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Signal aliasing is an inevitable consequence of using fractional facto-
rial designs. Unlike linear models with fixed factorial effects, for Gaussian
random field models advocated in some Bayesian design and computer ex-
periment literature, the issue of signal aliasing has not received comparable
attention. In the present article, this issue is tackled for experiments with qual-
itative factors. The signals in a Gaussian random field can be characterized
by the random effects identified from the covariance function. The aliasing
severity of the signals is determined by two key elements: (i) the aliasing pat-
tern, which depends only on the chosen design, and (ii) the effect priority,
which is related to the variances of the random effects and depends on the
model parameters. We first apply this framework to study the signal-aliasing
problem for regular fractional factorial designs. For general factorial designs
including nonregular ones, we propose an aliasing severity index to quantify
the severity of signal aliasing. We also observe that the aliasing severity index
is highly correlated with the prediction variance.

1. Introduction. In science, engineering and many other areas, experimenta-
tion is commonly used to explore the systematic patterns in the relationship be-
tween the factors and the response in a phenomenon. The systematic patterns are
called signals in this paper. When an experiment is performed with limited re-
sources, it is possible that the collected data do not contain enough information to
distinguish and/or identify some signals. We refer to this situation as signal alias-
ing.

The various (fixed) factorial effects (such as main effects and interactions) that
characterize how the factors affect the response are the signals of interest in a
factorial experiment. Full factorial designs can be used to gather complete infor-
mation about the factorial effects. Such designs, however, are rarely used when the
number of factors is large. Alternatively, fractional factorial designs (FFDs) are
often used in practice. An advantage of using an FFD is the cost saving due to the
reduction in run size, but a consequence is that some factorial effects are aliased.
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Under fixed-effect models (FEM) such as regression or ANOVA models gener-
ally adopted in physical experiments, the signal aliasing caused by using an FFD
can be characterized by the collinear relationship among the factorial effects. Any
two factorial effects can be fully aliased, partially aliased, or mutually orthogonal.
Readers are referred to Wu and Hamada (2009) and Cheng (2014) for more details
about the aliasing of factorial effects in an FFD under an FEM.

An alternative modeling option for data from factorial experiments is the
stochastic process approach that appeared in some Bayesian design literature
[Mitchell, Morris and Ylvisaker (1995), Kerr (2001), Joseph (2006), Joseph and
Delaney (2007)]. In this approach, the response function is regarded as a realiza-
tion of a Gaussian random field. Suppose there are n factors F1, . . . ,Fn, each with
pi levels, i = 1, . . . , n. Denote by χ the set of all the factor-level combinations
x = (x1, . . . , xn)

T , also called treatments or design points, where 1 ≤ xi ≤ pi is
the level of the ith factor. Consider the model

Y(x) = Z(x) + ε(x),(1.1)

where Y(x) is the response observed at the design point x, Z is a zero-mean sta-
tionary Gaussian random field with Var(Z(x)) = σ 2

Z and a covariance function
C(x,x′) defined for any two design points x and x′, and ε(x), assumed to be
independent of Z(x), is a zero-mean random error with constant variance and
E[ε(x)ε(x′)] = 0 for x �= x′. Here, Z(x) represents the systematic patterns in
Y(x). In computer experiments, such models are more popular than regression
or ANOVA models, even when the experiments involve some qualitative factors
[see Qian, Wu and Wu (2008), Han et al. (2009), Zhou, Qian and Zhou (2011),
Deng, Hung and Lin (2015)]. Being able to evaluate the severity of signal alias-
ing is crucial for designing an experiment with a better ability to distinguish the
most important signals. In Section 2, we present a motivating example to illustrate
that the prediction variance of Z(x) could be influenced by the severity level of
aliasing.

Unlike the FEMs, it is not clear how to evaluate the “severity of effect aliasing”
under a Gaussian random field model. While for FEMs the “signals” are explicitly
defined in the mean response via some pre-determined fixed factorial effects, for
Z(x) they are hidden in the covariance function. For two-level designs, Mitchell,
Morris and Ylvisaker (1995) defined random factorial effects directly as contrasts
of Z(x),x ∈ χ , in the same way as the fixed factorial effects are defined in FEMs,
and showed that under certain covariance functions of the Gaussian random field,
the contrast vectors that define the factorial effects are eigenvectors of the covari-
ance function. We extend this result to general multi-level FFDs for experiments
with qualitative factors, and apply the result to tackle the signal-aliasing problem.

Throughout the rest of this paper, we assume that the covariance function of Z

has the form

C(xr ,xs) = τt1···tn ,(1.2)
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where for any two design points xr = (xr1, . . . , xrn)
T and xs = (xs1, . . . , xsn)

T in
χ , (t1, . . . , tn)

T is the componentwise Hamming distance vector of xr and xs (i.e.,
for i = 1,2, . . . , n, ti = 1 if xri �= xsi and zero otherwise), and the τt1···tn ’s are pa-
rameters depending only on (t1, . . . , tn)

T . The parameter space is the collection of
τt1···tn ’s that produce positive definite C(·, ·) on χ . The positive-definite property
induces some constraints on the τt1···tn ’s. An obvious one is C(x,x) = τ0···0 > 0.
The existence of the τt1···tn’s satisfying the constraints is guaranteed by Theo-
rem 3.1 (presented later in Section 3). It is also implied by the theorem that the
parameter space of the τt1···tn ’s is a subset of R2n

. In the following, the vector of
all the parameters τt1···tn ’s is denoted by τ . Because τ0···0 = C(x,x) for any x ∈ χ ,
the correlation function of Z(x) is

R(xr ,xs) = C(xr ,xs)

τ0···0
= τt1···tn

τ0···0
.

Some other covariance functions have been proposed for qualitative factors in the
literature [e.g., Joseph and Delaney (2007), Qian, Wu and Wu (2008)]. A brief
comparison of these covariance functions can be found in Chang (2015). For the
signal-aliasing problem, the key is that Z(x) can be expressed as a linear combi-
nation of random factorial effects, through which some ideas that have been used
to study aliasing in FFDs under FEMs are generalized to Gaussian random fields.

The covariance function considered in Joseph and Delaney (2007) is a special
case of (1.2) with

(1.3)
τt1···tn
τ0···0

=
n∏

i=1

(
τT i

τ0···0

)ti

,

where, for i = 1, . . . , n, T i is the ith unit vector. In this case, the number of pa-
rameters in the covariance function of Z is reduced from 2n to n + 1 (τT i

’s and
τ0···0). We denote the vector of the n parameters τT 1, . . . , τT n by τ ex.

The rest of this article is organized as follows. In addition to the motivating
example referred to earlier, Section 2 contains a review of the treatment factorial
structure. Hidden random factorial effects identified from the covariance function
of a Gaussian random field are discussed in Section 3. Section 4 addresses the issue
of effect priority. In Section 5 we study the signal aliasing in model (1.1) under
regular FFDs with prime-number levels. A criterion for measuring the severity
level of aliasing in an FFD (regular or nonregular), called aliasing severity index,
is proposed in Section 6. Some discussions are given in Section 7. All the proofs
of the theorems are provided in the Appendix.

2. A motivating example and treatment factorial structure. We use an ex-
ample to demonstrate the need to study signal aliasing for Gaussian random fields.
Consider two 26−2 regular FFDs reported in Wu and Hamada [(2009), page 253]
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with the defining contrast subgroups (DCSGs):

d1 : I = 1235 = 1246 = 3456,

d2 : I = 125 = 1346 = 23456.

Among all the 26−2 regular FFDs, d1 has minimum aberration [Fries and
Hunter (1980)]; so under the effect hierarchy principle [Wu and Hamada (2009),
page 172], d2 has more severe aliasing than d1. On the other hand, suppose factors
4 and 6 are more important than the other factors. Then d2 would have less severe
aliasing than d1, because among the two-factor interactions involving factors 4 or
6, d1 produces four aliased pairs (14 = 26, 24 = 16, 34 = 56 and 45 = 36) while
d2 produces only two aliased pairs (14 = 36 and 34 = 16).

We use prediction variances to compare the performances of d1 and d2 under
a Gaussian random field. By the same argument given in Santner, Williams and
Notz [(2003), page 93], under an N -run design d = {x1, . . . ,xN }, for any x ∈ χ ,
the prediction variance of Z(x) given Z(x1), . . . ,Z(xN) is

σ 2
Z

(
1 − rT

x,dR−1
d rx,d

)
,(2.1)

where Rd is the correlation matrix of Z evaluated on d , and rx,d is the N × 1
vector formed by the correlations between Z(x) and the Z(xi )’s, xi ∈ d .

Consider a Z(x) with the covariance function (1.3). Without loss of generality,
we set τ0···0 = 1. Then each τT i

is a correlation. For n = 6, consider the set of
parameters

�ex,1 = {
τ ex = (τ, τ, τ, τ, τ, τ ) : 0 ≤ τ ≤ 1

}
.(2.2)

This set is a line segment in the parameter space of τ ex. Because τT 1 = · · · = τT 6 ,
every τ ex in �ex,1 assumes that all the six factors are equally important for Z(x).
By a discussion that will be given in Section 3, for τ close to 1, the six factors are
(equally) unimportant, while for τ close to 0, they are (equally) very important.
Under d1 and d2, the average prediction variances (APVs) of Z(x) over all the
points x in χ for τ ex ∈ �ex,1 are calculated from (2.1) and plotted in the left panel
of Figure 1. The difference of the APVs for d1 and d2 is given in the right panel.
The figure shows that d1 performs slightly better than d2 on the APV uniformly
for τ ex ∈ �ex,1. This is expected since d1 is a minimum aberration design favoring
no particular factor, and for τ ex ∈ �ex,1, all the six factors are of equal impor-
tance. We will see in Section 3 that when τ increases, the aliasing in both designs
becomes less severe. Indeed we observe in the figure that the APVs decrease.

Now, consider another set of parameters, which is also a line segment in the
parameter space of τ ex:

�ex,2 = {
τ ex = (0.5,0.5,0.5, τ,0.5, τ ) : 0 ≤ τ ≤ 1

}
.(2.3)

For τ closer to 0, factors 4 and 6 are more important than the others, while for
τ closer to 1, the situation is reversed. Since d2 causes less severe aliasing than
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FIG. 1. (a) Plots of the average prediction variances under d1 and d2, and (b) difference of the
average prediction variances between d2 and d1, for �ex,1.

d1 on the effects involving factors 4 or 6, which are more important when τ is
small, it is expected that d2 produces smaller APV than d1 in this case. A similar
statement can be made for the case where τ is large. Indeed Figure 2 shows that
d2 performs better than d1 on the APV when τ is small, and the two APV curves
have a crossover point at τ = 0.39.

FIG. 2. (a) Plots of the average prediction variances under d1 and d2, and (b) difference of the
average prediction variances between d2 and d1, for �ex,2.
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This example suggests that under Z, the power of an FFD in generating good
predictions could depend on the severity level of signal aliasing produced by the
FFD. The example will be revisited in Section 6. The two designs will be evaluated
there using an aliasing severity index proposed in this article, and it will be shown
that the APVs in Figures 1 and 2 are highly correlated with the aliasing severity
indexes of d1 and d2.

The rest of this section is devoted to a review of factorial treatment structures.
Let � =∏n

i=1 pi be the number of all the treatments (design points) and denote the
� design points in χ by x1, . . . ,x�. For each S ⊆ {1, . . . , n}, let VS be the set of all
the vectors (v1, . . . , v�)T ∈ R

� such that vi = vj if xi and xj have the same levels
for all the factors in S. Then for S = {i1, . . . , ik}, VS is a (

∏k
j=1 pij )-dimensional

subspace of R�. In particular, V∅ is the 1-dimensional subspace spanned by the
vector of all ones and, for S = {1, . . . , n}, VS = R

�. We further define 2n spaces
WS , one for each S ⊆ {1, . . . , n}, as

WS = VS ∩
( ⋂

S′:S′⊂S

V ⊥
S′
)
,(2.4)

where ⊥ is the orthogonal complement operator. For example, when n = 2 and
p1 = p2 = 2, denote the four design points by x1 = (−1,−1), x2 = (−1,1), x3 =
(1,−1) and x4 = (1,1). For S = {1}, because factor 1 has the same level in x1
and x2, and the same level in x3 and x4, we have that VS = {(v1, v2, v3, v4)

T :
v1 = v2, v3 = v4}. Thus VS is the 2-dimensional space spanned by (1,1,1,1)T

and (−1,−1,1,1)T . Since S′ = ∅ is the only proper subset of {1}, and V∅ is the
1-dimensional space spanned by (1,1,1,1)T , it follows from (2.4) that WS is the
1-dimensional space spanned by (−1,−1,1,1)T , which is a main-effect contrast
of factor 1. For S = {1,2}, VS = R

4. Since ∅, {1} and {2} are the proper subsets
of S, by (2.4), WS consists of all the vectors that are orthogonal to (1,1,1,1)T ,
the main-effect contrasts of factor 1 and the main-effect contrasts of factor 2. It
follows that WS is the 1-dimensional space spanned by (1,−1,−1,1)T , which is
an interaction contrast of the two factors.

By Theorem 6.2 in Cheng (2014), the 2n subspaces WS ’s, S ⊆ {1, . . . , n}, form
an orthogonal decomposition of R�. The readers are referred to Cheng [(2014),
Chapters 4 and 6] for more details about factorial treatment structures.

For each nonempty S, all the vectors in WS are orthogonal to the vector of all
1’s, and thus define treatment contrasts. They are main-effect contrasts of Fi if S =
{i} and are interaction contrasts of Fi1, . . . ,Fik if S = {i1, . . . , ik}. In this paper, an
orthogonal basis of WS is called a set of statistical orthogonal contrasts (SOCs)
of WS . If {ci

1, . . . , c
i
pi−1} is a set of SOCs for the main effects of Fi, i = 1, . . . , n,

then {
ci1
s1

� · · · � cik
sk

: 1 ≤ sj ≤ pij − 1, j = 1, . . . , k
}

(2.5)

is a set of SOCs for the interactions of factors Fi1, . . . ,Fik , where � is the com-
ponentwise product. A collection of SOCs of WS for all S �= ∅, � − 1 in total,
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is called a statistical orthogonal contrast basis; see also Cheng and Ye (2004).
For consistency, all the SOCs discussed in this paper are scaled to have a squared
length �.

When p1 = · · · = pn = p and p is a prime or a prime power, an alternative
approach to defining SOCs is through the use of finite geometry. More details can
be found in Cheng (2014), Section 6.6.

3. Hidden random effects. Motivated by Mitchell, Morris and Ylvisaker
(1995), we generalize the notion of factorial effects in FEMs to Gaussian random
field models by eigen-decomposing the covariance function of Z, where Z is the
Gaussian random field in (1.1). Let Z be the vector (Z(x1), . . . ,Z(x�))T and Cτ

be the covariance matrix of Z. Because Cτ is symmetric and positive definite, we
have

(3.1) Cτ = Eτ�τ ET
τ ,

where the columns of Eτ are � orthogonal normalized eigenvectors of Cτ and �τ

is a diagonal matrix with the associated positive eigenvalues as its diagonal entries.
Denote the lth column of Eτ by gl,τ and let the corresponding eigenvalue be ξl(τ ).
Then a covariance-function representation of (3.1) is

C(xr ,xs;τ ) =
�∑

l=1

gl(xr;τ )

‖gl,τ‖
gl(xs;τ )

‖gl,τ‖ ξl(τ ),

where xr ,xs ∈ χ , gl(x;τ ) is the component of gl,τ corresponding to x, and ‖·‖
is the Euclidean norm of a vector. For consistency, all the gl,τ ’s are scaled to have
a squared length �. The parameter τ is put in the representation to emphasize that
the eigenvectors and eigenvalues depend on τ in general.

Because Z is a random vector in R
� and the eigenvectors form an orthogonal

basis of R�, we can express Z as a linear combination of eigenvectors:

Z =
�∑

l=1

βl,τgl,τ ,(3.2)

where βl,τ = gT
l,τZ/‖gl,τ‖2 is the projection score of Z on gl,τ . The βl,τ ’s are

independent normal random variables with zero means and variances σ 2
l (τ ) =

ξl(τ )/‖gl,τ‖2, l = 1, . . . ,�.
We can write (3.2) as

Z(x) =
�∑

l=1

βl,τgl(x;τ ).(3.3)

Let H be the collection of all the 2n vectors t = (t1, . . . , tn)
T , where each ti is 0

or 1. The following theorem, which extends Proposition 3.2 in Mitchell, Morris
and Ylvisaker (1995), shows that under the covariance function (1.2), the gl,τ ’s
and βl,τ ’s in (3.2) do not depend on τ .
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THEOREM 3.1. Let Cτ be the covariance matrix of Z under the covari-
ance function (1.2). Then Cτ has at most 2n distinct eigenvalues. For each
S ⊆ {1, . . . , n}, let uS = (uS1, . . . , uSn)

T be a vector such that uSi is equal to 1
if i ∈ S, and zero otherwise. Then all the vectors in WS are eigenvectors of Cτ

with the eigenvalue

ξS(τ ) = ∑
t∈H

(−1)t
T uS

[
n∏

i=1

(pi − 1)ti (1−uSi)

]
τt .(3.4)

The linear equation (3.4) is invertible and gives a one-to-one correspondence be-
tween the ξS ’s and τt ’s.

Note that the WS ’s do not depend on τ . By Theorem 3.1, a set of SOCs of WS

are mutually orthogonal eigenvectors of Cτ . Suppose that {gl : 1 ≤ l ≤ �} is a
statistical orthogonal contrast basis. Then (3.2) reduces to

Z =
�∑

l=1

βlgl ,(3.5)

and for each S, all the βl’s associated with S have the identical variance

(3.6) σ 2
l (τ ) = ξS(τ )/�.

For each x ∈ �, we can also write Z(x) as

Z(x) =
�∑

l=1

βlgl(x)(3.7)

and regard (3.7) as a linear random-effect model with independent βl’s acting like
random effects and gl’s like contrast codings in FEMs for factorial designs. The
expression (3.7) is also given in Mitchell, Morris and Ylvisaker (1995) for two-
level designs, where each βl is a factorial effect. Throughout this paper, the ran-
dom effects βl’s in (3.7), identified from the covariance function of Z, are called
hidden random effects and are regarded as the signals of Z. The aliasing of these
signals under FFDs will be discussed in Sections 5 and 6. We note that the proof
in Mitchell, Morris and Ylvisaker (1995) cannot be extended to the multi-level
case. Joseph and Delaney (2007) considered the multi-level case under the more
restricted covariance structure in (1.3).

Since Cτ is positive definite if and only if all the ξS ’s in (3.4) are greater than
zero, it follows immediately from the theorem that the τt ’s can only take the values
such that ξS(τ ) > 0 for all S ⊆ {1, . . . , n}. This requirement defines the parameter
space of τ , which, by the one-to-one correspondence between the τt ’s and ξS ’s, is
a subset of R2n

.
An illustrative example of Theorem 3.1 is given below.
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EXAMPLE 3.1. Consider a 23 full factorial design and a Gaussian random
field Z with the covariance function (1.2). The three factors are labelled by 1,
2 and 3 and the eight runs are arranged in a Yates’ order. A 1-dimensional WS
representing a factorial effect (including the grand mean) is associated with each
of the eight subsets S of {1,2,3}. Denote the codings of the factorial effects by
g0, g1, g2, g3, . . . , g123, respectively. By Theorem 3.1, these eight vectors produce
an orthogonal eigenvector basis for the covariance matrix Cτ of Z, and Cτ can be
eigen-decomposed as E�τ ET , where

E = 1√
8

g0 g1 g2 g3 g12 g13 g23 g123⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1 1 1 1 1 1 1
1 −1 1 1 −1 −1 1 −1
1 1 −1 1 −1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 −1 1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 −1 1 1 1 −1

.

The eigenvalues in �τ can be obtained from (3.4). Take S = {1,2} as an example.
We have that g12 is an eigenvector with the eigenvalue

ξS(τ ) = (τ000 + τ001 + τ110 + τ111) − (τ100 + τ101 + τ010 + τ011) = gT
12τ ,

which is the sum of the τt ’s with t1 + t2 = 0 (mod 2) minus the sum of the τt ’s
with t1 + t2 = 1 (mod 2). The other eigenvalues have similar forms. The parameter
space of τ is {τ : ET τ > 0}. By (3.7), Z = β0g0 + β1g1 + · · · + β123g123, where
the β’s are independent normally distributed random variables with zero means.
By (3.6), the variances of β’s are the corresponding eigenvalues divided by 8.

Applying Theorem 3.1 to the covariance function (1.3), a special case of (1.2),
we have

ξS(τ ex) = τ0···0
∑
t∈H

[
n∏

i=1

(−1)tiuSi (pi − 1)ti (1−uSi)

(
τT i

τ0···0

)ti
]

= τ0···0
∑
t∈H

{
n∏

i=1

(
− τT i

τ0···0

)tiuSi
[
(pi − 1)

τT i

τ0···0

]ti (1−uSi)
}

= τ0···0
[∏
i∈S

(
1 − τT i

τ0···0

)]{∏
i /∈S

[
1 + (pi − 1)

τT i

τ0···0

]}
,

where the last equality holds because, for 1 ≤ i ≤ n, we have tiuSi = ti if i ∈ S,
and tiuSi = 0 if i /∈ S. This result also appeared in Joseph and Delaney (2007)
with a different parametrization, and the special case with p1 = · · · = pn = 2 was
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obtained earlier by Mitchell, Morris and Ylvisaker (1995). The formula in (3.8)
implies some interesting properties. First, when τT i

> 0 for i = 1, . . . , n, we have

1 − τT i

τ0···0
< 1 + (pi − 1)

τT i

τ0···0
,

which implies ξS(τ ex) > ξS′(τ ex) if S ⊂ S′. Second, when τT i
/τ0···0 decreases,

ξS(τ ex) increases if S involves the ith factor and decreases otherwise. Thus as
τT i

/τ0···0 decreases, all the βl’s associated with the S’s involving the ith factor
tend to produce larger values. This indicates that τT i

can be used to assess the
overall influence of the ith factor on Z. This observation supports the arguments
given in Section 2 for �ex,1 and �ex,2.

The procedure used to identify hidden random effects has a strong theoretical
connection with principal component analysis. Both methods utilize the eigen-
decomposition of covariance matrices. Steinberg and Bursztyn (2004) also applied
it to explore Bayesian regression models associated with random fields in the case
of quantitative factors. There are, however, major differences between their study
and ours. First, they performed eigen-decomposition on the fitted covariance ma-
trix (with the parameters replaced by their estimates), while we derive the eigen-
values and eigenvectors from the covariance matrix with unknown parameters. The
evaluation of aliasing severity of designs is usually conducted before experiments
for the purpose of choosing a better design, and there is no data available to esti-
mate the parameters then. Second, under their covariance function (for quantitative
factors), the eigenvectors depend on the parameters, while our covariance function
(for qualitative factors) has eigenvectors irrelevant to the parameters. As shown in
Steinberg and Bursztyn (2004) and Chang (2015), a theorem such as Theorem 3.1
is not achievable for most commonly used covariance functions for quantitative
factors. In this case, the eigen-decomposition leads to a model like (3.3) in which
the contrast codings depend on the unknown parameters. For such contrast cod-
ings, a study of signal aliasing is difficult, or probably impossible, to implement
before experiments. An alternative approach to studying signal aliasing for quan-
titative factors was proposed in Chang (2015) and Chang and Cheng (2018), in
which they defined contrast codings directly through a set of pre-specified orthog-
onal functions of x that do not depend on the parameters, but paid the price that
the resulting hidden random effects βl’s are correlated.

4. Priority of hidden random effects. It is impossible to evaluate the aliasing
severity of FFDs without making an effect priority assumption on what effects are
more likely to be important. Under FEMs, the commonly used effect hierarchy
principle assumes that lower-order effects are more likely to be important than
higher-order effects and effects of the same order are equally likely to be important.
This principle justifies various optimality criteria such as minimum aberration in
the development of FFD theory.



SIGNAL ALIASING IN GAUSSIAN RANDOM FIELDS 919

The effect priority principle for Gaussian random field models can be developed
from the distributions of the hidden random effects βl’s in (3.7), which are inde-
pendently normally distributed with zero means. A βl with a large variance is more
likely to produce a value away from 0. It is therefore reasonable to assign each βl

a priority proportional to its variance σ 2
l (τ ). The variances provide a quantitative

assessment of effect priority. For example, βl is regarded as twice as important as
βl′ at some τ if σ 2

l (τ ) = 2σ 2
l′ (τ ). In contrast, an assumption such as effect hierar-

chy only offers a relative priority order of effects, which is essentially an ordinal
(or qualitative) evaluation.

We call an order of βl’s ranked by their variances a priority order of βl’s. The
priority orders depend on τ . Ideally, we can partition the parameter space of τ into
disjoint subsets, each of which contains the τ ’s that generate an identical priority
order. Some principles are defined below for choosing a subset of the parameter
space with priority orders that are suitable, or at least reasonable, for common
studies of aliasing severity in FFDs. For each βl , denote the set of the associated
factors by Sl and let |Sl| be the cardinality of Sl .

DEFINITION 4.1. Let � be a subset of the parameter space. A priority order of
the hidden random effects is said to be consistent with the effect hierarchy principle
in � if, for any τ ∈ � and 1 ≤ l �= l′ ≤ �, we have σ 2

l (τ ) = σ 2
l′ (τ ) when |Sl| =

|Sl′ | and σ 2
l (τ ) > σ 2

l′ (τ ) when |Sl| < |Sl′ |. A priority order of the hidden random
effects is said to be consistent with the effect heredity principle [Wu and Hamada
(2009), page 173] if for any τ ∈ � and (l, l′) such that Sl is a proper subset of Sl′ ,
1 ≤ l, l′ ≤ �, we have σ 2

l (τ ) > σ 2
l′ (τ ).

The latter property in Definition 4.1 is called nested decreasing interaction
variance in Kerr (2001). For the covariance function (1.3), it follows from (3.8)
that the priority orders of βl’s are consistent with effect heredity in � = {τ ex =
(τT 1, . . . , τT n) : τT i

> 0, i = 1, . . . , n}. Furthermore, when p1 = · · · = pn and
τT l

= τT 2 = · · · = τT n > 0, it is consistent with effect hierarchy. For the covariance
function (1.2), the priority orders of βl’s are more diverse. We use an example to
illustrate a way of using (3.4) to construct a � with a priority order consistent with
effect hierarchy.

EXAMPLE 4.1. Consider the case n = 3 and p1 = p2 = p3 = 2. To determine
a � with a priority order consistent with effect hierarchy, we can construct a set
E = {e = (e0, e1, e2, e3) : 0 < e3 < e2 < e1 < e0}, and assign σ 2

l (τ ) to be e0 if
|Sl| = 0 and ek if |Sl| = k, k = 1,2,3. By (3.4) and (3.6), τ can be expressed as
a function of e as follows: τ000 = e0 + 3e1 + 3e2 + e3, τ100 = τ010 = τ001 = e0 +
e1 −e2 −e3, τ110 = τ101 = τ011 = e0 −e1 −e2 +e3 and τ111 = e0 −3e1 +3e2 −e3.
Hence, � can be chosen as the collection of the τ ’s satisfying the above equations
for some e ∈ E.
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Assigning a � (i.e., choosing a collection of different τ ’s) with suitable priority
orders is a critical step in the identification of FFDs with least severe aliasing. Dif-
ferent choices of � could lead to different optimal designs. The chosen � reflects
the experimenters’ belief in what signals deserve more attention, and provides a
foundation for comparing the aliasing severity of FFDs. In our experience, when
the priority orders of βl’s in � are consistent with some well-accepted assump-
tions such as the effect heredity principle or the effect hierarchy principle, optimal
or good designs for � are generally good for most τττ ’s, either in � or not in �,
with priority orders consistent with these principles.

5. Signal aliasing under regular fractional factorial designs. In this section
we study the signal-aliasing problem for regular pn−m FFDs, where p is a prime
number. In the FEM approach, the aliasing structure of factorial effects under a
pn−m design has been extensively studied. In the case of a pn full factorial design,
for any set S of k-factors, the (p − 1)k-dimensional space WS represents the fac-
torial effects of the k factors in S, and can be further decomposed into (p − 1)k−1

mutually orthogonal subspaces, each associated with an effect component, or more
commonly referred to as a word. Each word carries p − 1 degrees of freedom
and the associated space can be spanned by p − 1 SOCs, which are called SOCs
of the word. For example, under a three-level design, the three-factor interaction
1×2×3 can be decomposed into four effect components represented by the words
123, 1232, 1223 and 12232, respectively. Each word has 2 degrees of freedom and
two SOCs can be constructed.

Under a pn−m design d , any two words are either fully aliased or mutually
orthogonal. The aliasing structure of d is determined by its DCSG, which contains
B0 = (pm − 1)/(p − 1) words. An alias set of d is a collection of words that
are aliased with one another. There are B1 = (pn−m − 1)/(p − 1) alias sets, each
containing pm words. Readers are referred to Wu and Hamada (2009) and Cheng
(2014) for more details on the aliasing structure of regular FFDs.

Let N = pn−m. For each alias set A of d , define Wd
A as the subspace of RN that

is spanned by p − 1 N × 1 vectors obtained by restricting a set of SOCs of a to
the treatments in d , where a is an arbitrary word in A. An orthogonal basis of Wd

A
is called a set of SOCs of A. We note that Wd

A is independent of the choice of a;
also, SOCs of words are �×1 vectors, while SOCs of alias sets are N ×1 vectors.
For each 1 ≤ i ≤ B1, let Ai be the ith alias set and, for each 1 ≤ j ≤ pm, let aij be
the j th word in Ai . By Theorem 3.1, all the SOCs of aij are eigenvectors of Cτ

with the same eigenvalue, say ξij . Similarly, let a01, . . . ,a0B0 be the words in the
DCSG of d; then all the SOCs of each a0j are eigenvectors of Cτ with the same
eigenvalue, say ξ0j .

Let Zd be the N × 1 vector obtained by restricting Z to the treatments in d .
The following theorem, which extends Proposition 3.2 in Mitchell, Morris and
Ylvisaker (1995), presents the signal aliasing pattern in Zd .
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THEOREM 5.1. Let Cd
τ be the covariance matrix of Zd under (1.2). Then

Cd
τ =

(ξ∅ + (p − 1)
∑B0

j=1 ξ0j

pm

)
P0 +

B1∑
i=1

( pm∑
j=1

ξij

pm

)
Pi ,(5.1)

where P0 is the orthogonal projection matrix onto the space of N × 1 vectors with
constant entries, ξ∅ is the eigenvalue of Cτ associated with the eigenvector with
constant entries, and, for each 1 ≤ i ≤ B1, Pi is the orthogonal projection matrix
onto Wd

Ai
. Thus Cd

τ has at most B1 + 1 eigenvalues. The N × 1 vector of ones is
an eigenvector whose associated eigenvalue is the average of the eigenvalues of
Cτ associated with the � × 1 vector of ones and a set of SOCs of the words in
the DCSG of d . For each 1 ≤ i ≤ B1, SOCs of Ai are eigenvectors with the same
eigenvalue, which is equal to the average of all the eigenvalues of Cτ associated
with SOCs of the words in Ai .

The following example gives an illustration of the theorem.

EXAMPLE 5.1. Consider an experiment with three 3-level factors 1, 2 and 3.
Under the 33−1 design d defined by I = 123, the four alias sets are A1 =
{1,12232,23}, A2 = {2,1223,13}, A3 = {3,1232,12} and A4 = {122,232,132}.
The j th word in Ai , i = 1, . . . ,4, is aij ; for instance, a11 = 1,a12 = 12232,a13 =
23. For each S ⊆ {1,2,3}, we denote ξS by ξi1...ik

if S = {i1, . . . , ik}, and
ξ0 if S = ∅. Then by Theorem 5.1, Cd

τ has at most five distinct eigenvalues:
1
3(ξ0(τ ) + 2ξ123(τ )) (with the vector of all 1’s as an eigenvector) and one eigen-
value for each alias set. For example, the eigenvalue corresponding to the first alias
set is 1

3(ξ1(τ )+ ξ123(τ )+ ξ23(τ )), with the eigenspace spanned by the vectors ob-
tained by restricting the two SOCs of 1 (or 12232 or 23) to d . The eigenvalues and
eigenspaces of the other alias sets can be similarly obtained.

Theorem 5.1 can be interpreted from the random-effect expression of Z. By
Theorem 5.1 and the argument used to obtain (3.5), we can express Zd as

Zd =
N∑

s=1

β∗
s g∗

s ,

where the β∗
s ’s are independent normally distributed random variables with zero

means and each g∗
s is a vector with constant entries or an SOC of an alias set of d .

We normalize each g∗
s to have squared length N . Suppose g∗

s is an SOC of the alias
set A. Then Var(β∗

s ) = ξd
A(τ )/N , where ξd

A(τ ) is the average of the eigenvalues of
Cτ associated with SOCs of the words in A. To link the β∗

s ’s to the βl’s in (3.5),
we write

Zd = LdZ,(5.2)
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where Ld is the N × � matrix with the (i, j)th entry being 1 if the ith element of
Zd is the j th element of Z and zero otherwise. By (3.5) and (5.2),

β∗
s = 1

‖g∗
s‖2 g∗

s
T Zd = 1

N
g∗

s
T
(LdZ) = 1

N

�∑
l=1

βlg
∗
s
T
(Ldgl),(5.3)

where Ldgl is the vector obtained by restricting gl to d .
Because words from different alias sets are mutually orthogonal, we have

g∗
s
T Ldgl = 0 if the corresponding word of gl is not in A. Then it follows from

(5.3) that

β∗
s = 1

N

∑
a∈A

∑
gl ∈̂a

(
g∗

s
T Ldgl

)
βl,(5.4)

where the notation gl ∈̂ a stands for “gl is an SOC of the word a”. The β∗
s ’s are

called alias interactions in Kerr (2001).
Since g∗

s is in Wd
A and, for any a ∈ A, {Ldgl : gl ∈̂ a} is an orthogonal basis of

Wd
A, we have

Var
(
β∗

s

)= 1

N

∑
a∈A

∑
gl ∈̂a

(
g∗

s
T Ldgl

‖Ldgl‖
)2

Var(βl)

= 1

N

∑
a∈A

ξa(τ )

�

∥∥g∗
s

∥∥2 = ∑
a∈A

ξa(τ )

�
,

(5.5)

where ξa(τ ) is the eigenvalue of Cτ corresponding to the SOCs of a, and the
second equality holds since Var(βl) = ξa(τ )/� for gl ∈̂ a. We note that the con-
clusion on the eigenvalues in Theorem 5.1 also follows from (5.5) and a similar
argument for SOCs of the words in the DCSG of d .

The discussion above provides some insight for understanding the signal alias-
ing phenomenon in Gaussian random fields. First, a regular FFD d can provide
information only on the joint effects β∗

s ’s, which are linear combinations of the
hidden random effects βl’s in the same alias set as shown in (5.4). It is similar
to what occurs in using FFDs under FEMs. A major difference is that the joint
effects under FEMs are parameters that need to be estimated, while under Gaus-
sian random fields they are random variables with variances depending on some
parameters. Second, the aliasing pattern of βl’s in d is determined by the collinear
structure of Ldgl’s. Because d is regular, this structure can be similarly charac-
terized via flats and pencils in a finite geometry as in the FFD theory developed
for FEMs. Third, as shown in (5.5), the variance of β∗

s is an accumulation of pm

variances, each contributed by a word. This property is useful in the evaluation of
aliasing severity. As discussed in Section 4, ξa(τ )/� represents the priority of the
SOCs of a. If an alias set contains too many words (or βl’s) with large variances,
then the joint effects of the alias set would tend to have a variance much larger
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than those of the other alias sets, which indicates severe aliasing in the alias set.
A good design is expected to distribute the words with high priorities as uniformly
as possible over the alias sets; see more discussions in Section 6.

For a general FFD d (regular or nonregular), the study of signal aliasing in Zd

can be divided into two parts: to investigate the collinear structure of Ldgl’s and
to evaluate the aliasing severity of the collinear structure with the consideration
of effect priority, for example, whether the βl’s with large variances are seriously
aliased. Because Var(βl)’s are functions of τ , the aliasing severity depends on τ

and d , while the collinear structure only depends on d . A more detailed discussion
on the evaluation of the aliasing severity in general FFDs is given in the next
section.

6. Aliasing severity index. In this section we propose an aliasing severity
index for FFDs under Gaussian random field models, motivated by the idea of
minimum aberration. For FFDs with multi-level qualitative factors, the generalized
minimum aberration (GMA) criterion proposed by Xu and Wu (2001) is a popular
criterion for comparing and assessing aliasing severity of FFDs under FEMs. This
criterion, based on the effect hierarchy principle, is to sequentially minimize the
terms in a generalized word-length pattern (GWLP). Denote the GWLP of a design
d by wd = (w1, . . . ,wn). For two n-factor designs d1 and d2 with GWLPs wd1 =
(w11, . . . ,w1n) and wd2 = (w21, . . . ,w2n), respectively, d1 has less aberration than
d2 if there exists some j , 1 ≤ j ≤ n, such that w1j < w2j and w1i = w2i for i < j .
This criterion can be implemented by a more general optimization procedure as
follows. For a GWLP wd , let U(wd) =∑n

i=1 biwi , where bi is a quantity assigned
to reflect the effect priority of the ith-order effects, with a larger quantity indicating
higher priority. The bi ’s can be chosen so that d1 has less aberration than d2 if
and only if U(wd1) < U(wd2). For example, for pn−m designs, because wi ≤ B0,
1 ≤ i ≤ n, minimizing U(wd) with bi’s satisfying bi > B0

∑n
j=i+1 bj , for i =

1, . . . , n − 1, is equivalent to the GMA criterion.
The quantity U(wd) can be linked with SOCs of WS ’s, S ⊆ {1, . . . , n}. It was

mentioned in Cheng [(2014), page 340] that wi is proportional to the sum of
squares of the inner products between the vector of ones and the vectors obtained
by evaluating the SOCs of WS ’s with |S| = i on d . In the two-level case, for each
S ⊆ {1, . . . , n}, let gS be the vector obtained by evaluating the SOC of WS on the
full factorial design. For an N -run design d , let Ld be as defined in (5.2). Then we
have

wi ∝ 1

N2

∑
S⊆{1,...,n}

|S|=i

(
1T
NLdgS

)2
,(6.1)

where 1N is the vector of N ones. For any pair S′ and S′′ such that S′�S′′ = S,
where S′�S′′ = (S′ \ S′′) ∪ (S′′ \ S′) is the symmetric difference of S1 and S2, it
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is known that 1T
NLdgS = (LdgS′)T (LdgS′′). Because the number of such pairs is

a constant for any S ⊆ {1, . . . , n}, we have∑
S′,S′′⊆{1,...,n}

S′�S′′=S

(
(LdgS′)T (LdgS′′)

)2 ∝ (1T
NLdgS

)2
.(6.2)

It follows from (6.1) and (6.2) that U(wd) is proportional to

V (wd) = 1

N2

∑
S′,S′′⊆{1,...,n}

b|S′�S′′|
(
(LdgS′)T (LdgS′′)

)2
.

In V (wd), the inner products are affected by the collinear structure of LdgS ’s,
and the bi’s are determined by the effect priority. The former measure collinear
strengths between any pairs of LdgS′ and LdgS′′ , and the latter are severity weights
assigned for the aliasing between S′ and S′′.

Our aliasing severity index is motivated by V (wd). Consider the model in (1.1)
and the random-effect expression

∑�
l=1 βlgl of Z in (3.7) with Var(βl) = σ 2

l (τ ).
Let gl’s and Ldgl’s, 1 ≤ l ≤ �, be as defined in Section 5 for a general N -run
FFD d . Because the priorities of βl’s vary with τ , a reasonable modification of
V (wd) for Z is

1

N2

∑
1≤l,l′≤�

bl,l′(τ )
(
(Ldgl)

T (Ldgl′)
)2

,

where bl,l′(τ ) is a nonnegative function of τ used to assign a reasonable sever-
ity weight to the aliasing between βl and βl′ under τ . Because the Var(βl)’s are
quantitative assessments of the priorities of the βl’s, we propose to use bl,l′(τ ) =
σ 2

l (τ )σ 2
l′ (τ ), which assigns greater severity weights to the aliasing of the βl’s with

higher priorities. The modification of V (wd) for Z then becomes

1

N2

∑
1≤l,l′≤�

σ 2
l (τ )σ 2

l′ (τ )
(
(Ldgl)

T (Ldgl′)
)2

.(6.3)

For each S ⊆ {1, . . . , n}, let XS be the matrix whose columns are the Ldgl’s asso-
ciated with WS . For S,S′ ⊆ {1, . . . , n}, where S = S′ is allowed, denote the sum
of squares of the entries in XT

S XS′ by ‖XT
S XS′‖2. Because all the βl’s associated

with WS have variance ξS(τ )/�, the quantity in (6.3) is proportional to

A∗(d;τ ) = 1

N2

∑
S,S′⊆{1,...,n}

ξS(τ )ξS′(τ )
∥∥XT

S XS′
∥∥2

.(6.4)

In A∗(d;τ ), ‖XT
S XS′‖2 evaluates the collinear strength between WS and WS′ under

d , and ξS(τ )ξS′(τ ) assigns a severity weight to the aliasing between WS and WS′ .
The former depends on d , while the latter depends on τ . A design that minimizes
A∗(d;τ ) would tend to make the collinear strengths between high-priority WS ’s
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as small as possible, and tend to allow for larger collinear strengths between high-
priority and low-priority WS ’s and/or between low-priority WS ’s.

Some properties of A∗(d;τ ) are given below. A criterion for comparing designs
with qualitative factors should not depend on the choices of SOCs of WS ’s. The
following theorem verifies such a property for A∗(d;τ ).

THEOREM 6.1. For any S,S′ ⊆ {1, . . . , n}, where S = S′ is allowed,
‖XT

S XS′‖2 is invariant to the choices of SOCs of WS ’s.

We present a relationship between the A∗(d;τ ) of FFDs and that of the full
factorial design.

THEOREM 6.2. Let D be the full factorial design. For any FFD d ,

A∗(d;τ ) ≥ A∗(D;τ ).

Moreover, A∗(D;τ ) = tr(C2
τ ), where tr(·) is the trace of a matrix.

This theorem states that D has the least severe aliasing for any τ . It allows us
to use A∗(D;τ ) as a benchmark for the aliasing severity index presented later.

When d is regular, A∗(d;τ ) has a more structured form. In the following dis-
cussion, the notation τ in ξS(τ ) is suppressed for simplicity. For a regular pn−m

design, let S(0, j) be the collection of the factors involved in the j th word in the
DCSG, j = 1, . . . ,B0 and let S(i, j) be the collection of the factors involved in
the j th word in the ith alias set, i = 1, . . . ,B1, j = 1, . . . , pm. Then we have the
following result.

THEOREM 6.3. For a regular pn−m design d , where p is a prime number,

A∗(d;τ ) = A∗(D;τ )

+ (p − 1)(p − 2)

B0∑
j=1

ξ2
S(0,j) + 2(p − 1)

[
B0∑

j=1

ξ∅ξS(0,j)

]

+ 2(p − 1)2
[ ∑

1≤s<t≤B0

ξS(0,s)ξS(0,t)

]

+ 2(p − 1)

[
B1∑
i=1

∑
1≤s<t≤pm

ξS(i,s)ξS(i,t)

]
.

(6.5)

Based on Theorem 6.3, it can be argued that for regular FFDs, minimizing
A∗(d;τ ) functions in a similar manner to the minimum aberration criterion. In
(6.5), the first term A∗(D;τ ) is a constant for any d , the second to fourth terms
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are contributed by the words in the DCSG of d , and the last term is contributed by
the words in the alias sets. A regular FFD has small values on the second to fourth
terms if the words in its DCSG have small variances. It suggests that the DCSG of
a good design should be composed of low-priority words. Let ξd

i =∑pm

j=1 ξS(i,j),

pd
i,j = ξS(i,j)/ξ

d
i , i = 1, . . . ,B1, j = 1, . . . , pm and denote the ith alias set of d by

Ai . While ξd
i is proportional to the variance of the combined effects β∗

s ’s of Ai and
can be regarded as a measure of the joint priority of Ai , pd

i,j is the proportion of

ξd
i contributed by the j th word in Ai . The last term in (6.5) evaluates the aliasing

severity of the alias sets and can be expressed in terms of ξd
i ’s and pd

i,j ’s as

2(p − 1)T d

[
B1∑
i=1

(
ξd
i /

√
T d
)2

P d
i

]
,(6.6)

where T d =∑B1
i=1(ξ

d
i )2 and P d

i =∑
1≤s<t≤pm pd

i,sp
d
i,t . This expression provides

us with some clues on how to distribute high-priority words to the alias sets so as
to generate a small value of the last term. Although the P d

i ’s vary with ξd
i ’s, we can

regard (6.6) as a diagonal quadratic form of the ξd
i ’s. Among designs with similar

values of T d , one with large ξd
i ’s paired with small P d

i ’s would tend to generate a
smaller value of (6.6). Because each P d

i is a Schur concave function of the pd
i,j ’s

and
∑pm

j=1 pd
i,j = 1, by the theory of majorization [Marshall and Olkin (1979)], P d

i

would be small if one of the pd
i,j ’s or a small number of them are much larger than

the rest. The discussions above imply that a regular FFD has small A∗(d;τ ) if it:

(i) does not assign high-priority words to its DCSG, and
(ii) distributes high-priority words to as many different alias sets as possible,

and makes every alias set contain as few high-priority words as possible; this would
be achieved, for example, if high-priority words are distributed as uniformly as
possible over the alias sets.

Cheng, Steinberg and Sun (1999) pointed out that a two-level minimum aber-
ration regular FFD with resolution at least three would assign the main effects to
different alias sets and uniformly distribute as many two-factor interactions as pos-
sible over the alias sets not containing main effects. Thus minimizing A∗(d;τ ) and
minimum aberration share some common principles, with the priority of words (or
effects) determined by their variances and word-lengths in the former and latter
cases, respectively.

We propose an aliasing severity index for general FFDs under Gaussian random
field models as follows.

DEFINITION 6.1. For an FFD d , the aliasing severity index of d for τ is de-
fined as

A(d;τ ) = A∗(d;τ ) − A∗(D;τ )

A∗(D;τ )
.
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A design d is said to have less severe aliasing for τ than another design d ′ if
A(d;τ ) < A(d ′;τ ). An N -run design d is said to be optimal for τ if for any other
N -run design d ′, A(d;τ ) ≤ A(d ′;τ ).

It follows immediately from Theorem 6.2 that A(d;τ ) ≥ 0 for any d , and
A(D;τ ) = 0. Ranking designs by A∗(d;τ ) is equivalent to ranking them by
A(d;τ ). Because the index depends on τ , for the covariance functions discussed
in this article, a design that is optimal for all τ might not exist for a given N . Under
this circumstance, we can partition the parameter space of τ into disjoint subsets
such that each of them can individually produce a design that is optimal for all τ in
the subset. Another practically acceptable approach is to choose a τ for which the
priority order of βl’s is consistent with the experimental conditions or obeys some
commonly acknowledged principles such as effect hierarchy or effect heredity in
Definition 4.1, and identify locally optimal designs by minimizing A(d;τ ) for the
specified τ .

In the rest of this section we revisit the example in Section 2. For the two designs
d1 and d2, we use A(d;τ ) to evaluate their aliasing severity on �ex,1 and �ex,2
defined respectively in (2.2) and (2.3). The values of A(d1;τ ex) and A(d2;τ ex) for
τ ex in �ex,1 and �ex,2 are plotted in the left panels of Figures 3 and 4, respectively.
The plots of A(d2;τ ex) − A(d1;τ ex) against τ are also given in the right panels.
Figure 3 shows that the minimum aberration design d1 has smaller A(d;τ ) than d2
for any τ ex ∈ �ex,1. This is reasonable because, for any τ ex ∈ �ex,1, the priority
order of the hidden random effects is consistent with the effect hierarchy principle.
In Figure 4, it can be observed that d2 has smaller A(d;τ ) than d1 when τ is small,
and the two curves have a crossover point at τ = 0.36. According to the discussion

FIG. 3. (a) Plots of A(d;τ ) under d1 and d2, and (b) difference of A(d;τ ) between d2 and d1, for
�ex,1.
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FIG. 4. (a) Plots of A(d;τ ) under d1 and d2, and (b) difference of A(d;τ ) between d2 and d1, for
�ex,2.

in Section 3, factors 4 and 6 are more important than the other factors when τ is
small, and are less important when τ is large. Figure 4 shows that d2 could have
less severe aliasing than d1 when factors 4 and 6 are more important than the other
factors.

By comparing the APVs in Figures 1–2 and the A(d;τ )’s in Figures 3–4, we
find that APV is highly correlated with A(d;τ ) in this case. It seems to suggest
that the prediction power is strongly connected with the aliasing severity of signals.
A detailed exploration of such connection would be a good direction for future
research.

7. Concluding remarks. In this article, a framework is proposed to initiate a
systematic investigation of signal-aliasing in Gaussian random fields with covari-
ance functions suitable for experiments with qualitative factors. Via spectral de-
composition of the covariance function, hidden random factorial effects are iden-
tified as projection scores of the Gaussian random field on the eigenvectors. The
study of effect (signal) aliasing under fractional factorial designs is extended from
the usual fixed-effects models to random field models.

We argue that the aliasing severity of the signals in a Gaussian random field
is determined by (i) the aliasing pattern and (ii) priorities of the random factorial
effects. The former is characterized by the collinear structure of the factorial-effect
codings and the latter is determined by variances of the random factorial effects.
The aliasing pattern depends on the design, while the effect priority depends on
model parameters. An index is developed for evaluating the aliasing severity under
general fractional factorial designs.
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The study of signal-aliasing for Gaussian random fields is still in its early stage.
Many problems remain unsolved. For example, although we present examples to
demonstrate that the aliasing severity index introduced here is highly correlated
with prediction variances, a detailed theoretical investigation is still lacking. Also,
it is not clear how the identifiability and accuracy of parameter estimation are af-
fected by the level of signal aliasing. Another interesting topic is the identification
of optimal designs for an appropriately chosen subset of the parameters in the co-
variance structure. Tables of optimal designs for different choices of parameters
will be valuable in practical applications.

Last but not the least, it is worth exploring how the concepts, methodologies and
results for signal aliasing presented in this article can be generalized to Gaussian
random field models for experiments with quantitative factors as well as those
that contain some fixed factorial effects. Some difficulties in the former case was
raised at the end of Section 3. For the latter, a general form of the Gaussian random
field models frequently used in computer experiments [Santner, Williams and Notz
(2003)] is

Y(x) =
q∑

s=1

αsfs(x) + Z(x) + ε(x),(7.1)

with an extra term compared with model (1.1), where the αs ’s are unknown fixed
factorial effects with effect codings fs(x). Model (7.1) is also referred to as a
universal kriging model in the literature of spatial statistics [Cressie (1993)]. Welch
et al. (1992) and Joseph, Hung and Sudjianto (2008) mentioned that a collection of
wrongly specified fixed factorial effects fs ’s in (7.1) can result in worse predictions
with large prediction variances. We suspect that it happens because of, at least
partially, a high resemblance of the functional surfaces of Z(x) and some fs(x)’s
under the design.

APPENDIX: PROOFS

PROOF OF THEOREM 3.1. For simplicity, the notation τ in ξS(τ ) is sup-
pressed. We first prove that the vectors in the space WS defined in (2.4) are eigen-
vectors of Cτ with the same eigenvalue. This is proved in a fashion similar to that
of Theorem 10.9 in Bailey (2008), page 196. For each S ⊆ {1, . . . , n}, let AS be the
� × � (0,1)-matrix such that [AS]i,j = 1 if and only if the ith and j th treatments
have the same level of each factor in S, but different levels of every other factor,
where [AS]i,j is the (i, j)th entry of AS . Then we have

∑
S⊆{1,...,n} AS = J, where

J is a matrix of ones. Let τS = τt, where ti = 0 if and only if i ∈ S. Then

(A.1) Cτ = ∑
S⊆{1,...,n}

τSAS.

Furthermore, let JS be the � × � (0,1)-matrix such that [JS]i,j = 1 if and only
if the ith and j th treatments have the same level of each factor in S. From the
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definitions of AS and JS , it can be seen that JS =∑
S∗⊆{1,...,n}:S⊆S∗ AS∗ . Inverting

this equation using the Möbius function [Bailey (1996), page 61], we have

(A.2) AS = ∑
S∗⊆{1,...,n}:

S⊆S∗

(−1)|S|+|S∗|JS∗ .

By substituting (A.2) into (A.1), we get

(A.3) Cτ = ∑
S⊆{1,...,n}

τS

[ ∑
S∗⊆{1,...,n}:

S⊆S∗

(−1)|S|+|S∗|JS∗
]

= ∑
S∗⊆{1,...,n}

ηS∗JS∗,

where

(A.4) ηS∗ = ∑
S⊆{1,...,n}:

S⊆S∗

(−1)|S|+|S∗|τS.

It is shown in Cheng [(2014), page 245] that JSv = mSv for v ∈ VS and JSv = 0
for v ∈ V ⊥

S , where

(A.5) mS =∏
i /∈S

pi.

For any v ∈ WS , by (2.4) and (A.3), we have

Cτ v =
( ∑

S∗⊆{1,...,n}:
S⊆S∗

mS∗ηS∗
)
v.(A.6)

So the vectors in WS are eigenvectors of Cτ with the eigenvalue

ξS = ∑
S∗:S⊆S∗

mS∗ηS∗ .

Next we prove (3.4). For an S ⊆ {1, . . . , n} with |S| = k, from (A.4) and (A.6),
we have

ξS = ∑
S∗⊆{1,...,n}:

S⊆S∗

mS∗
[ ∑
T ⊆{1,...,n}:

T ⊆S∗

(−1)|S∗|+|T |τT

]
= ∑

T ⊆{1,...,n}
hS,T × τT ,

where

(A.7) hS,T = ∑
S∗⊆{1,...,n}:
S⊆S∗,T ⊆S∗

mS∗ × (−1)|S∗|+|T |.

Without loss of generality, assume that S = {1,2, . . . , k} and T is the subset formed
by the first r1 elements of {1, . . . , k} and the first r2 elements of {k + 1, . . . , n},
where 0 ≤ r1 ≤ k, 0 ≤ r2 ≤ n − k. To prove (3.4), it is enough to show that hS,T =
(−1)k−r1

∏
i∈{k+r2+1,...,n}(pi − 1).
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An S∗ with S ∪ T ⊆ S∗ must be a subset composed of 1, . . . , k + r2, and t ele-
ments from {k + r2 + 1, . . . , n}, where t = |S∗|− (k+ r2). Let Dt be the collection
of all the t-element subsets of {k + r2 + 1, . . . , n}, 0 ≤ t ≤ n − k − r2. By (A.5)
and (A.7), we have

hS,T = ∑
S∗⊆{1,...,n}:S∪T ⊆S∗

mS∗ × (−1)|S∗|+|T |

=
n−k−r2∑

t=0

∑
S′∈Dt

{[ ∏
i∈{k+r2+1,...,n}\S′

pi

]
(−1)(k+r2+t)+(r1+r2)

}

= (−1)k+r1

n−k−r2∑
t=0

{
(−1)t

[ ∑
S′∈Dt

( ∏
i∈{k+r2+1,...,n}\S′

pi

)]}

= (−1)k−r1
∏

i∈{k+r2+1,...,n}
(pi − 1).

Thus (3.4) is proved.
Finally, we show that there is a one-to-one correspondence between the ξS ’s and

τt ’s. For each S ⊆ {1, . . . , n}, choose a vector qS in WS with the first entry being
one. It follows from Cτ qS = ξSqS that ξS = qT

S c1, where cT
1 is the first row of

Cτ . Because every entry of c1 is an element of τ and every entry of τ appears at
least once in c1, there exists a matrix B of full column rank such that c1 = Bτ .
Then ξS = qT

S Bτ . Denote the 2n subsets of {1, . . . , n} by Si , i = 1, . . . ,2n, and let
ξ = (ξS1, . . . , ξS2n )

T and Q = (qS1
, . . . ,qS2n )

T . Then ξ = QBτ . Because q+Si
∈

WSi
, i = 1, . . . ,2n, and the WSi

’s are mutually orthogonal, Q has full row rank and
the rank of QB equals the column rank of B [Seber (2008), page 37]. It implies that
QB has full rank and τ = (QB)−1ξ , which assures the one-to-one correspondence.

�

PROOF OF THEOREM 5.1. By Theorem 3.1, Cτ can be eigen-decomposed as
Cτ = 1

pn E�τ ET , where E is formed by SOCs of words. We use the alias sets to
partition E into several submatrices as follows. For the j th word aij in Ai , let Eij

be the matrix formed by the p − 1 columns of E associated with aij . Similarly,
for the j th word a0j in the DCSG of d , let E0j be the matrix formed by the p − 1
columns of E associated with a0j . Let E00 be the column of pn ones. Then we
have

Cτ = ξ∅P00 +
B0∑

j=1

ξ0j P0j +
B1∑
i=1

pm∑
j=1

ξij Pij ,

where Pij = 1
pn Eij ET

ij for any i, j ≥ 0. Because ET
00E00 = pn and ET

ij Eij =
pnIp−1 if (i, j) �= (0,0), Pij is the orthogonal projection matrix onto the column
space of Eij .
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Let Ld be as defined in (5.2). Since Cd
τ = LdCτ LT

d , we have

Cd
τ = ξ∅

pm

(
pmLdP00LT

d

)+ B0∑
j=1

ξ0j

pm

(
pmLdP0j LT

d

)

+
B1∑
i=1

pm∑
j=1

ξij

pm

(
pmLdPij LT

d

)
.

(A.8)

By the discussions above, pmLdP00LT
d in the first term and pmLdPij LT

d in the
third term are orthogonal projection matrices onto the column spaces of LdE00
and LdEij , respectively. For the second term, let [E00 E0j ] be the matrix obtained
by adjoining E0j to the right of E00. Because a0j is a word in the DCSG and all
the rows in [E00 E0j ] have the same length 1/

√
p, the following identity holds:(

Ld [E00 E0j ])(Ld [E00 E0j ])T = p(LdE00)(LdE00)
T .

It follows that

pmLdP0j LT
d = (p − 1)

(
pmLdP00LT

d

)
.(A.9)

We have P0 = pmLdP00LT
d . For aij ,aij ′ ∈Ai , LdEij and LdEij ′ have the same

column space Wd
Ai

and

pmLdPij LT
d = pmLdPij ′LT

d .(A.10)

Now (5.1) follows from (A.8)–(A.10). �

PROOF OF THEOREM 6.1. For each S ⊆ {1, . . . , n}, let ES and E∗
S be the

matrices whose columns are the vectors obtained by respectively evaluating two
sets of SOCs on the full factorial design. Because the columns of ES and E∗

S are
orthogonal bases of the same space, there exists an orthogonal matrix � such that
ES = E∗

S�. For a design d , let XS = LdES and X∗
S = LdE∗

S , where Ld is as defined
in (5.2). Then XS = X∗

S� and XSXT
S = X∗

S��T X∗
S
T = X∗

SX∗
S
T . For any S,S′ ⊆

{1, . . . , n}, we have ‖XT
S XS′‖2 = tr((XT

S XS′)T (XT
S XS′)) = tr(XS′XT

S′XSXT
S ) =

tr(X∗
S′X∗

S′T X∗
SX∗

S
T ) = ‖X∗

S
T X∗

S′‖2. �

PROOF OF THEOREM 6.2. For 1 ≤ l, l′ ≤ �, gT
l gl′ = � if l = l′ and zero

otherwise. By Theorem 3.1, we have A∗(D;τ ) = ∑�
l=1 ξl(τ )2 = tr(C2

τ ), where
ξl is the eigenvalue of Cτ corresponding to gl . The rest of the proof is done by
considering a particular set of complex SOCs, introduced in Bailey (1982) and
extensively used in Xu and Wu (2001). For the ith factor, define the codings of
its complex SOCs on a design point x = (x1, . . . , xn) as ci

s(x) = ζ sxi , 0 ≤ s ≤
pi − 1, where ζ = exp(2π i/pi) and i = √−1. It follows that ci

s(x)ci
t (x) = ci

t−s(x)
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and ci
s(x)ci

s(x) = 1. The codings of complex SOCs for a WS , S ⊆ {1, . . . , n}, are
defined via ci

s ’s as in (2.5), that is, for s = (s1, . . . , sn) ∈ D, the coding is cs(x) =∏n
i=1 ci

si
(x). It follows that cs(x)ct (x) = ct−s(x) and

cs(x)cs(x) = 1.(A.11)

We can define XS and Ldgl for complex SOCs in the same way as before and,
following the same arguments in the proof of Theorem 6.1, we can show that

‖XS
T

XS′‖2 does not depend on the choices of SOCs, where XS is the complex
conjugate of XS and ‖ · ‖2 computes the sum of squares of the absolute values of
the entries in a complex matrix. It suffices to show that A∗(d;τ ) ≥ A∗(D;τ ) under
complex SOCs for any FFD d . Since (Ldgl)

T (Ldgl) = N by (A.11), 1 ≤ l ≤ �,
we have

A∗(d;τ ) =
�∑

l=1

ξl(τ )2 + 1

N2

{ ∑
1≤l �=l′≤�

∣∣(Ldg∗
l

)T (Ldg∗
l′
)∣∣2ξl(τ )ξl′(τ )

}
.

The result follows from the fact that A∗(D;τ ) =∑�
l=1 ξl(τ )2. �

PROOF OF THEOREM 6.3. For a regular pn−m design d , where p is a prime
number, let aij i, j ≥ 0, be as defined in the proof of Theorem 5.1, Eij be as
defined in the proof of Theorem 5.1, Ld be as defined in (5.2), and let Xij = LdEij .
Because aij and ai′j ′ with i �= i ′ are orthogonal in d , we have ‖XT

ij Xi′j ′‖2 = 0 if
i �= i ′. Then

A∗(d;τ ) = 1

N2

( ∑
0≤s,t≤B0

∥∥XT
0sX0t

∥∥2
ξS(0,s)ξS(0,t)

+
B1∑
i=1

∑
1≤s,t≤pm

∥∥XT
isXit

∥∥2
ξS(i,s)ξS(i,t)

)
.

(A.12)

Following the same arguments used in the proof of Theorem 6.1, it can be shown
that ‖XT

ij Xij ′‖2 is also invariant to the choices of SOCs. Because Xij and Xij ′ have
the same column space, we can arbitrarily choose a set of SOCs so that

∥∥XT
ij Xij ′

∥∥2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N2 if i = j = j ′ = 0,

(p − 1)N2 if i = 0 and only one of j and j ′ is 0,

(p − 1)2N2 if i = 0 and j, j ′ > 0,

(p − 1)N2 if i �= 0.
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Substituting these values into (A.12), we get

A∗(d;τ ) = ξ2
∅

+
[
(p − 1)2

B0∑
j=1

ξ2
S(0,j)

]
+
[
(p − 1)

B1∑
i=1

pm∑
j=1

ξ2
S(i,j)

]

+ 2(p − 1)

{[
B0∑

j=1

ξ∅ξS(0,j)

]
+
[
(p − 1)

∑
1≤s<t≤B0

ξS(0,s)ξS(0,t)

]

+
[

B1∑
i=1

∑
1≤s<t≤pm

ξS(i,s)ξS(i,t)

]}
.

By Theorem 6.2, ξ2
∅

+ (p − 1)[∑B0
j=1 ξ2

S(0,j) + ∑B1
i=1

∑pm

j=1 ξ2
S(i,j)] = tr(C2

τ ) =
A∗(D;τ ). Then Theorem 6.3 follows. �
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