the optimal testing radius for this problem in terms of the
number of constant pieces of θ0.

In the remainder of this section, we consider some special cases of testing a cone
K versus {0} in order to illustrate the consequences of Theorem 1. In all cases, we
compute the GLRT testing radius for a constant error probability, and so ignore
the dependencies on ρ. For this reason, we adopt the more streamlined notation
εGLR(K) for the radius εGLR({0},K;ρ).

3.1.2. Subspace of dimension k. Let us begin with an especially simple case—
namely, when K is equal to a subspace Sk of dimension k ≤ d . In this case, the pro-
jection �K is a linear operator, which can be represented by matrix multiplication
using a rank k projection matrix. By symmetry of the Gaussian distribution, we
have E[�Kg] = 0. Moreover, by rotation invariance of the Gaussian distribution,
the random vector ‖�Kg‖2

2 follows a χ2-distribution with k degrees of freedom,
where

√
k

2
≤ E‖�Kg‖2 ≤

√
E‖�Kg‖2

2 = √
k.

Applying Theorem 1 then yields that the testing radius of the GLRT scales as

ε2
GLR(Sk) � σ 2

√
k.(34)

Here our notation � denotes equality up to constants independent of (σ, k); we
have omitted dependence on the testing error ρ so as to simplify notation, and will
do so throughout our discussion.
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FIG. 1. (a) A 3-dimensional circular cone with angle α. (b) Illustration of a cone versus its polar
cone.

3.1.3. Circular cone. A circular cone in Rd with constant angle α ∈ (0, π/2)

is given by Circd(α) := {θ ∈ Rd | θ1 ≥ ‖θ‖2 cos(α)}. In geometric terms, it cor-
responds to the set of all vectors whose angle with the standard basis vector
e1 = (1,0, . . . ,0) is at most α radians. Figure 1(a) gives an illustration of a cir-
cular cone.

Suppose that we want to test the null hypothesis θ = 0 versus the cone alterna-
tive K = Circd(α). We claim that, in application to this particular cone, Theorem 1
implies that

ε2
GLR(K) � σ 2 min{√d,1} = σ 2,(35)

where � denotes equality up to constants depending on (ρ,α), but independent of
all other problem parameters.

In order to apply Theorem 1, we need to evaluate both terms that define the geo-
metric quantity δ2

LR(C1,C2). On one hand, by symmetry of the cone K = Circd(α)

in its last (d − 1)-coordinates, we have E�Kg = βe1 for some scalar β > 0 and
e1 denotes the standard Euclidean basis vector with a 1 in the first coordinate.
Moreover, for any η ∈ K ∩ S−1, we have η1 ≥ cos(α), and hence

inf
η∈K∩S−1

〈η,E�Kg〉 = η1β ≥ cos(α)β = cos(α)‖E�Kg‖2.

Next, we claim that ‖E�Kg‖2 � E‖�Kg‖2. In order to prove this claim, note that
Jensen’s inequality yields

E‖�Kg‖2 ≥ ‖E�Kg‖2
(a)≥ (E�Circd (α)g)1

= E(�Circd (α)g)1
(b)≥ E‖�Circd (α)g‖2 cos(α),

(36)
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where in this argument, inequality (a) follows from simply fact that ‖x‖2 ≥ |x1|
whereas inequality (b) follows from the definition of circular cone. Plugging into
definition δ2

LR(C1,C2), the corresponding second term equals a constant. There-
fore, the second term in the definition (27) of δ2

LR(C1,C2) is upper bounded by a
constant, independent of the dimension d .

On the other hand, from known results on circular cones (see [28], Section 6.3),
there are constants κj = κj (α) for j = 1,2 such that κ1d ≤ E‖�Kg‖2

2 ≤ κ2d .
Moreover, we have

E‖�Kg‖2
2 − 4

(a)≤ (
E‖�Kg‖2

)2 (b)≤ E‖�Kg‖2
2.

Here inequality (b) is an immediate consequence of Jensen’s inequality, whereas
inequality (a) follows from the fact that var(‖�Kg‖2) ≤ 4; see Lemma 4.1 in Sec-
tion 4.1 and the surrounding discussion for details. Putting together the pieces, we
see that E‖�Kg‖2 � √

d for the circular cone. Combining different elements of
our argument leads to the stated claim (35).

3.1.4. A Cartesian product cone. We now consider a simple extension of the
previous two examples; namely, a convex cone formed by taking the Cartesian
product of the real line R with the circular cone Circd−1(α), that is,

K× := Circd−1(α) ×R.(37)

Please refer to Figure 2 as an illustration of this cone in three dimensions.
This example turns out to be rather interesting because—as will be demon-

strated in Section 3.2.3—the GLRT is suboptimal by a factor
√

d for this cone. In
order to set up this later analysis, here we use Theorem 1 to prove that

ε2
GLR(K×) � σ 2

√
d.(38)

Note that this result is strongly suggestive of suboptimality on the part of the
GLRT. More concretely, the two cones that form K× are both “easy,” in that the

FIG. 2. Illustration of the product cone defined in equation (37).
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GLRT radius scales as σ 2 for each. For this reason, one would expect that the
squared radius of an optimal test would scale as σ 2—as opposed to the σ 2

√
d of

the GLRT—and our later calculations will show that this is indeed the case.
We now prove claim (38) as a consequence of Theorem 1. First, notice that

projecting to the product cone K× can be viewed as projecting the first d − 1
dimension to circular cone Circd−1(α) and the last coordinate to R. Consequently,
we have the following inequality:

E‖�Circd−1(α)g‖2 ≤ E‖�K×g‖2
(a)≤

√
E‖�K×g‖2

2

=
√
E‖�Circd−1(α)g‖2

2 +E
[
g2

d

]
,

where inequality (a) follows by Jensen’s inequality. Making use of our previous
calculations for the circular cone, we have E‖�K×g‖2 � √

d . Moreover, note that
the last coordinate of E[�K×g] is equal to 0 by symmetry and the standard basis
vector ed ∈ Rd , with a single one in its last coordinate, belongs to K× ∩ S−1, we
have

inf
η∈K×∩S−1

〈
η,E�K×(g)

〉 ≤ 〈
ed,E�K×(g)

〉 = 0.

Plugging into definition δ2
LR(C1,C2), the corresponding second term equals infin-

ity. Therefore, the minimum that defines δ2
LR(C1,C2) is achieved in the first term,

and so is proportional to
√

d . Putting together the pieces yields the claim (38).

3.1.5. Nonnegative orthant cone. Next, let us consider the (nonnegative) or-
thant cone given by K+ := {θ ∈ Rd | θj ≥ 0 for j = 1, . . . , d}. Here we use Theo-
rem 1 to show that

ε2
GLR(K+) � σ 2

√
d.(39)

Turning to the evaluation of the quantity δ2
LR(C1,C2), it is straightforward to see

that [�K+(θ)]j = max{0, θj }, and hence E�K+(g) = 1
2E|g1|1 = 1√

2π
1, where 1 ∈

Rd is a vector of all ones. Thus, we have

∥∥E�K+(g)
∥∥

2 =
√

d

2π
and

∥∥E�K+(g)
∥∥

2 ≤ E
∥∥�K+(g)

∥∥
2 ≤

√
E

∥∥�K+(g)
∥∥2

2 =
√

d

2
,

where the second inequality follows from Jensen’s inequality. So the first term in
the definition of quantity δ2

LR(C1,C2) is proportional to
√

d . As for the second
term, since the standard basis vector e1 ∈ K+ ∩ S−1, we have

inf
η∈K+∩S−1

〈η,E�Kg〉 ≤
〈
e1,

1√
2π

1
〉
= 1√

2π
.
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Consequently, the second term in the definition of quantity δ2
LR(C1,C2) lower

bounded by a universal constant times d . Combining these derivations yields the
stated claim (39).

3.1.6. Monotone cone. As our final example, consider testing in the monotone
cone given by M := {θ ∈ Rd | θ1 ≤ θ2 ≤ · · · ≤ θd}. Testing with monotone cone
constraint has also been studied in different settings before, where it is known
in some cases that restricting to monotone cone helps reduce the hardness of the
problem to be logarithmically dependent on the dimension (e.g., [7, 51]).

Here we use Theorem 1 to show that

ε2
GLR(M) � σ 2

√
logd.(40)

From known results on monotone cone (see Section 3.5, [1]), we know that
E‖�Mg‖2 � √

logd . So the only remaining detail is to control the second term
defining δ2

LR(C1,C2). We claim that the second term is actually infinity since

max
{
0, inf

η∈M∩S−1
〈η,E�Mg〉

}
= 0,(41)

which can be seen by simply noticing vectors 1√
d

1,− 1√
d

1 ∈ M ∩ S−1 and

min
{〈

1√
d

,E�Mg

〉
,

〈
− 1√

d
,E�Mg

〉}
≤ 0.

Here 1 ∈ Rd denotes the vector of all ones. Combining the pieces yields the
claim (40).

Testing constant versus monotone. It is worth noting that the same GLRT bound
also holds for the more general problem of testing the monotone cone M versus
the linear subspace L = span(1) of constant vectors, namely,

ε2
GLR(L,M) � σ 2

√
logd.(42)

In particular, the following lemma provides the control that we need.

LEMMA 1. For the monotone cone M and the linear space L = span(1), there
is a universal constant c such that

inf
η∈K∩S−1

〈η,E�Kg〉 ≤ c, K := M ∩ L⊥.

See the Supplementary Material ([52], Appendix G.1) for the proof of this
lemma.
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Testing an arbitrary vector θ0 versus the monotone cone. Finally, let us consider
an important implication of Corollary 1 in the context of testing departures in
monotone cone. More precisely, for a fixed vector θ0 ∈ M , consider the testing
problem

H0 : θ = θ0 versus H1 : θ ∈ M.(43)

Let us define k(θ0) as the number of constant pieces of θ0, by which we mean there
exist integers d1, . . . , dk(θ0) with di ≥ 1 and d1 + · · · + dk(θ0) = d such that θ0 is a
constant on each set Si := {j : ∑i−1

t=1 dt + 1 ≤ j ≤ ∑i
t=1 di}, for 1 ≤ i ≤ k(θ0).

We claim that Corollary 1 guarantees that the optimal testing radius satisfies

ε2
OPT(θ0,M;ρ) � σ 2

√
k(θ0) log

(
d

k(θ0)

)
.(44)

Note that this upper bound depends on the structure of θ0 through how many pieces
θ0 possesses, which reveals the adaptive nature of Corollary 1.

In order to prove inequality (44), let us use shorthand k to denote k(θ0). First,
notice that both 1/

√
d,−1/

√
d ∈ TM(θ0), then

max
{
0, inf

η∈TM(θ0)∩S−1
〈η,E�TM(θ0)g〉

}
≤ 0,

which implies the second term for δ2
LR(C1,C2) goes to infinity. It only remains

to calculate E‖�TM(θ0)g‖2. Since the tangent cone TM(θ0) equals the Cartesian
product of k monotone cones, namely TM(θ0) = Md1 × · · · × Mdk

, we have

E‖�TM(θ0)g‖2
2 = E‖�Md1

g‖2
2 + · · · +E‖�Mdk

g‖2
2 = log(d1) + · · · + log(dk)

≤ k log
(

d

k

)
,

where the last step follows from convexity of the logarithm function. Therefore,
Jensen’s inequality guarantees that

E‖�TM(θ0)g‖2 ≤
√
E‖�TM(θ0)g‖2

2 ≤
√

k log
(

d

k

)
.

Putting the pieces together, Corollary 1 guarantees that the claimed inequality (44)
holds for the testing problem (43).

3.2. Lower bounds on the testing radius. Thus far, we have derived sharp
bounds for a particular procedure—namely, the GLRT. Of course, it is of inter-
est to understand when the GLRT is actually an optimal test, meaning that there is
no other test that can discriminate between the null and alternative for smaller sep-
arations. In this section, we use information-theoretic methods to derive a lower
bound on the optimal testing radius εOPT for every pair of nonoblique and nested



1012 Y. WEI, M. J. WAINWRIGHT AND A. GUNTUBOYINA

closed convex cones (C1,C2). Similar to Theorem 1, this bound depends on the
geometric structure of intersection cone K := C2 ∩C∗

1 , where C∗
1 is the polar cone

to C1.
In particular, let us define the quantity

δ2
OPT(C1,C2) := min

{
E‖�Kg‖2,

(
E‖�Kg‖2

supη∈K∩S−1〈η,E�Kg〉
)2}

.(45)

Note that the only difference from δ2
LR(C1,C2) is the replacement of the infimum

over K ∩S−1 with a supremum, in the denominator of the second term. Moreover,
since the supremum is achieved at E�Kg

‖E�Kg‖2
, we have supη∈K∩S−1〈η,E�Kg〉 =

‖E�Kg‖2. Consequently, the second term on the right-hand side of equation (45)
can be also written in the equivalent form (

E‖�Kg‖2‖E�Kg‖2
)2.

With this notation in hand, we are now ready to state a general lower bound for
minimax optimal testing radius.

THEOREM 2. There are numbers {κρ,ρ ∈ (0,1/2]} such that for every nested
pair of nonoblique closed convex cones C1 ⊂ C2, we have

inf
ψ

E(ψ;C1,C2, ε) ≥ ρ whenever ε2 ≤ κρσ 2δ2
OPT(C1,C2).(46)

In particular, we can take κρ = 1/14 for all ρ ∈ (0,1/2].
REMARKS. In more compact terms, Theorem 2 can be understood as guaran-

teeing

εOPT(C1,C2;ρ) � σδOPT(C1,C2),

where � denotes an inequality up to constants (with ρ viewed as fixed).
Theorem 2 is proved by constructing a distribution over the alternative H1 sup-

ported only on those points in H1 that are hard to distinguish from H0. Based on
this construction, the testing error can be lower bound by controlling the total vari-
ation distance between two marginal likelihood functions. We refer our readers to
our Section 4.2 for more details on this proof.

One useful consequence of Theorem 2 is in providing a sufficient condition for
optimality of the GLRT, which we summarize here.

COROLLARY 2 (Sufficient condition for optimality of GLRT). Given the cone
K = C2 ∩ C∗

1 , suppose that there is a numerical constant b > 1, independent of K

and all other problem parameters, such that

sup
η∈K∩S−1

〈η,E�Kg〉 = ‖E�Kg‖2 ≤ b inf
η∈K∩S−1

〈η,E�Kg〉.(47)

Then the GLRT is a minimax optimal test, that is,

εGLR(C1,C2;ρ) � εOPT(C1,C2;ρ).
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It is natural to wonder whether the condition (47) is also necessary for opti-
mality of the GLRT. This turns out not to be the case. The monotone cone, to be
revisited in Section 3.3.2, provides an instance of a cone testing problem for which
the GLRT is optimal while condition (47) is violated. Let us now return to these
concrete examples.

3.2.1. Revisiting the k-dimensional subspace. Let Sk be a subspace of di-
mension k ≤ d . In our earlier discussion in Section 3.1.2, we established that
ε2

GLR(Sk) � σ 2
√

k. Let us use Corollary 2 to verify that the GLRT is optimal for
this problem. For a k-dimensional subspace K = Sk , we have E�Kg = 0 by sym-
metry; consequently, condition (47) holds in a trivial manner. Thus, we conclude
that ε2

OPT(Sk) � ε2
GLR(Sk), showing that the GLRT is optimal over all tests.

3.2.2. Revisiting the circular cone. Recall the circular cone K = {θ ∈ Rd |
θ1 ≥ ‖θ‖2 cos(α)} for fixed 0 < α < π/2. In our earlier discussion, we proved that
ε2

GLR(K) � σ 2. Here let us verify that this scaling is optimal over all tests. By sym-
metry, we find that E�Kg = βe1 ∈ Rd , where e1 denotes the standard Euclidean
basis vector with a 1 in the first coordinate, and β > 0 is some scalar. For any
vector η ∈ K ∩ S−1, we have η1 ≥ cos(α), and hence

inf
η∈K∩S−1

〈η,E�Kg〉 ≥ cos(α)β = cos(α)‖E�Kg‖2.

Consequently, we see that condition (47) is satisfied with b = 1
cos(α)

> 0, so that
the GLRT is optimal over all tests for each fixed α. (To be clear, in this example,
our theory does not provide a sharp bound uniformly over varying α.)

3.2.3. Revisiting the product cone. Recall from Section 3.1.4 our discussion
of the Cartesian product cone K× = Circd−1(α) ×R. In this section, we establish
that the GLRT, when applied to a testing problem based on this case, is suboptimal
by a factor of

√
d .

Let us first prove that the sufficient condition (47) is violated, so that Corollary 2
does not imply optimality of the GLRT. From our earlier calculations, we know
that E‖�K×g‖2 � √

d . On the other hand, we also know that E�K×g is equal to
zero in its last coordinate. Since the standard basis vector ed belongs to the set
K× ∩ S−1, we have

inf
η∈K×∩S−1

〈η,E�K×g〉 ≤ 〈ed,E�K×g〉 = 0,

so that condition (47) does not hold.
From this calculation alone, we cannot conclude that the GLRT is suboptimal.

So let us now compute the lower bound guaranteed by Theorem 2. From our
previous discussion, we know that E�K×g = βe1 for some scalar β > 0. More-
over, we also have ‖E�K×g‖2 = β � √

d ; this scaling follows because we have
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‖E�K×g‖2 = ‖E�Circd−1(α)g‖2 � √
d − 1, where we have used the previous in-

equality (36) for circular cone. Putting together the pieces, we find that Theorem 2
implies that

ε2
OPT(K×) � σ 2,(48)

which differs from the GLRT scaling in a factor of
√

d .
Does there exist a test that achieves the lower bound (48)? It turns out that a

simple truncation test does so, and hence is optimal. To provide intuition for the
test, observe that for any vector θ ∈ K× ∩ S−1, we have θ2

1 + θ2
d ≥ cos2(α). To

verify this claim, note that

1

cos2(α)

(
θ2

1 + θ2
d

) ≥ θ2
1

cos2(α)
+ θ2

d ≥
d−1∑
j=1

θ2
j + θ2

d = 1.

Consequently, the two coordinates (y1, yd) provide sufficient information for con-
structing a good test. In particular, consider the truncation test

ϕ(y) := I
[∥∥(y1, yd)

∥∥
2 ≥ β

]
for some threshold β > 0 to be determined. This can be viewed as a GLRT for
testing the standard null against the alternative R2, and hence our general theory
guarantees that it will succeed with separation ε2 � σ 2. This guarantee matches
our lower bound (48), showing that the truncation test is indeed optimal, and more-
over, that the GLRT is suboptimal by a factor of

√
d for this particular problem.

We provide more intuition on why the the GLRT suboptimal and use this intu-
ition to construct a more general class of problems for which a similar suboptimal-
ity is witnessed in the Supplementary Material ([52], Appendix A).

3.3. Detailed analysis of two cases. This section is devoted to a detailed anal-
ysis of the orthant cone, followed by the monotone cone. Here we find that the
GLRT is again optimal for both of these cones, but establishing this optimality
requires a more delicate analysis.

3.3.1. Revisiting the orthant cone. Recall from Section 3.1.5 our discussion
of the (nonnegative) orthant cone

K+ := {
θ ∈ Rd | θj ≥ 0 for j = 1, . . . , d

}
,

where we proved that ε2
GLR(K+) � σ 2

√
d . Let us first show that the sufficient

condition (47) does not hold, so that Corollary 2 does not imply optimality of the
GLRT. As we have computed in our Section 3.1.5, quantity E‖�K+(g)‖2 � √

d

and

inf
η∈K+∩S−1

〈η,E�Kg〉 ≤
〈
e1,

1√
2π

1
〉
= 1√

2π
,

where use the fact that E�K+(g) = 1√
2π

1. So that condition (47) is violated.
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Does this mean the GLRT is suboptimal? It turns out that the GLRT is actually
optimal over all tests, as we can demonstrate by proving a lower bound—tighter
than the one given in Theorem 2—that matches the performance of the GLRT. We
summarize it as follows.

PROPOSITION 1. There are numbers {κρ,ρ ∈ (0,1/2]} such that for the (non-
negative) orthant cone K+, we have

inf
ψ
E

(
ψ; {0},K+, ε

) ≥ ρ whenever ε2 ≤ κρσ 2
√

d.(49)

See the Supplementary Material ([52], Section B.1) for the proof of this propo-
sition.

From Proposition 1, we see that the optimal testing radius satisfies ε2
OPT(K+) �

σ 2
√

d . Compared to the GLRT radius ε2
GLR(K+) established in expression (39), it

implies the optimality of the GLRT.

3.3.2. Revisiting the monotone cone. Recall the monotone cone given by
M := {θ ∈ Rd | θ1 ≤ θ2 ≤ · · · ≤ θd}. In our previous discussion in Section 3.1.6,
we established that ε2

GLR(M) � σ 2√logd . We also pointed out that this scaling
holds for a more general problem, namely, testing cone M versus linear subspace
L = span(1). In this section, we show that the GLRT is also optimal for both cases.

First, observe that Corollary 2 does not imply optimality of the GLRT. In par-
ticular, using symmetry of the inner product, we have shown in expression (41)
that

max
{
0, inf

η∈M∩S−1
〈η,E�Mg〉

}
= 0

for cone pair (C1,C2) = ({0},M). Also note that from Lemma 1 we know that for
cone pair (C1,C2) = (span(1),M), there is a universal constant c such that

inf
η∈K∩S−1

〈η,E�Kg〉 ≤ c, K := M ∩ L⊥.

In both cases, since E‖�Kg‖2 � √
logd , so that the sufficient condition (47) for

GLRT optimality fails to hold.
It turns out that we can demonstrate a matching lower bound for ε2

OPT(M) in a
more direct way by carefully constructing a prior distribution on the alternatives
and control the testing error. Doing so allows us to conclude that the GLRT is
optimal, and we summarize our conclusions in the following.

PROPOSITION 2. There are numbers {κρ,ρ ∈ (0,1/2]} such that for the
monotone cone M and subspace L = {0} or span(1), we have

inf
ψ
E(ψ;L,M,ε) ≥ ρ whenever ε2 ≤ κρσ 2

√
log(ed).(50)

See the Supplementary Material ([52], Section B.2) for the proof of this propo-
sition.
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Proposition 2, equipped with previous achievable results by GLRT (40), gives a
sharp rate characterization on the testing radius for both problems with regard to
monotone cone:

H0 : θ = 0 versus H1 : θ ∈ M and

H0 : θ ∈ span(1) versus H1 : θ ∈ M.

In both cases, the optimal testing radius satisfies ε2
OPT(L,M,ρ) � σ 2√log(ed).

As a consequence, the GLRT is optimal up to an universal constant. As far as we
know, the problem of testing a zero or constant vector versus the monotone cone
as the alternative has not been fully characterized in any past work.

4. Proofs of main results. We now turn to the proofs of our main results,
with the proof of Theorems 1 and 2 given in Sections 4.1 and 4.2 respectively. In
all cases, we defer the proofs of certain more technical lemmas to the Appendices
in the Supplementary Material [52].

4.1. Proof of Theorem 1. Since the cones (C1,C2) are both invariant under
rescaling by positive numbers, we can first prove the result for noise level σ = 1,
and then recapture the general result by rescaling appropriately. Thus, we fix σ = 1
throughout the remainder of the proof so as to simplify notation. Moreover, let us
recall that the GLRT consists of tests of the form φβ(y) := I(T (y) ≥ β), where the
likelihood ratio T (y) is given in equation (11a). Note here the cut-off β ∈ [0,∞)

is a constant that does not depend on the data vector y.
By the previously discussed equivalence (26), we can focus our attention on the

simpler problem T ({0},K; ε), where K = C2 ∩ C∗
1 . By the monotonicity of the

square function for positive numbers, the GLRT is controlled by the behavior of
the statistic ‖�K(y)‖2, and in particular how it varies depending on whether y is
drawn according to H0 or H1.

Letting g ∈ Rd denote a standard Gaussian random vector, let us introduce the
random variable Z(θ) := ‖�K(θ + g)‖2 for each θ ∈ Rd . Observe that the statis-
tic ‖�K(y)‖2 is distributed according to Z(0) under the null H0, and according
to Z(θ) for some θ ∈ K under the alternative H1. The following lemma which
is proved in Appendix D.1 guarantees random variables of the type Z(θ) and
〈θ,�Kg〉 are sharply concentrated around their expectations.

LEMMA 4.1. For a standard Gaussian random vector g ∼ N(0, Id), closed
convex cone K ∈ Rd and vector θ ∈ Rd , we have

P
( ± (

Z(θ) −E
[
Z(θ)

]) ≥ t
) ≤ exp

(
− t2

2

)
and(51a)

P
( ± (〈θ,�Kg〉 −E〈θ,�Kg〉) ≥ t

) ≤ exp
(

− t2

2‖θ‖2
2

)
,(51b)

where both inequalities hold for all t ≥ 0.
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As shown in the sequel, using the concentration bound (51a), the study of the
GLRT can be reduced to the problem of bounding the mean difference

�(θ) := E
(∥∥�K(θ + g)

∥∥
2 − ‖�Kg‖2

)
(52)

for each θ ∈ K . In particular, in order to prove the achievability result stated in part
(a) of Theorem 1, we need to lower bound �(θ) uniformly over θ ∈ K , whereas a
uniform upper bound on �(θ) is required in order to prove the negative result in
part (b).

4.1.1. Proof of GLRT achievability result [Theorem 1(a)]. By assumption, we
can restrict our attention to alternative distributions defined by vectors θ ∈ K

satisfying the lower bound ‖θ‖2
2 ≥ Bρδ2

LR({0},K), where for every target level
ρ ∈ (0,1), constant Bρ is chosen such that

Bρ := max
{

32π, inf
(
B > 0

∣∣∣ B1/2

(27πB)1/4 + 16
− 2√

e
≥

√
−8 log(ρ/2)

)}
.

Since function f (x) := x1/2

(27πx)1/4+16
− 2√

e
is strictly increasing and goes to infinity,

so that the constant Bρ defined above is always finite.
We first claim that it suffices to show that for such vector, the difference (52) is

lower bounded as

�(θ) ≥ B
1/2
ρ

(27πBρ)1/4 + 16
− 2√

e
= f (Bρ).(53)

Taking inequality (53) as given for the moment, we claim that the test

φτ (y) = I
[∥∥�K(y)

∥∥2
2 ≥ τ

]
with threshold

τ :=
(

1

2
f (Bρ) +E

[∥∥�K(g)
∥∥

2

])2

has uniform error probability controlled as

E
(
φτ ; {0},K, ε

) := E0
[
φτ (y)

] + sup
θ∈K,‖θ‖2

2≥ε2

Eθ

[
1 − φτ (y)

]
≤ 2e−f 2(Bρ)/8 < ρ,

(54)

where the last inequality follows from the definition of Bρ .
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Establishing the error control (54). Beginning with errors under the null H0, we
have

E0
[
φτ (y)

] = P0
(‖�Kg‖2 ≥ √

τ
) = P0

[‖�Kg‖2 −E
[‖�Kg‖2

] ≥ f (Bρ)/2
]

≤ exp
(−f 2(Bρ)/8

)
,

where the final inequality follows from the concentration bound (51a) in
Lemma 4.1, as along as f (Bρ) > 0.

On the other hand, we have

sup
θ∈K,‖θ‖2

2≥ε2

Eθ

[
1 − φτ (y)

]

= P

[∥∥�K(θ + g)
∥∥

2 ≤ 1

2
f (Bρ) +E‖�Kg‖2

]
= P

[∥∥�K(θ + g)
∥∥

2 −E
∥∥�K(θ + g)

∥∥
2 ≤ 1

2
f (Bρ) − �(θ)

]
,

where the last equality follows by substituting �(θ) = E[‖�K(θ + g)‖2] −
E[‖�Kg‖2]. Since the lower bound (53) guarantees that 1

2f (Bρ) − �(θ) ≤
−1

2f (Bρ), we find that

sup
θ∈K,‖θ‖2

2≥ε2

Eθ

[
1 − φτ (y)

] ≤ P

[∥∥�K(θ + g)
∥∥

2 −E
∥∥�K(θ + g)

∥∥
2 ≤ −1

2
f (Bρ)

]

≤ exp
(−f 2(Bρ)/8

)
,

where the final inequality again uses the concentration inequality (51a). Putting
the pieces together yields the claim (54).

The only remaining detail is to prove the lower bound (53) on the differ-
ence (52). To mainstream our proof, we leave the proof of this detail to Supple-
mentary Material ([52], Appendix D.2).

4.1.2. Proof of GLRT lower bound [Theorem 1(b)]. We divide our proof into
two scenarios, depending on whether or not E‖�Kg‖2 is less than 128. We focus
on the case when E‖�Kg‖2 ≥ 128 and leave the other scenario to Appendix E.1.

In this case, our strategy is to exhibit some θ ∈ H1 for which the expected
difference �(θ) = E(‖�K(θ + g)‖2 − ‖�Kg‖2) is small, which then leads to sig-
nificant error when using the GLRT. In order to do so, we require an auxiliary
lemma (Lemma E.1) to suitable control �(θ) which is stated and proved in the
Supplementary Material ([52], Appendix E.2).

We now proceed to prove our main claim. Based on Lemma E.1, we claim that
if ε2 ≤ bρδ2

LR({0},K) for a suitably small constant bρ such that

bρ := sup
{
bρ > 0

∣∣∣ 12
√

bρ + 3
√

bρ

(
2

e

)1/4
+ 24

√
bρ

2e
≤ 1

16

}
,
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then

�(θ) ≤ 1

16
for some θ ∈ K,‖θ‖2 ≥ ε.(55)

We take inequality (55) as given for now, returning to prove it in Appendix E.4
in the Supplementary Material [52]. In summary then, we have exhibited some
θ ∈ H1—namely, a vector θ ∈ K with ‖θ‖2 ≥ ε—such that �(θ) ≤ 1/16. This
special vector θ plays a central role in our proof.

We claim that the GLRT cannot succeed with error smaller than 0.11 no matter
how the cut-off β is chosen. We leave this calculation to Appendix E.3 in the
Supplementary Material [52].

4.2. Proof of Theorem 2. We now turn to the proof of Theorem 2. As in the
proof of Theorem 1, we can assume without loss of generality that σ = 1. Since
0 ∈ C1 and K := C2 ∩ C∗

1 ⊆ C2, it suffices to prove a lower bound for the reduced
problem of testing

H0 : θ = 0 versus H1 : ‖θ‖2 ≥ ε, θ ∈ K.

Let B(1) = {θ ∈ Rd | ‖θ‖2 < 1} denotes the open Euclidean ball of radius 1, and
let Bc(1) := Rd \ B(1) denotes its complement.

We divide our analysis into two cases, depending on whether or not E‖�Kg‖2
is less than 7. In both cases, let us set κρ = 1/14.

Case 1. Suppose that E‖�Kg‖2 < 7. In this case,

ε2 ≤ κρδ2
OPT

({0},K) ≤ κρE‖�Kg‖2 < 1/2.

Similar to our proof of Theorem 1(b), Case 1, by reducing to the simple verses
simple testing problem (85a), any test yields testing error no smaller than 1/2 if
ε2 < 1/2. So our lower bound directly holds for the case when E‖�Kg‖2 < 7.

Case 2. Otherwise, suppose we have E‖�Kg‖2 ≥ 7. The following lemma
provides a generic way to lower bound the testing error.

LEMMA 2. For every nontrivial closed convex cone K and probability mea-
sure Q supported on K ∩ Bc(1), the testing error is lower bounded as

inf
ψ

E
(
ψ; {0},K, ε

) ≥ 1 − 1

2

√
Eη,η′ exp

(
ε2

〈
η,η′〉) − 1,(56)

where Eη,η′ denotes expectation with respect to an i.i.d. pair η,η′ ∼ Q.

See the Supplementary Material ([52], Appendix F.1) for the proof of this claim.
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We apply Lemma 2 with the probability measure Q defined as

Q(A) := P

(
�Kg

E‖�Kg‖2/2
∈ A

∣∣∣ ‖�Kg‖2 ≥ E‖�Kg‖2/2
)

(57)

for measurable set A ⊂ Rd where g denotes a standard d-dimensional Gaussian
random vector, that is, g ∼ N(0, Id). It is easy to check that measure Q is sup-
ported on K ∩ Bc(1). We make use of Lemma F.1 in Appendix F.2 to control
Eη,η′ exp(ε2〈η,η′〉) and thus upper bounding the testing error.

We now lower bound the testing error when ε2 ≤ κρδ2
OPT({0},K). By definition

of δ2
OPT({0},K), the inequality ε2 ≤ κρδ2

OPT({0},K) implies that

ε2 ≤ κρE‖�Kg‖2 and ε2 ≤ κρ

(
E‖�Kg‖2

‖E�Kg‖2

)2
.

The first inequality above implies, with κρ = 1/14, that ε2 ≤ E‖�Kg‖2/14 ≤
(E‖�Kg‖2)

2/32 (note that E‖�Kg‖2 ≥ 7). Therefore, the assumption in
Lemma F.1 is satisfied so that inequality (103) gives

Eη,η′ exp
(
ε2〈

η,η′〉) ≤ 1

a2 exp
(

5κρ + 40κ2
ρE(‖�Kg‖2

2)

(E‖�Kg‖2)2

)
.(58)

So it suffices to control the right-hand side above. From the concentration result in
Lemma 4.1, we obtain

a = P

(
‖�Kg‖2 −E‖�Kg‖2 ≥ −1

2
E‖�Kg‖2

)

≥ 1 − exp
(
−(E‖�Kg‖2)

2

8

)
> 1 − exp(−6),

where the last step uses E‖�Kg‖2 ≥ 7, and

E‖�Kg‖2
2 = (

E‖�Kg‖2
)2 + var

(‖�Kg‖2
) ≤ (

E‖�Kg‖2
)2 + 4.

Here the last inequality follows from the fact that var(‖�Kg‖2) ≤ 4; see
Lemma 4.1. Plugging these two inequalities into expression (58) gives

Eη,η′ exp
(
ε2〈

η,η′〉) ≤
(

1

1 − exp(−6)

)2
exp

(
5κρ + 40κ2

ρ + 160κ2
ρ

(E‖�Kg‖2)2

)
,

where the right hand side is less than 2 when κρ = 1/14 and E‖�Kg‖2 ≥ 7. Com-
bining with inequality (56) forces the testing error to be lower bounded as

∀ψ, E
(
ψ; {0},K, ε

) ≥ 1 − 1

2

√
Eη,η′ exp

(
ε2

〈
η,η′〉) − 1 ≥ 1

2
> ρ,

which completes the proof of Theorem 2.
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5. Discussion. In this paper, we have studied the the problem of testing be-
tween two hypotheses that are specified by a pair of nonoblique closed convex
cones. Our first main result provided a characterization, sharp up to universal mul-
tiplicative constants, of the testing radius achieved by the generalized likelihood
ratio test. This characterization was geometric in nature, depending on a combina-
tion of the Gaussian width of an induced cone, and a second geometric parameter.
Due to the combination of these parameters, our analysis shows that the GLRT can
have very different behavior even for cones that have the same Gaussian width; for
instance, compare our results for the circular and orthant cone in Section 3.1. It is
worth noting that this behavior is in sharp contrast to the situation for estimation
problems over convex sets, where it is understood that (localized) Gaussian widths
completely determine the estimation error associated with the least-squares esti-
mator [10, 49]. In this way, our analysis reveals a fundamental difference between
minimax testing and estimation.

Our analysis also highlights some new settings in which the GLRT is nonopti-
mal. Although past work [32, 35, 50] has exhibited nonoptimality of the GLRT in
certain settings, in the context of cones, all of these past examples involve oblique
cones. In Section 3.1.4, we gave an example of suboptimality which, to the best of
our knowledge, is the first for a nonoblique pair of cones—namely, the cone {0},
and a certain type of Cartesian product cone.

Our work leaves open various questions, and we conclude by highlighting a
few here. First, in Section 3.2, we proved a general information-theoretic lower
bound for the minimax testing radius. This lower bound provides a sufficient con-
dition for the GLRT to be minimax optimal up to constants. Despite being tight
in many nontrivial situations, our information-theoretic lower bound is not tight
for all cones; proving such a sharp lower bound is an interesting topic for future
research. Second, as with a long line of past work on this topic [30, 31, 37, 50],
our analysis is based on assuming that the noise variance σ 2 is known. In practice,
this may or may not be a realistic assumption, and so it is interesting to consider
the extension of our results to this setting.

We note that our minimax lower bounds are proved by constructing prior distri-
butions on H0 and H1 and then control the distance between marginal likelihood
functions. Following this idea, we can also consider our testing problem in the
Bayesian framework. Without any prior preference on which hypothesis to take,
we will let Pr(H0) = Pr(H1) = 1/2; thus the Bayesian testing procedure makes
decision based on quantity

B01 := m(y | H0)

m(y | H1)
=

∫
θ∈C1

Pθ (y)π1(θ) dθ∫
θ∈C2

Pθ (y)π2(θ) dθ
,(59)

which is often called Bayesian factor in literature. Analyzing the behavior of this
statistic is an interesting direction to pursue in the future.
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SUPPLEMENTARY MATERIAL

Supplement to “The geometry of hypothesis testing over convex cones:
Generalized likelihood ratio tests and minimax radii” (DOI: 10.1214/18-
AOS1701SUPP; .pdf). The supplementary material includes the explanation for
the GLRT suboptimality and the proofs of more technical aspects.
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