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CANONICAL CORRELATION COEFFICIENTS OF
HIGH-DIMENSIONAL GAUSSIAN VECTORS:

FINITE RANK CASE
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Consider a Gaussian vector z = (x′,y′)′, consisting of two sub-vectors
x and y with dimensions p and q, respectively. With n independent observa-
tions of z, we study the correlation between x and y, from the perspective of
the canonical correlation analysis. We investigate the high-dimensional case:
both p and q are proportional to the sample size n. Denote by �uv the pop-
ulation cross-covariance matrix of random vectors u and v, and denote by
Suv the sample counterpart. The canonical correlation coefficients between
x and y are known as the square roots of the nonzero eigenvalues of the
canonical correlation matrix �−1

xx �xy�−1
yy �yx . In this paper, we focus on

the case that �xy is of finite rank k, that is, there are k nonzero canonical
correlation coefficients, whose squares are denoted by r1 ≥ · · · ≥ rk > 0. We
study the sample counterparts of ri , i = 1, . . . , k, that is, the largest k eigen-
values of the sample canonical correlation matrix S−1

xx SxyS−1
yy Syx , denoted

by λ1 ≥ · · · ≥ λk . We show that there exists a threshold rc ∈ (0,1), such that
for each i ∈ {1, . . . , k}, when ri ≤ rc, λi converges almost surely to the right
edge of the limiting spectral distribution of the sample canonical correlation
matrix, denoted by d+. When ri > rc, λi possesses an almost sure limit in
(d+,1], from which we can recover ri ’s in turn, thus provide an estimate of
the latter in the high-dimensional scenario. We also obtain the limiting dis-
tribution of λi ’s under appropriate normalization. Specifically, λi possesses
Gaussian type fluctuation if ri > rc, and follows Tracy–Widom distribution
if ri < rc. Some applications of our results are also discussed.
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1. Introduction. In multivariate analysis, the most general and favorable
method to investigate the relationship between two random vectors x and y, is
the Canonical Correlation Analysis (CCA), which was raised in the seminal work
of Hotelling [28]. CCA aims at finding two sets of basis vectors, such that the cor-
relations between the projections of the variables x and y onto these basis vectors
are mutually maximized, namely, seeking vectors a = a1 and b = b1 to maximize
the correlation coefficient

(1.1) ρ ≡ ρ(a,b) := Cov(a′x,b′y)√
Var(a′x) · √Var(b′y)

.

Conventionally, ρ1 := ρ(a1,b1) is called the first canonical correlation coefficient.
Having obtained the first m canonical correlation coefficients ρi, i = 1, . . . ,m and
the corresponding vector pairs (ai ,bi), i = 1, . . . ,m, one can proceed to seek vec-
tors (am+1,bm+1) maximizing ρ subject to the constraint that (a′

m+1x,b′
m+1y) is

uncorrelated with (a′
ix,b′

iy) for all i = 1, . . . ,m. Analogously, we call ρi the ith
canonical correlation coefficient if it is nonzero. Denoting by �uv the population
cross-covariance matrix of arbitrary two random vectors u and v, it is well known
that ri := ρ2

i is the ith largest eigenvalue of the (population) canonical correlation
matrix �−1

xx �xy�
−1
yy �yx . Let zi = (x′

i ,y′
i)

′, i = 1, . . . , n be n independent obser-
vations of the vector z := (x′,y′)′ ∼ N(μ,�) with mean vector μ and covariance
matrix

� =
(
�xx �xy

�yx �yy

)
.

We can study the canonical correlation coefficients via their sample counter-
parts. To be specific, we employ the notation Suv to represent the sample cross-
covariance matrix for arbitrary two random vectors u and v, where the implicit
sample size of (u′,v′)′ is assumed to be n, henceforth. Then the square of the ith
sample canonical correlation coefficient is defined as the ith largest eigenvalue of
the sample canonical correlation matrix (CCA matrix for short) S−1

xx SxyS
−1
yy Syx ,

denoted by λi in the sequel.
Let p and q be the dimensions of the sub-vectors x and y, respectively. In the

classical low-dimensional setting, that is, both p and q are fixed but n is large, one
can safely use λi to estimate ri , considering the convergence of the sample cross-
covariance matrices toward their population counterparts. However, nowadays, due
to the increasing demand in the analysis of high-dimensional data springing up in
various fields such as genomics, signal processing, microarray, finance and pro-
teomics, putting forward a theory on high-dimensional CCA is much needed. So
far, there are only a handful of works devoted to this topic. Fujikoshi in [21] de-
rived the asymptotic distributions of the canonical correlation coefficients when
q is fixed while p is proportional to n. Oda et al. in [40] considered the prob-
lem of testing for redundancy in high-dimensional canonical correlation analysis.
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Recently, with certain sparsity assumption, the theoretical results and potential ap-
plications of high-dimensional sparse CCA have been discussed in [23, 24]. In the
null case, that is, x and y are independent, the Tracy–Widom law for the largest
canonical correlation coefficients has been studied in [26, 27, 33], when p,q,n are
proportional. Recently, in [35] Johnstone and Onatski derived the asymptotics of
the likelihood ratio processes of CCA corresponding to the null hypothesis of no
spikes and the alternative of a single spike.

In this paper, we will work with the following high-dimensional setting.

ASSUMPTION 1.1. We assume p := p(n), q := q(n), and when n → ∞
p/n = c1 → y1 ∈ (0,1), q/n = c2 → y2 ∈ (0,1), s.t. y1 + y2 ∈ (0,1).

Without loss of generality, we always work with the additional assumption p ≥ q

thus c1 ≥ c2.

Observe that here y1 and y2 are asymptotic parameters, while c1 and c2 are
nonasymptotic parameters. Hence, in general, a c1, c2-dependent random vari-
able X(c1, c2) cannot serve as a limiting target of a random sequence Xn(c1, c2),
n ≥ 1. Nevertheless, to ease the presentation, from time to time, we still write
Xn(c1, c2) → X(c1, c2), if Xn(c1, c2) − X(c1, c2) → 0, where the convergence
could be in distribution, in probability or a.s., etc.

Let x̄ and ȳ be the sample means of n samples {xi}ni=1 and {yi}ni=1 respec-
tively, and use the notation x̊i := xi − x̄ and ẙi := yi − ȳ for i = 1, . . . , n. We
can then write Sab = 1

n−1
∑n

i=1 åi b̊′
i ,a,b = x or y It is well known that there

exist n − 1 i.i.d. Gaussian vectors z̃i = (x̃′
i , ỹ′

i)
′ ∼ N(0,�), such that Sab =

1
n−1

∑n−1
i=1 ãi b̃′

i ,a,b = x or y. For simplicity, we recycle the notation xi and yi to
replace x̃i and ỹi , and work with n instead of n − 1, noticing that such a replace-
ment on sample size is harmless to Assumption 1.1. Hence, we can and do assume
that z is centered in the sequel and denote Sab = 1

n

∑n
i=1 aib′

i ,a,b = x or y. For
brevity, we introduce the notation

Cxy := S−1
xx SxyS

−1
yy Syx,(1.2)

and Cyx can be analogously defined via switching the roles of x and y in (1.2).
Notice that Cxy and Cyx possess the same nonzero eigenvalues.

By our assumption p ≥ q , there are at most q nonzero canonical correlations,
either population ones or sample ones. An elementary fact is that λi, ri ∈ [0,1] for
all i = 1, . . . , q . Note that λi, i = 1, . . . , q are also eigenvalues of the q × q matrix
Cyx , whose empirical spectral distribution (ESD) will be denoted by

Fn(x) := 1

q

q∑
i=1

1(λi ≤ x).(1.3)
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Here and in the following, 1(·) is the indicator function. We denote by

X := Xn = (x1, . . . ,xn), Y := Yn = (y1, . . . ,yn).

Let vec(X ) = (x′
1, . . . ,x′

n)
′ be the vectorization of the matrix X , and define

vec(Y ) be the analogously. We see that vec(X ) ∼ N(0, In ⊗�xx) and vec(Y ) ∼
N(0, In ⊗�yy). Our aim, in this work, is to study the asymptotic behavior of a few
largest sample canonical correlation coefficients

√
λi ’s, and try to get the informa-

tion about the population ones ρi = √
ri from the sample ones. We will focus on

the case of finite rank, that is, there is some fixed nonnegative integer k, such that
r1 ≥ · · · ≥ rk ≥ rk+1 = · · · = rq = 0. Specifically, we make the following assump-
tion throughout the work.

ASSUMPTION 1.2 (On the rank of the population matrix). We assume that
rank(�xy) ≤ k for some fixed positive integer k. Furthermore, setting r0 = 1, we
denote by k0 the nonnegative integer satisfying

(1.4) 1 = r0 ≥ · · · ≥ rk0 > rc ≥ rk0+1 ≥ · · · ≥ rk > rk+1 = 0,

where

(1.5) rc ≡ rc(c1, c2) :=
√

c1c2

(1 − c1)(1 − c2)
.

In Section 1.2, we will state our main results. Before that, we introduce in Sec-
tion 1.1 some known results in the null case, that is, k = 0, which will be the
starting point of our discussion.

1.1. The null case: MANOVA ensemble. At first, we introduce some known
results on the limiting behavior of {λi}qi=1 in the null case, that is, x and y are
independent, or else, ri = 0 for all i = 1, . . . , q . It is elementary to see that the
canonical correlation coefficients are invariant under the block diagonal transfor-
mation (xi ,yi) → (Axi ,Byi), for any p ×p matrix A and q × q matrix B, as long
as both of them are nonsingular. Hence, without loss of generality, in this section,
we tentatively assume that �xx = Ip and �yy = Iq . Under our high-dimensional
setting, that is, Assumption 1.1, it is known that λi ’s do not converge to 0 even in
the null case; instead, they typically spread out over an interval contained in [0,1].
Specifically, we have the following theorem on Fn(x) [cf. (1.3)], which is due to
Wachter [45].

THEOREM 1.3. When x and y are independent Gaussian and Assumption 1.1
holds, almost surely, Fn converges weakly to a deterministic probability distribu-
tion F(x) with density

f (x) = 1

2πc2

√
(d+ − x)(x − d−)

x(1 − x)
1(d− ≤ x ≤ d+),(1.6)

where d± = (
√

c1(1 − c2) ± √
c2(1 − c1))

2.
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REMARK 1.4. In the null case, the convergence of the ESD of the CCA matrix
actually holds under a more general distribution assumption; see [48].

Conventionally, we call F(x) in Theorem 1.3 the limiting spectral distribu-
tion (LSD) of Cyx . One might note that F(x) is also the LSD of the so-called
MANOVA ensemble with appropriately chosen parameters, which is widely stud-
ied in the Random Matrix Theory (RMT). Actually, when x and y are Gaussian and
independent, the CCA matrix Cyx is exactly a MANOVA matrix. To see this, we
note that Px := X ′(X X ′)−1X is a projection matrix independent of Y . Hence,
we can write Cyx = (Y (I − Px)Y

′ + Y PxY
′)−1Y PxY

′. Using Cochran’s the-
orem, we see that Y (I − Py)Y

′ and Y PxY
′ are independent Wishart, that is,

Y (I − Px)Y
′ ∼ Wq(Iq, n − p), and Y PxY

′ ∼ Wq(Iq,p). Hereafter, we use
the notation Wm(·, ·) to denote the Wishart distribution Wishartm(·, ·) for short.
Consequently, λi, i = 1, . . . , q are known to possess the following joint density
function:

pn(λ1, . . . , λq) = Cn

q∏
i<j

|λi − λj |
q∏

i=1

(1 − λi)
n−p−q−1

2 λ
p−q−1

2
i 1

(
λi ∈ [0,1]),

for some constant Cn (see Muirhead [39], page 112). Or else, one can refer to [33],
for more related discussions. In the context of RMT, the point process possessing
the above joint density is also called Jacobi ensemble.

Throughout the paper, we will say that an n-dependent event A ≡ A(n) holds
with overwhelming probability, if for any given positive number �, there exists a
constant C� such that P(A) ≥ 1 − C�n

−�. Especially, for any fixed integer K ≥ 0,
we have

⋂nK

i=1 Ai holds with overwhelming probability if Ai holds with over-
whelming probability individually with the common C�’s. The next known result
concerns the convergence of the largest eigenvalues.

THEOREM 1.5. When x and y are independent and Assumption 1.1 holds, we
have

(1.7) λi − d+
a.s.−→ 0,

for any fixed positive integer i. Moreover, for any small constant ε > 0,

(1.8) λ1 ≤ d+ + ε

holds with overwhelming probability.

REMARK 1.6. The estimate (1.8) can be derived from the small deviation
estimate of the largest eigenvalue of the Jacobi ensemble in [37], and (1.7) is a
direct consequence of (1.8) and Theorem 1.3.
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1.2. Finite rank case. We now turn to the case of finite rank. To wit, Assump-
tion 1.2 holds. It will be clear that the CCA matrix in such a finite rank case can
be viewed as a finite rank perturbation of that in the null case. Consequently, the
global behavior (LSD), turns out to coincide with the null case. However, finite
rank perturbation may significantly alter the behavior of the extreme eigenval-
ues, when the perturbation is strong enough. Similar problems have been studied
widely for various random matrix models, not trying to be comprehensive, we refer
to the spiked sample covariance matrices [4–6, 20, 32, 42], the deformed Wigner
matrices [14, 15, 19, 38, 43], the deformed unitarily invariant matrices [10, 36] and
some other deformed models [11, 12, 46]. In this work, for our CCA matrix Cxy ,
we study the limits and the fluctuations of its largest eigenvalues, that is, squares
of the largest sample canonical correlation coefficients, under Assumption 1.2.

Our main results are the following three theorems. Let

γi := ri
(
1 − c1 + c1r

−1
i

)(
1 − c2 + c2r

−1
i

)
.(1.9)

Recall rc and d+ defined in (1.5) and Theorem 1.3, respectively. It is easy to check
that γi ≥ d+ if ri ≥ rc. For brevity, we further introduce the notation

	 := c1c2, ϑ := (1 − c1)(1 − c2).(1.10)

THEOREM 1.7 (Limits). Under Assumptions 1.1 and 1.2, the squares of the
canonical correlation coefficients exhibit the following convergence:

(i) (Outliers) For 1 ≤ i ≤ k0, as n → ∞, we have λi − γi
a.s.−→ 0.

(ii) (Sticking eigenvalues) For each fixed i ≥ k0 + 1, as n → ∞, we have λi −
d+

a.s.−→ 0.

To state the results on fluctuations, we need the following definition.

DEFINITION 1.8. For two (possibly) n-dependent numbers a(n), b(n) ∈ C,
we say a(n) is well separated from b(n), if there exists a small positive constant ε

such that |a(n) − b(n)| ≥ ε for sufficiently large n.

THEOREM 1.9 (Fluctuations of the outliers). Suppose that Assumptions 1.1
and 1.2 hold. Let l0 be the cardinality of � := {r1, . . . , rk0} (not counting mul-
tiplicity), and denote by r1 = r(1) > · · · > r(l0) = rk0 the l0 different values in
�. Set n0 = 0 and denote by nl the multiplicity of r(l) for 1 ≤ l ≤ l0. Let
Jl = [∑l−1

i=0 ni + 1,
∑l

i=0 ni] ∩ Z for 1 ≤ l ≤ l0. If r(�) is well separated from
rc,1, r(�−1) and r(�+1), the random vector {√n(λj − γj )/ξ(rj ), j ∈ Jl} converges
weakly to the distribution of the ordered eigenvalues of an nl-dimensional symmet-
ric Gaussian random matrix G = (gij ) with independent (up to symmetry) entries
gij ∼ N(0,1 + δij ). Here,

ξ2(rj ) := (1 − rj )
2(2ϑrj + c1 + c2 − 2	)(ϑr2

j − 	)

r2
j

.(1.11)
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REMARK 1.10. The assumption that r� is away from rc,1, r(�−1) and r(�+1)

by a constant distance ε > 0 (well separated) may not be optimal. It is possible to
reduce ε to some n-dependent distance n−α for small α.

THEOREM 1.11 (Fluctuations of the sticking eigenvalues). Suppose that As-
sumptions 1.1 and 1.2 hold. In addition, we assume that rc is well separated from
rk0 and rk0+1. There exists a CCA matrix in the null case with the same parameters
p,q,n, whose nonzero eigenvalues are denoted by λ̊1 > λ̊2 > · · · > λ̊q , such that
for any fixed positive integer m and any small constant ε > 0, we have

max
1≤i≤m

|λk0+i − λ̊i | ≤ n−1+ε(1.12)

in probability. This implies

n
2
3 (λk0+1 − d+)/ξtw =⇒ F1,(1.13)

where F1 is the Type 1 TW law and ξ3
tw = d2+(1 − d+)2/

√
	ϑ .

REMARK 1.12. From (1.12), it is easy to conclude (1.13), by using the Tracy–
Widom limit of λ̊1 derived in [26, 27, 33]. Observe that in these references, the
Tracy–Widom law is stated for the logit transform of λ̊1, that is, log(λ̊1/(1 − λ̊1)).

Using a Taylor expansion, it is elementary to check that that n
2
3 (λ̊1 − d+)/ξtw =⇒

F1 from the Tracy–Widom law for the logit transform of λ̊1 (see Theorem 1 and
Section 2.1.1 in [33] for more details).

REMARK 1.13. Similar to Remark 1.10, the assumption that rc is away from
rk0 and rk0+1 by a constant distance can be weakened. But we do not pursue this
direction here.

To illustrate the result in Theorems 1.7, 1.9 and 1.11, we did some numerical
simulations, whose results can be found in the Supplementary Material [9]. The
different limiting behavior of λi in (i) and (ii) of Theorem 1.7 can be observed in
Figure S1.1. The fluctuation for λi in Theorem 1.9 and Theorem 1.11 can be seen
from Figures S1.2 and S1.1.

We remark here that we focus on the Gaussian population in this paper, due to
the technical reason. A very natural and important further problem is the extension
of the above results to the general distribution case. We refer to Section 8 for more
discussion.

1.3. Organization and notation. Our paper is organized as follows. In Sec-
tion 2, we display some applications of our results. We introduce in Section 3 some
necessary preliminaries. In Section 4, we will reformulate the sample CCA matrix
in the finite rank case as a perturbation of that in the null case, thereby obtaining



HIGH-DIMENSIONAL CCA 619

a determinant equation for the largest eigenvalues. Then we derive the limits of
the largest eigenvalues in Section 5, that is, prove Theorem 1.7. In Section 6, we
derive the fluctuations of the outliers (Theorem 1.9), and in Section 7, we study
the fluctuations of the sticking eigenvalues (Theorem 1.11).

Throughout the paper, the notation C represents some generic constants which
may vary from line to line. The notation 0k×� is used to denote the k by � null
matrix, which will be abbreviated to 0k if k = �, and from time to time we also use
the abbreviation 0 if the dimension is clear from the context. For any matrix A,
its (i, j)th entry will be written as Aij . When A is square, we denote by Spec(A)

its spectrum. For a function f : C → C and a Hermitian matrix A with spectral
decomposition UA�AU∗

A, we define f (A) as usual, in the sense of functional cal-
culus, to wit, f (A) = UAf (�A)U∗

A, where f (�A) is the diagonal matrix obtained
via mapping the eigenvalues of A to their images under f . We will use the nota-
tion ‖A‖ and ‖A‖HS to represent the operator norm and Hilbert–Schmidt norm of
a matrix A, respectively, while ‖b‖ stands for the Euclidean norm of a vector b.
Throughout this paper, we use op(1) to denote a scalar negligible (in probability)
or a fixed-dimensional random matrix with negligible (in probability) entries. And
the notation oa.s(1), Op(1) and Oa.s.(1) are used in a similar way.

2. Applications. In this section, we discuss three applications of our results
in hypothesis testing, estimation of the number and the values of the population
canonical correlation coefficients (CCC for short). At the end, we present an ex-
periment on a real limestone grassland community data.

2.1. Application 1: Power of testing for the independence of two high-
dimensional normal vectors. For two normal random vectors x and y with di-
mensions p and q , respectively, we consider the test

H0 : �xy = 0p×q v.s. H1 : not H0.

Currently, for high-dimensional cases, there are three kinds of widely discussed
test procedures: (i) corrected likelihood ratio tests (see [30, 31]); (ii) trace tests
(see [7, 29, 30, 47, 49]); (iii) largest eigenvalue tests (see [27, 33, 34]). It has been
shown by numerical results in [7, 27] that if �xy is sparse, the corrected likelihood
ratio tests and trace tests fail and the largest eigenvalue tests works well. In the
following, we propose a statistic based on the CCC, and show that it is powerful
against finite rank case. It is well known that testing for the independence of two
high-dimensional normal vectors equals to testing their first CCC being zero or
not, that is,

H0 : r1 = 0 v.s. H1 : r1 > 0.

Therefore, a natural test statistic is the largest eigenvalue λ1 of the sample CCA
matrix Cxy . Then according to Section 2.1.1 in [33] and Theorem 2.1 in [27], under
the null hypothesis and Assumption 1.1 we have

n2/3(λ1 − d+)/ξtw =⇒ F1.(2.1)
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Therefore, we reject H0 if

λ1 > n−2/3qαξtw + d+,(2.2)

where qα is the 1 − α quantile of TW law F1. If the sample is under the Assump-
tion 1.2 with k0 > 0 and r1 is well separated from rc and 1, then this test will be
able to detect the alternative hypothesis with a power tending to one as the dimen-
sion tends to infinity.

THEOREM 2.1 (Power function). Suppose that the assumptions in Theorems
1.9 and 1.11 hold with r1 being well separated from rc and 1. Then as n → ∞, the
power function of the test procedure (2.2)

Power = P

(√
n(λ1 − γ1)

ξ(r1)
>

n−1/6qαξtw

ξ(r1)
+

√
n(d+ − γ1)

ξ(r1)

)
→ 1.

The proof of this theorem is stated in the Supplementary Material [9].

REMARK 2.2. We conjecture that under the same assumptions of Theo-
rem 2.1, the corrected likelihood ratio tests and trace tests mentioned above should
be inconsistent.

2.2. Application 2: Estimating the number of the population CCC. As fun-
damental problems in CCA, the estimation of the number and the values of the
population CCC are widely investigated. In this subsection, we first apply our re-
sults to determine the number of the outliers of high-dimensional population CCC
(counting multiplicity). Actually, due to the threshold in our results, we cannot
detect the population CCC which are smaller than

√
rc. To the best of our knowl-

edge, there is no effective method in general to successfully detect the population
spikes below the threshold, even for the simpler spike PCA problem (see [2] for
instance).

Our estimator of the number of the outliers of population CCC k0 is the number
of eigenvalues of the sample CCA matrix which are larger than d+:

k̂0 := max{i : λi ≥ d+ + εn},(2.3)

where εn is a sequence of positive number only depending on n and satisfying
εn

√
n → 0 and εnn

2/3 → ∞. Then the estimator k̂0 is weakly consistent according
to the following theorem, whose proof is stated in the Supplementary Material [9].

THEOREM 2.3 (Weak consistency of k̂0). Suppose that the assumptions in
Theorems 1.9 and 1.11 hold. As n → ∞, the estimator k̂0 in (2.3) is weakly con-
sistent for the number of the outliers of population CCC k0, that is,

P(k̂0 = k0) → 1.(2.4)
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REMARK 2.4. Although in theory, any sequence εn which satisfies the condi-
tions εn

√
n → 0 and εnn

2/3 → ∞ is applicable, we have to choose one in practice.
Thus, it is worth to notice that the smaller εn one chooses, the easier one overesti-
mates k0 and vice versa. In the simulation, based on the idea in the paper [41, 46],
we choose εn to be log log(n)/n2/3, which makes our estimator conservative.

In the following, we report a short simulation result to illustrate the performance
of our estimator. For comparison, we also present the performance of three other
estimators which are introduced in [22] and [13]. To be specific, we first use the
classical PCA technique to project the original data Xn and Yn onto the space
spanned by their first few eigenvectors with the cumulative contribution rate ≥
80%. The projections are denoted by X̂n and Ŷn, respectively. Then we estimate
k0 by the following model selection criteria: AIC, BIC and Cp , respectively, which
are

k̂A = arg min
0≤j≤min{p̂,q̂}

AICj , k̂B = arg min
0≤j≤min{p̂,q̂}

BICj , k̂C = arg min
0≤j≤min{p̂,q̂}

CPj .

Here, p̂ and q̂ are the dimensions of the projections X̂n and Ŷn, respectively.
Moreover, AIC0 = BIC0 = CP0 = 0 and if j ≥ 1,

AICj = −n log

[min{p̂,q̂}∏
i=j+1

(1 − λ̂i)

]
− 2(p̂ − j)(q̂ − j),

BICj = −n log

[min{p̂,q̂}∏
i=j+1

(1 − λ̂i)

]
− log(n)(p̂ − j)(q̂ − j),

CPj = n

min{p̂,q̂}∑
i=j+1

λ̂i

1 − λ̂i

− 2(p̂ − j)(q̂ − j),

where λ̂i is the ith largest eigenvalue of CCA matrix of X̂n and Ŷn.
The simulation results are stated in the Supplementary Material (see Table S1.1

and Table S1.2 in [9]). According to these results, we can see that the performance
of our estimator is much better than AIC, BIC and Cp estimators when the di-
mensions are large. If the dimensions are small and the sample size is large, then
apart from our estimator, the AIC and Cp estimators also perform well, but BIC
estimator performs bad.

2.3. Application 3: Estimating the values of the population CCC. As a mea-
sure to detect the correlation level between two random vectors, the values of popu-
lation CCC are also important. Traditionally, one uses the sample CCC to estimate
the population ones directly, since under the traditional assumption that p,q are
fixed and n → ∞, the sample CCC tend to the population ones almost surely (see



622 BAO, HU, PAN AND ZHOU

Chapter 12 in [1]). However, it has been noticed that sample CCC suffer from in-
flation, which occurs when the number of observations is not sufficient (see [17,
44, 50]). But the good news is that now we can easily explain the reason of the
inflation properties of the sample CCC by our Theorem 1.7. In this subsection, we
will give an approach to estimate the population CCC which are bigger than

√
rc.

Solving the equation (1.9) via replacing γi by λi , we have two solutions

r̂i := 2c1c2 − c1 − c2 + λi ± √
(λi − d−)(λi − d+)

2(c1c2 − c1 − c2 + 1)
.(2.5)

Notice that the product of two solutions equals c1c2/[(1 − c1)(1 − c2)] = r2
c .

Hence, by the fact that λi > d+ and r̂i → ri > rc when n → ∞, we should choose
a plus sign in (2.5). Hence, the estimator of ri is chosen to be

r̂i := φ(λi) = 2c1c2 − c1 − c2 + λi + √
(λi − d−)(λi − d+)

2(c1c2 − c1 − c2 + 1)
.(2.6)

Then according to Theorem 1.7, we have the following theorem.

THEOREM 2.5. Under the same conditions of Theorem 1.7, for any 1 ≤ i ≤
k0, we have almost surely r̂i → ri .

Next, we show a short simulation result for the estimators r̂i’s. In the simulation,
we first assume that the number k0 of the supercritical population CCCs is known.
Hence, if λi > d+, i = 1, . . . , k0, we can obtain r̂i by (2.6) directly. And if there
is some λi ≤ d+, i = 1, . . . , k0, we then set r̂i = rc. This result is presented in
Figure S1.3 in Supplementary Material [9] in order to show the convergence of
r̂i as {p,q,n} = {0.1n,0.05n,n} increases. From this figure, we can see that our
estimators converge to the true values very fast especially when the true values are
far away from rc. If the number k0 of the supercritical population CCC is unknown,
we first estimate k0 by (2.3) with the tuning parameter εn = log log(n)/n2/3, and
then for i ≤ k̂0, we obtain the estimators r̂i by (2.6). The results are displayed in
Table S1.3 and Table S1.4 in Supplementary Material [9], which are the sample
means and standard deviations (s.d.) of the estimators r̂i . According to the results,
we find that our estimator is excellent, especially when the population CCC are
not equal to each other. If the multiplicity of some CCC is bigger than one, as the
results shown in Table S1.4, there should be some r̂i’s close to each other. In this
case, although ri = ri+1 for certain multiple population CCC, the estimator r̂i may
differ from r̂i+1 by a certain amount since our λi ’s are ordered. Suppose now we
can determine ri = ri+1 from the information in the CCA matrix, we may then use
the average of r̂i and r̂i+1 to get more precise estimate of both ri and ri+1.

Hence, determining if there are multiple ri’s would be important for the estimate
of ri as well, although sometimes directly using r̂i is sufficient. In the following,
we propose a statistic to test the hypothesis:

H0 : rj0−1 > rj0 = rj0+1 = · · · = rj0+j1−1 > rj0+j1 v.s. H1 : not H0,(2.7)



HIGH-DIMENSIONAL CCA 623

where j0 ≥ 1, j0 + j1 − 1 ≤ k0 and r0 = 1. If this test is not rejected, we
then estimate rj0 = rj0+1 = · · · = rj0+j1−1 by j−1

1
∑j0+j1−1

i=j0
r̂i . Under H0 in

(2.7), using Theorem 1.9, we know that the j1-dimensional random vector
{√n(λj − γj )/ξ(rj0), j ∈ {j0, . . . , j1 −1}} converges weakly to the distribution of
the ordered eigenvalues of j1-dimensional symmetric Gaussian random matrix G.
Thus we can naturally use the testing statistics

Tn := √
n(λj0 − λj0+j1−1)/ξ(r̂j0),

where r̂j0 = j−1
1

∑j0+j1−1
i=j0

r̂i . We have the following theorem.

THEOREM 2.6. Suppose that the assumptions in Theorem 1.9 hold. Under the
null hypothesis of (2.7), we have for any x ∈ R,∣∣P(Tn ≤ x) − P

(
λG

1 − λG
j1

≤ x
)∣∣ → 0,

where λG
1 and λG

j1
are the largest and smallest eigeivalues of j1-dimensional sym-

metric Gaussian random matrix G (defined in Theorem 1.9), respectively. In addi-
tion, if the alternative hypothesis H1 is: there exists some j2 ∈ [0, j1 − 2] ∩Z such
that rj0+j2 and rj0+j2+1 are well separated (cf. Definition 1.8), we have the power
function

Power = P
(
Tn > qα(j1)

) → 1,

where qα(j1) is the 1 − α quantile of the distribution λG
1 − λG

j1
.

This theorem can be easily obtained by Skorohod strong representation theo-
rem and Theorem 1.9. We omit the proof. To ease the application, under the null
hypothesis the 95% empirical quantile of the distribution λG

1 − λG
j1

is shown in

Table 1 with some different j1 by 108 bootstrap replicates.
Finally, we give a procedure of estimating the population CCC. The algorithm

is shown in Table 2.

2.4. The limestone grassland community data. To illustrate the application of
canonical correlation, we apply our result to a limestone grassland community data
which can be obtained from Table A-2 of [25]. This data records eight species (x,
p = 8) and six soil variables (y, q = 6) from forty-five (n = 44) 10 m × 10 m

TABLE 1
The 5% empirical quantile of the distribution λG

1 − λG
j1

with 4 digits

j1 2 3 4 5 6 7 8 9 10

q5%(j1) 4.895 6.497 7.720 8.755 9.670 10.499 11.263 11.975 12.646
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TABLE 2
Algorithm for estimating the population CCC

Step 1: {λ1 ≥ · · · ≥ λq } = Eigenvalue(Cyx );
Step 2: Test whether r1 = 0.

If not reject, then continue;
Step 3: k̂0 := max{i : λi ≥ d+ + εn};
Step 4: r̂i = φ(λi), i = 1, . . . , k̂0;
Step 5: If there exists some {j0, . . . , j0 + j1 − 1},

such that
√

n(λj0−λj0+j1−1)

ξ(r̂j0 )
≤ q5%(j1),

then reset r̂j0 = · · · = r̂j0+j1−1 = j−1
1

∑j0+j1−1
i=j0

r̂i .

Step 6: ρ̂i = √
r̂i .

stands in a limestone grassland community in Anglesey, North Wales. This ex-
periment concerns relationships between the abundances of several plant species
and associated soil characteristics. More explanations can be found in Chapter 7
of [25]. Notice that although the dimensions p,q and the sample size n are not so
“large,” from the simulations (some results are not reported in this manuscript), we
can already observe the high-dimensional effect when the dimensions are bigger
than 5 and sample sizes are bigger than 20, that is, the classical estimates are al-
ready not reliable. The eigenvalues of Cyx are as follows: λ1 = 0.829, λ2 = 0.520,
λ3 = 0.359, λ4 = 0.107 λ5 = 0.094, λ6 = 0.038. In addition, we have d+ = 0.533
and ξ3

tw = 0.468. Then we use (2.1) to test the hypothesis r1 = 0, and obtain the
p-value to be 3.71 × 10−5. Thus we have strong evidence to reject the null hypoth-
esis, which suggests the existence of a linear relationship between x and y. Since
there is only one eigenvalue of Cyx which is bigger that d+, we can only determine
the existence of the first CCC ρ̂1 = √

r̂1 = 0.864, which is estimated by (2.6). For
the rest CCC, we have no enough evidence to ensure their existence.

3. Preliminaries. In this section, we introduce some basic notions and known
technical results escorting our proofs and calculations in the subsequent sections.

For any given probability distribution σ(λ), its Stieltjes transform is

sσ (z) :=
∫

(λ − z)−1 dσ(λ), z ∈ C
+ := {ω ∈ C : �ω > 0}.

From the definition, we can immediately get the fact that �sσ (z) > 0 for z ∈ C
+.

Actually, the definition of sσ (z) can be extended to the domain C \ supp(σ ), by
setting sσ (z̄) = sσ (z), where supp(σ ) represents the support of σ(λ). Then sσ (z)

is holomorphic on C \ supp(σ ).
In the sequel, we will also need the Stieltjes transform of the MANOVA matri-

ces A(A + B)−1 and A(A+B)−1, where

A ∼ Wp(Ip, q), B ∼ Wp(Ip, n − q),



HIGH-DIMENSIONAL CCA 625

A∼ Wq(Iq,p), B ∼ Wq(Iq, n − p).

From [3], the Stieltjes transform of A(A + B)−1 converges (a.s.) to

š(z) := z − c1 − c2 − √
(z − d−)(z − d+)

2c1z(z − 1)
− 1

z
,(3.1)

and the Stieltjes transform of A(A+B)−1 converges (a.s.) to

s̃(z) := z − c1 − c2 − √
(z − d−)(z − d+)

2c2z(z − 1)
− 1

z
.(3.2)

Note that s̃(z) is the Stieltjes transform of the distribution given in (1.6).
Throughout the paper, we will often use the well-known large deviation result

of the extreme eigenvalues of Wishart matrices. Assume that S ∼ Wn1(In1, n2)

for some n1 := n1(n) and n2 := n2(n) satisfying n1/n → a1 ∈ (0,1), n2/n →
a2 ∈ (0,1) as n tends to infinity and a := a1/a2 ∈ (0,1). Denoting λ1(n

−1
2 S)

and λn1(n
−1
2 S) the largest and the smallest eigenvalues of n−1

2 S, respectively, it
is known that for any given positive number ε > 0,

(3.3) (1 + √
a)2 + ε ≥ λ1

(
n−1

2 S
) ≥ λn1

(
n−1

2 S
) ≥ (1 − √

a)2 − ε

holds with overwhelming probability (see Theorem 2.13 of [16]).

4. Determinant equation. In this section, we derive a determinant equation
for the eigenvalues of Cxy which are not in the spectrum of the null case. We
will see that the CCA matrix in the finite rank case can be viewed as a finite rank
perturbation of that in the null case.

As mentioned above, the CCC are invariant under the block diagonal transfor-
mation (xi ,yi) → (Axi ,Byi), for any p ×p matrix A and q × q matrix B, as long
as both of them are nonsingular. Hence, to study λi , we can start with the following
setting: (

X
Y

)
= �1/2V, � =

(
Ip T

T ′ Iq

)
,

where V is a (p + q) × n matrix with i.i.d. N(0,1) entries, and

T = diag(
√

r1, . . . ,
√

rk) ⊕ 0(p−k)×(q−k),(4.1)

for example, see Muirhead [39], page 530, formula (7). Apparently, there exists a
Gaussian matrix W independent of Y such that(

X
Y

)
=

(
W + T Y

Y

)
.(4.2)

Here, vec(W ) ∼ N(0, In ⊗ (Ip − T T ′)). Hence, W is a p × n matrix with in-
dependent entries. More specifically, wij ∼ N(0,1 − ri). According to the above
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definitions, we have �xx = Ip , �yy = Iq , �xy = T and �yx = T ′. For brevity,
from now on, we use symbols W,X,Y to denote

W := 1√
n
W , X := 1√

n
X , Y := 1√

n
Y .(4.3)

Correspondingly, we introduce the notation

Sww = WW ′, Swy = WY ′, Syw = YW ′, Syy = YY ′.(4.4)

In light of (4.2), we have

Sxx = Sww + T Syw + SwyT
′ + T SyyT

′,
(4.5)

Sxy = Swy + T Syy, Syx = Syw + SyyT
′.

Hence, due to the assumption that rank(T ) = k, Cxy can be regarded as a finite
rank perturbation of Cwy . Note that, with probability 1, the eigenvalues of Cxy are
the solutions for λ of the characteristic equation

(4.6) det(D) := det
(
SxyS

−1
yy Syx − λSxx

) = 0.

In light of (4.5), it is equivalent to

det
(
SwyS

−1
yy Syw − λSww + (1 − λ)

(
T Syw + SwyT

′ + T SyyT
′)) = 0.

Denote by

Py = Y ′(YY ′)−1
Y.(4.7)

Then both Py and In −Py are projections with rank(Py) = q and rank(In −Py) =
n − q almost surely. Further, we decompose the matrix W and T as

W =
(
W1
W2

)
, T =

(
T1
0

)
,(4.8)

where W1 (resp., T1) is a k × n (resp., k × q) matrix composed by the first k rows
of W (resp., T ). Correspondingly, we can introduce the notation like Syw2 = YW ′

2,
Sw2w2 = W2W

′
2, analogously to (4.4). Applying the decompositions in (4.8), we

can rewrite (4.6) in the following form:

det(D) = det
(
D11 D12
D21 D22

)
= 0(4.9)

where

D11 ≡ D11(λ)

= W1PyW
′
1 − λW1W

′
1 + (1 − λ)

(
T1YW ′

1 + W1Y
′T ′

1 + T1YY ′T ′
1
)
,

D12 ≡ D12(λ) = W1PyW
′
2 − λW1W

′
2 + (1 − λ)T1YW ′

2,

D21 ≡ D21(λ) = W2PyW
′
1 − λW2W

′
1 + (1 − λ)W2Y

′T ′
1,(4.10)

D22 ≡ D22(λ) = W2PyW
′
2 − λW2W

′
2 = Sw2w2(Cw2y − λIp),(4.11)
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where Cw2y is defined analogously to (1.2). In case D22 is invertible, we have the
equation det(D) = det(D22)det(D11 − D12D

−1
22 D21) = 0, which implies

det
(
D11(λ) − D12(λ)D−1

22 (λ)D21(λ)
) = 0.(4.12)

Apparently, the sufficient condition of D22(λ) being invertible is that λ is not an
eigenvalue of Cw2y . Notice that since k is fixed and W2 is independent of Y , we
can apply the results in Theorems 1.3 and 1.5 to the matrix Cw2y as well. Hence,
if we want to investigate the eigenvalues which are not in Spec(Cw2y), it suffices
to solve (4.12) and find the properties of the limits of its solutions. For brevity, we
introduce the notation

(4.13) Mn(z) := D11(z) − D12(z)D
−1
22 (z)D21(z)

which is a well-defined k × k matrix-valued function for all z ∈ C \ Spec(Cw2y).
Using (4.10), (4.11) and the fact YPy = Y , we can write

Mn(z) = Z1A (z)Z ′
1,(4.14)

where Z1 = W1 + T1Y and

A (z) = (Py − z) − (Py − z)W ′
2
(
W2(Py − z)W ′

2
)−1

W2(Py − z).(4.15)

Hereafter, we often use z to represent zI for short.

5. Limits. In this section, we provide the proof of Theorem 1.7 based on sev-
eral lemmas, whose proofs will be postponed. Our discussion consists of two parts,
aimed at (i) and (ii) in Theorem 1.7, respectively: (1) For the outliers, we locate
them by deriving the limits of the solutions to the equation (4.12); (2) For the
eigenvalues sticking to d+, we simply use Cauchy’s interlacing property to get the
conclusion.

• The outliers

To locate the outliers, we start with the equation (4.12), that is, detMn(z) = 0.
Intuitively, if Mn(z) is close to some deterministic matrix-valued function M(z), it
is reasonable to expect that the solutions of (4.12) are close to those of the equation
det[M(z)] = 0. Such an implication can be explicitly formulated in the location
lemma below; see Lemma 5.2. To state the result, we introduce more notation. Set
for any positive constant δ the domain

D ≡ D(δ) := {
z ∈ C : d+ + δ < �z ≤ 2, |�z| ≤ 1

}
.(5.1)

Define the functions s(z), mi(z) : D →C as follows:

s(z) = z − c1 − c2 − √
(z − d−)(z − d+)

2(z − 1)
,(5.2)

mi(z) = (
c2 − (1 + c1)z − (1 − z)s(z)

)
(1 − ri)

(5.3)

+ (1 − z)

(
1 − 1 − z

c2
s(z)

)
ri,
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where the square root is specified as the one with positive imaginary part in case
z ∈ C

+, and s(z̄) = s(z). It is elementary to see that s(z) and mi(z)’s are all holo-
morphic on C\ [d−, d+], and thus also on D. In addition, from the definition (5.2),
s(z) satisfies the following equation:

(z − 1)s2(z) + (c1 + c2 − z)s(z) − c1c2 = 0.(5.4)

Recall š(z) and s̃(z) from (3.1) and (3.2). We see that

š(z) = 1

c1z
s(z) − 1

z
, s̃(z) = 1

c2z
s(z) − 1

z
.(5.5)

Further, we define the diagonal matrix

M(z) := diag
(
m1(z), . . . ,mk(z)

)
.

Recall δ in the definition of D in (5.1). We introduce the following event:

�1 ≡ �1(n, δ) :=
{
‖Cw2y‖ ≤ d+ + δ

2

}
.(5.6)

Note that, Theorem 1.5 tells us that �1 holds with overwhelming probability.
Hence, we have ‖(Cw2y − z)−1‖ = O(1) for all z ∈ D with overwhelming proba-
bility. This implies, in �1, Mn(z) is holomorphic on D almost surely.

Our main technical task for the limits part is the following lemma.

LEMMA 5.1. For any given δ > 0, and any sufficiently small ε > 0,

sup
z∈D

sup
i,j=1,...,k

∣∣(Mn)ij (z) − Mij (z)
∣∣ ≤ n−ε

holds almost surely.

The proof of Lemma 5.1 is postponed to the Supplementary Material [9]. The
following lemma is a consequence of Lemma 5.1. We remark here, it will be clear
that the solutions of the equation det(M(z)) = 0 can only be real.

LEMMA 5.2 (The location lemma). For any given (but small) δ > 0, let
z1 > · · · > zκ be the solutions in (d+ + δ,1) of the equation det(M(z)) = 0,
with multiplicities n1, . . . , nκ , respectively. Then for any fixed η > 0 and each
i ∈ {1, . . . , κ}, almost surely, there exists zn,i,1 > · · · > zn,i,κi

with multiplicities
mi,1, . . . ,mi,κi

, respectively, satisfying
∑κi

j=1 mi,j = ni , s.t.,

(5.7) sup
j=1,...,κi

|zn,i,j − zi | ≤ η,

and
⋃s

i=1{zn,i,j , j = 1, . . . , κi} is the collection of all solutions (multiplicities
counted) of the equation detMn(z) = 0 in (d+ + δ,1).
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PROOF OF LEMMA 5.2 WITH LEMMA 5.1 GRANTED. At first, as mentioned
above, in �1, Mn(z) is holomorphic on D. Moreover, according to (3.3), both
Y and W are bounded by some constant in operator norm with overwhelming
probability. In addition, we know that �1 holds with overwhelming probability.
Hence, according to the definition of Mn(z) in (4.13), one sees that ‖Mn(z)‖ is
bounded uniformly on D with overwhelming probability. Therefore, the entries of
Mn(z) are all bounded in magnitude with overwhelming probability as well. In
addition, it is clear that M(z) is holomorphic and its entries are also bounded in
magnitude on D. Hence, Lemma 5.1 implies

sup
z∈D

∣∣det
(
Mn(z)

) − det
(
M(z)

)∣∣ ≤ n−ε almost surely

taking into account the fact that the determinant is a multivariate polynomial of the
matrix entries. It is obvious that det[Mn(z)] only has real roots since the equation
(4.6) does. Then by Rouche’s theorem we get (5.7). �

Now, with the aid of Lemma 5.2, we prove (i) of Theorem 1.7.

PROOF OF (I) OF THEOREM 1.7. According to Lemma 5.2, it suffices to solve
det(M(z)) = 0 in (d++δ,1] to get zi , for sufficiently small δ > 0. By the definition
of M(z), we shall solve the equation

mi(z) = 0.(5.8)

It will be clear that there is a unique simple solution for the above equation. We
denote it by γi in the sequel.

First, if ri = 1, we get from the definition (5.3) that

mi(γi) = (1 − γi)

(
1 − 1 − γi

c2
s(γi)

)
= 0.

It is elementary to check that the only solution is γi = 1. If ri < 1, we introduce
the notation

ti = ri/(1 − ri).(5.9)

According to the definition in (5.3), we see that (5.8) is equivalent to√
γ 2
i + 2(2c1c2 − c1 − c2)γi + (c1 − c2)2(c2 − tiγi + ti)

= tiγ
2
i + (

ti(c2 − c1 − 1) + c2 − 2c1c2
)
γi(5.10)

+ (c1 − c2)ti + c1c2 − c2
2.

Notice that if γi ∈ (d+,1], we have

γ 2
i + 2(2c1c2 − c1 − c2)γi + (c1 − c2)

2 = (γi − d−)(γi − d+) > 0
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and c2 − tiγi + ti > 0. Thus under the restriction that

(5.11) tiγ
2
i +(

ti(c2 −c1 −1)+c2 −2c1c2
)
γi +(c1 −c2)ti +c1c2 −c2

2 ≥ 0,

solving (5.10), we get

(5.12) γi = (1 + t−1
i c1)(1 + t−1

i c2)

1 + t−1
i

= ri
(
1 − c1 + c1r

−1
i

)(
1 − c2 + c2r

−1
i

)
.

Applying (5.9) and (5.12), it is easy to check that (5.11) is equivalent to

ri ≥ rc =
√

c1c2

(1 − c1)(1 − c2)
.(5.13)

Note that

γi = c1(1 − c2) + c2(1 − c1) + ri(1 − c1)(1 − c2) + r−1
i c1c2

(5.14)
≥ c1(1 − c2) + c2(1 − c1) + 2

√
c1c2(1 − c1)(1 − c2) = d+.

Moreover, equality holds in the second step of (5.14) only if ri = rc. Hence, (5.8)
has solution in (d+,∞) only if ri > rc, with the solution γi given by (5.12). Now,
what remains is to check γi < 1. It again follows from (5.13) by elementary calcu-
lation. Then by (5.7) in Lemma 5.1, we get that

λi − γi
a.s.−→ 0, for i = 1, . . . , k0.

Hence, we conclude the proof of (i) of Theorem 1.7. �

Now, we proceed to the proof of (ii).

• The Sticking eigenvalues

PROOF OF THEOREM 1.7(ii). At first, according to the proof of (i) of The-
orem 1.7, we see that with overwhelming probability, there are exactly k0 largest
eigenvalues (multiplicities counted) of Cxy in the interval (d+ +δ,1], for any suffi-
ciently small δ > 0. Hence, we see that lim supn→∞ λi ≤ d+ + δ for all i ≥ k0 + 1
almost surely. Moreover, by the Cauchy’s interlacing property and (1.7), we al-
ways have lim infn→∞ λi ≥ d+ − δ almost surely for any fixed i. Since δ can be
arbitrarily small, we get the conclusion that λi −d+

a.s.−→ 0 for any fixed i ≥ k0 +1.
Hence, we complete the proof. �

6. Fluctuations of the outliers. For the fluctuations of the outliers, we first
derive a CLT for the entries of Mn, which together with (4.12) will imply a CLT for
the outliers. Recall from Lemma 5.2 the notation n1, . . . , nκ as the multiplicities
of the solutions of det[M(z)] = 0. Set

Jl =
{

l−1∑
i=1

ni + 1, . . . ,

l∑
i=1

ni

}
.
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We derive the central limit theorem for the nl-packed sample eigenvalues
{√n(λj − γj ), j ∈ Jl}. Note that γj ’s are all the same for j ∈ Jl , and they are
lth largest solution of equation det[M(z)] = 0 with multiplicity nl . Actually, from
Lemma 5.1 and Lemma 5.2, for j ∈ Jl , it would not be difficult to conclude that
for any sufficiently small ε > 0,

sup
1≤α,β≤k

∣∣(Mn)αβ(λj ) − Mαβ(γj )
∣∣ ≤ n−ε(6.1)

almost surely. However, for Theorem 1.9, we need to take a step further to consider
the fluctuation of the difference in (6.1). We split the task into three steps, and the
results are collected in Lemmas 6.1–6.3. The first lemma is to expand Mn(λj )

around Mn(γj ). Recall the notation ϑ,	 defined in (1.10).

LEMMA 6.1. Suppose that the assumptions in Theorem 1.9 hold. As n → ∞,
we have

√
n
[
Mn(λj ) − Mn(γj )

] = −√
n(λj − γj )

(
� + op(1)

)
,

where � is a diagonal matrix defined as

� = (1 − c1)ϑr2
j + c2

1c2

ϑr2
j − 	

(
Ik − T1T

′
1
)

+ (1 − c1)ϑr3
j + c1(3c1c2 − c1 − 2c2 + 1)rj − 2c2

1c2

rj (ϑr2
j − 	)

T1T
′
1,

and op(1) is a k × k matrix with negligible (in probability) entries.

Recall A (z) defined in (4.15). We further introduce the following matrices:

M1 ≡ M1(z) := W1A (z)W ′
1, M2 ≡ M2(z) := T1YA (z)W ′

1,
(6.2)

M3 ≡ M3(z) := T1YA (z)Y ′T ′
1.

According to the definitions in (4.13), (4.10) and (4.11), it is easy to check

Mn(z) = M1 + M2 + M ′
2 + M3.(6.3)

We denote the SVD of Y by

Y = Uy�yVy.(6.4)

It is well known that Uy and Vy are Haar distributed, and Uy,�y,Vy are mutually
independent (see (3.9) of [18] for instance). Then we see that

Py = V ′
y�

′
y

(
�y�

′
y

)−1
�yVy(6.5)
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is independent of Uy . With the above notation, we introduce

B ≡ B(z) := �yVyA (z), D ≡ D(z) := �yVyA (z)V ′
y�

′
y.(6.6)

Therefore, we can write

M1 = W1A W ′
1, M2 = T1UyBW ′

1, M3 = T1UyDU ′
yT

′
1.(6.7)

Set

M(γj ) := 1

n
trA (γj ) · (

Ik − T1T
′
1
) + 1

q
trD(γj ) · T1T

′
1.

The next lemma depicts the fluctuation of Mn(γj ) around M(γj ).

LEMMA 6.2. Suppose that the assumptions in Theorem 1.9 hold. For any
j ∈ {1, . . . , k0} such that rj is well separated from rc and 1, we have that√

n(Mn(γj ) − M(γj )) converges weakly to a k × k symmetric Gaussian matrix
R with independent (up to symmetry) mean zero entries and the variance of Rαβ

is

1 + δαβ

r2
j (ϑr2

j − 	)

((
(1 − c1)rj + c1

)2
(ϑrj − 	)2

× (
(1 − c2)r

2
j + c2

)
(1 − rα)(1 − rβ)

+ (1 − c2)
(
(1 − c1)rj + c1

)2
(1 − rj )

2(ϑrj − 	)2

× (
rα(1 − rβ) + rβ(1 − rα)

)
+ (

(1 − c1)rj + c1
)2

(ϑrj − 	)2

× (
(1 − c2)r

2
j + 2c1(1 − c2)rj + c1(1 − 2c2)

)
rαrβ

)
.

(6.8)

We then claim that M(γj ) − M(γj ) is of order op(
1√
n
).

LEMMA 6.3. Suppose that the assumptions in Theorem 1.9 hold. For any j ∈
{1, . . . , k0} such that rj is well separated from rc and 1, we have that

√
n
(
M(γj ) − M(γj )

) = op(1),

where op(1) is a k × k matrix with negligible (in probability) entries.

The proofs of Lemmas 6.1–6.3 will be stated in the Supplementary Material [9].
With the aid of these lemmas, we can now prove Theorem 1.9.

PROOF OF THEOREM 1.9. Note that detMn(λj ) = 0, and M(γj ) is a diagonal
matrix with diagonal elements mi(γj ), i = 1, . . . , k [cf. (5.3)]. In addition, for
any l = 1, . . . , l0, mi(γj ) is zero if i ∈ Jl and nonzero otherwise. Therefore by
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Lemmas 6.1–6.3, the definition of T1 and Skorohod strong representation theorem,
we conclude that there exists a random matrix R defined in Lemma 6.2, such that
for any j,α,β ∈ Jl ,√

n
(
(Mn)αβ(λj ) − Mαβ(γj )

) = −δαβ�jj

√
n(λj − γj )

(
1 + op(1)

)
(6.9)

+ Rαβ + op(1).

Let N (l) be a k × k diagonal matrix with N (l)
jj = n1/4 if j ∈ Jl and N (l)

jj = 1

otherwise. Apparently, we have det[N (l)] = nnl/4 �= 0. Combining Theorem 1.7
with Lemmas 6.1–6.3, we conclude that

N (l)Mn(λj )N
(l) = M(γj ) + (√

n(Mn)αβ(λj )1(j,α,β ∈ Jl)
)
k×k + op(1).

Note that M(γj ) is diagonal with Jl diagonal elements being zeros and(√
n(Mn)αβ(λj )1(j,α,β ∈ Jl)

)
k×k

is a null matrix except the Jl × Jl block. According to det(N (l)Mn(λj )N
(l)) = 0

and (6.9), we obtain that

(6.10) det
(
− lim

n→∞
(√

n(λj − γj )
(
Inl

+ op(1)
) + R(Jl × Jl)/�(j, j)

)) = 0,

where R(Jl × Jl) represents the Jl × Jl block of R. From (6.10), we see that
limn→∞

√
n(λj − γj ) is the eigenvalue of R(Jl × Jl)/�jj . Since the eigen-

values of Cyx are simple almost surely, we see that the nl random variables
{√n(λj − γj ), j ∈ Jl} converge in probability to the set of eigenvalues of the
matrix R(Jl × Jl)/�jj . The variance in (1.11) can be obtained from the defini-
tion of � in Lemma 6.1, (6.8) and also (5.9), after some elementary calculation.
Therefore, we complete the proof of Theorem 1.9. �

7. Fluctuations of the sticking eigenvalues. In this section, we prove Theo-
rem 1.11. When k = 1, the main idea is to compare the eigenvalues of Cxy with
those of Cw2y directly. Then we use the Tracy–Widom law for the largest eigen-
values of Cw2y to conclude the fluctuation of the sticking eigenvalues of Cxy .
For more general k, we use the argument for the case k = 1 recursively. Our
proof strategy is inspired by the work [11]. For the comparison, we denote by
λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃q the ordered eigenvalues of Cyw2 , while use λ1 ≥ λ2 ≥ · · · ≥ λq

to denote the ordered eigenvalues of Cyx as before. Our aim is to show the follow-
ing proposition.

PROPOSITION 7.1. Suppose that the assumptions in Theorem 1.11 hold. Then
for any small positive constant ε and any fixed integer i ≥ 1, the following holds
in probability:

|λk0+i − λ̃i | ≤ n−1+ε.(7.1)
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The full version of the proof of Proposition 7.1 will be presented in the Sup-
plementary Material [9]. Later on, in this section, we will record a special case of
Proposition 7.1 and its detailed proof; see Proposition 7.2.

With the aid of Proposition 7.1, we can prove Theorem 1.11 below.

PROOF OF THEOREM 1.11. Let

X̂ := W + T Ŷ ,(7.2)

where Ŷ is a i.i.d. copy of Y . Denote by Cyx̂ via replacing X by X̂ in Cyx . Then
Cyx is a CCA matrix in the null case. We first compare the eigenvalues of Cyx̂ ,
denoted by λ̊i’s, with the eigenvalues of Cyw2 , that is, λ̃i . Applying Proposition 7.1
with r1 = · · · = rk = 0, we get max1≤i≤m |λ̊i − λ̃i | ≤ n−1+ε in probability. This
together with (7.1) implies (1.12), which together with Remark 1.12 completes the
proof of Theorem 1.11. �

In the sequel, we show the proof of Proposition 7.1 in the case of k = 1. The
general k case will be proved in the Supplementary Material [9] via a similar ar-
gument. Note that when k = 1, We have k0 = 1 or k0 = 0, which means r1 > rc or
r1 < rc, respectively. We restate Proposition 7.1 for k = 1 as the following propo-
sition.

PROPOSITION 7.2. Suppose that k = 1. We have the following:

(i) If r1 > rc, then for any fixed integer m ≥ 1, and any ε > 0, we have |λm+1 −
λ̃m| ≤ n−1+ε in probability.

(ii) If r1 < rc, then for any fixed integer m ≥ 1, and any ε > 0, we have |λm −
λ̃m| ≤ n−1+ε in probability.

To prove Proposition 7.2, we will need the following two lemmas, whose proofs
will also be postponed to the Supplementary Material [9].

LEMMA 7.3. For any i = 0, . . . , q , and j = 1, . . . , k, the diagonal entry
(Mn)jj (z) is a decreasing function in z ∈ (̃λi+1, λ̃i), where λ̃0 = ∞ and λ̃q+1 =
−∞.

Let m ≥ 1 be any fixed integer. For any small constants ε, δ > 0, we introduce
the following random domain:

(7.3) � := (̃
λ1 + n−1+ε, d+ + δ

) ∪
{

m⋃
i=1

(̃
λi+1 + n−1+ε, λ̃i − n−1+ε)}.

We also need the following lemma.
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LEMMA 7.4. With the above notation, for any small ε > 0 and ε′ > 0:

(i) if i �= j , for any small δ > 0, there exists some positive constant c > 0, such
that supz∈� |(Mn)ij (z)| ≤ n−c holds with overwhelming probability;

(ii) there exists a sufficiently small δ, such that supz∈� |(Mn)ii(z) − mi(d+)| ≤
ε′ holds with overwhelming probability.

With Lemma 7.3 and Lemma 7.4, we prove Proposition 7.2.

PROOF OF PROPOSITION 7.2. Since k = 1, we have detMn = Mn(z) =
M11(z). Applying Lemma 7.4 with k = 1, we see that for any small ε′, there is
a sufficiently small δ > 0 such that

sup
z∈�

∣∣detMn(z) − m1(d+)
∣∣ ≤ ε′(7.4)

with overwhelming probability. Since we assume that r1 is well separated from rc,
it is easy to check from the definition (5.3) that |m1(d+)| ≥ c for some positive con-
stant c. Hence, choosing ε′ in (7.4) sufficiently small, we see that |detMn(z)| �= 0
uniformly on �, with overwhelming probability. Hence, with overwhelming prob-
ability, there is no eigenvalue of Cxy in �.

Let wi , i = 1, . . . , p be the rows of W . Note that, in case of k = 1, we
have w1 = W1. Moreover, Pw is the projection onto the subspace spanned by
{w1 + T1Y,w2, . . . ,wp}, and Pw2 is the projection onto the subspace spanned
by {w2, . . . ,wp}. Then, by Cauchy interlacing, we know that Spec(PwPyPw) and
Spec(Pw2PyPw2) are interlacing. This implies that

λ1 ≥ λ̃1 ≥ λ2 ≥ · · · ≥ λ̃q−1 ≥ λq ≥ λ̃q,(7.5)

since the nonzero eigenvalues of Cwy (resp., Cw2y) are the same as those of
PwPyPw (resp., Pw2PyPw2 ).

In case (i): r1 > rc, from Theorem 1.7 we know that λ1 → γ1 > d+ + δ almost
surely, for any sufficiently small δ > 0. Since λi ’s are solutions to detMn(z) = 0,
and m1(d+) �= 0, we see from (7.4) and (7.5) that in probability λi ∈ [̃λi+1, λ̃i+1 +
n−1+ε] ∪ [̃λi − n−1+ε, λ̃i] for i = 2, . . . ,m.

In case (ii): r1 < rc, from Theorem 1.7 we know that λ1 → d+ in prob-
ability. Hence, we have λ1 ∈ [̃λ1, λ̃1 + n−1+ε], and for all i = 2, . . . ,m λi ∈
[̃λi+1, λ̃i+1 + n−1+ε] ∪ [̃λi − n−1+ε, λ̃i]. Therefore, to prove Proposition 7.2,
it suffices to check that for all i = 2, . . . ,m, λi is in [̃λi+1, λ̃i+1 + n−1+ε] or
[̃λi − n−1+ε, λ̃i]. Note that detMn(z) = (Mn)11(z) is decreasing in the inter-
val (̃λi+1, λ̃i), according to Lemma 7.3. Furthermore, since s(d+) = d+−c1−c2

2(d+−1)
,

it is elementary to check mj(d+) > 0, if rj > rc, while mj(d+) < 0 if rj < rc.
Therefore, if r1 > rc, according to (7.4), we have detMn(z) > 0 on (̃λi+1 +
n−1+ε, λ̃i − n−1+ε). By the monotonicity of detMn(z), we see that detMn(z) = 0
can only be achieved if z ∈ [̃λi − n−1+ε, λ̃i]. Hence, in case of r1 > rc, we have
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λi ∈ [̃λi − n−1+ε, λ̃i] for all i = 2, . . . ,m. In contrast, when r1 < rc, we have
λi ∈ [̃λi+1, λ̃i+1 + n−1+ε] for all i = 2, . . . ,m. This concludes the proof of Propo-
sition 7.2. �

8. Conclusions and discussion. In this work, we study the sample CCCs un-
der the high-dimensional setting stated in Assumption 1.1, for the Gaussian ran-
dom vector, with a finite rank assumption on the population CCA matrix. Similar
to the spiked covariance matrices studied in [4–6, 20, 32, 42], a phase transition
phenomenon is found for the largest sample CCCs. To be specific, when the pop-
ulation CCC is larger than the threshold rc [cf. (1.5)], the corresponding sample
CCC will jump out of the continuous part of the spectrum of the CCA matrix and
possesses a Gaussian-type fluctuation; when the population CCC is smaller than
rc, the corresponding sample CCC will still stick to the right edge of the continuous
part of the spectrum and possesses a Tracy–Widom fluctuation.

In contrast to the well investigated high-dimensional PCA, the study of the high-
dimensional CCA is still in its infancy. It is then natural to ask if many other
results established for the sample covariance matrices have their analogues for the
sample CCA matrix, apart from those obtained in the current paper. The following
questions are particularly interesting.

General distribution. It would be natural to ask if our results in the current work
can be extended from Gaussian to more general distribution of the matrix entries.
Similar to high-dimensional PCA, within the framework of the random matrix
theory, it would be reasonable to assume certain linear structure of the random
vector, under the assumption of general distribution. More specifically, one can
consider the linear model

z =
(

x
y

)
= �w,(8.1)

where � is a (p + q) × M rectangle matrix with some M ≡ M(n) proportional
to n, and w is an M-dimensional random vector with independent (generally
distributed) components. In addition, the matrix � = ��′ has a finite-rank off-
diagonal block �xy . In general, the linear model (8.1) cannot be further simplified
to (4.2) with diagonal T [cf. (4.1)], under the general distribution assumption.
Moreover, the proofs of many technical results heavily rely on the Gaussian as-
sumption in the current paper. Therefore, we leave the extension of our results to
the general distribution to the future work. We predict that most of the results in
the current work would be valid under general distribution assumption.

Full rank case. In the current work, only the finite-rank case is discussed. How-
ever, in practice, it can happen that the population CCA matrix itself is of large
rank, or even full rank (by full rank we mean rank q). Although most of the ri’s
may be small, they may not be exactly 0. In this case, we have a general nonnull
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population. The sample CCA matrix with general population does not correspond
to Jacobi ensemble directly, even in the Gaussian case. Even the global behavior
of the spectrum is not known yet. We aim at deriving the limiting spectral distri-
bution and the limiting behavior of the largest CCCs under the general population
assumption in a future work [8].

Moderately large rank case. Between the finite-rank and full-rank cases, the
moderately large rank case deserves a separate discussion. Here by moderately
large rank, we mean that rank(�xy) → ∞ while rank(�xy)/n → 0 as n → ∞.
For instance, rank(�xy) = nα for some constant α ∈ (0,1). We predict that the
results in Theorems 1.7 and 1.11 will be still true for sufficiently small α. The
Gaussian-type fluctuation in Theorem 1.9 may still be valid for the case k0 ∼ nα

with sufficiently small α, if the multiplicity of each distinct ri , i ≤ k0 is still fixed
and the distance between the two distinct neighboring ri’s is not too small. Other-
wise, we predict that there would be some interaction between the fluctuations of
two neighboring λi ’s. Another interesting case is that the multiplicity of ri for some
i ≤ k0 is large, say, of order nα . Especially, when the multiplicity of 1 > r1 > rc
is moderately large, we predict that the largest eigenvalue λ1 will still follow the
T W1 law, but with a different scaling. A similar phenomenon was discovered in
[43] for the deformed complex Wigner matrix.

Acknowledgments. The authors would like to thank the anonymous refer-
ees, the Associate Editor and the Editor for their invaluable and constructive com-
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SUPPLEMENTARY MATERIAL

Supplement to “Canonical correlation coefficients of high-dimensional
Gaussian vectors: Finite rank case”. (DOI: 10.1214/18-AOS1704SUPP; .pdf).
In this supplementary material, we present some simulation results and prove The-
orem 2.1 and 2.3, Lemmas 6.1–6.3, 7.3–7.4, and also Proposition 7.1.
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