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COMBINATORIAL INFERENCE FOR GRAPHICAL MODELS

BY MATEY NEYKOV1, JUNWEI LU1 AND HAN LIU2

Carnegie Mellon University, Princeton University and Northwestern University

We propose a new family of combinatorial inference problems for graph-
ical models. Unlike classical statistical inference where the main interest is
point estimation or parameter testing, combinatorial inference aims at test-
ing the global structure of the underlying graph. Examples include testing the
graph connectivity, the presence of a cycle of certain size, or the maximum
degree of the graph. To begin with, we study the information-theoretic limits
of a large family of combinatorial inference problems. We propose new con-
cepts including structural packing and buffer entropies to characterize how
the complexity of combinatorial graph structures impacts the corresponding
minimax lower bounds. On the other hand, we propose a family of novel and
practical structural testing algorithms to match the lower bounds. We provide
numerical results on both synthetic graphical models and brain networks to
illustrate the usefulness of these proposed methods.

1. Introduction. Graphical model is a powerful tool for modeling complex
relationships among many random variables. A central theme of graphical model
research is to infer the structure of the underlying graph based on observational
data. Though significant progress has been made, existing works mainly focus
on estimating the graph [Meinshausen and Bühlmann (2006), Liu, Lafferty and
Wasserman (2009), Ravikumar et al. (2011), Cai, Liu and Luo (2011)] or testing
the existence of a single edge [Janková and van de Geer (2015), Ren et al. (2015),
Neykov et al. (2018b), Gu et al. (2015)].

In this paper, we consider a new inferential problem: testing the combinato-
rial structure of the underlying graph. Examples include testing the graph con-
nectivity, cycle presence or assessing the maximum degree of the graph. Unlike
classical inference which aims at testing a set of Euclidean parameters, combi-
natorial inference aims to test some global structural properties and requires the
development of new methodology. As for methodological development, this paper
mainly considers the Gaussian graphical model (though our method is applica-
ble to the more general semiparametric exponential family graphical models and

Received August 2016; revised August 2017.
1These authors contributed equally to this work.
2Supported by NSF Grant DMS-1454377-CAREER; NSF Grant IIS1546482-BIGDATA; NIH

Grant R01MH102339; NSF Grant IIS1408910; NIH Grant R01GM083084.
MSC2010 subject classifications. 62F03, 62F04, 62H15.
Key words and phrases. Graph structural inference, minimax testing, uncertainty assessment,

multiple hypothesis testing, post-regularization inference.

795

http://www.imstat.org/aos/
https://doi.org/10.1214/17-AOS1650
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


796 M. NEYKOV, J. LU AND H. LIU

elliptical copula graphical models): Let X = (X1, . . . ,Xd)T ∼ Nd(0, (�∗)−1) be
a d-dimensional Gaussian random vector with precision matrix �∗ = (�∗

jk). Let

G∗ = G(�∗) := (V ,E∗) be an undirected graph, where V = {1, . . . , d} and an
edge (j, k) ∈E∗ if and only if �∗

jk �= 0. It is well known that G∗ has the pairwise
Markov property, that is, (j, k) /∈ E∗ if and only if Xj and Xk are conditionally
independent given the remaining variables. In a combinatorial inference problem,
our goal is to test whether G∗ has certain global structural properties based on n

random samples X1, . . . ,Xn. Specifically, let G be the set of all graphs over the
vertex set V and (G0,G1) be a pair of nonoverlapping subsets of G. We assume
all the graphs in G1 have a property (e.g., connectivity) while the graphs in G0 do
not have this property. Such a pair (G0,G1) is called a sub-decomposition of G.
Our goal is to test the hypothesis H0 :G∗ ∈ G0 versus H1 :G∗ ∈ G1. We provide
several concrete examples below.

Connectivity. A graph is connected if and only if there exists a path con-
necting each pair of its vertices. To test connectivity, we set G0 = {G ∈ G |
G is disconnected} and G1 = {G ∈ G |G is connected}. Under the Gaussian graph-
ical model, this is equivalent to testing whether the variables can be partitioned into
at least two independent sets.

Cycle presence. Sometimes it is of interest to test whether the underlying graph
is a forest. In this example we let G0 = {G ∈ G |G is a forest} and G1 = {G ∈ G |
G contains a cycle}. If a graph is a forest, it can be easily visualized on a two-
dimensional plane.

Maximum degree. Another relevant question is to test whether the maximum
degree of the graph is less than or equal to some integer s0 ∈ N versus the al-
ternative that the maximum degree is at least s1 ∈ N, where s0 < s1. Define the
sub-decomposition G0 = {G | dmax(G) ≤ s0} and G1 = {G | dmax(G) ≥ s1}, re-
spectively.

While our ultimate goal is to test whether G∗ ∈ G0 versus G∗ ∈ G1, our access
to G∗ is only through the random samples {Xi}ni=1. Under Gaussian models, we
can translate the original problem of testing graphs to testing the precision matrix:

H0 :�∗ ∈ S0 vs H1 :�∗ ∈ S1.(1.1)

In (1.1), S0,S1 ⊂M(s) are two sets of precision matrices such that for all � ∈
S0,S1 we have G(�) ∈ G0,G1, respectively, and M(s) is defined as

(1.2) M(s)=
{
�
∣∣�=�T ,C−1 ≤�≤ C,‖�‖1 ≤ L, max

j∈[d] ‖�∗j‖0 ≤ s
}

for some constants 1≤ C ≤ L. The inequalities C−1 ≤�≤ C in (1.2) are meant in
a “positive-semidefinite sense,” that is, the minimum and maximum eigenvalues of
� are assumed to be bounded by C−1 and C from below and above, respectively,
and ‖�∗j‖0 is the cardinality of the nonzero entries of the j th column of � (see
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Section 1.3 for precise notation). The set M(s) restricts our attention to well-
conditioned symmetric matrices �, whose induced graphs G(�) have maximum
degree of at most s. Given this setup, we aim to characterize necessary conditions
on the pair S0,S1 under which the combinatorial inference problem in (1.1) is
testable. Specifically, recall that a test is any measurable function ψ : {Xi}ni=1 
→{0,1}. Define the minimax risk of testing S0 against S1 as

γ (S0,S1)= inf
ψ

[
max
�∈S0

P�(ψ = 1)+ max
�∈S1

P�(ψ = 0)
]
.(1.3)

If lim infn→∞ γ (S0,S1) = 1, we say that the problem (1.1) is untestable since
any test fails to distinguish between S0 and S1 in the asymptotic minimax sense.
We are specifically interested in an asymptotic setting where the dimension d is
a function of the sample size, that is, d = d(n) so that d →∞ as n→∞. This
setting will be implicitly understood throughout the paper. Due to the close rela-
tionship between the sets of precision matrices (S0,S1) and the sub-decomposition
(G0,G1) [recall that for all � ∈ S0,S1 we have G(�) ∈ G0,G1 resp.], we antici-
pate that the sub-decomposition can capture the intrinsic challenge of the test in
(1.1). Indeed, in Sections 2 and 4 we develop a framework capable of capturing the
impact of the combinatorial structures of G0 and G1 to the lower bound γ (S0,S1).
Such lower bounds provide necessary conditions for any valid test. We then de-
velop practical procedures that match the obtained lower bounds. To understand
how the sub-decomposition (G0,G1) affects the intrinsic difficulty of the problem
in (1.1), we consider the three examples given before. Our lower bound framework
distinguishes between two types of sub-decompositions—in the first type, one can
find graphs belonging to G0 and G1 differing in only one single edge, while in the
second type all graphs belonging to G0 must differ on multiple edge sets from the
graphs belonging to G1.

One can check that in the first two examples (connectivity and cycle presence
testing) there exist graphs belonging to G0 and G1 differing in only one single edge.
For instance, when testing connectivity, consider a tree with a single edge removed
(thus it becomes a forest) versus a connected tree. Extending this intuition, for a
fixed graph G0 = (V ,E0) ∈ G0, we call the edge set C = {e1, . . . , em} a single-
edge null-alternative divider, or simply a divider for short, if for all edges e ∈ C
the graphs (V ,E0 ∪ {e}) ∈ G1. Intuitively, the bigger the cardinality of a divider
is, the harder it is to tell the null from the alternatives. In Section 2, we detail that
γ (S0,S1) is asymptotically 1, when the signal strength of separation between S0
and S1 is low [see (2.2) and (2.3) for a formal definition] and there exists a divider
with sufficiently large packing number. The packing number, formally defined in
Definition 2.3, represents the cardinality of a subset of edges in C which are “far”
apart, where the proximity measure of two edges is a predistance (compared to
distance, a predistance does not have to satisfy the triangle inequality) based on
the graph G0. Recall that for a graph G and two vertices u and v, a graph geodesic
distance is defined by

dG(u, v) := length of the shortest path between u and v within G.
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Using the notion of geodesic distance, one can define a predistance between two
edges, by taking the minimum over the geodesic distances of their corresponding
nodes.

If the difference between null and alternative is more than one edge, as
in the maximum degree testing G0 = {G | dmax(G) ≤ s0} versus G1 = {G |
dmax(G)≥ s1}, for example, the packing number does not always capture the lower
bound of the tests. In Section 4, we develop a novel mechanism to handle this more
sophisticated case. We introduce a concept called “buffer entropy” which can over-
come the disadvantages of the packing number and produce sharper lower bounds.

On the other hand, to match the lower bound, we propose the alternative witness
test as a general algorithm for combinatorial testing. Our algorithm identifies a
critical structure and proceeds to test whether this structure indeed belongs to the
true graph. We prove that alternative witness tests can control both the type I and
type II errors asymptotically.

1.1. Contributions. There are three major contributions of this paper.
Our first contribution is to develop a novel strategy for obtaining minimax lower

bounds on the signal strength required to distinguish combinatorial graph struc-
tures which are separable via a single-edge divider. In particular, we relate the
information-theoretic lower bounds to the packing number of the divider, which
is an intuitive combinatorial quantity. To obtain this connection, we relate the chi-
square divergence between two probability measures to the number of “closed
walks” on their corresponding Markov graphs. Our analysis hinges on several
technical tools including Le Cam’s lemma, matrix perturbation inequalities and
spectral graph theory. The usefulness of the approach is demonstrated by obtain-
ing generic and interpretable lower bounds in numerous examples such as testing
connectivity, connected components, self-avoiding paths and cycles.

Our second contribution is to provide a device for proving lower bounds under
the settings where the null and alternative graphs differ in multiple edges. Under
such case, the packing number does not always provide tight lower bounds. In or-
der to overcome this issue we formalize a graph quantity called buffer entropy. The
buffer entropy is a complexity measure of the structural tests and provides lower
bounds. We apply buffer entropy to derive lower bounds for testing the maximum
degree and detecting a sparse clique and cycles.

Our third contribution is to propose an alternative witness test (1.1), which
matches the lower bounds on the signal strength. Our algorithm works on sub-
decompositions which are stable with respect to addition of edges, that is, given a
graph G ∈ G1 adding edges to G yields graphs which belong to G1. The alterna-
tive witness test is a two step procedure—in the first step, it identifies a minimal
structure “witnessing” the alternative hypothesis, and in the second step it attempts
to certify the presence of this structure in the graph. The alternative witness test
utilizes recent advances in high-dimensional inference and provides honest tests
for combinatorial inference problems. It has two advantages compared to the sup-
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port recovery procedures in Meinshausen and Bühlmann (2006), Ravikumar et al.
(2011), Cai, Liu and Luo (2011): First, it allows us to control the type I error at any
given level; second, it does not require perfect recovery of the underlying graph to
conduct valid inference.

1.2. Related work. Graphical model inference is relatively straightforward
when d < n, but becomes notoriously challenging when d � n. In high-
dimensions, estimation procedures were studied by Yuan and Lin (2006),
Friedman, Hastie and Tibshirani (2008), Lam and Fan (2009), Cai, Liu and Luo
(2011) among others, while for variable selection procedures see Meinshausen
and Bühlmann (2006), Raskutti et al. (2008), Liu, Lafferty and Wasserman (2009),
Ravikumar et al. (2011), Cai, Liu and Luo (2011) and references therein. Re-
cently, motivated by Zhang and Zhang (2014), various inferential methods for
high-dimensional graphical models were suggested [e.g., Liu (2013), Janková and
van de Geer (2015), Chen et al. (2016), Ren et al. (2015), Neykov et al. (2018b),
Gu et al. (2015)], most of which focus on testing the presence of a single edge
(except Liu (2013) who took the FDR approach [Benjamini and Hochberg (1995)]
to conduct multiple tests and Gu et al. (2015) who developed procedures of edge
testing in Gaussian copula models). None of the aforementioned works address
the problem of combinatorial structure testing.

In addition to estimation and model selection procedures, efforts have been
made to understand the fundamental limits of these problems. Lower bounds on
estimation were obtained by Ren et al. (2015), where the authors show that the
parametric estimation rate n−1/2 is unattainable unless s logd/

√
n= o(1). Lower

bounds on the minimal sample size required for model selection in Ising models
were established by Santhanam and Wainwright (2012), where it is shown that
support recovery is unattainable when n� s2 logd . In a follow-up work, Wang,
Wainwright and Ramchandran (2010) studied model selection limits on the sam-
ple size in Gaussian graphical models. The latter two works are remotely related
to ours, in that both works exploit graph properties to obtain information-theoretic
lower bounds. However, our problem differs significantly from theirs since we
focus on developing lower bounds for testing graph structure, which is a funda-
mentally different problem from estimating the whole graph.

Our problem is most closely related to those in Addario-Berry et al. (2010),
Arias-Castro, Bubeck and Lugosi (2012, 2015), Arias-Castro et al. (2015), which
are inspired by the large body of research on minimax hypothesis testing [e.g.,
Ingster (1982), Ingster, Tsybakov and Verzelen (2010), Arias-Castro, Candès
and Durand (2011), Arias-Castro, Candès and Plan (2011)] among many others.
Addario-Berry et al. (2010) quantify the signal strength as the mean parameter of
a standard Gaussian distribution, while Arias-Castro, Bubeck and Lugosi (2012,
2015) impose models on the covariance matrix of a multivariate Gaussian dis-
tribution. In our setup, the parameter spaces of interest are designed to reflect the
graphical model structure, and hence the signal strength is naturally imposed on the
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precision matrix. Arias-Castro, Candès and Plan (2011) provide detection bounds
for the linear model. This is related to our work since one can view a linear model
with Gaussian design as a Gaussian graphical model. Arias-Castro et al. (2015) ad-
dress testing on a lattice based Gaussian Markov random field. For specific prob-
lems they establish lower bounds on the signal strength required to test the empty
graph versus an alternative hypothesis. This is different from the setting of our
problems, where the null hypothesis is usually not the empty graph.

1.3. Notation. The following notation is used throughout the paper. For a
vector v = (v1, . . . , vd)T ∈ R

d , let ‖v‖q = (
∑d

i=1 |vi |q)1/q,1 ≤ q < ∞, ‖v‖0 =
|supp(v)|, where supp(v)= {j | vj �= 0}, and |A| denotes the cardinality of a set A.
Furthermore, let ‖v‖∞ =maxi |vi | and v⊗2 = vvT . For a matrix A, we denote A∗j
and Aj∗ to be the j th column and row of A, respectively. For any n ∈ N, we use
the shorthand notation [n] = {1, . . . , n}. For two integer sets S1, S2 ⊆ [d], we de-
note AS1S2 to be the sub-matrix of A with elements {Ajk}j∈S1,k∈S2 . Moreover, we
denote ‖A‖max = maxjk |Ajk|, ‖A‖p = max‖v‖p=1 ‖Av‖p for p ≥ 1. For a sym-
metric matrix A ∈ R

d×d and a constants c,C, with a slight abuse of notation we
write c ≤ A ≤ C to mean that the matrices A − cId and CId − A are positive
semidefinite, where Id denotes the d × d identity matrix.

For a graph G, we use V (G), E(G), dmax(G) to refer to the vertex set, edge
set and maximum degree of G, respectively. We also denote V (E) as the ver-
tex set of the edge set E. We reserve special notation for the complete vertex set
V := [d], the complete edge set E := {e ∈ 2[d] | |e| = 2} and the complete graph
G := (V ,E). For two integers j, k ∈ [d], we use unordered pairs (j, k) = (k, j)

to denote undirected edges between vertex k and vertex j . Any symmetric matrix
A ∈ R

d×d naturally induces an undirected graph G(A), with vertices in the set
V and edge set E(G(A))= {(j, k) |Ajk �= 0, j �= k}. Additionally, if E is an arbi-
trary edge set (i.e., E ⊆E) for e := (j, k) ∈E we use the notation Ae =Ajk =Akj

interchangeably to denote the element e of the matrix A.
Given two sequences {an}, {bn}, we write an =O(bn) if there exists a constant

C <∞ such that an ≤ Cbn; an = o(bn) if an/bn → 0, and an � bn if there exists
positive constants c and C such that c < an/bn < C. Finally, we use the shorthand
notation ∧ and ∨ for min and max of two numbers, respectively.

1.4. Organization of the paper. The paper is structured as follows. A lower
bound on single edge dividers along with applications to several examples is pre-
sented in Section 2. In Section 3, we outline the alternative witness test, and il-
lustrate how to apply it to the examples considered in Section 2. In Section 4,
we generalize the lower bounds strategies from the single edge divider to multi-
ple edge divider stetting. A brief discussion is provided in Section 5. Full proof
of the main result of Section 2 is presented in Section 6. Numerical studies, real
data analysis and all remaining proofs are deferred to the Supplementary Material
[Neykov, Lu and Liu (2018a)].
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2. Single-edge null-alternative dividers. In this section, we derive a novel
and generic lower bound strategy, applicable to null and alternative hypotheses
which differ in one single edge: that is, under the Gaussian model, there exist two
matrices �0 ∈ S0 and �1 ∈ S1 whose induced graphs G0 := G(�0) and G1 :=
G(�1) differ in a single edge. We formalize this concept in the definition below.

DEFINITION 2.1 (Single-edge null-alternative divider). For a sub-decom-
position (G0,G1) of G, let G0 = (V ,E0) ∈ G0 be a graph under the null. We refer
to an edge set C = {e1, . . . , em}, as a (single-edge) null-alternative divider with the
null base G0 if for any e ∈ C the graphs Ge := (V ,E0 ∪ {e}) ∈ G1.

As remarked in the Introduction, if a large divider exists, it is expected that dif-
ferentiating G0 from an alternative graph Ge ∈ G1 is more challenging. Indeed, our
main result of this section confirms this intuition. We proceed to define a predis-
tance for a graph G and two edges e, e′ [which need not belong to E(G)] which
plays a key role in our lower bound result.

DEFINITION 2.2 (Edge geodesic predistance). Let G= (V ,E) and {e, e′} be
a pair of edges (e and e′ may or may not belong to E). We define

dG

(
e, e′

) := min
u∈e,v∈e′

dG(u, v),

where dG(u, v) denotes the geodesic distance between vertices u and v on the
augmented graph G. If such a path does not exist, dG(e, e′)=∞.

By definition, dG(e, e′) is a predistance, that is, dG(e, e) = 0 and
dG(e, e′) ≥ 0. Moreover, dG(e, e′) has the same value regardless of whether
e, e′ ∈ E(G). See Figure 1 for an illustration of dG(e, e′). Inspired by the clas-
sical concept of packing entropy on metric spaces [e.g., Yang and Barron (1999)],
we propose the structural packing entropy for graphs in an attempt to characterize
information-theoretic lower bounds for combinatorial inference.

DEFINITION 2.3 (Structural packing entropy). Let C be a nonempty edge set
and G be a graph. For any r ≥ 0, we call the edge set Nr ⊂ C an r-packing of C if
for any e, e′ ∈ Nr we have dG(e, e′) ≥ r . Define the structural r-packing entropy
as

(2.1) M(C, dG, r) := log max
{|Nr | |Nr ⊂ C,Nr is a r-packing of C

}
.

The packing entropy in Definition 2.3 is an analog to the classical packing en-
tropy on metric spaces in the sense that it is defined over an edge set C equipped
with a predistance dG(e, e′) based on the graph G.
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To study minimax lower bounds, we only need to focus on the Gaussian graph-
ical model whose structural properties are completely characterized by the preci-
sion matrices. We now formally define the sets of precision matrices S0 and S1
used in this section. Let

S0(θ, s) :=
{
� ∈M(s)

∣∣G(�) ∈ G0, min
e∈E(G(�))

|�e| ≥ θ
}

and(2.2)

S1(θ, s) :=
{
� ∈M(s)

∣∣G(�) ∈ G1, min
e∈E(G(�))

|�e| ≥ θ
}
,(2.3)

where M(s) is defined in (1.2). The parameter θ in the definitions of S0(θ, s) and
S1(θ, s) denotes the signal strength, and as we show below, its magnitude plays
an important role in determining whether one can distinguish between graphical
models in S0(θ, s) and S1(θ, s).

THEOREM 2.1 (Necessary signal strength). Let D be a fixed integer. Suppose
that

θ ≤ max
G0∈G0:dmax(G0)≤D,

C divider with null base G0

κ

√
M(C, dG0, log |C|)

n
∧ (1−C−1)∧ e− 1

2√
2(D + 2)

,(2.4)

where C is defined in (1.2). Then if M(C, dG0, log |C|) →∞ as n →∞, there
exists a sufficiently small constant κ in (2.4) (depending on D,C,L) such that
lim infn→∞ γ (S0(θ, s),S1(θ, s))= 1.

Theorem 2.1 allows us to quantify the signal strength necessary for combina-
torial inference via combinatorial constructions. The radius log |C| of the packing
entropy in (2.4) ensures that the pairs of distinct edges are sufficiently far apart.

The constant term (1−C−1)∧e
− 1

2√
2(D+2)

in (2.4) ensures that precision matrices with signal

strength θ indeed belong to M(s).
In Appendix B of the Supplementary Material [Neykov, Lu and Liu (2018a)]

we also provide a deletion-edge version of Theorem 2.1, which proceeds in the
opposite direction, that is, it starts from an alternative graph G1 and deletes edges
from the divider C to produce graphs under the null hypothesis. This strategy can
yield sharper results than Theorem 2.1 in certain situations, and we illustrate this
with two examples in Appendix B.

PROOF SKETCH. The proof of Theorem 2.1 can roughly be divided into four
steps. Full details of the proof will be provided in Section 6.

Step 1 (Connect the structural parameters to geometric parameters). Given the
adjacency matrices of the null and alternative graphs G0 and {Ge}e∈C , we construct
the corresponding precision matrices and make sure that they belong to S0(θ, s)

and S1(θ, s).
Step 2 (Construct minimax risk lower bound via Le Cam’s method). The second

step uses Le Cam’s method to lower bound γ (S0(θ, s),S1(θ, s)). This requires us
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to evaluate the chi-square divergence between a normal and a mixture normal dis-
tribution. The chi-square divergence can be expressed via ratios of determinants.
In particular, we show that the log chi-square divergence can be equivalently re-
expressed via an infinite sum of differences among trace operators of adjacency
matrix powers.

Step 3 (Represent the lower bound by the number of shortest closed walks in
the graph). In this step, we control the deviations of the differences of the trace
operators. Since the trace of the power of an adjacency matrix equals the number
of closed walks within the corresponding graph, we eliminate the trace powers
which are smaller than the shortest closed walks. The traces of the higher powers
are handled via matrix perturbation bounds.

Step 4 (Characterize the smallest magnitude of the geometric parameter using
the packing entropy). Lastly, we show that condition (2.4) ensures that the closed
walks on the packing of the divider are sufficiently lengthy, which implies that the
chi-square divergence vanishes when the signal strength θ is small. �

A typical application of Theorem 2.1 proceeds by constructing a graph G0 under
the null hypothesis, which is one edge apart from the alternative. Next, one builds
a divider C with as large as possible packing number, so that adding any edge from
C to G0 results in an alternative graph. Clearly, choosing the graph G0 is crucial
for this strategy to work. Below we give several examples of explicit constructions
of G0 and divider. At the end of the section, we also provide somewhat general
guidance how to select G0.

2.1. Some applications. In this section, we give several examples of combi-
natorial testing, which readily fall into the framework developed in Section 2. We
show one more additional example on self-avoiding paths in Appendix B of the
Supplementary Material [Neykov, Lu and Liu (2018a)].

EXAMPLE 2.1 (Connectivity testing). Consider the sub-decomposition G0 =
{G ∈ G |G disconnected} versus G1 = {G ∈ G |G connected}. We construct a base
graph G0 := (V ,E0) where

E0 := {
(j, j + 1)

�d/2�−1
j=1 ,

(�d/2�,1
)
, (j, j + 1)dj=�d/2�+1,

(�d/2� + 1, d
)}

,

and let C := {(j, �d/2� + j)
�d/2�
j=1 } (see Figure 1). Clearly, adding any edge from

C to G0 connects the graph, so C is a single edge divider with a null base G0.
Furthermore, the maximum degree of G0 equals 2 by construction. To construct a
packing set of C, we collect all edges (j, �d/2� + j) satisfying �log |C|� divides j

except if j > �d/2�−�log |C|�. This procedure results in a packing set with radius
at least �log |C|� which has cardinality of at least � |C|

�log |C|� � − 1. Therefore,

M
(
C, dG0, log |C|)≥ log

[⌊ |C|
�log |C|�

⌋
− 1

]
� log |C| � logd.
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FIG. 1. The graph G0 with two edges e, e′ ∈ C : dG0(e, e
′)= 2, d = 10.

Theorem 2.1 implies that the asymptotic minimax risk is 1 if θ < κ
√

logd/n ∧
(1−C−1)∧e

− 1
2

4
√

2
.

EXAMPLE 2.2 (m+ 1 versus m connected components, m ≥ √d). Let m ≥√
d be an integer. In this example, we are interested in testing whether the graph

contains m+ 1 connected components versus m connected components. The rea-
son to assume m≥√d is to make sure there are sufficiently many edges for con-
structing a single edge divider in order to obtain sharp bounds. The case when
m <

√
d is treated in Example B.2 via a different divider construction. (In fact,

the case m <
√

d requires deleting edges from the alternative rather than adding
edges to the null base. See Appendix B of the Supplementary Material [Neykov,
Lu and Liu (2018a)] for more details.) Formally we have the sub-decomposition
G0 = {G ∈ G | G has ≥ m + 1 connected components} versus G1 = {G ∈ G |
G has ≤ m connected components}. Construct the null base graph G0 = (V ,E0),
where E0 := {(j, j + 1)d−m−1

j=1 }, and we let C := {(j, j + 1)d−1
j=d−m} (see Figure 2).

Adding an edge e ∈ C to G0 converts the base graph G0 into a graph with m

connected components and, therefore, C is a single edge divider with a null base
G0. Additionally, the maximum degree of G0 is 2 by construction. Note that the
distance between any two edges in C is 0 if and only if they share a common ver-
tex, and ∞ in all other cases. This implies that we can construct a packing set
by taking every other edge in the set C. We conclude that M(C, dG0, log |C|) �
log(|C|/2) � logd . Hence, by Theorem 2.1 the minimax risk goes to 1 when

θ < κ
√

logd/n∧ (1−C−1)∧e
− 1

2

4
√

2
.

FIG. 2. Null base graph G0 with d −m− 1 edges, divider C (dashed), dG0(e, e
′)=∞, d = 7.
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FIG. 3. The graph G0 with two (dashed) edges e, e′ ∈ C such that dG0(e, e
′)= 2, d = 7.

EXAMPLE 2.3 (Cycle testing). Consider testing whether the graph is a for-
est vs the graph contains a cycle. Let G0 = {G ∈ G | G is cycle-free} and G1 =
{G ∈ G | G contains a cycle}. Define the null base graph G0 = (V ,E0), where
E0 := {(j, j + 1)d−1

j=1}. Let the edge set C := {(j, j + 2)dj=1}, where the addition is
taken modulo d (refer to Figure 3 for a visualization). By construction, we have
G0 ∈ G0 and |C| = d . Adding any edge from C to G0 results in a graph with a
cycle, and hence the edge set C is a single edge divider with a null base G0. The
maximum degree of G0 equals 2, and is thus bounded. Moreover, there exists a
(log |C|)-packing set of C of cardinality at least |C|−2

�log |C|�+2 which can be produced
by collecting the edges (j, j + 2) for j = k(log |C| + 2)+ 1 for k = 0,1, . . . and
j ≤ d − 2. The last observation implies that M(C, dG0, log |C|)� log |C|−2

�log |C|�+2 �
logd . Hence by Theorem 2.1 we conclude that the minimax risk goes to 1 when

θ < κ
√

logd/n∧ (1−C−1)∧e
− 1

2

4
√

2
.

EXAMPLE 2.4 (Tree versus connected graph with cycles). The construction in
Example 2.3 also shows that we have the same signal strength limitation to test for
cycles, even if we restrict to the subclass of connected graphs, that is, the class of
graphs under the null hypothesis is the class of all trees G0 = {G ∈ G |G is a tree},
and the alternative is the class of all connected graphs which contain a cycle—
G1 ∈ {G ∈ G |G is connected but is not a tree}.

EXAMPLE 2.5 (Triangle-free graph). Consider testing whether the graph con-
tains a triangle (i.e., 3-clique). More formally, let the decomposition of G be
G0 = {G ∈ G | G is triangle-free} and G1 = {G ∈ G | ∃ 3-clique in G}. It is clear
that in this case we can reuse the set C and its null base G̃0 = (V ,E0 ∪ {(1, d)}),
where E0 and C are taken as in Example 2.3.

2.2. General remarks on choosing a null base G0. The following result sheds
some light on reasonable choices of G0.

PROPOSITION 2.1. Let the graph G0 = (V ,E0) ∈ G0 have bounded maximum
degree. Suppose there exist constants 0 < c,γ ≤ 1 so that for each vertex v ∈ V ,
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one can find a set of vertices Wv satisfying |Wv| ≥ cdγ and for all w ∈Wv , we have
(V ,E0 ∪ {(v,w)}) ∈ G1. Then there exists a divider with null base G0 satisfying
M(C, dG0, log |C|)� logd .

Of note, for any edge set C one has M(C, dG0, log |C|)≤ log
(d

2

)� logd , which
implies that graphs G0 ∈ G0 as in Proposition 2.1 give scalar optimal bounds. The
existence of such graphs is dependent on the sub-decomposition (G0,G1). Notably,
all examples in Section 2.1 fall under the framework of Proposition 2.1. Its proof
can be found in the Supplementary Material [Neykov, Lu and Liu (2018a)].

REMARK 2.1. When � ∈ M(s), the results in Theorem 2.1 (and Theo-
rem B.1) suggest that a signal strength of order

√
logd/n is necessary for con-

trolling the minimax risk (1.3). In fact, Theorem 7 of Cai, Liu and Luo (2011)
shows that under such signal strength condition, support recovery of � is indeed
achievable, which further implies that controlling the minimax risk (1.3) is possi-
ble. A naive procedure for matching the lower bound is to first perfectly recover
the graph structure. Then construct a test based on examining whether the graph
has the desired combinatorial structure. Though such an approach is theoretically
feasible, it is not practical. First, such an approach is overly conservative and does
not allow us to tightly control the type I error at a desired level. Second, such an ap-
proach crucially depends on having a suitable thresholding parameter to estimate
the graph, which is in general not realistic.

In the next section, we present a family of testing procedures, which do not
require perfect support recovery of the full graph. Compared to the naive approach
described in Remark 2.1, our tests explicitly exploit the combinatorial structure of
the targeted hypotheses and can control the type I error at any desired level.

3. Alternative witness test. We start with a high-level outline of a new com-
binatorial inference approach for graphical models. For clarity, we mainly present
using the case of Gaussian graphical models, and comment on extensions to other
graphical models in Appendix D of the Supplementary Material [Neykov, Lu and
Liu (2018a)].

Importantly, the algorithms we develop in this section apply to alternative graph
classes which are stable under edge addition. Formally, for any G= (V ,E) ∈ G1
and any edge e, we require that the graph (V ,E ∪ {e}) ∈ G1. Note that due to edge
addition stability under the alternative, the full graph G = (V ,E) belongs to G1.
For a graph G ∈ G1, define the following class of edge sets:

W1(G)= {
E | ∀E,E ⊆E(G)⇒ (V ,E) ∈ G1

}
.

The set W1(G) collects all edge sets forming graphs in G1, which can be obtained
by the graph G via iteratively pruning one edge at a time. We use the shorthand
notation

W1 =W1(G).
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Consider the following parameter sets:

S0(s) := {
� ∈M(s) |G(�) ∈ G0

}
and(3.1)

S1(θ, s) :=
{
� ∈M(s)

∣∣G(�) ∈ G1, max
E∈W1

min
e∈E

|�e| ≥ θ
}
.(3.2)

The parameter set (3.1) does not impose any assumption on the minimum sig-
nal strength, thus is broader than the one defined in (2.2). In Definition (3.2), the
signal strength is not imposed on all edges of the alternative graphs. In fact, we
only need to impose the signal strength assumption on a subset of edges which
can be obtained by pruning the complete graph. Such a condition is much weaker
than the usual condition needed for perfect graph recovery. We note that for sub-
decompositions (G0,G1) satisfying W1(G)⊆W1 for all G ∈ G1, the parameter set
(3.2) is strictly larger than the parameter set (2.3).

Given n independent samples Xi ∼ N(0, (�∗)−1) and a sub-decomposition
(G0,G1), we formulate a procedure for testing H0 : �∗ ∈ S0(s) vs H1 : �∗ ∈
S1(θ, s). Let �̂ := n−1∑n

i=1 X⊗2
i be the empirical covariance matrix. Let �̂ be

any estimator of the precision matrix �∗ satisfying for some fixed constant K > 0:∥∥�̂−�∗∥∥
max ≤K

√
logd/n,(3.3) ∥∥�̂−�∗∥∥

1 ≤Ks
√

logd/n, ‖�̂�̂− Id‖max ≤K
√

logd/n,(3.4)

with probability at least 1− d−1 uniformly over the parameter space M(s) [recall
definition (1.2)]. An example of an estimator of �∗ with this properties is the
CLIME procedure introduced by Cai, Liu and Luo (2011) [see also (A.2)]. An
overview of the alternative witness test is sketched below:

i. In the first step, the alternative witness test identifies a minimal structure
witnessing the alternative.

ii. In the second step, the alternative witness test attempts to certify that the
minimal structure identified by the first step is indeed present in the graph.

Split the data D = {Xi}ni=1 in two approximately equal-sized sets D1 =
{Xi}�n/2�

i=1 ,D2 = {Xi}ni=�n/2�+1 and obtain estimates �̂
(1)

, �̂
(2)

on D1 and D2 cor-

respondingly. For the first step, we exploit �̂
(1)

to solve the following max-min
combinatorial optimization problem:

Ê := argmax
E∈W1

min
e∈E

∣∣�̂(1)
e

∣∣,(3.5)

where edge sets with the smallest cardinality are preferred, and further ties are
broken arbitrarily. Program (3.5) aims at identifying the smallest edge set in W1

whose minimal signal is as large as possible. Given a consistent estimator �̂
(1)

and sufficiently strong signal strength, the solution of (3.5) identifies a minimal
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substructure of G(�∗) belonging to G1. This strategy is motivated by the definition
of the alternative parameter set S1(θ, s) (3.2). We remark that solving program
(3.5) could be computationally challenging for some combinatorial tests. However,
for all examples considered in this paper, simple and efficient polynomial time
algorithms are available. We refer to the graph (V , Ê) as the minimal structure
witnessing the alternative. Although the minimal structure witness is defined in
full generality, for the ease of presentation we justify its validity on a case-by-case
basis.

In the second step, the alternative witness test attempts to certify the witness

structure using the estimate �̂
(2)

. Formally, we aim to test the hypothesis

H0 : ∃e ∈ Ê :�∗
e = 0 vs H1 : ∀e ∈ Ê :�∗

e �= 0.(3.6)

A rejection of the null hypothesis in (3.6) certifies the presence of the alternative
witness structure. If the test fails to reject, the alternative witness test cannot reject
the null structure hypothesis. In Section 3.1, we give a detailed description on how
the second step of the test works.

3.1. Minimal structure certification. In this section, we detail an algorithm for
testing (3.6). In fact, we present a general test for the following multiple testing
problem:

H0 : ∃e ∈E s.t. �∗
e = 0 vs H1 : ∀e ∈E,�∗

e �= 0,

using the data X = {Xi}ni=1, Xi ∼N(0, (�∗)−1), where E is a pre-given edge set.
Following Neykov et al. (2018b), for any j, k ∈ [d] we define the bias corrected
estimate

(3.7) �̃jk := �̂jk −
�̂

T

∗j (�̂�̂∗k − ek)

�̂
T

∗j �̂∗j
,

where ek is a canonical unit vector with 1 at its kth entry. Under mild regularity
conditions, we show that if �̂ satisfies (3.3) and (3.4), �̃jk admits the following
Bahadur representation:

√
n�̃jk = n−1/2

n∑
i=1

(
�∗T∗j X⊗2

i �∗∗k −�∗
jk

)+ op(1).(3.8)

This motivates a mutiplier bootstrap scheme for approximating the distribution of
the statistic

√
n�̃jk under the null hypothesis:

Ŵjk = n−1/2
n∑

i=1

(
�̂

T

∗jX⊗2
i �̂∗k − �̂jk

)
ζi,

where ζi ∼N(0,1), i ∈ [n] are independent and identically distributed. To approx-
imate the null distribution of the statistic max(j,k)∈S

√
n|�̃jk| over a subset S ⊆E,
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let c1−α,S denote the (1− α)-quantile of the statistic max(j,k)∈S |Ŵjk| (condition-
ing on the dataset X ). Formally, we let

c1−α,S := inf
t∈R

{
t
∣∣ P( max

(j,k)∈S
|Ŵjk| ≤ t

∣∣X)≥ 1− α
}
.(3.9)

As defined c1−α,S is a population quantity (conditioning on X ). In practice, an ar-
bitrarily accurate estimate ĉ1−α,S of c1−α,S can be obtained via Monte Carlo sim-
ulations. Below we describe a multiple edge testing procedure returning a subset
Ênc ⊆E of rejected edges (hypotheses). Our procedure is based on the step-down
construction of Chernozhukov, Chetverikov and Kato (2013), which is inspired by
the multiple testing method of Romano and Wolf (2005). Decompose the edge set
E = En ∪Enc, where En ∩Enc =∅, En is the subset of true null edges and Enc

is the set of nonnull edges. Define the parameter set

(3.10) MEn,Enc(s, κ)=
{
� ∈M(s)

∣∣∣ max
e∈En

|�e| = 0, min
e∈Enc

|�e| ≥ κ

√
logd

n

}
.

For a fixed edge set E, we say that an edge set Êr has strong control of the fami-
lywise error rate if

lim sup
n→∞

sup
En⊂E

sup
�∗∈MEn,Enc (s,κ)

P
(
En ∩ Êr �=∅

)≤ α(3.11)

for some pre-specified size α > 0. Our next result shows that Algorithm 1 returns
an edge set Ênc with strong control of the familywise error rate.

PROPOSITION 3.1 (Strong familywise error rate test). Let

�∗ ∈MEn,Enc(s, κ),

and furthermore

(3.12) s log(nd)
√

logd log(nd)/
√

n= o(1),
(
log(dn)

)6
/n= o(1).

Then for any fixed edge set E, the output Ênc of Algorithm 1 satisfies (3.11). In
addition, if the constant κ in (3.10) satisfies κ ≥ C′C4 for a fixed absolute constant
C′ > 0, we have lim infn→∞ infEn⊆E inf�∗∈MEn,Enc (s,κ)P(Enc = Ênc)= 1.

Algorithm 1 Multiple edge testing

Initialize Ên ←E.
repeat

Reject R←{e ∈ Ên : √n|�̃e| ≥ c1−α,Ên}.
Update Ên ← Ên \R.

until R =∅ or Ên =∅

return Ênc ←E \ Ên
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The first condition in (3.12) ensures the validity of the Bahadur represen-
tation in (3.8). The second condition in (3.12) is to guarantee validity of the
high-dimensional bootstrap, and a similar condition is required by Chernozhukov,
Chetverikov and Kato (2013). While the first condition of (3.12) is not necessarily
sharp, it is nearly optimal by ignoring logarithmic terms of dimension and sample
size comparing to the minimax rate established in Ren et al. (2015).

Of note, when κ is sufficiently large, Algorithm 1 achieves exact control of the
familywise error rate, that is, we have equality in (3.11). This happens since all
edges in Enc will be rejected with overwhelming probability, while the bootstrap
comparison is asymptotically exact for the remaining edges En. As a consequence
of this result, if the null hypothesis set S0(s) considered in (3.1) exhibits signal
strength as in definition (2.2), the alternative witness tests are exact.

DEFINITION 3.1. For an edge set E, let Ênc be the output of Algorithm 1 on
data X with level 1− α. Define the following test function:

ψB
α,E(X ) := 1

(
E = Ênc

)
.

ψB
α,E(X ) tests whether the set E is comprised only of nonnull edges.

3.2. Examples. In this section, we describe practical algorithms based on the
alternative witness test for testing problems outlined in Section 2.1. Our tests can
distinguish the null from the alternative hypotheses when the minimum signal
strength is sufficiently large. As we shall see, the magnitude of the required signal
strength is precisely of order

√
logd/n and, therefore, in view of Section 2 these

tests are minimax optimal. Recall that we observe n i.i.d. samples {Xi}ni=1 from

Xi ∼ Nd(0, (�∗)−1). We split the data into D1 = {Xi}�n/2�
i=1 ,D2 = {Xi}ni=�n/2�+1

and obtain estimates �̂
(1)

, �̂
(2)

on D1 and D2 correspondingly, for which (3.3)
and (3.4) hold. For space considerations, we present only the connectivity test in
full details, and we elaborate on the minimal structures for the remaining tests.
Full details can be found in Appendix C of the Supplementary Material [Neykov,
Lu and Liu (2018a)].

3.2.1. Connectivity testing. This example proposes a new procedure for
honestly testing whether G(�∗) is a connected graph. Accordingly, the sub-
decomposition is G0 := {G ∈ G | G disconnected} and G1 := {G ∈ G |
G connected}. The pair (G0,G1) determines the parameter sets definitions (3.1)
and (3.2).

Finding the minimal structure witness (3.5) reduces to finding a maximum span-
ning tree (MST) T̂ on the full graph with edge weights |�̂(1)

e |. The complexity of
finding a MST is O(d2 logd), where d is the number of vertices. We summarize
the procedure in Algorithm 2.

The results on connectivity testing are summarized in the following.
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Algorithm 2 Connectivity test
Input: D = {Xi}ni=1, level 0 < α < 1.

Split the data D1 = {Xi}�n/2�
i=1 ,D2 = {Xi}ni=�n/2�+1

Using D1 obtain estimate �̂
(1)

satisfying (3.3)
Find MST T̂ on the full graph with weights |�̂(1)

e |.
Output: ψB

α,T̂
(D2).

COROLLARY 3.1. Let θ = (2K + C ′C4)
√

logd/�n/2� for an absolute con-
stant C′ > 0 and assume that (3.12) holds. Then for any fixed level α, the test
ψB

α,T̂
(D2) from the output of Algorithm 2 satisfies

lim sup
n→∞

sup
�∗∈S0(s)

P(reject H0)≤ α, lim inf
n→∞ inf

�∗∈S1(θ,s)
P(reject H0)= 1.

3.2.2. Connected components testing. Connected component testing is more
general compared to connectivity testing. For m ∈ [d − 1], let H0 : # connected
components ≥ m+ 1 vs H1 : # connected components ≤ m. Testing connectivity
is a special case when m= 1.

For a fixed m ∈ [d − 1], define the sub-decomposition G0 = Fm+1 and G1 =⋃
j≤mFj where

Fj := {G ∈ G |G has exactly j connected components} for all j ∈ [d].
The sub-decomposition (G0,G1) also defines the parameter sets (3.1) and (3.2).
Recall that a sub-graph F of G, that is, E(F) ⊂ E(G) and V (F) = V (G) = V ,
is called a spanning forest of G, if F contains no cycles, adding any edge e ∈
E(G) \ E(F) to E(F) creates a cycle, and |E(F)| is maximal. This definition
extends naturally to graphs with positive weights on their edges. It is easy to check
that the minimal structure witness (3.5) is the maximal spanning forrest with m

connected components, and can be found efficiently via a greedy algorithm. For
more details, see Appendix C of the Supplementary Material [Neykov, Lu and Liu
(2018a)].

3.2.3. Cycle testing. In this example, we sketch how to test whether the
graph is a forest. Recall the sub-decomposition G0 = {G ∈ G | G is a forest} and
G1 = {G ∈ G | G contains a cycle}. The pair (G0,G1) also defines the parameter
sets (3.1) and (3.2). The minimal structure witness (3.5) is a cycle, and can be
found via greedily adding edges until a cycle is formed. For more details, see Ap-
pendix C of the Supplementary Material [Neykov, Lu and Liu (2018a)].

3.2.4. Triangle-free graph testing. In this example, we discuss an algo-
rithm for testing whether the graph is triangle-free. The corresponding sub-
decomposition is G0 = {G ∈ G | G is triangle-free} and G1 = {G ∈ G | ∃ 3-clique
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subgraph of G}. The pair (G0,G1) also defines the parameter sets (3.1) and (3.2).
The minimal structure witness is a triangle, and can be greedily identified.

4. Multi-edge dividers. The results of Section 2 (and Appendix B of the Sup-
plementary Material) have two major limitations. First, the null base G0 is assumed
to be of bounded degree. Second, our results cover only tests for which there exists
a singe-edge divider. In this section, we relax both of these conditions. The follow-
ing motivating example illustrates a relevant testing problem which does not fall
into the framework of Section 2.

Maximum degree testing. Consider testing whether the maximum degree of the
graph dmax satisfies dmax ≤ s0 vs dmax ≥ s1, where s0 < s1 ≤ s are integers which
are allowed to scale with n. In this case, it is impossible to simultaneously construct
a null base graph G0 of bounded degree and a single-edge divider C.

To handle multiple edge dividers, we first extend Definitions 2.1 and 2.2 to allow
for the above examples.

DEFINITION 4.1 (Null-alternative divider). Let G0 = (V ,E0) ∈ G0 be a fixed
graph under the null with adjacency matrix A0. We call a collection of edge sets
C a (multi-edge) divider with null base G0, if for all edge sets S ∈ C we have
S∩E0 =∅ and (V ,E0∪S) ∈ G1. For any edge set S ∈C, we denote the adjacency
matrix of the graph (V ,S) with AS .

DEFINITION 4.2 (Edge set geodesic predistance). For two edge sets S and S′
and a given graph G, let dG(S,S′)=mine∈S,e′∈S′ dG(e, e′).

We provide two generic strategies for obtaining combinatorial inference lower
bounds on the signal strength. The first strategy, described in Section 4.1, assumes
that all S ∈ C satisfy |S| ≤ U for some fixed constant U . The second strategy,
presented in Section 4.2, does not require bounded cardinality of the edge sets
S, but requires that the null bases and dividers have some special combinatorial
properties.

4.1. Bounded edge sets. Below we consider an extension of Theorem 2.1 for
multi-edge dividers, where the number of edges in each set S ∈ C satisfy |S| ≤ U

for some fixed integer U ∈N. In contrast to Section 2, here the graph G0 is allowed
to have unbounded degree.

THEOREM 4.1. Let G0 ∈ G0 be a graph under the null, and let C be a multi-
edge divider with null base G0. Suppose that for some sufficiently small absolute
constant κ > 0

(4.1) θ ≤ κ

√
M(C, dG0, log |C|)

nU
∧ κ

U(‖A0‖2 + 2U)
∧ 1−C−1

4(‖A0‖1 + 2U)
.

If M(C, dG0, log |C|)→∞, we have lim infn→∞γ (S0(θ, s),S1(θ, s))= 1.
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Theorem 4.1 is an extension of Theorem 2.1. Specifically, Theorem 2.1 cor-
responds the setting where U = 1, and ‖A0‖2 ≤ ‖A0‖1 ≤ D (recall that D is an
upper bound of the graph degree). Even though by assumption U =maxS∈C |S| is
bounded, we explicitly keep the dependency on U in (4.1) to reflect how the bound
changes if U is allowed to scale. The first term on the right-hand side of (4.1) is the
structural packing entropy, while the remaining two terms ensure the parameter θ

is small enough to construct a valid packing set (more details are provided in the
proof).

We illustrate the usefulness of Theorem 4.1 by an example similar to the ones
in Section 2.1. Consider testing whether the maximum degree of the graph G(�∗)
is at most s0 versus it is at least s1, where s0 < s1 ≤ s can increase with n but
the null-alternative gap s1 − s0 remains bounded. Therefore, we cannot apply
Theorem 2.1 but should use Theorem 4.1 instead. Define the sub-decomposition
G0 = {G | dmax(G)≤ s0} and G1 = {G | dmax(G)≥ s1}, respectively.

EXAMPLE 4.1 (Maximum degree test with bounded null-alternative gap). Let
S0(θ, s) and S1(θ, s) be defined in (2.2) and (2.3). Assume that s logd/n =
o(1), s

√
logd/n = O(1) and s = O(dγ ) for some γ < 1. Then if κ is small

enough and θ < κ
√

logd/n, we have lim infn→∞ γ (S0(θ, s),S1(θ, s))= 1.

The proof of Example 4.1 is deferred to the Supplementary Material [Neykov,
Lu and Liu (2018a)].

4.2. Scaling edge sets. Theorem 4.1 requires the cardinalities of the edge sets
in the divider C to be bounded. In this section, we consider multi-edge dividers C
allowing the sizes of S ∈ C to increase with n. For this case, the previous notion
of packing entropy based on geodesic predistance is no longer effective. Instead,
we introduce a new mechanism called buffer entropy to quantify the lower bound
under scaling multi-edge dividers.

We first intuitively explain why the structural entropy in Theorem 4.1 may not
be sufficient for handling dividers with scaling edge sets. Recall that Theorem 4.1
uses the structural entropy M(C, dG0, log |C|) to characterize the lower bound.
In turn, the structural entropy is calculated based on the edge set geodesic pre-
distance dG0 in Definition 4.2. One difference between fixed and scaling edge
sets sizes is that one can only pack a limited number of edge sets or large size
which are sufficiently far apart (and hence do not overlap). A less wasteful strat-
egy would be to allow for the edge sets to overlap. However, in general, differ-
ent edge sets S,S′ ∈ C may have multiple overlapping vertices and the notion of
geodesic predistance is no longer precise enough to reflect the closeness between
S and S′.

Below we introduce a concept called vertex buffer, which helps to measure the
closeness between edge sets S and S′ more precisely than the geodesic predis-
tance.
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FIG. 4. Visualization of the vertex buffer in VS,S′ . Here, S, S′ are plotted with dashed and dotted
edges, respectively, and G0 is in solid edges. The vertices in the buffer are marked in the dashed
squares.

DEFINITION 4.3 (Vertex buffer). Let G0 = (V ,E0) be a given graph and S,S′
be two edge sets. The vertex buffer of S,S′ under G0 is defined as

VS,S′ := {
V (E0 ∪ S)∩ V

(
S′
)}∪ {V (E0 ∪ S′

)∩ V (S)
}
.3

An important property of the set VS,S′ is that all paths passing through at least
one edge in both S and S′ must contain at least one vertex in VS,S′ . In that sense,
a large buffer size |VS,S′ | indicates that the edge sets S and S′ are close to each
other. We visualize an example of a vertex buffer in Figure 4.

In contrast to the bounded edge sets case, when the edge sets in C are allowed to
scale in size, it is not effective to build packing sets based on the predistance, since
this strategy limits the number of edge sets we can build. One way to increase the
cardinality of C is to consider a larger number of potentially overlapping struc-
tures, and use the buffer size as a more precise closeness measure between these
structures. Below we formalize the concept of buffer entropy which quantifies this
intuition.

DEFINITION 4.4 (Buffer entropy). Let C be a multi-edge divider with a base
graph G0. The buffer entropy is defined as

MB(C,G0) := log
([

max
S∈C

ES′ |VS,S′ |
]−1)

,(4.2)

where the expectation ES′ is taken from uniformly sampling S′ from C.

We want the buffer entropy to be as large as possible to achieve sharp lower
bounds. Note the following trivial bound on the size |VS,S′ |:

|VS,S′ | ≤
∑

v∈V (S)

1(v ∈ VS,S′)+
∑

v∈V (S′)
1(v ∈ VS,S′).

3We suppress the dependence of VS,S′ on G0 to ease the notation.



COMBINATORIAL INFERENCE FOR GRAPHICAL MODELS 815

An important condition allowing us to relate the signal strength lower bounds
to buffer entropy requires that the divider is such that the variables
{1(v ∈ VS,S′)}v∈V (S) are negatively associated.

DEFINITION 4.5 (Incoherent divider). The collection of edge sets C is called
an incoherent divider with a null base G0, if for any fixed S ∈ C, the random
variables {1(v ∈ VS,S′)}v∈V (S) with respect to a uniformly sampled S′ from C are
negatively associated. In other words, for any pair of disjoint sets I, J ⊆ V (S) and
any pair of coordinatewise nondecreasing functions f,g we have

Cov
(
f
({

1(v ∈ VS,S′)
}
v∈I

)
, g
({

1(v ∈ VS,S′)
}
v∈J

))≤ 0.

We show concrete constructions of incoherent dividers in Examples 4.2, 4.3
and 4.4. As a remark, negative association is satisfied by a variety of classical
discrete distributions such as the multinomial and hypergeometric, and even more
generally by the class of permutation distributions [e.g., Joag-Dev and Proschan
(1983), Dubhashi and Ranjan (1998)]. It is a standard assumption that has been
exploited in other works [e.g., Addario-Berry et al. (2010)] for obtaining lower
bounds.

Besides the packing entropy, the lower bound in Theorem 4.1 involves the max-
imum degree ‖A0‖1 and the spectral norm ‖A0‖2. We define similar quantities for
the scaling edge sets case. For a divider C with null base G0 and any two edge sets
S,S′ ∈C define the notation

AS,S′ :=A0 +AS +AS′ .(4.3)

As the sizes of S,S′ ∈ C are no longer ignorable, we need to consider the
matrix AS,S′ (4.3) instead. Denote the uniform maximum degree as 	 :=
maxS,S′∈C ‖AS,S′‖1 and uniform spectral norm as 
 := maxS,S′∈C ‖AS,S′‖2. We
define

R := max
S,S′∈C

|S ∩ S′|
|VS,S′ | , B :=
4 ∧ max

S,S′∈C

(
	2|VS,S′ |).

R is an edge-node ratio measuring how dense the edge set S∩S′ is compared to the
vertex buffers. The quantity B is an auxiliary quantity which assembles maximum
degrees, spectral norms and buffer sizes and helps to obtain a compact lower bound
formulation.

Below we connect the structural features we defined above to the lower bound.
Recall Definitions (2.2) and (2.3) on S0(θ, s) and S1(θ, s). We have the following
theorem.

THEOREM 4.2. Let C be an incoherent divider with a null base G0. Then if
MB(C,G0)→∞ and

θ ≤
√

MB(C,G0)

4nR ∧
√
R
B ∧ 1−C−1

2
√

2	
,(4.4)

the minimax risk satisfies lim infn→∞γ (S0(θ, s),S1(θ, s))= 1.
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When the sample size n is sufficiently large, the buffer entropy term on the right-
hand side of (4.4) is the smallest term and drives the bound which bares similarity
to Theorem 4.1.

To better illustrate the usage of Theorem 4.2, we consider three examples. First,
we focus on the problem of testing whether the maximum degree in the graph is
≤ s0 versus ≥ s1. When s0 = 0, this problem is related to the problem of detecting
a set of s1 signals in the normal means model [e.g., Ingster (1982), Baraud (2002),
Donoho and Jin (2004), Addario-Berry et al. (2010), Verzelen and Villers (2010),
Arias-Castro, Candès and Plan (2011)]. However the two problems are distinct,
since we are studying structural testing in the graphical model setting. Given s0 <

s1 ≤ s, we let the sub-decomposition be G0 = {G | dmax(G) ≤ s0} and G1 = {G |
dmax(G)≥ s1}. We summarize our results in the following

EXAMPLE 4.2 (Maximum degree test with scaling divider). Let S0(θ, s) and
S1(θ, s) be defined in (2.2) and (2.3). Assume that s

√
logd/n = O(1) and s =

O(dγ ) for some γ < 1/2. Then for a small enough absolute constant κ if θ <

κ
√

logd/n, we have lim infn→∞ γ (S0(θ, s),S1(θ, s))= 1.

Due to space limitations, we show how this example follows from Theorem 4.2
in Appendix E of the Supplementary Material [Neykov, Lu and Liu (2018a)]. Here,
we simply sketch the construction of the divider in Figure 5. On an important note,
the negative association of the random variables {1(v ∈ VS,S′)}v∈V (S) can be easily
deduced by a result of Joag-Dev and Proschan (1983). Our second example further
illustrates the usage of Theorem 4.2 with a clique detection problem. Define the
null and alternative parameter spaces: S0 := {Id} and

S1(θ, s) := {
Id + θ

(
vvT − Id

) | θ ∈ (0,1),∀j : vj ∈ {±1,0},‖v‖2
2 = s

}
.

FIG. 5. Test for maximum degree G0 = {G | dmax(G) ≤ s0} and G1 = {G | dmax(G) ≥ s1} with
s0 = 3 and s1 = 6. We split the vertices into two parts {1, . . . , �√d�} and {�√d�+ 1, . . . , d}. We use
the first part of vertices to construct s0-star graphs as G0 (visualized with solid edges). To construct
the divider C, we select any s1 − s0 vertices (e.g., vertices 13,14,16) from the second vertices part
{�√d� + 1, . . . , d} and connect them to any center of the s0-star graphs in G0 (e.g., vertex 1). This
gives us one of the edge sets S ∈ C [e.g., S = {(1,13), (1,14), (1,16)} depicted in dashed edges in
the figure]. C is comprised by all such edge sets. We depicted the vertex buffer VS,S′ = {14,16} for
S = {(1,13), (1,14), (1,16)} and S′ = {(5,14), (5,16), (5,18)} and S ∩ S′ =∅.
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This setup is related to that in Berthet and Rigollet (2013), Johnstone and Lu
(2009). Our case is different from previous works because we parametrize the
precision matrix rather than the covariance matrix, and the parametrization is dis-
tinct. Under our parametrization, the graph in the alternative hypothesis consists
of a single s-clique.

EXAMPLE 4.3 (Sparse clique detection). Suppose s =O(dγ ) for a γ < 1/2.

For values of θ < 1
4
√

2s
∧
√

log(d/s2)
4ns

, we have lim infn→∞ γ (S0,S1(θ, s))= 1.

We show how Example 4.3 follows from Theorem 4.2 in Appendix E of the
Supplementary Material [Neykov, Lu and Liu (2018a)]. The divider construction
we use is simply drawing s vertices and connecting them to form a s-clique. Fig-
ure 6(a) illustrates two sets from the divider along with their vertex buffer.

We conclude this section by a final example on cycle detection. In this exam-
ple, the sub-decomposition is G0 = {(V ,∅)}, and G1 = {(V ,C)|C = {(v1, v2), . . . ,

(vs−1, vs), (vs, v1)}, vi ∈ V } for an integer s ∈N. We have the following example,
whose proof can be found in Appendix E of the Supplementary Material [Neykov,
Lu and Liu (2018a)]. We show two sets from the divider on Figure 6(b).

EXAMPLE 4.4 (Sparse cycle detection). Suppose s = O(dγ ) for a γ <

1/2. Then for a small enough absolute constant κ if θ < κ
√

logd/n, we have
lim infn→∞ γ (S0(θ, s),S1(θ, s))= 1.

4.3. Upper bounds. Algorithms matching the lower bounds developed in Sec-
tions 4.1 and 4.2 are discussed in Appendix E.1 of the Supplementary Material
[Neykov, Lu and Liu (2018a)].

FIG. 6. Sparse clique and cycle detection with s = 5. In both cases, we set G0 = (V ,∅) and vi-
sualize two intersecting S,S′ ∈ C: in panel (a), S is the 5-clique K{1,3,5,7,9}, S′ is the 5-clique
K{1,2,3,9,10} and VS,S′ = {1,3,9}; in panel (b), S is the 5-cycle C{1,3,5,7,9}, S′ is the 5-cycle
C{1,2,3,9,10} and VS,S′ = {1,3,9}.
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5. Discussion. In this manuscript, we provide general results for upper and
lower bounds of testing graph properties. There is still room to improve the proof
techniques for lower bounding. Our arguments rely only on “one-sided” alterna-
tives, and it is possible to obtain sharper bounds by additional randomization such
as in Baraud (2002). Additionally, we use the Gaussian distribution to quantify
the lower bounds. We are further interested in generalizing our results to other
important graphical models, such as the Ising model, in our future studies.

6. Proof of Theorem 2.1. In this section, we prove the main result of Sec-
tion 2. To begin with, we give a high level picture of our proof. The argument
consists of four major steps. Our first three steps will show that, there exists a
constant R such that if θ ≤ 1−C−1√

2(‖A0‖1+2)
we have

(6.1) γ
(
S0(θ, s),S1(θ, s)

)≥ 1− 1

2

√√√√√ 1

|C|2
∑

e,e′∈C
exp

(
n
(Rθ)2dG0 (e,e′)+2

dG0(e, e
′)+ 1

)
− 1.

To establish this result, in the first step, we select one precision matrix from the
null S0(θ, s) and a set of precision matrices from the alternative S1(θ, s). In the
second step, we apply Le Cam’s lemma to the precision matrices constructed above
to get a lower bound of γ (S0(θ, s),S1(θ, s)). In the third step, we establish trace
perturbation inequalities to further connect the lower bound achieved in the second
step to the geometric quantities of the graphs. In the fourth step, we prove the
theorem by showing that the right-hand side of (6.1) goes to 1 if (2.4) is satisfied.

Step 1 (Matrix construction). In this step, we construct a class of precision ma-
trices based on the null base graph G0 and the divider set C and verify that these
matrices indeed belong to the sets S0(θ, s) and S1(θ, s). We begin with giving the
upper bound of matrix norms of adjacent inequalities. Let A0 be the adjacency ma-
trix of the graph G0. Observe that since A0 is symmetric, by Hölder’s inequality
‖A0‖2 ≤√‖A0‖1‖A0‖∞ = ‖A0‖1 ≤D.

Similarly, denote with Ae the adjacency matrix of the graph (V , {e}) for e ∈ C.
Under our assumptions, it follows that A0 + Ae is the adjacency matrix of the
graph Ge = (V ,E0 ∪ {e}). For brevity, for any two edges e, e′ ∈ C we define
the shorthand notation Ae,e′ := A0 + Ae + Ae′ . Take �0 = I + θA0, �e = I +
θ(A0 +Ae), �e,e′ = I+ θAe,e′ , for e, e′ ∈ C, θ > 0. By the triangle inequality for
any e, e′ ∈ C, we have

max
(‖A0‖2,‖A0 +Ae‖2,‖Ae,e′‖2

)≤ ‖A0‖2 + 2,

max
(‖A0‖1,‖A0 +Ae‖1,‖Ae,e′‖1

)≤ ‖A0‖1 + 2.

Recall Definition (1.2) of the set M(s). Next, we make sure that the matrices �0
and �e fall into M(s) and in addition the matrix �e,e′ > 0. For the upper bounds,
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it suffices to choose η satisfying

max
(‖�0‖2,‖�e‖2

)≤ 1+ (‖A0‖2 + 2
)
θ ≤ C,

max
(‖�0‖1,‖�e‖1

)≤ 1+ (‖A0‖1 + 2
)
θ ≤ L.

Recall that ‖A0‖2 ≤ ‖A0‖1, and C ≤ L hence both inequalities are implied if
1+ (‖A0‖1 + 2)θ ≤ C. This inequality holds since

θ <
(1−C−1)∧ e−1/2

√
2(D+ 2)

≤ C − 1

(‖A0‖1 + 2)
,

where the last inequality is true since D = ‖A0‖1, and C ≥ 1 and, therefore,
C − 1≥ 1−C−1. Furthermore, by Weyl’s inequality,

(6.2) λd(�0), λd(�e), λd(�e,e′)≥ 1− θ
(‖A0‖2 + 2

)≥ 1− θ
(‖A0‖1 + 2

)
,

where λd denotes the smallest eigenvalue of the corresponding matrix. We want

to ensure that the last term is at least C−1. Since by assumption θ < 1−C−1√
2(‖A0‖1+2)

,

the above inequalities are satisfied. Furthermore, we have G0 ∈ G0,Ge ∈ G1 for all
e ∈ C, and hence the induced graphs G(�0) ∈ G0 and G(�e) ∈ G1 for all e ∈ C.
This shows that �0 ∈ S0(θ, s) and �e ∈ S1(θ, s). We also obtain as a by-product
that �e,e′ ≥ 0.

Step 2 (Minimax risk lower bound). In this step, we obtain a lower bound on
the minimax risk driven by Le Cam’s lemma [Le Cam (1973)]. Using a deter-
minant identity, we control the chi-square divergence by the traces of adjacency
matrices’ powers. Put the uniform prior on C and consider the models generated
by N(0, (�e)

−1) where e ∈ C. Define

P = 1

|C|
∑
e∈C

P�e ,

where P�e we define the probability measure when the data is i.i.d. Xi ∼
N(0, (�e)

−1), and let P�0 be the probability measure when the data is i.i.d.
Xi ∼N(0, (�0)

−1). Next, by Neyman–Pearson’s lemma, we have

(6.3) γ (S0,S1)≥ inf
ψ

[
P�0(ψ = 1)+ P(ψ = 0)

]= 1− TV(P,P�0),

where for two probability measures P,Q� λ on a measurable space (,A), TV
stands for total variation distance, and is defined as

TV(P,Q)= sup
A∈A

∣∣P(A)−Q(A)
∣∣= 1

2

∫ ∣∣∣∣dP

dλ
(ω)− dQ

dλ
(ω)

∣∣∣∣dλ(ω).

By Cauchy–Schwarz, one has

1− TV(Pπ ,P�0)≥ 1− 1

2

√
Dχ2(Pπ ,P�0),(6.4)
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where Dχ2(P,Q) is the chi-square divergence between the measures P,Q and is
defined as

Dχ2(P,Q)=
∫ (

dP

dQ
(ω)− 1

)2
dQ(ω)=

∫ (
dP

dQ
(ω)

)2
dQ(ω)− 1,

assuming that P �Q. Observe that Dχ2(P,P�0) can be equivalently expressed
as

(6.5) Dχ2(P,P�0)= E�0L
2
�0
− 1,

where L�0 = 1
|C|
∑

e∈C
dP�e

dP�0
is the integrated likelihood ratio, and E�0 denotes

the expectation under Xi ∼N(0, (�0)
−1). Hence by (6.3) and (6.4), it suffices to

obtain upper bounds on the integrated likelihood ratio in order to lower bound the
minimax risk (1.3). Writing out the likelihood ratio comparing the normal distribu-
tion with precision matrix �0 to the uniform mixture of normal distribution with
precision matrix �e for e ∈ C, we get

L�0 =
1

|C|
∑
e∈C

(
det(�e)

det(�0)

)n/2 n∏
i=1

exp
(−XT

i θAeXi/2
)
.

To calculate the chi-square distance in (6.5), next we square this expression and
take its expectation under P�0 to obtain

E�0L
2
�0
= 1

|C|2
∑

e,e′∈C

(det(�e)det(�e′))n/2

(det(�0))n

×E�0 exp
(
−
∑n

i=1 XT
i θ(Ae +Ae′)Xi

2

)

= 1

|C|2
∑

e,e′∈C

(
det(�e)

det(�0)

)n/2( det(�e′)

det(�e,e′)

)n/2
.

(6.6)

Next, we will expand the determinants above. Recall that we have ensured that
1− θ(‖A0‖2 + 2) > 0 (see 6.2). This implies

θ max
(‖A0‖2,‖A0 +Ae‖2,‖A0 +Ae′‖2,‖Ae,e′‖2

)≤ 1.

For what follows, for a symmetric matrix Ad×d we denote its ordered eigenvalues
with λ1(A) ≥ λ2(A) ≥ · · · ≥ λd(A). Let A ∈ R

d×d be a symmetric matrix such
that ‖A‖2 ≤ 1. Then we have

log det(I+A)=
d∑

j=1

logλj (I+A)=
d∑

j=1

log
(
1+ λj (A)

)

=
d∑

j=1

∞∑
k=1

(−1)k+1
λk

j (A)

k
=

∞∑
k=1

(−1)k+1 Tr(Ak)

k
.
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Using the form det(I+A)= exp(log det(I+A)) and plugging the above equation
into (6.6), we conclude that

E�0L
2
�0
= 1

|C|2
∑

e,e′∈C
exp

(
n

2

∞∑
k=1

(−θ)k

k

(
T k

1 + T k
2
))

,

where

T k
1 := Tr

[
Ak

0 − (A0 +Ae)
k]T k

2 := Tr
[
(Ae,e′)

k − (A0 +Ae′)
k].

Step 3 (Trace perturbation inequalities). In this step, we control T k
1 + T k

2 in
terms of k and link it with the geometric quantities of the graph. We view T k

1 as
the perturbation difference between Tr[Ak

0] and Tr[(A0 + Ae)
k] and we treat T k

2
similarly. In the following step, we aim to develop the perturbation inequalities for
the trace of matrix powers.

First, we will argue that T k
1 + T k

2 ≥ 0 for all k ∈ N. To see this, recall that the
trace operator of an adjacency matrix M satisfies

Tr
(
Mk)= number of all closed walks of length k.

First, we consider case e �= e′. Notice that all closed walks in G(A0 +Ae) that do
not belong to G(A0) have to pass through the edge e at least once. Similarly, all
closed walks in G(A0+Ae′) that do not belong to G(A0) have to pass through the
edge e′ at least once. Furthermore, all closed walks of length k passing through
either e or e′ belong to G(Ae,e′). In addition, G(Ae,e′) might contain extra closed
walks passing through both e and e′. This shows

T k
1 + T k

2 ≥ 0

for all k. This shows that when k is odd we have (−θ)k(T k
1 + T k

2 )≤ 0, and thus to
control E�0L

2
�0

it suffices to focus only on even k.

Next, we prove that for k < 2dG0(e, e
′)+ 2, we have T k

1 + T k
2 ≡ 0. To see this,

first consider the case e �= e′. Notice that the graph G(Ae,e′) cannot contain paths
passing through both e and e′ unless k ≥ 2dG0(e, e

′)+ 2. To see this, notice that
no even length closed walk between e and e′ can exist if the length of this walk is
smaller than 2dG0(e, e

′) plus the two edges e and e′. This proves our claim in the
case e �= e′. In the special case e= e′, the length of the path trivially needs to be at
least of length 2 to pass through both e and e′.

We will now argue that for even k ∈ N we have T k
1 + T k

2 ≤ 2(‖A0‖2 + 2)k . In
fact, we will prove that T k

1 ≤ 0 for all k and T k
2 ≤ 2(‖A0‖2+ 2)k for all even k. To

see that T k
1 ≤ 0, note that G(A0) contains less closed walks than G(A0 +Ae).

Recall that for a symmetric matrix Ad×d we denote its ordered eigenvalues with
λ1(A) ≥ λ2(A) ≥ · · · ≥ λd(A). To this end, we state a helpful result whose proof
is deferred to the Supplementary Material [Neykov, Lu and Liu (2018a)].
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LEMMA 6.1. For two symmetric m×m matrices A and B, and any constants
c1 ≥ c2 ≥ · · · ≥ cm, and a permutation σ on {1, . . . ,m} we have

m∑
j=1

cσ(j)λj (A+B)≤
m∑

j=1

cσ(j)λj (A)+
m∑

j=1

cjλj (B).

Using Lemma 6.1 for the matrices A=Ae,B=A0 +Ae′ with constants

cσ(j) = sign
(
λj (Ae,e′)− λj (Ae)

)∣∣λj (Ae,e′)− λj (Ae)
∣∣k−1

,

we obtain

d∑
j=1

∣∣λj (Ae,e′)− λj (Ae)
∣∣k ≤ d∑

j=1

cjλj (A0 +Ae′)

≤
[

d∑
j=1

|cj | k
k−1

] k−1
k
[

d∑
j=1

∣∣λj (A0 +Ae′)
∣∣k] 1

k

,

where the last inequality follows by Hölder’s inequality. We conclude that

(6.7)
d∑

j=1

∣∣λj (Ae,e′)− λj (Ae)
∣∣k ≤ d∑

j=1

∣∣λj (A0 +Ae′)
∣∣k.

Next, observe that the negative adjacency matrix −Ae of the single edge graph
(V , {e}) has very simple eigenvalue structure: 1,−1 and d − 2 zeros. Hence we
conclude that for even k

T k
2 = Tr

(
(Ae,e′)

k)− Tr
(
(A0 +Ae′)

k)
=

d∑
j=1

∣∣λj (Ae,e′)
∣∣k − d∑

j=1

∣∣λj (A0 +Ae′)
∣∣k

≤ ∣∣λ1(Ae,e′)
∣∣k − ∣∣λ1(Ae,e′)− 1

∣∣k + ∣∣λd(Ae,e′)
∣∣k − ∣∣λd(Ae,e′)+ 1

∣∣k
≤ ∣∣λ1(Ae,e′)

∣∣k + ∣∣λd(Ae,e′)
∣∣k ≤ 2‖Ae,e′‖k

2 ≤ 2
(‖A0‖2 + 2

)k
.

The last shows that indeed T k
1 +T k

2 ≤ 2(‖A0‖2+2)k as claimed. Putting every-
thing together, we obtain

∞∑
k=1

(−θ)k

k

[
T k

1 + T k
2
]≤ ∞∑

2|k,k≥2dG0 (e,e′)+2

θk

k

[
T k

1 + T k
2
]

≤
∞∑

2|k,k≥2dG0 (e,e′)+2

2((‖A0‖2 + 2)θ)k

k
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≤ 2((‖A0‖2 + 2)θ)2dG0 (e,e′)+2

(2dG0(e, e
′)+ 2)(1− (θ(‖A0‖2 + 2))2)

≤ 2((‖A0‖2 + 2)θ)2dG0 (e,e′)+2

dG0(e, e
′)+ 1

,

where in the last inequality we used the fact that θ ≤ 1√
2(‖A0‖2+2)

which fol-

lows by the requirements on θ . This completes the proof of (6.1) where R =√
2(‖A0‖2 + 2).
Step 4 (Rate control). The goal in this final step is to show that if (2.4) holds,

the minimax risk

lim inf
n→∞ γ

(
S0(θ, s),S1(θ, s)

)= 1.

The proof is technical, but the high-level idea is to clip the first log |C| degrees in
(6.1) and deal with two separate summations. It turns out that the scaling assumed
on θ in (2.4) is precisely enough to control both the summation of all degrees
below log |C| and the summation of all degrees above log |C|. Define the following
quantities:

Kr :=
∣∣{(e, e′) | e, e′ ∈ C, dG0

(
e, e′

)= r
}∣∣,

where (e, e′) are unordered edge pairs, and observe that
∑

r≥0 Kr = (|C|
2

)+ |C| by

definition. We will in fact, first show that if θ ≤ κ

√
log |C|

n
for some small κ , and

�log |C|�∑
r=0

Kr =O
(|C|2−γ )(6.8)

for some 1/2 < γ ≤ 1, then lim infγ (S0(θ, s),S1(θ, s))= 1 provided that |C| →
∞. We will then derive the theorem as a corollary to this observation.

By (6.1), it suffices to control

(6.9)
2

|C|2
∑

(e,e′):dG0 (e,e′)≥1

exp
(
n

θ
2dG0 (e,e′)+2

dG0(e, e
′)+ 1

)
︸ ︷︷ ︸

I1

+ 2K0 − |C|
|C|2 exp

(
nθ

2)
︸ ︷︷ ︸

I2

,

where we will write θ for Rθ for brevity.
First, observe that since θ < 1−C−1√

2(D+2)
then we have

θ < R
(1−C−1)∧ e−1/2

√
2(D + 2)

≤ (
1−C−1)∧ e−1/2 < e−1/2 < 1.

We will show that when θ̄ is small, (6.9) is bounded by 1 asymptotically, which
in turn suffices to show that lim infγ (S0(θ, s),S1(θ, s))= 1. Notice that θ and θ
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are the same quantity up to the constant R, and hence θ < κ

√
log |C|

n
is equivalent

to θ < κ̄

√
log |C|

n
for some sufficiently small κ̄ . We will require

κ̄ <
√

γ ∧
√

2γ /c0 ∧ (ec0)
−1/2.

Observe that since K0 =O(|C|2−γ ), κ̄2 < γ , and θ < κ̄

√
log |C|

n
we have

I2 ≤ (2K0 − |C|)|C|κ̄2

|C|2 → 0.

Next, we tackle the term I1 in (6.9). We will show that since θ < 1 by assumption,
this term goes to 1:

I1 = 2

|C|2
∑
r≥1

Kr exp
(
nθ

2r+2
/(r + 1)

)= 2

|C|2
d−1∑
r=1

Kr |C|κ̄2θ
2r

/(r+1) + 2K∞
|C|2

<
2

|C|2
d−1∑
r=1

Kr |C|θ
2r

/(r+1) + 2K∞
|C|2 ,

where the last inequality follows by the fact that κ̄2 < γ < 1. Splitting out the first
�log |C|� terms out of this summation yields

I1 <
2

|C|2
�log |C|�∑

r=1

Kr |C|θ
2r

/(r+1)

︸ ︷︷ ︸
I11

+ 2

|C|2
d−1∑

r=�log |C|�+1

Kr |C|θ
2r

/(r+1) + 2K∞
|C|2︸ ︷︷ ︸

I12

.

The first term is bounded by I11 ≤ 2(
∑�log |C|�

r=1 Kr)
|C|θ2

/2

|C|2 = o(1), where we used

(
∑�log |C|�

r=2 Kr)=O(|C|2−γ ) and the fact that θ
2
/2 < 1/2 < γ . Next, we will argue

that |C|θ2r
/(r+1) ≤ 1+ 3θ

2r
(|C| − 1)/(r + 1). This follows by

exp
(
log

(|C|)θ2r
/(r + 1)

)≤ 1+ 3 log
(|C|)θ2r

/(r + 1)≤ 1+ 3
(|C|− 1

)
θ

2r
/(r + 1),

with the first inequality holding when log(|C|)θ2r
/(r + 1) < 1, which is true since

θ < 1, and r ≥ �log |C|� + 1. Hence we have

I12 ≤ 2

|C|2
d−1∑

r=�log |C|�+1

Kr

(
1+ 3

(|C| − 1
)
θ

2r
/(r + 1)

)+ 2K∞
|C|2

≤
(

1− O(|C|2−γ )

|C|2
)
+ 6(|C| − 1)

|C|2
d−1∑

r=�log |C|�+1

Kr

r
θ

2r

≤
(

1− O(|C|2−γ )

|C|2
)
+ 6θ

2�log |C|�+2

1− θ
2 |C|−1 max�log |C|�+1≤r

Kr

r
.
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Paying closer attention to the second term, we have

6θ
2�log |C|�+2

1− θ
2 |C|−1 max�log |C|�+1≤r

Kr

r
≤ 6

1− e−1 θ
2�log |C|�+2

(|C|
2

)+ |C|
|C|

≤ 6

1− e−1 θ
2�log |C|�+2|C| = o(1),

with the last equality holds since θ < exp(−1/2), as we required. This com-
bined with (6.1) concludes the proof of lim infn γ (S0(θ, s),S1(θ, s)) = 1, when

θ ≤ κ

√
log |C|

n
.

Finally, notice that any subset of a divider C is trivially a divider. Hence we can
apply what we just showed to the set Nlog |C| ⊂ C —the maximal log |C|-packing
of C. Evaluating the constants Kr on Nlog |C| gives

K0 = |Nlog |C||,Kr = 0 for all r ≤ �log |C|�,
and since �Nlog |C|� ≤ �log |C|� we conclude that

∑�Nlog |C|�
r=0 Kr = |Nlog |C|| =

O(|Nlog |C||2−γ ) for any 0 < γ ≤ 1.
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SUPPLEMENTARY MATERIAL

Supplement to “Combinatorial inference for graphical models” (DOI:
10.1214/17-AOS1650SUPP; .pdf). The Supplementary Material contains proofs
and derivations of some of the main results of the paper, as well as simulation
results and real data analysis.
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