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POSTERIOR GRAPH SELECTION AND ESTIMATION
CONSISTENCY FOR HIGH-DIMENSIONAL BAYESIAN

DAG MODELS
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Covariance estimation and selection for high-dimensional multivariate
datasets is a fundamental problem in modern statistics. Gaussian directed
acyclic graph (DAG) models are a popular class of models used for this
purpose. Gaussian DAG models introduce sparsity in the Cholesky factor of
the inverse covariance matrix, and the sparsity pattern in turn corresponds to
specific conditional independence assumptions on the underlying variables.
A variety of priors have been developed in recent years for Bayesian inference
in DAG models, yet crucial convergence and sparsity selection properties for
these models have not been thoroughly investigated. Most of these priors are
adaptations/generalizations of the Wishart distribution in the DAG context. In
this paper, we consider a flexible and general class of these “DAG-Wishart”
priors with multiple shape parameters. Under mild regularity assumptions,
we establish strong graph selection consistency and establish posterior con-
vergence rates for estimation when the number of variables p is allowed to
grow at an appropriate subexponential rate with the sample size n.

1. Introduction. One of the major challenges in modern day statistics is to
formulate models and develop inferential procedures to understand the complex
multivariate relationships present in high-dimensional datasets, where the number
of variables is much larger than the number of samples. The covariance matrix,
denoted by �, is one of the most fundamental objects that quantifies relationships
between variables in multivariate datasets. A common and effective approach for
covariance estimation in sample-starved settings is to induce sparsity either in the
covariance matrix, its inverse or the Cholesky parameter of the inverse. The spar-
sity patterns in these matrices can be uniquely encoded in terms of appropriate
graphs. Hence the corresponding models are often referred to as covariance graph
models (sparsity in �), concentration graph models (sparsity in � = �−1) and
directed acyclic graph (DAG) models (sparsity in the Cholesky parameter of �).

In this paper, we focus on Gaussian DAG models. In particular, suppose we have
i.i.d. observations Y1,Y2, . . . ,Yn from a p-variate normal distribution with mean
vector 0 and covariance matrix �. Let � = LD−1LT be the modified Cholesky
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decomposition of the inverse covariance matrix � = �−1, that is, L is a lower
triangular matrix with unit diagonal entries and D is a diagonal matrix with posi-
tive diagonal entries. For a DAG model, this normal distribution is assumed to be
Markov with respect to a given directed acyclic graph D with vertices {1,2, . . . , p}
(edges directed from larger to smaller vertices). This is equivalent to saying that
Lij = 0 whenever D does not have a directed edge from i to j (these concepts are
discussed in detail in Section 2). Hence, a Gaussian DAG model restricts � (and
�) to a lower- dimensional space by imposing sparsity constraints encoded in D
on L.

On the frequentist side, a variety of penalized likelihood methods for sparse
estimation of L exist in the literature; see [2, 11, 14, 20, 22, 23, 27]. Some of
these methods, such as those in [20, 27], constrain the sparsity pattern in L to
be banded, whereas others, such as those in [11, 14, 23], put no constraints on
the sparsity pattern. Most of the above methods derive asymptotic estimation and
model selection consistency properties for the resulting estimator in a an appropri-
ate high-dimensional regime; see Section 7 for more details. On the Bayesian side,
the first class of priors on the restricted space of covariance matrices corresponding
to a Gaussian DAG model was initially developed in [10, 24]. As pointed out in
[5], the priors in [10] can be considered as analogs of the G-Wishart distribution for
concentration graph models (inducing sparsity in �). In fact, for the special case of
perfect DAGs, the priors in [10] are same as the G-Wishart priors. As with the G-
Wishart priors, the priors in [10] have a single shape parameter. Letac and Massam
[16] introduced a flexible class of priors with multiple shape parameters which fa-
cilitate differential shrinkage in high-dimensional settings. However, these priors
are defined only for perfect DAG models. Recently, Ben-David et al. [5] introduce
a class of DAG-Wishart distributions with multiple shape parameters. This class
of distributions is defined for arbitrary DAG models, and is identical to the Letac–
Massam IWPG priors for the special case of perfect DAG models. Thus, this class
of DAG-Wishart distributions offers a flexible framework for Bayesian inference
in Gaussian DAG models, and generalizes previous Wishart-based priors for DAG
models.

The priors above are specified for a known DAG D , and provide a Bayesian
approach for estimating the covariance matrix. However, if the underlying DAG is
not known and needs to be selected, one can easily extend this framework by speci-
fying a prior on the space of DAGs, and looking at the posterior probabilities of the
DAGs given the data. Such an approach was used in the context of concentration
graph models in [4]. The utility of this Bayesian approach in substantially improv-
ing finite sample graph selection performance (as compared to existing penalized
likelihood methods) has been demonstrated in [5]. We discuss and demonstrate
this further in Sections 7 and 8.

Despite the developments in Bayesian methods for analyzing Gaussian DAG
models, a comprehensive evaluation of the high-dimensional consistency proper-
ties of these methods has not been undertaken to the best of our knowledge. As-
suming the data comes from a “true” DAG model, two aspects of the asymptotic
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behavior of the posterior are of interest: (a) assigning high posterior probability to
the “true” underlying graph (graph selection consistency), and (b) estimating the
“true” covariance matrix accurately (estimation consistency).

Gaussian concentration graph models, which induce sparsity in the inverse co-
variance matrix �, are a related but markedly different class of models as com-
pared to Gaussian DAG models. The two classes of models intersect only at per-
fect DAGs, which are equivalent to decomposable concentration graph models.
In the context of concentration graph models, high-dimensional posterior estima-
tion consistency has been explored in recent work [3, 4, 26]. In [3, 26], estima-
tion consistency is established for the decomposable concentration graph models
when the underlying concentration graph is known, and the number of variables
p is allowed to increase at an appropriate subexponential rate relative to the sam-
ple size n. Banerjee and Ghosal [4] get rid of the assumption of decomposability
and do not assume the true concentration graph is known. They use independent
Laplace priors for the off-diagonal entries of the inverse covariance matrix, and
use independent Bernoulli priors for the edges of the concentration graph. In this
framework, estimation consistency is established in [4] under suitable regularity
assumptions when

√
(p + s) logp/n → 0 (s denotes the total number of nonzero

off-diagonal entries in the “true” inverse covariance matrix). The authors do not
address model selection consistency, but provide high-dimensional Laplace ap-
proximations for the marginal posterior probabilities for the graphs, along with a
proof of the validity of these approximations.

In this paper, our goal is to explore both model selection and estimation consis-
tency in a high-dimensional setting for Gaussian DAG models. In particular, we
consider a hierarchical Gaussian DAG model with DAG-Wishart priors on the co-
variance matrix and independent Bernoulli priors for each edge in the DAG. Under
standard regularity assumptions, which include letting p increase at an appropri-
ate subexponential rate with n, we establish posterior ratio consistency (Theo-
rem 4.1), that is, the ratio of the maximum marginal posterior probability assigned
to a “nontrue” DAG to the posterior probability assigned to the “true” DAG con-
verges to zero in probability under the true model. In particular, this implies that
the true DAG will be the mode of the posterior DAG distribution with probability
tending to 1 as n → ∞. An almost sure version of posterior ratio consistency is
established in Theorem 4.2. Next, under the additional assumption that the prior
over DAGs is restricted to graphs with edge size less than an appropriate function
of the sample size n, we show strong graph selection consistency (Theorem 4.3)
and establish a posterior convergence rate for estimation of the inverse covariance
matrix (Theorem E.1 in the Supplementary Material [7]). Strong graph selection
consistency implies that under the true model, the posterior probability of the true
graph converges in probability to 1 as n → ∞. As pointed out in Remark 2, the
assumption of restricting the prior over models with appropriately bounded param-
eter size has been used in [17] for regression models, and in [4] for concentration
graph models.
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Narisetty and He [17] establish strong model selection consistency of high-
dimensional regression models with spike and slab priors. While there are some
connections between our model and the one in [17] since the entries of L can be in-
terpreted as appropriate regression coefficients, there are fundamental differences
between the two models and the corresponding analyses. A detailed explanation
of this is provided in Remark 1.

In recent work, Altamore et al. [1] develop a class of objective nonlocal pri-
ors for Gaussian DAG models. This class of priors is structurally different from
the DAG Wishart priors of [5], and we also investigate posterior model selection
consistency under these nonlocal priors. In fact, we show under almost identical as-
sumptions to the DAG Wishart setting that under the true model, the posterior prob-
ability of the true graph converges in probability to 1 as n → ∞ (Theorem 6.1).
Another recent paper [8] tackles the problem of covariate-adjusted DAG selection,
that is, estimating a sparse DAG based covariance matrix in the presence of co-
variates. Establishing consistency in this more complex setup is beyond the scope
of our paper, and will be an excellent topic for future research.

The rest of the paper is structured as follows. Section 2 provides background
material from graph theory and Gaussian DAG models. In Section 3, we pro-
vide the hierarchical Bayesian DAG model. Graph selection consistency results
are stated in Section 4, and the proofs are provided in Section 5. In Section 6, we
establish graph selection consistency for nonlocal priors. A detailed discussion and
comparison of the Bayesian approach of [5] and existing penalized likelihood ap-
proaches is undertaken in Section 7. In Section 8, we use simulation experiments
to illustrate the posterior ratio consistency result, and demonstrate the benefits of
the Bayesian approach for graph selection vis-a-vis existing penalized likelihood
approaches.

2. Preliminaries. In this section, we provide the necessary background mate-
rial from graph theory, Gaussian DAG models and DAG-Wishart distributions.

2.1. Gaussian DAG models. Throughout this paper, a directed acyclic graph
(DAG) D = (V ,E) consists of the vertex set V = {1, . . . , p} and an edge set E

such that there is no directed path starting and ending at the same vertex. As in
[5], we will without loss of generality assume a parent ordering, where that all
the edges are directed from larger vertices to smaller vertices. The set of parents
of i, denoted by pai (D), is the collection of all vertices which are larger than i and
share an edge with i. Similarly, the set of children of i, denoted by chii (D), is the
collection of all vertices which are smaller than i and share an edge with i.

A Gaussian DAG model over a given DAG D , denoted by ND , consists of
all multivariate Gaussian distributions which obey the directed Markov property
with respect to a DAG D . In particular, if y = (y1, . . . , yp)T ∼ Np(0,�) and
Np(0,�) ∈ ND , then yi ⊥ y{i+1,...,p}\pai (D)|ypai (D) for each i.
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Any positive definite matrix � can be uniquely decomposed as � = LD−1LT ,
where L is a lower triangular matrix with unit diagonal entries, and D is a di-
agonal matrix with positive diagonal entries. This decomposition is known as the
modified Cholesky decomposition of � (see, e.g., [19]). It is well known that if
� = LD−1LT is the modified Cholesky decomposition of �, then Np(0,�−1) ∈
ND if and only if Lij = 0 whenever i /∈ paj (D). In other words, the structure of
the DAG D is reflected in the Cholesky factor of the inverse covariance matrix. In
light of this, it is often more convenient to reparametrize in terms of the Cholesky
parameter of the inverse covariance matrix as follows.

Given a DAG D on p vertices, denote LD as the set of lower triangular ma-
trices with unit diagonals and Lij = 0 if i /∈ paj (D), and let D

p
+ be the set of

strictly positive diagonal matrices in Rp×p . We refer to �D = D
p
+ × LD as the

Cholesky space corresponding to D , and (D,L) ∈ �D as the Cholesky parameter
corresponding to D . In fact, the relationship between the DAG and the Cholesky
parameter implies that

ND = {
Np

(
0,

(
LT )−1

DL−1) : (D,L) ∈ �D
}
.

The skeleton of D , denoted by Du = (V ,Eu), can be obtained by replacing all
the directed edges of D by undirected ones. A DAG D is said to be perfect if the
parents of all vertices are adjacent. An undirected graph is called decomposable if
it has no induced cycle of length n ≥ 4, excluding the loops. It is known that if D
is a perfect directed acyclic graph (DAG), then Du is a decomposable graph. Con-
versely, given an undirected decomposable graph, one can always direct the edges
so that the resulting graph is a perfect DAG. This fact can be used to show that the
class of normal distributions satisfying the directed Markov property with respect
to D (DAG models, sparsity in L) is identical to the class of normal distributions
satisfying the undirected Markov property with respect to Du (concentration graph
models, sparsity in �) if and only if D is a perfect DAG (see [18]).

2.2. DAG-Wishart distribution. In this section, we specify the multiple shape
parameter DAG-Wishart distributions introduced in [5]. First, we provide re-
quired notation. Given a directed graph D = (V ,E), with V = {1, . . . , p}, and
a p × p matrix A, denote the column vectors A>

D .i = (Aij )j∈pai (D) and A
≥
D .i =

(Aii, (A
>
D .i )

T )T . Also, let A>i
D = (Akj )k,j∈pai (D),

A
≥i
D =

[
Aii

(
A>

D .i

)T
A>

D .i A>i
D

]
.

In particular, A
≥
D .p = A

≥p
D = App .

The DAG-Wishart distributions in [5] corresponding to a DAG D are defined on
the Cholesky space �D . Given a positive definite matrix U and a p-dimensional
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vector α(D), the (unnormalized) density of the DAG-Wishart distribution on �D

is given by

(2.1) exp
{
−1

2
tr

((
LD−1LT )

U
)} p∏

i=1

D
− αi (D)

2
ii ,

for every (D,L) ∈ �D . Let νi(D) = |pai (D)| = |{j : j > i, (j, i) ∈ E(D)}|. If
αi(D) − νi(D) > 2, for all 1 ≤ i ≤ p, the density in (2.1) can be normalized to a
probability density, and the normalizing constant is given by

zD
(
U,α(D)

)
(2.2)

=
p∏

i=1

�(αi(D)
2 − νi(D)

2 − 1)2
αi (D)

2 −1(
√

π)νi(D) det(U>i
D )

αi (D)

2 − νi (D)

2 − 3
2

det(U≥i
D )

αi (D)

2 − νi (D)

2 −1
.

In this case, we define the DAG-Wishart density π
�D
U,α(D) on the Cholesky space

�D by

π
�D
U,α(D)(D,L) = 1

zD (U,α(D))
exp

{
−1

2
tr

((
LD−1LT )

U
)} p∏

i=1

D
− αi (D)

2
ii

for every (D,L) ∈ �D . The above density has the same form as the classical
Wishart density, but is defined on the lower-dimensional space �D and has p

shape parameters {αi(D)}pi=1 which can be used for differential shrinkage of the
variables in high-dimensional settings.

The class of densities π
�D
U,α(D) form a conjugate family of priors for the Gaus-

sian DAG model N (D). In particular, if the prior on (D,L) ∈ �D is π
�D
U,α(D)

and Y 1, . . . ,Y n are independent, identically distributed Np(0, (LT )−1DL−1) ran-

dom vectors, then the posterior distribution of (D,L) is π
�D

Ũ ,α̃(D)
, where S =

1
n

∑n
i=1 Y iY

T
i denotes the sample covariance matrix, Ũ = U + nS, and α̃(D) =

(n + α1(D), . . . , n + αp(D)).

3. Model specification. Let Y 1,Y 2, . . . ,Y n ∈ Rp be the observed data. The
class of DAG-Wishart distributions in Section 2 can be used for Bayesian covari-
ance estimation and DAG selection through the following hierarchical model:

Y |((D,L),D
) ∼ Np

(
0,

(
LD−1LT )−1)

,

(D,L)|D ∼ π
�D
U,α(D),

π(D) =
p−1∏
i=1

qνi(D)(1 − q)p−i−νi(D).

(3.1)
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The prior density for DAGs above corresponds to an Erdős–Renyi type of
distribution on the space of DAGs, where each directed edge is present with
probability q independently of the other edges. In particular, similar to [4], de-
fine γij = I{(i, j) ∈ E(D)}, 1 ≤ i < j ≤ p to be the edge indicator. Let γij ,
1 ≤ i < j < p be independent identically distributed Bernoulli(q) random vari-
ables. It follows that

π(D) = ∏
(i,j):1≤i<j≤p

qγij (1 − q)1−γij =
p−1∏
i=1

qνi(D)(1 − q)p−i−νi(D).

The model in (3.1) has three hyperparameters: the scale matrix U (positive def-
inite), the shape parameter vector α(D) and the edge probability q .

The hierarchical model in (3.1) can be used to estimate a DAG as follows. By
(3.1) and Bayes’ rule, the (marginal) posterior DAG probabilities are given by

π(D |Y )

=
∫
�D

π(Y |D, (L,D))π
�D
U,α(D)((L,D))π(D)

π(Y )
dLdD

= π(D)

π(Y )

∫
�D

π
(
Y |D, (L,D)

)
π

(
(L,D)|D)

dLdD(3.2)

= π(D)

π(Y )

∫
�D

exp(−1
2 tr(LD−1LT (U + nS)))

∏p
i=1 D

−(n+ αi (D)

2 )

ii

zD (U,α(D))
dLdD

= π(D)

π(Y )(
√

2π)n

zD (U + nS,n + α(D))

zD (U,α(D))
.

Hence, the marginal posterior density π(D |Y ) is available in closed form [up
to the multiplicative constant π(Y )]. In particular, these posterior probabilities can
be used to select a DAG by computing the posterior mode defined by

(3.3) D̂ = arg max
D

π(D |Y ).

4. DAG selection consistency: Main results. In this section, we will explore
the high-dimensional asymptotic properties of the Bayesian DAG selection ap-
proach specified in Section 3. For this purpose, we will work in a setting where
the dimension p = pn of the data vectors, and the edge probabilities q = qn vary
with the sample size n. We assume that the data is actually being generated from a
true model which can be specified as follows. Let Y n

1,Y
n
2, . . . ,Y

n
n be independent

and identically distributed pn-variate Gaussian vectors with mean 0 and covari-
ance matrix �n

0 = (�n
0)

−1. Let �n
0 = Ln

0(D
n
0 )−1(Ln

0)
T be the modified Cholesky

decomposition of �n
0. Let Dn

0 be the true underlying DAG, that is, Ln
0 ∈ LDn

0
.

Denote dn as the maximum number of nonzero entries in any column of Ln
0,
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sn = min1≤j≤p,i∈paj (Dn
0 ) |(Ln

0)ji |. Let P̄ and Ē, respectively, denote the probabil-
ity measure and expected value corresponding to the “true” Gaussian DAG model
presented above.

In order to establish our asymptotic results, we need the following mild
regularity assumptions. Each assumption below is followed by an interpreta-
tion/discussion. Note that for a symmetric p × p matrix A = (Aij )1≤i,j≤p , let
eig1(A) ≤ eig2(A) ≤ . . . ≤ eigp(A) denote the ordered eigenvalues of A.

ASSUMPTION 1. There exists ε0,n ≤ 1, such that for every n ≥ 1, 0 < ε0,n ≤
eig1(�

n
0) ≤ eigpn

(�n
0) ≤ ε−1

0,n, where
(

logp
n

)
1
2 − 1

2+k

ε4
0,n

→ 0, as n → ∞, for some k > 0.

This is a much weaker assumption for high-dimensional covariance asymptotics
than, for example, [3, 4, 6, 9, 26]. Here, we allow the lower and upper bounds on
the eigenvalues to depend on p and n.

ASSUMPTION 2. d2+k
n

√
logpn

n
→ 0, and (

√
logpn

n
)

k
2(k+2) logn → 0, as n → ∞.

This assumption essentially states that the number of variables pn has to grow
slower than en/d4+2k

n (and also en/(logn)2+k
). Again, similar assumptions are com-

mon in high-dimensional covariance asymptotics; see, for example, [3, 4, 6, 26].

ASSUMPTION 3. Let qn = e−ηnn in (3.1), where ηn = dn(
logpn

n
)

1/2
1+k/2 . Hence,

qn → 0, as n → ∞.

This assumption provides the rate at which the edge probability qn needs to
approach zero. A similar assumption can be found in [17] in the context of lin-
ear regression. This can be interpreted as a priori penalizing graphs with a large
number of edges.

ASSUMPTION 4. ηndn

ε0,ns2
n

→ 0 as n → ∞.

Recall that sn is the smallest (in absolute value) nonzero off-diagonal entry in
Ln

0, and can be interpreted as the “signal size.” Hence, this assumption provides a
lower bound for the signal size that is needed for establishing consistency.

ASSUMPTION 5. For every n ≥ 1, the hyperparameters for the DAG-Wishart

prior π
�Dn

Un,α(Dn) in (3.1) satisfy (i) 2 < αi(Dn) − νi(Dn) < c for every Dn and
1 ≤ i ≤ pn, and (ii) 0 < δ1 ≤ eig1(Un) ≤ eigpn

(Un) ≤ δ2 < ∞. Here, c, δ1, δ2 are
constants not depending on n.
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This assumption provides mild restrictions on the hyperparameters for the DAG-
Wishart distribution. The assumption 2 < αi(D) − νi(D) establishes prior propri-
ety. The assumption αi(D) − νi(D) < c implies that the shape parameter αi(D)

can only differ from νi(D) (number of parents of i in D ) by a constant which does
not vary with n. Additionally, the eigenvalues of the scale matrix Un are assumed
to be uniformly bounded in n. While the authors in [5] do not specifically discuss
hyperparameter choice, they do provide some recommendations in their experi-
ments section. For the shape parameters, they recommend αi(Dn) = cνi(Dn) + b.
They mostly use c = 1 in which case Assumption 5 is satisfied. The also use
c ∈ (2.5,3.5) in some examples, in which case Assumption 5 is not satisfied. Also,
they choose the scale matrix to be a constant multiple of the identity matrix, which
clearly satisfies Assumption 5.

For the rest of this paper, pn,�
n
0,�

n
0 ,Ln

0,D
n
0 ,Dn

0 , D̂n,Dn, dn, qn,An will be

denoted as p,�0,�0,L0,D0,D0, D̂,D, d, q,A as needed for notational conve-
nience and ease of exposition.

We now state and prove the main DAG selection consistency results. Our first
result establishes what we call as posterior ratio consistency. This notion of consis-
tency implies that the true DAG will be the mode of the posterior DAG distribution
with probability tending to 1 as n → ∞.

THEOREM 4.1 (Posterior ratio consistency). Under Assumptions 1–5, the fol-
lowing holds:

max
D 
=D0

π(D |Y )

π(D0|Y )

P̄→ 0 as n → ∞.

A proof of this result is provided in Section 5. If one was interested in a point
estimate of the underlying DAG using the Bayesian approach considered here, the
most obvious choice would be the posterior mode D̂ defined in (3.3). From a fre-
quentist point of view, it would be natural to inquire if we have model selection
consistency, that is, if D̂ is a consistent estimate of D0. In fact, the model selec-
tion consistency of the posterior mode follows immediately from posterior ratio
consistency established in Theorem 4.1, by noting that

max
D 
=D0

π(D |Y )

π(D0|Y )
< 1 ⇒ D̂ = D0.

We state this result formally in the corollary below.

COROLLARY 4.1 (Model selection consistency for posterior mode). Under
Assumptions 1–5, the posterior mode D̂ is equal to the true DAG D0 with proba-
bility tending to 1, that is,

P̄ (D̂ = D0) → 1 as n → ∞.
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If p is of a larger order than a positive power of n, then a stronger version of the
posterior ratio consistency in Theorem 4.1 can be established.

THEOREM 4.2 (Almost sure posterior ratio consistency). If p/nk̃ → ∞ for
some k̃ > 0, then under Assumptions 1–5 the following holds:

max
D 
=D0

π(D |Y )

π(D0|Y )
→ 0 almost surely P̄ ,

as n → ∞.

Next, we establish another stronger result (compared to Theorem 4.1) which
implies that the posterior mass assigned to the true DAG D0 converges to 1 in
probability (under the true model). Following [17], we refer to this notion of con-
sistency as strong selection consistency. To establish this stronger notion of con-
sistency, we restrict our analysis to DAGs with total number of edges bounded by
an appropriate function of n (see also Remark 2).

THEOREM 4.3 (Strong selection consistency). Under Assumptions 1–5, if we

restrict only to DAGs with number of edges at most 1
8d( n

logp
)

1+k
2+k , the following

holds:

π(D0|Y )
P̄→ 1 as n → ∞.

REMARK 1. In the context of linear regression, Narisetty and He [17] consider
the following hierarchical Bayesian model:

Y |X,β, σ 2 ∼ N
(
Xβ, σ 2I

)
,

βi |σ 2, Zi = 0 ∼ N
(
0, σ 2τ 2

0,n

)
,

βi |σ 2, Zi = 1 ∼ N
(
0, σ 2τ 2

1,n

)
,

P (Zi = 1) = 1 − P(Zi = 0) = qn,

σ 2 ∼ Inverse-Gamma(α1, α2).

In particular, they put an independent spike and slab prior on each linear regres-
sion coefficient (conditional on the variance parameter σ 2), and an inverse Gamma
prior on the variance. Also, each regression coefficient is present in the model
with a probability qn. In this setting, the authors in [17] establish strong selection
consistency for the regression coefficients (assuming the prior is constrained to
leave out unrealistically large models). There are similarities between the mod-
els and the consistency analysis in [17] and this paper. Note that the off-diagonal
entries in the ith column of L are the linear regression coefficients correspond-
ing to fitting the ith variable against all variables with label greater than i, and in
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our model (3.1) each coefficient is present independently with a given probabil-
ity qn. Also, similar to [17], in terms of proving posterior consistency, we bound
the ratio of posterior probabilities for a nontrue model and the true model by a
“prior term” which is a power of qn/(1 − qn), and a “data term.” The consis-
tency proof is then a careful exercise in balancing these two terms against each
other on a case-by-case basis. However, despite these similarities, there are some
fundamental differences in the two models and the corresponding analysis. First,
the DAG-Wishart prior does not in general correspond to assigning an indepen-
dent spike and slab prior to each entry of L. The columns of L are independent
of each other under this prior, but it introduces correlations among the entries in
each column of L. Also, the DAG-Wishart prior introduces exact sparsity in L,
which is not the case in [17] as τ 2

0,n is assumed to be strictly positive. Hence, it
is structurally different than the prior in [17]. Second, the “design” matrices cor-
responding to the regression coefficients in each column of L are random (they
are functions of the sample covariance matrix S) and are correlated with each
other. In particular, this leads to major differences and further challenges in an-
alyzing the ratio of posterior graph probabilities (a crucial step in establishing
consistency).

REMARK 2. We would like to point out that posterior ratio consistency (The-
orems 4.1 and 4.2) does not require any restriction on the maximum number of
edges; this requirement is only needed for strong selection consistency (Theo-
rem 4.3). Similar restrictions on the prior model size have been considered for
establishing consistency properties in other contexts. For concentration graph
models, Banerjee and Ghosal [4] use a hierarchical prior where each edge of
the concentration graph is independently present with a given probability q . For
establishing high-dimensional posterior convergence rates, they restrict the prior
to graphs with total number of edges bounded by an appropriate fixed constant.
A variation where the upper bound on the number of edges is a random variable
with subexponential tails is also considered. For linear regression, Narisetty and
He [17] too restrict the prior model size to an appropriate function of n (number
of nonzero regression coefficients) for establishing strong selection consistency
(when the variance parameter is random).

5. Proofs of Theorems 4.1, 4.2 and 4.3. The proof of Theorems 4.1, 4.2
and 4.3 will be broken up into various steps. We begin by presenting a useful
lemma that provides an upper bound for the ratio of posterior DAG probabili-
ties.

LEMMA 5.1. Under Assumption 5, for a large enough constant M and large
enough n, the ratio of posterior probabilities of any DAG D and the true DAG D0
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satisfies

π(D |Y )

π(D0|Y )

≤
p∏

i=1

M

(
δ2

δ1

) d
2
n2c

(√
δ2

n

q

1 − q

)νi(D)−νi(D0) |S̃≥i
D0

| 1
2

|S̃≥i
D | 1

2

(S̃i|pai (D0))
n+ci (D0)−3

2

(S̃i|pai (D))
n+ci (D)−3

2

�
p∏

i=1

Bi(D,D0),

where ci(D) = αi(D) − νi(D), ci(D0) = αi(D0) − νi(D0), S̃ = S + U
n

and

S̃i|pai (D) = S̃ii − (S̃>
D ·i)T (S̃>i

D )−1S̃>
D ·i .

The proof of this lemma is provided in the Supplementary Material [7]. Our
goal is to find an upper bound (independent of D and i) for Bi(D,D0), such that
the upper bound converges to 0 as n → ∞. By Lemma 5.1, this will be enough
to establish Theorem 4.1. Before we undertake this goal, we present a proposition
that will be useful in further analysis. Note that for any positive definite matrix A,
and M ⊆ {1,2 . . . , p} \ {i}, we denote Ai|M = Aii − AiMA−1

MMAMi .

PROPOSITION 5.2. Given a DAG D with p vertices:

(a) If pai (D) ⊇ pai (D0), then (�0)i|pai (D) = (D0)ii = (�0)i|pai (D0) does not
depend on D .

(b) If pai (D) ⊆ pai(D0), then (�0)i|pai (D) − (�0)i|pai (D0) ≥ ε0,n(νi(D0) −
νi(D))s2, where ε0,n > 0 and s = minj∈pai (D0) |(L0)ji |.

The proof of this proposition is provided in the Supplementary Material [7].
Next, we show that in our setting, the sample and population covariance matrices
are sufficiently close with high probability. It follows by Assumptions 1, 2, 5,
Lemma A.3 of [6] and the Hanson–Wright inequality from [21] that there exists
constants m1,m2 and δ depending on ε0,n only such that for 1 ≤ i, j ≤ p, we have

P̄
(∣∣Sij − (�0)ij

∣∣ ≥ t
) ≤ m1 exp

{−m2n(tε0,n)
2}

, |t | ≤ δ.

By the union-sum inequality, for a large enough c′ such that 2 −m2(c
′)2/4 < 0,

we get that

(5.1) P̄

(
‖S̃ − �0‖max ≥ c′

√√√√ logp

nε2
0,n

)
≤ m1p

2−m2(c
′)2/4 → 0.

Define the event Cn as

(5.2) Cn =
{
‖S̃ − �0‖max ≥ c′

√√√√ logp

nε2
0,n

}
.
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It follows from (5.1) and (5.2) that P̄ (Cn) → 0 as n → ∞.
We now analyze the behavior of Bi(D,D0) under different scenarios in a se-

quence of five lemmas (Lemmas 5.3–5.7). Recall that our goal is to find an upper
bound (independent of D and i) for Bi(D,D0), such that the upper bound con-
verges to 0 as n → ∞. For all these lemmas, we will restrict ourselves to the
event Cc

n.

LEMMA 5.3. If pai (D) ⊃ pai (D0) and νi(D) ≤ 3νi(D0)+ 2, then there exists
N1 (not depending on i or D ) such that for n ≥ N1 we have Bi(D,D0) ≤ ε1,n,
where ε1,n = 2e− ηn

2 n.

PROOF. Since pai (D0) ⊂ pai (D), we can write |S̃≥i
D | = |S̃≥i

D0
||R

S̃
≥i
D0

|. Here,

R
S̃

≥i
D0

is the Schur complement of S̃
≥i
D0

, defined by

R
S̃

≥i
D0

= D − BT (
S̃

≥i
D0

)−1
B

for appropriate submatrices B and D of S̃
≥i
D . Since S̃

≥i
D ≥ (U

n
)
≥i
D ,1 and R−1

S̃
≥i
D0

is

a principal submatrix of (S̃
≥i
D )−1, it follows from Assumption 5 that the largest

eigenvalue of R−1
S̃

≥i
D0

is bounded above by n
δ1

. Therefore,

(5.3)
( |S̃≥i

D0
|

|S̃≥i
D |

) 1
2 = ∣∣R−1

S̃
≥i
D0

∣∣1/2 ≤
(√

n

δ1

)νi(D)−νi(D0)

.

Since we are restricting ourselves to the event Cc
n, it follows by (5.1) that

∥∥S̃≥i
D0

− (�0)
≥i
D0

∥∥
(2,2) ≤ (

νi(D0) + 1
)
c′

√√√√ logp

nε2
0,n

.

Therefore,∥∥(
S̃

≥i
D0

)−1 − (
(�0)

≥i
D0

)−1∥∥
(2,2)

= ∥∥(
S̃

≥i
D0

)−1∥∥
(2,2)

∥∥(
S̃

≥i
D0

)−1 − (
(�0)

≥i
D0

)−1∥∥
(2,2)

∥∥(
(�0)

≥i
D0

)−1∥∥
(2,2)(5.4)

≤
(∥∥(

S̃
≥i
D0

)−1 − (
(�0)

≥i
D0

)−1∥∥
(2,2) + 1

ε0,n

)(
νi(D0) + 1

)
c′

√√√√ logp

nε2
0,n

1

ε0,n

.

By Assumptions 1, 2 and d > 0, we have

(5.5)
d

√
logpn

n

ε4
0,n

→ 0 as n → ∞.

1For matrices A and B , we say A ≥ B if A − B is positive semidefinite.
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Hence, there exists N ′
1 such that for n ≥ N ′

1,

c′

ε2
0,n

(d + 1)

√
logp

n
<

1

2
and 2

c′

ε3
0,n

(d + 1)

√
logp

n
<

1

ε0,n

.

Since νi(D0) ≤ d , it follows by (5.4) and Assumption 1 that∥∥(
S̃

≥i
D0

)−1∥∥
(2,2) ≤ 2

ε0,n

and
1

S̃i|pai (D0)

= [(
S̃

≥i
D0

)−1]
ii ≤ 2

ε0,n

(5.6)

for n ≥ N ′
1. Since, pai (D0) ⊂ pai (D), we get

S̃i|pai (D0) ≥ S̃i|pai (D).

Let N ′′
1 be such that for n ≥ N ′′

1 , q ≤
√

δ1
2
√

δ2
≤ 1

2 . Using 2 < ci(D), ci(D0) < c,
(5.3), (5.6) and Lemma 5.1, we get

Bi(D,D0) ≤ M

(
δ2

δ1

) d
2
n2c

(√
δ2

δ1

q

1 − q

)νi(D)−νi(D0)
(

2

ε0,n

)c

×
(

S̃i|pai (D0)

S̃i|pai (D)

) n+c−3
2

(5.7)

≤ M

(
2

ε0,n

)c(δ2

δ1

) d
2
n2c

(√
δ2

δ1
2q

)νi(D)−νi(D0)
( 1

S̃i|pai (D)

1
S̃i|pai (D0)

) n+c−3
2

,

for n ≥ max(N ′
1,N

′′
1 ). We would like to note that the arguments leading up to (5.7)

only require the assumption pai (D0) ⊂ pai (D). This observation enables us to use
(5.7) in the proof of Lemmas 5.4 and 5.5.

By following exactly the same sequence of arguments leading up to (5.4), and
replacing D by D0, we get∥∥(

S̃
≥i
D

)−1 − (
(�0)

≥i
D

)−1∥∥
(2,2)(5.8)

≤
(∥∥(

S̃
≥i
D

)−1 − (
(�0)

≥i
D

)−1∥∥
(2,2) + 1

ε0,n

)(
νi(D) + 1

)
c′

√√√√ logp

nε2
0,n

1

ε0,n

.(5.9)

By (5.5), there exists N ′′′
1 such that for n ≥ N ′′′

1 ,

(5.10)
c′

ε2
0,n

(3d + 3)

√
logp

n
<

1

2
and 2

c′

ε3
0,n

(3d + 3)

√
logp

n
<

ε0,n

2
.
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Note that by hypothesis νi(D) + 1 ≤ 3νi(D0) + 3 ≤ 3d + 3. It follows from
(5.8) that

(5.11)
∥∥(

S̃
≥i
D

)−1 − (
(�0)

≥i
D

)−1∥∥
(2,2) ≤ 2

c′

ε3
0,n

(3d + 3)

√
logp

n

for n ≥ N ′′′
1 . Using νi(D) − νi(D0) ≥ 1, (5.7), (5.11), Proposition 5.2(a) and the

definition of qn, it follows that for n ≥ max(N ′
1,N

′′
1 ,N ′′′

1 ),

Bi(D,D0)

≤ 2M̃
1

εc
0,n

(
δ2

δ1

) d
2
n2cq

(‖((�0)
≥i
D0

)−1‖(2,2) + 2 c′
ε3

0,n

(3d + 3)

√
logp

n

‖((�0)
≥i
D0

)−1‖(2,2) − 2 c′
ε3

0,n

(3d + 3)

√
logp

n

) n−c+3
2

≤ 2 exp
{
−d

(
logp

n

) 1/2
1+k/2

n + d log
(

δ2

δ1

)
+ 2c logn + c

4
log

(
1

ε4
0,n

)
+ log M̃

}

×
(

1 +
2 c′

ε3
0,n

(3d + 3)

√
logp

n

‖((�0)
≥i
D0

)−1‖(2,2) − ε0,n

2

)n

≤ 2 exp
{
−d

(
logp

n

) 1/2
1+k/2

n + d log
(

δ2

δ1

)
+ 2c logn + c

4
log

(
1

ε4
0,n

)
+ log M̃

}

× exp
{

12c′

ε4
0,n

(d + 1)
√

n logp

}
,

where M̃ = M2c
√

δ2
δ1

. Since ηn = d(
logp

n
)

1/2
1+k/2 has a strictly larger order than d

n
,

logn
n

,
log( 1

ε4
0,n

)

n
and d

√
logp

n

ε4
0,n

2 by Assumptions 1 and 2, it follows that there exists N ′′′′
1

such that for n ≥ N ′′′′
1 , the expression in the exponent is dominated by −ηn

2 . It
follows that

Bi(D,D0) ≤ 2e− ηn
2 n

for n ≥ N1
�= max(N ′

1,N
′′
1 ,N ′′′

1 ,N ′′′′
1 ). �

2We say an is of a larger order than bn if bn
an

→ 0 as n → ∞.
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LEMMA 5.4. Assume pai (D) ⊃ pai (D0), νi(D) > 3νi(D0) + 2 and
1

ε2
0,n

(νi(D) + 1)

√
logp

n
≤ 1

2c′ , then there exists N2 (not depending on i or D ), such

that for n ≥ N2, Bi(D,D0) ≤ ε2,n, where ε2,n = e−ηnn.

PROOF. By following exactly the same sequence of arguments leading up to
(5.4), and replacing D by D0, we get∥∥(

S̃
≥i
D

)−1 − (
(�0)

≥i
D

)−1∥∥
(2,2)

≤
(∥∥(

S̃
≥i
D

)−1 − (
(�0)

≥i
D

)−1∥∥
(2,2) + 1

ε0,n

)(
νi(D) + 1

)
c′

√√√√ logp

nε2
0,n

1

ε0,n

.

Using 1
ε2

0,n

(νi(D) + 1)

√
logp

n
≤ 1

2c′ , νi(D0) < νi(D), (5.4) and (5.5), for large

enough n ≥ N ′
2, we get

∥∥(
S̃

≥i
D

)−1 − (
(�0)

≥i
D

)−1∥∥
(2,2) ≤ 2c′

ε3
0,n

(
νi(D) + 1

)√ logp

n
,(5.12)

∥∥(
S̃

≥i
D0

)−1 − (
(�0)

≥i
D0

)−1∥∥
(2,2) ≤ 2c′

ε3
0,n

(
νi(D0) + 1

)√ logp

n
(5.13)

and

(5.14)
2c′

ε3
0,n

(
νi(D0) + 1

)√ logp

n
≤ ε0,n

2
.

Note that the arguments leading up to (5.7) only use pai (D0) ⊂ pai (D). It fol-
lows from (5.7), Proposition 5.2, (5.12) and (5.13) that these exists N ′′

2 such that

Bi(D,D0)

≤ exp
{
d log

(
δ2

δ1

)
+ 2c logn + c

4
log

(
1

ε4
0,n
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+ log M̃
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δ1
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×
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δ1
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+ 3c logn
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√
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ε3
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(νi(D) + 1)
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logp

n

1
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ε3

0,n

(νi(D0) + 1)

√
logp

n

) n+c−3
2
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for n ≥ N ′′
2 . Note that νi(D) > 3νi(D0) + 2 implies νi(D) + νi(D0) + 2 ≤

2(νi(D) − νi(D0)). It follows by Assumption 1, (5.14) and q = qn = e−ηnn that

Bi(D,D0)

≤ exp
{
d log

(
δ2

δ1

)
+ 3c logn

}(
2q

√
δ1

δ2

)νi(D)−νi(D0)

×
(

1 +
2c′
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0,n

(νi(D) + νi(D0) + 2)

√
logp

n

ε0,n/2

) n+c−3
2
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d log
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)
+ 3c logn

}(
2q
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δ1
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)νi(D)−νi(D0)

× exp
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ε4
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(
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)√
n logp
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2

√
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−ηnn + 8c′

ε4
0,n

√
n logp + d log

(
δ2

δ1

)
+ 3c logn

})νi(D)−νi(D0)

.

Since ηn has a strictly larger order than

√
logp

n

ε4
0,n

, d
n

and logn
n

, there exists N2 such

that

Bi(D,D0) ≤ (
e− ηn

2 n)νi(D)−νi(D0) ≤ e−ηnn

for n ≥ N2. �

LEMMA 5.5. If pai (D) ⊃ pai (D0), νi(D) > 3νi(D0) + 2 and 1
ε2

0,n

(νi(D) +
1)

√
logp

n
> 1

2c′ , then there exists N3 (not depending on i or D ), such that for n ≥
N3, Bi(D,D0) ≤ ε3,n, where ε3,n = ( 1

δ1n
)n.

PROOF. Since 1
S̃i|pai (D)

= [(S̃≥i
D )−1]ii and S̃

≥i
D ≥ (U

n
)
≥i
D , we get

1

S̃i|pai (D)

≤ n

δ1
.

By (5.4) and (5.5), there exists N ′
3 such that for n ≥ N ′

3,
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ε2
0,n

(d + 1)

√
logp
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<

1

2
and 2
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ε3
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√
logp
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<
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2
.

Since νi(D0) ≤ d , it follows by (5.4) and Assumption 1 that∥∥(
S̃

≥i
D0

)−1∥∥
(2,2) ≥ ε0,n

2
and

1

S̃i|pai (D0)

= [(
S̃

≥i
D0

)−1]
ii ≥ ε0,n

2
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for n ≥ N ′
3. Note that by hypothesis, we have

νi(D) >
ε2

0,n

2c′

√
n

logp
− 1.

Since the arguments leading up to (5.7) only require pai (D) ⊃ pai (D0), using
the above facts along with Assumption 2, there exists N ′′

3 such that for n ≥ N ′′
3 , we

get
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(
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.

By Assumption 1, we have 1
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logp

n
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1
2 ( 1

2 − 1
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)). Then, by (5.5), As-

sumptions 2 and 3, we obtain ε2
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n

logp
has a larger order than ηnd , logn and

log( 1
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). It follows that there exists N3 such that
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logp
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for n ≥ N3. �

LEMMA 5.6. If pai (D) ⊂ pai (D0), then there exists N4 (not depending on i

or D ), such that for n ≥ N4, Bi(D,D0) ≤ ε4,n, where ε4,n = e−dηnn.
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PROOF. Since pai (D0) ⊃ pai (D), we can write |S̃≥i
D0

| = |S̃≥i
D ||R

S̃
≥i
D

|. Here,

R
S̃

≥i
D

is the Schur complement of S̃
≥i
D , defined by
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where R
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represents the Schur complement of (�0)
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. Let λmin(A) denote the smallest
eigenvalue of a positive definite matrix A. By Assumptions 1 and 2, it follows that
there exists N ′′

4 such that( |S̃≥i
D0

|
|S̃≥i

D |
) 1

2 = 1

|R−1
S̃

≥i
D

|1/2
≤ 1

(λmin(R
−1
(�0)

≥i
D

) − K d

ε3
0,n

√
logp

n
)

νi (D0)−νi (D)

2

≤
(

1

ε0,n/2

) νi (D0)−νi (D)

2
for large enough n

for n ≥ N ′′
4 . Since pai (D) ⊂ pai (D0), we get

S̃i|pai (D0) ≤ S̃i|pai (D).

Let K1 = 4c′. By Lemma 5.1 and Proposition 5.2, and 2 < ci(D), ci(D0) < c,
it follows that there exists N ′′′

4 such that for n ≥ N ′′′
4 , we get

Bi(D,D0)

≤ M

(
2

ε0,n

)c(δ2

δ1

) d
2
n2c

(√
2n

δ2ε0,n

q−1
)νi(D0)−νi(D)

×
( 1

(�0)i|pai (D)
+ K1

d

ε3
0,n

√
logp

n

1
(�0)i|pai (D0)

− K1
d

ε3
0,n

√
logp

n

) n+2−3
2
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≤
(

exp
{2d log( δ2

δ1
) + 6c logn + (c + d) log( 1

ε0,n
)

n − 1

+ 8ηn

(
νi(D0) − νi(D)

)}) n−1
2

(5.15)

×
(

1 +
( 1
(�0)i|pai (D0)

− 1
(�0)i|pai (D)

) − 2K1
d

ε3
0,n

√
logp

n

1
(�0)i|pai (D)

+ K1
d

ε3
0,n

√
logp

n

)− n−1
2

≤
(

exp
{2d log( δ2

δ1
) + 6c logn + (c + d) log( 1

ε0,n
)

n − 1

+ 8ηn

(
νi(D0) − νi(D)

)}) n−1
2

×
(

1 +
ε0,ns

2
n(νi(D0) − νi(D)) − 2K1

d

ε3
0,n

√
logp

n

2/ε0,n

)− n−1
2

.

Note that, by Assumptions 2, 3 and 4, dηn

ε2
0,ns2

n

→ 0,

2d log( δ2
δ1

) + 6c logn + (c + d) log( 1
ε0,n

)

(n − 1)ε2
0,ns

2
n

→ 0,

and ηn

s2
n

→ 0 as n → ∞. Since ex ≤ 1 + 2x for x < 1
2 , by Assumptions 1 and 4,

there exists N ′′′′
4 such that for n ≥ N ′′′′

4 ,

2K1
d

ε3
0,n

√
logp

n
≤ ε0,nη ≤ ε0,ns

2
n

2

and

exp
{2d log( δ2

δ1
) + 6c logn + (c + d) log( 1

ε0,n
)

n − 1
+ 4η

(
νi(D0) − νi(D)

)}

≤ 1 + 8η
(
νi(D0) − νi(D)

) +
4d log( δ2

δ1
) + 12c logn + 2(c + d) log( 1

ε0,n
)

n − 1

≤ 1 + ε2
0,ns

2
n

8
.

It follows by (5.15) and the above observations that

Bi(D,D0) ≤
(1 + ε2

0,n

8 s2
n

1 + ε2
0,n

4 s2
n

) n−1
2
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for n ≥ max(N ′
4,N

′′
4 ,N ′′′

4 ,N ′′′′
4 ). The last step follows by noting that νi(D0) −

νi(D) ≥ 1. Since pai (D0) is nonempty by hypothesis, ∃j ∈ νi(D0) such that

|(L0)ji | ≥ sn, which implies that s2
n ≤ (L0)

2
ji ≤ 1

ε0,n
(
[(L0)ji ]2

(D0)ii
) ≤ (�0)jj

ε0,n
≤ 1

ε2
0,n

and

ε2
0,ns

2
n ≤ 1. Hence, following from Assumption 4, there exists N4 such that for

n ≥ N4, we get

Bi(D,D0) ≤
(

1 −
ε2

0,n

8 s2
n

1 + ε2
0,n

4 s2
n

) n−1
2 ≤ exp

{
−

( ε2
0,n

8 s2
n

1 + ε2
0,n

4 s2
n

)(
n − 1

2

)}

≤ e
− 1

10 ε2
0,ns2

n( n−1
2 ) ≤ e−dηnn. �

LEMMA 5.7. Suppose D is such that pai (D0) 
= pai (D), pai (D0) � pai (D),
and pai (D0) � pai (D), then, for n ≥ N5 (not depending on i or D ), Bi(D,D0) ≤
ε5,n, where ε5,n = max(ε1,n, ε2,n, ε3,n)ε4,n.

The proof of this lemma is provided in the Supplementary Material [7]. With
these lemmas in hand, Theorem 4.1 can be proved as follows. By Lemmas 5.3–
5.7, if we restrict to the event Cc

n, and pai (D) 
= pai(D0), then Bi(D,D0) ≤ ε∗
n for

every n ≥ max(N1,N2,N3,N4), where ε∗
n

�= max{ε1,n, ε2,n, ε3,n, ε4,n, ε5,n} con-
verges to 0 as n → ∞ (by Assumption 3). Note that if D 
= D0, then there exists
at least one i, such that pai (D) 
= pai (D0). It follows by Lemma 5.1, that if we
restrict to Cc

n, then

(5.16) max
D 
=D0

π(D |Y )

π(D0|Y )
≤ max

D 
=D0

p∏
i=1

Bi(D,D0) ≤ ε∗
n

for every n ≥ max(N1,N2,N3,N4). By (5.1), P(Cc
n) → 1 as n → ∞. Theorem 4.1

follows immediately.
To prove Theorem 4.2, note that if p/nk̃ → ∞, then one can choose c′ in (5.1)

such that m2(c
′)2/4 = 2 + 2/k̃. It follows that P(Cn) ≤ m1/n2 for large enough n.

The result follows by (5.16) and the Borel–Cantelli lemma.
We now move on to the proof of Theorem 4.3, and only consider DAGs with

number of edges at most h = 1
8d( n

logp
)

1+k
2+k . By Lemmas 5.3–5.7, it follows that if

we restrict to Cc
n, then

1 − π(D0|Y )

π(D0|Y )
= ∑

D 
=D0,D has atmost h edges

π(D |Y )

π(D0|Y )

≤
h∑

i=0

((p
2

)
i

)
max
D 
=D0

π(D |Y )

π(D0|Y )
(5.17)

≤ p3he− ηnn
2 = e3h logp− ηnn

2 = e− 1
8 dn

1+k
2+k (logp)

1
2+k
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for n ≥ max(N1,N2,N3,N4). Theorem 4.3 follows immediately.

6. Results for nonlocal priors. In [1], the authors present an alternative to the
Wishart-based Bayesian framework for Gaussian DAG models by using nonlocal
priors. Nonlocal priors were first introduced in [12] as densities that are identically
zero whenever a model parameter is equal to its null value in the context of hypoth-
esis testing (compared to local priors, which still preserve positive values at null
parameter values). Nonlocal priors tend to discard spurious covariates faster as the
sample size n grows, while preserving exponential learning rates to detect nonzero
coefficients as indicated in [12]. These priors were further extended to Bayesian
model selection problems in [13] by imposing nonlocal prior densities on a vector
of regression coefficients. The nonlocal prior based approach for Gaussian DAG
models proposed in [1], adapted to our notation and framework, can be described
as follows:

Y |((D,L),D
) ∼ Np

(
0,

(
LD−1LT )−1)

,

πNL

(
(D,L)|D) ∝

p∏
j=1

1

Djj

( ∏
i∈paj (D)

L2r
ij

)
,

πNL(D) =
p−1∏
i=1

qνi(D)(1 − q)p−i−νi(D),

(6.1)

where r is a fixed positive integer. Note that the prior on (D,L) is an improper
objective prior. If max1≤j≤p paj (D) > n, then this objective prior leads to an im-
proper posterior for (D,L) as well. In such cases, the authors in [1] propose using
fractional Bayes factors. However, for the purposes of proving strong selection
consistency, similar to Theorem 4.3, we will restrict the prior on the space of
DAGs to graphs whose total number of edges is appropriately bounded (leaving
out unrealistically large models, in the terminology of [17]). This will ensure that
the posterior impropriety issue never arises.

The next result establishes strong selection consistency for the objective non-
local prior based approach of [1]. The proof is provided in the Supplementary
Material [7].

THEOREM 6.1 (Strong selection consistency for nonlocal priors). Consider
the nonlocal prior based model described in (6.1). Under Assumptions 1–4, if we

restrict the prior to DAGs with total number of edges at most d( n
logp

)
1

2(2+k) , the
following holds:

πNL(D0|Y )
P̄→ 1,

as n → ∞.
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Note that the only difference between the assumptions needed for Theorem 4.3
(for DAG-Wishart priors) and Theorem 6.1 (for nonlocal priors) is that in The-

orem 6.1 we restrict to DAGs with number of edges at most d( n
logp

)
1

2(2+k) [as

opposed to 1
8d( n

logp
)

1+k
2+k for Theorem 4.3]. All the remaining assumptions (As-

sumptions 1–4) are identical. Assumption 5 relates to the hyperparameters of the
DAG-Wishart distribution, and hence is not relevant for the nonlocal prior setting.

7. Discussion: Comparison of penalized likelihood and Bayesian ap-
proaches. As mentioned in the Introduction, several penalized likelihood ap-
proaches for sparse estimation in Gaussian DAG models have been proposed in
the literature. In this section, we compare and contrast these methods with the
Bayesian approach of Ben-David et al. [5] considered in this paper.

For this discussion, we will focus on the approaches in [11, 14, 23], because
these do not put any restrictions on the resulting sparsity pattern and focus on
DAG models with ordering similar to the work of Ben-David et al. [5]. For several
applications in genetics, finance and climate sciences, a location or time based
ordering of variables is naturally available. For temporal data, a natural ordering
of variables is provided by the time at which they are observed. In genetic datasets,
the variables can be genes or SNPs located contiguously on a chromosome, and
their spatial location provides a natural ordering. More examples can be found in
[11, 14, 23, 27].

The more complex case of DAG models where a domain-specific ordering of
the vertices is not known has also been studied in the literature; see [2, 22, 25] and
the references therein. In [22], the authors first recover the underlying conditional
independence relationships and find a DAG representative of these conditional in-
dependences. Then a covariance matrix obeying the conditional independence re-
lationships in this DAG is estimated. In [2], the authors simultaneously estimate
the DAG and the covariance matrix using a penalized regression approach.

7.1. Comparison: Graph search complexity and accuracy. For all the penal-
ized likelihood methods in [11, 14, 23], a user-specified penalty parameter con-
trols the level of sparsity of the resulting estimator. Varying values of the penalty
parameter provide a range of possible DAG models to choose from. This set of
graphs is referred to as the solution path. The choice of the penalty parameter is
typically made by assigning a “score” to each DAG on the solution path using the
Bayesian Information Criterion (BIC) or cross-validation, and choosing the DAG
with the highest score. For the Bayesian approach, the posterior probabilities nat-
urally assign a “score” for all the 2(p

2) DAGs, not just the graphs on the solution
path produced by the penalized likelihood methods. Of course, the entire space of
DAGs is prohibitively large to search in high-dimensional settings. To address this,
Ben-David et al. [5] develop a computationally feasible approach which searches
around the graphs on the penalized likelihood solution path by adding or removing
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edges, and demonstrate that significant improvement in accuracy can be obtained
by searching beyond the penalized likelihood solution paths using posterior prob-
abilities. Hence, this Bayesian procedure maintains the advantage of being able to
do a principled broader search (for improved accuracy) in a computationally feasi-
ble way. One can extend this procedure (see Section 8.2) by also searching on and
around the solution paths of other methods, such as the CSCS method in [14], and
choose the graph with the maximum posterior probability.

7.2. Comparison: Uncertainty quantification and prior information. A natu-
ral benefit of Bayesian approaches is the ability to incorporate prior knowledge
and naturally provide uncertainty quantification through the posterior distribution.
Prior knowledge can be incorporated in a principled way only when the hyperpa-
rameters are interpretable, and the class of priors is flexible. The distributional and
moment results in [5] provide a natural interpretability for the hyperparameters
U and α. As mentioned in [5], a separate shape parameter αi for each variable
allows for differential shrinkage. Also, the results in this paper provide justifica-
tion for the asymptotic accuracy of the posterior distribution corresponding to the
Bayesian approach of [5] in high-dimensional settings. Uncertainty quantification
for estimates produced by penalized likelihood methods can be achieved through
a CLT or through resampling methods such as bootstrap. To the best of our knowl-
edge, a high-dimensional CLT, or results establishing high-dimensional accuracy
of the bootstrap in this context are not available for the penalized likelihood based
estimators in [11, 14, 23].

7.3. Comparison: Convergence rates for estimation of �. In this section, we
will undertake a comparison of the assumptions and convergence rates between
the �-estimate using the CSCS procedure in [14] and the posterior distribution
convergence rate for � in Theorem E.1 in the Supplementary Material [7]. To
the best of our knowledge, high-dimensional asymptotic convergence rates are not
available for the estimates obtained from the procedure in [11]. We start with a
point-by-point comparison of the parallel/related assumptions used for these high-
dimensional asymptotic results:

1. For CSCS p = pn is assumed to be bounded above by a polynomial in n,
whereas in this paper pn can grow much faster than a polynomial in n (see As-
sumption 2). For CSCS, the eigenvalues of the �0 are assumed to be uniformly
bounded in n, whereas in this paper we allow the eigenvalues of � to grow with n

(see Assumption 1).
2. As with any �1-penalized method, [14] use an incoherence condition for their

asymptotic results. This condition is algebraically complex and hard to interpret.
We do not need any such assumption for our asymptotic results.

3. For CSCS mild assumptions are specified regarding the rate at which the
penalty parameter λn goes to zero. In this paper, we need to make analogous mild
assumptions on the prior parameters qn, Un and α(Dn) (see Assumptions 3 and 5).
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4. Recall that sn is the smallest (in absolute value) nonzero off-diagonal entry
of L0. For CSCS, it is assumed that sn√

dnλn
→ ∞ as n → ∞, where λn is the

penalty parameter, whereas we assume that sn√
ηndn

→ ∞ (see Assumption 4 with
ε0,n as a constant for a fair comparison with CSCS). There are other assumptions
in [14] regarding the rate at which λn goes to 0, but these do not enable a direct
comparison of the two rates for sn.

The convergence rate of the CSCS estimate of � is mnλn (mn is the number
of nonzeros in the Cholesky factor of the true concentration matrix) whereas the
posterior convergence rate for � in Theorem E.1 in the Supplementary Material

[7] is d2
n

√
logpn

n
(treating ε0,n as a constant for a fair comparison with CSCS).

Using other assumptions regarding λn in [14], it can be shown that m
3/2
n

√
logpn

n
=

o(mnλn). Hence, if m
3/2
n > d2

n , the Bayesian approach leads to a faster convergence

rate. Of course, one can construct situations where m
3/2
n < d2

n and choose λn such
that CSCS would lead to a faster convergence rate than the Bayesian approach.
Since mn is the total number of nonzeros in the true Cholesky factor one would
expect that for a large majority of graphs, Theorem E.1 would lead to a faster
convergence rate than CSCS.

8. Experiments.

8.1. Simulation I: Illustration of posterior ratio consistency. In this section,
we illustrate the DAG selection consistency result in Theorems 4.1 and 4.2 using
a simulation experiment. We consider 10 different values of p ranging from 250
to 2500, and choose n = p/5. Then, for each fixed p, we construct a p × p lower
triangular matrix with diagonal entries 1 and off-diagonal entries 0.5. Then each
lower triangular entry is independently set to zero with a certain probability such
that the expected value of nonzero entries for each column does not exceed 3. We
refer to this matrix as L0. The matrix L0 also gives us the true DAG D0. Next,
we generate n i.i.d. observations from the N(0p, (L−1

0 )T L−1
0 ) distribution, and set

the hyperparameters as U = Ip and αi(D) = νi(D) + 10 for i = 1,2, . . . , p. The
above process ensures Assumptions 1–5 are satisfied. We then examine posterior
ratio consistency under four different cases by computing the log posterior ratio of
a “nontrue” graph D and D0 as follows:

1. Case 1: D is a subgraph of D0 and the number of total edges of D is exactly
half of D0, that is, |E(D)| = 1

2 |E(D0)|.
2. Case 2: D is a supergraph of D0 and the number of total edges of D is

exactly twice of D0, that is, |E(D)| = 2|E(D0)|.
3. Case 3: D is not necessarily a subgraph of D0, but the number of total edges

in D is half the number of total edges in D0.
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TABLE 1
Log of posterior probability ratio for D and D0 for various choices of the “nontrue” DAG D . Here,

D0 denotes the true underlying DAG

D ⊂ D0 D ⊃ D0
p n |E(D)| = 1

2 |E(D0)| |E(D)| = 2|E(D0)| |E(D)| = 1
2 |E(D0)| |E(D)| = 2|E(D0)|

250 50 38,553 −133,007 24,723 −139,677
500 100 93,634 −458,799 51,553 −438,377
750 150 41,935 −784,866 60,731 −1,042,449

1000 200 249,342 −1,118,384 −28,657 −1,791,276
1250 250 18,847 −1,787,260 −245,769 −2,633,731
1500 300 −79,566 −2,603,779 −452,125 −3,873,151
1750 350 −512,894 −2,971,286 −455,941 −5,808,992
2000 400 −443,457 −4,082,005 −1,388,037 −7,139,952
2250 450 −558,718 −4,533,967 −1,883,472 −8,744,044
2500 500 −571,653 −4,708,833 −2,644,104 −9,910,277

4. Case 4: D is not necessarily a supergraph of D0, but the number of total
edges in D is twice the number of total edges in D0.

The log of the posterior probability ratio for various cases is provided in Ta-
ble 1. As expected the log of the posterior probability ratio eventually decreases
as n becomes large in all four cases, thereby providing a numerical illustration of
Theorems 4.1 and 4.2.

8.2. Simulation II: Illustration of graph selection. In this section, we perform
a simulation experiment to illustrate the potential advantages of using the hybrid
Bayesian graph selection approach outlined in Section 7.1. We consider 7 values
of p ranging from 2500 to 4000, with n = p/5. For each fixed p, the Cholesky
factor L0 of the true concentration matrix, and the subsequent dataset, is generated
by the same mechanism as in Section 8.1. Then we perform graph selection using
the four procedures outlined below:

1. Lasso-DAG BIC path search: We implement the Lasso-DAG approach in [23].
The penalty parameter is varied on a grid so that the resulting graphs range
from approximately three times the edges compared to the true graph with ap-
proximately one-third edges compared to the true graph. We then select the best
graph according to the “BIC”-like measure defined as

(8.1) BIC(λ) = n tr(S�̂) − n log |�̂| + logn ∗ E,

where L̂ is the resulting estimator from Lasso-DAG, E denotes the total num-
bers of nonzero entries in L̂ and �̂ = L̂T L̂.

2. Lasso-DAG with quantile based tuning: We again implement the Lasso-DAG
approach in [23], but choose penalty parameters (separate for each variable i)
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given by λi(α) = 2n− 1
2 Z∗

0.1
2p(i−1)

, where Z∗
q denotes the (1 − q)th quantile of the

standard normal distribution. This choice is justified in [23] based on asymp-
totic considerations.

3. CSCS BIC path search: We implement the CSCS approach in [14]. The penalty
parameter is varied on a grid so that the resulting graphs range from three times
the edges compared to the true graph with one-third edges compared to the true
graph. The best graph us selected using the “BIC”-like measure in (8.1).

4. Bayesian approach: We construct two sets of candidate graphs as follows:
(a) All the graphs on the solution paths for Lasso-DAG and CSCS are in-

cluded in the candidate set. To increase the search range, we generate addi-
tional graphs by thresholding the modified Cholesky factor of (S +0.5I )−1

(S is the sample covariance matrix) to get a sequence of 300 additional
graphs, and include them in the candidate set. We then search around all
the above graphs using Shotgun Stochastic Search to generate even more
candidate graphs. Then we implement Algorithm A.8 in [15], the Greedy
Hill-climbing algorithm, to our candidate graphs. For each graph, this par-
ticular search procedure first generates a new DAG by adding one random
edge and only chooses it if the new DAG has a higher posterior score. Then
we generate another graph by deleting one random edge from the chosen
DAG and select the one with higher score. We repeat the whole process 20
times for every graph in the previous candidate set and all the chosen DAGs
are included in the candidate set.

(b) We combine Algorithm 18.1 in [15] and the idea of cross-validation to form
our second set of candidate graphs. The original data set of n observations is
randomly partitioned into 10 equal sized subsets. Of the 10 subsets, a single
subset is excluded, and the remaining 9 subsets are used as our new sample.
The same thresholding procedure to generate 300 graphs is performed for
the new sample covariance matrix. The process is then repeated 10 times,
with each of the 10 subsamples removed exactly once. We then have a total
of 3000 graphs as the second candidate set.

The log posterior probabilities are computed for all graphs in the two candi-
date sets, and the graph with the highest probability is chosen.

The model selection performance of these four methods is then compared using
several different measures of structure such as positive predictive value, true posi-
tive rate and false positive rate (average over 20 independent repetitions). Positive
Predictive Value (PPV) represents the proportion of true edges among all the edges
detected by the given procedure, True Positive Rate (TPR) measures the proportion
of true edges detected by the given procedure among all the edges from the true
graph and False Positive Rate (FPR) represents the proportion of false edges de-
tected by the given procedure among all the nonedges in the true graph. One would
like the PPV and TPR values to be as close to 1 as possible, and the FPR value to
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TABLE 2
Model selection performance table

Lasso-DAG Lasso-DAG CSCS Bayesian

BIC path search Quantile-based lambdas BIC path search Log-score path search

p n PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR

2500 500 0.082 0.201 0.003 0.103 0.182 0.002 0.086 0.205 0.003 0.993 0.396 3.76 × 10−6

2750 550 0.053 0.173 0.003 0.065 0.163 0.003 0.082 0.185 0.002 0.988 0.458 6.75 × 10−6

3000 600 0.060 0.187 0.003 0.071 0.171 0.002 0.078 0.183 0.002 0.993 0.453 3.26 × 10−6

3250 650 0.062 0.171 0.002 0.071 0.156 0.002 0.080 0.184 0.002 0.969 0.502 1.73 × 10−5

3500 700 0.067 0.177 0.002 0.078 0.165 0.002 0.081 0.188 0.002 0.972 0.525 1.31 × 10−5

3750 750 0.068 0.174 0.002 0.079 0.164 0.002 0.076 0.175 0.002 0.978 0.524 9.47 × 10−6

4000 800 0.068 0.187 0.002 0.077 0.176 0.002 0.073 0.165 0.002 0.957 0.565 1.91 × 10−5

be as close to 0 as possible. The results are provided in Table 2. It is clear that the
Bayesian approach outperforms the penalized likelihood approaches based on all
measures. The PPV values for the Bayesian approach are all above 0.95, while the
ones for the penalized likelihood approaches are around 0.1. The TPR values for
the Bayesian approach are all above 0.39, while the ones for the penalized likeli-
hood approaches are all below 0.21. The FPR values for the Bayesian approach are
all significantly smaller than the penalized approaches. Overall, this experiment il-
lustrates that the Bayesian approach can be used for a broader yet computationally
feasible graph search, and can lead to a significant improvement in graph selection
performance.
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SUPPLEMENTARY MATERIAL

Supplement to “Posterior graph selection and estimation consistency for
high-dimensional Bayesian DAG models” (DOI: 10.1214/18-AOS1689SUPP;
.pdf). This supplemental file contains additional proofs for theorems and technical
lemmas.
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