
The Annals of Statistics
2019, Vol. 47, No. 1, 177–204
https://doi.org/10.1214/18-AOS1685
© Institute of Mathematical Statistics, 2019

NONASYMPTOTIC RATES FOR MANIFOLD, TANGENT SPACE
AND CURVATURE ESTIMATION

BY EDDIE AAMARI1,2,3 AND CLÉMENT LEVRARD1,2

University of California, San Diego and Université Paris-Diderot

Given a noisy sample from a submanifold M ⊂ R
D , we derive optimal

rates for the estimation of tangent spaces TXM , the second fundamental form
IIMX and the submanifold M . After motivating their study, we introduce a

quantitative class of Ck-submanifolds in analogy with Hölder classes. The
proposed estimators are based on local polynomials and allow to deal simul-
taneously with the three problems at stake. Minimax lower bounds are de-
rived using a conditional version of Assouad’s lemma when the base point X

is random.

1. Introduction. A wide variety of data can be thought of as being generated
on a shape of low dimensionality compared to a possibly high ambient dimension.
This point of view led to the development of the so-called topological data analy-
sis, which proved fruitful for instance when dealing with physical parameters sub-
ject to constraints, biomolecule conformations or natural images [29]. This field
intends to associate geometric quantities to data without regard of any specific
coordinate system or parametrization. If the underlying structure is sufficiently
smooth, one can model a point cloud Xn = {X1, . . . ,Xn} as being sampled on a
d-dimensional submanifold M ⊂ R

D . In such a case, geometric and topological
intrinsic quantities include (but are not limited to) homology groups [22], persis-
tent homology [10], volume [4], differential quantities [6] or the submanifold itself
[1, 14, 20].

The present paper focuses on optimal rates for estimation of quantities up to or-
der two: (0) the submanifold itself, (1) tangent spaces and (2) second fundamental
forms.

Among these three questions, a special attention has been paid to the estima-
tion of the submanifold. In particular, it is a central problem in manifold learning.
Indeed, there exists a wide bunch of algorithms intended to reconstruct subman-
ifolds from point clouds (Isomap [26], LLE [23] and restricted Delaunay Com-
plexes [5, 8] for instance), but few come with theoretical guarantees [1, 14, 20].
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To our knowledge, minimax lower bounds were used to prove optimality in only
one case [14]. Some of these reconstruction procedures are based on tangent
space estimation [1, 5, 8]. Tangent space estimation itself also yields interest-
ing applications in manifold clustering [3, 13]. Estimation of curvature-related
quantities naturally arises in shape reconstruction, since curvature can drive the
size of a meshing. As a consequence, most of the associated results deal with
the case d = 2 and D = 3, though some of them may be extended to higher di-
mensions [17, 21]. Several algorithms have been proposed in that case [6, 17,
21, 24], but with no analysis of their performances from a statistical point of
view.

To assess the quality of a geometric estimator, the class of submanifolds over
which the procedure is evaluated has to be specified. Up to now, the most com-
monly used model for submanifolds relied on the reach τM , a generalized convex-
ity parameter. Assuming τM ≥ τmin > 0 involves both local regularity—a bound
on curvature—and global regularity—no arbitrarily pinched area. This C2-like as-
sumption has been extensively used in the computational geometry and geometric
inference fields [1, 4, 10, 14, 22]. One attempt of a specific investigation for higher
orders of regularity k ≥ 3 has been proposed in [6].

Many works suggest that the regularity of the submanifold has an important im-
pact on convergence rates. This is pretty clear for tangent space estimation, where
convergence rates of PCA-based estimators range from (1/n)1/d in the C2 case
[1] to (1/n)α with 1/d < α < 2/d in more regular settings [25, 27]. In addition,
it seems that PCA-based estimators are outperformed by estimators taking into
account higher orders of smoothness [6, 7], for regularities at least C3. For in-
stance, fitting quadratic terms leads to a convergence rate of order (1/n)2/d in
[7]. These remarks naturally led us to investigate the properties of local polyno-
mial approximation for regular submanifolds, where “regular” has to be properly
defined. Local polynomial fitting for geometric inference was studied in several
frameworks such as [6]. In some sense, a part of our work extends these re-
sults, by investigating the dependency of convergence rates on the sample size
n, but also on the order of regularity k and the intrinsic and ambient dimensions d

and D.

1.1. Overview of the main results. In this paper, we build a collection of mod-
els for Ck-submanifolds (k ≥ 3) that naturally generalize the commonly used one
for k = 2 (Section 2). Roughly speaking, these models are defined by their local
differential regularity k in the usual sense, and by their minimum reach τmin > 0
that may be thought of as a global regularity parameter (see Section 2.2). On these
models, we study the nonasymptotic rates for tangent space, curvature, and mani-
fold estimation (Section 3). Roughly speaking, if M is a Ck

τmin
submanifold and if

Y1, . . . , Yn is an n-sample drawn on M uniformly enough, we derive the following
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minimax bounds:

(Theorems 2 and 3) inf
T̂

sup
M∈Ck

τM≥τmin

E max
1≤j≤n

∠(TYj
M, T̂j ) �

(
1

n

) k−1
d

,

where TyM denotes the tangent space of M at y.

(Theorems 4 and 5) inf
ÎI

sup
M∈Ck

τM≥τmin

E max
1≤j≤n

‖IIM
Yj

− ÎIj‖ �
(

1

n

) k−2
d

,

where IIM
y denotes the second fundamental form of M at y.

(Theorems 6 and 7) inf
M̂

sup
M∈Ck

τM≥τmin

EdH (M,M̂) �
(

1

n

) k
d

,

where dH denotes the Hausdorff distance.
These results shed light on the influence of k, d and n on these estimation prob-

lems, showing for instance that the ambient dimension D plays no role. The esti-
mators proposed for the upper bounds all rely on the analysis of local polynomials,
and allow to deal with the three estimation problems in a unified way (Section 5.1).
Some of the lower bounds are derived using a new version of Assouad’s lemma
(Section 5.2.2).

We also emphasize the influence of the reach τM of the manifold M in The-
orem 1. Indeed, we show that whatever the local regularity k of M , if we only
require τM ≥ 0, then for any point y ∈ M ,

inf
T̂

sup
M∈Ck

τM≥0

E∠(TyM, T̂ ) ≥ 1/2, inf
ÎI

sup
M∈Ck

τM≥0

E
∥∥IIM

y − ÎI
∥∥ ≥ c > 0,

assessing that the global regularity parameter τmin > 0 is crucial for estimation
purpose.

It is worth mentioning that our bounds also allow for perpendicular noise of
amplitude σ > 0. When σ � (1/n)α/d with 1 ≤ α, then our estimators behave as
if the corrupted sample X1, . . . ,Xn were exactly drawn on a manifold with regu-
larity α. Hence our estimators turn out to be optimal whenever α ≥ k. If α < k, the
lower bounds suggest that better rates could be obtained with different estimators,
by preprocessing data as in [15] for instance.

For the sake of completeness, the geometric background and proofs of technical
lemmas are given in the Supplementary Material [2].
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2. Ck models for submanifolds.

2.1. Notation. Throughout the paper, we consider d-dimensional compact
submanifolds M ⊂ R

D without boundary. The submanifolds will always be as-
sumed to be at least C2. For all p ∈ M , TpM stands for the tangent space of M at
p ([9], Chapter 0). We let IIM

p : TpM × TpM → TpM⊥ denote the second funda-
mental form of M at p ([9], page 125). IIM

p characterizes the curvature of M at p.
The standard inner product in R

D is denoted by 〈·, ·〉 and the Euclidean distance
by ‖ · ‖. Given a linear subspace T ⊂ R

D , write T ⊥ for its orthogonal space. We
write B(p, r) for the closed Euclidean ball of radius r > 0 centered at p ∈ R

D ,
and for short BT (p, r) = B(p, r) ∩ T . For a smooth function � : RD → R

D and
i ≥ 1, we let di

x� denote the ith order differential of � at x ∈ R
D . For a linear

map A defined on T ⊂ R
D , ‖A‖op = supv∈T

‖Av‖
‖v‖ stands for the operator norm.

We adopt the same notation ‖ · ‖op for tensors, that is, multilinear maps. Simi-
larly, if {Ax}x∈T ′ is a family of linear maps, its L∞ operator norm is denoted by
‖A‖op = supx∈T ′ ‖Ax‖op. When it is well defined, we will write πB(z) for the pro-
jection of z ∈ R

D onto the closed subset B ⊂ R
D , that is, the nearest neighbor of z

in B . The distance between two linear subspaces U,V ⊂ R
D of the same dimen-

sion is measured by the principal angle ∠(U,V ) = ‖πU − πV ‖op. The Hausdorff
distance [14] in R

D is denoted by dH . For a probability distribution P , EP stands
for the expectation with respect to P . We write P ⊗n for the n-times tensor product
of P .

Throughout this paper, Cα will denote a generic constant depending on the pa-
rameter α. For clarity’s sake, C′

α , cα or c′
α may also be used when several constants

are involved.

2.2. Reach and regularity of submanifolds. As introduced in [11], the reach
τM of a subset M ⊂ R

D is the maximal neighborhood radius for which the projec-
tion πM onto M is well defined. More precisely, denoting by d(·,M) the distance
to M , the medial axis of M is defined to be the set of points which have at least
two nearest neighbors on M , that is,

Med(M) = {
z ∈ R

D|∃p �= q ∈ M,‖z − p‖ = ‖z − q‖ = d(z,M)
}
.

The reach is then defined by

τM = inf
p∈M

d
(
p,Med(M)

) = inf
z∈Med(M)

d(z,M).

It gives a minimal scale of geometric and topological features of M . As a gener-
alized convexity parameter, τM is a key parameter in reconstruction [1, 14] and
in topological inference [22]. As depicted by Figure 1, having τM ≥ τmin > 0 pre-
vents M from almost auto-intersecting, and bounds its curvature in the sense that
‖IIM

p ‖op ≤ τ−1
M ≤ τ−1

min for all p ∈ M ([22], Proposition 6.1).
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FIG. 1. Medial axis and reach of a closed curve in the plane.

For τmin > 0, we let C2
τmin

denote the set of d-dimensional compact connected
submanifolds M of RD such that τM ≥ τmin > 0. A key property of submanifolds
M ∈ C2

τmin
is the existence of a parametrization closely related to the projection

onto tangent spaces. We let expp : TpM → M denote the exponential map of M

([9], Chapter 3) that is defined by expp(v) = γp,v(1), where γp,v is the unique
constant speed geodesic path of M with initial value p and velocity v.

LEMMA 1. If M ∈ C2
τmin

, expp : BTpM(0, τmin/4) → M is one-to-one. More-
over, it can be written as

expp : BTpM(0, τmin/4) −→ M,

v �−→ p + v + Np(v)

with Np such that for all v ∈ BTpM(0, τmin/4),

Np(0) = 0, d0Np = 0, ‖dvNp‖op ≤ L⊥‖v‖,
where L⊥ = 5/(4τmin). Furthermore, for all p,y ∈ M ,

y − p = πTpM(y − p) + R2(y − p),

where ‖R2(y − p)‖ ≤ ‖y−p‖2

2τmin
.

A proof of Lemma 1 is given in Section A.1 of the Supplementary Material.
In other words, elements of C2

τmin
have local parametrizations on top of their tan-

gent spaces that are defined on neighborhoods with a minimal radius, and these
parametrizations differ from the identity map at most by a quadratic term. The ex-
istence of such local parametrizations leads to the following convergence result: if
data Y1, . . . , Yn are drawn uniformly enough on M ∈ C2

τmin
, then it is shown in [1],

Proposition 14, that a tangent space estimator T̂ based on local PCA achieves

E max
1≤j≤n

∠(TYj
M, T̂j ) ≤ C

(
1

n

) 1
d

.

When M is smoother, it has been proved in [7] that a convergence rate in n−2/d

might be achieved, based on the existence of a local order 3 Taylor expansion of
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the submanifold on top of its tangent spaces. Thus, a natural extension of the C2
τmin

model to Ck-submanifolds should ensure that such an expansion exists at order k

and satisfies some regularity constraints. To this aim, we introduce the following
class of regularity Ck

τmin,L
.

DEFINITION 1. For k ≥ 3, τmin > 0 and L = (L⊥,L3, . . . ,Lk), we let Ck
τmin,L

denote the set of d-dimensional compact connected submanifolds M of RD with
τM ≥ τmin and such that, for all p ∈ M , there exists a local one-to-one parametriza-
tion �p of the form

�p : BTpM(0, r) −→ M,

v �−→ p + v + Np(v)

for some r ≥ 1
4L⊥ , with Np ∈ Ck(BTpM(0, r),RD) such that

Np(0) = 0, d0Np = 0,
∥∥d2

v Np

∥∥
op ≤ L⊥,

for all ‖v‖ ≤ 1
4L⊥ . Furthermore, we require that∥∥di

vNp

∥∥
op ≤ Li for all 3 ≤ i ≤ k.

It is important to note that such a family of �p’s exists for any compact Ck-
submanifold, if one allows τ−1

min, L⊥, L3, . . . , Lk to be large enough. Note that the
radius 1/(4L⊥) has been chosen for convenience. Other smaller scales would do
and we could even parametrize this constant, but without substantial benefits in the
results.

The �p’s can be seen as unit parametrizations of M . The conditions on Np(0),
d0Np and d2

v Np ensure that �−1
p is close to the projection πTpM . The bounds on

di
vNp (3 ≤ i ≤ k) allow to control the coefficients of the polynomial expansion we

seek. Indeed, whenever M ∈ Ck
τmin,L

, Lemma 2 shows that for every p in M , and y

in B(p,
τmin∧L−1

⊥
4 ) ∩ M ,

y − p = π∗(y − p) +
k−1∑
i=2

T ∗
i

(
π∗(y − p)⊗i) + Rk(y − p),(1)

where π∗ denotes the orthogonal projection onto TpM , the T ∗
i are i-linear maps

from TpM to R
D with ‖T ∗

i ‖op ≤ L′
i and Rk satisfies ‖Rk(y − p)‖ ≤ C‖y −

p‖k , where the constants C and the L′
i’s depend on the parameters τmin, d , k,

L⊥, . . . ,Lk .
Note that for k ≥ 3 the exponential map can happen to be only Ck−2 for a Ck-

submanifold [18]. Hence, it may not be a good choice of �p . However, for k = 2,
taking �p = expp is sufficient for our purpose. For ease of notation, we may write
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C2
τmin,L

although the specification of L is useless. In this case, we implicitly set by
default �p = expp and L⊥ = 5/(4τmin). As will be shown in Theorem 1, the global
assumption τM ≥ τmin > 0 cannot be dropped, even when higher order regularity
bounds Li’s are fixed.

Let us now describe the statistical model. Every d-dimensional submanifold
M ⊂ R

D inherits a natural uniform volume measure by restriction of the ambient
d-dimensional Hausdorff measure Hd . In what follows, we will consider probabil-
ity distributions that are almost uniform on some M in Ck

τmin,L
, with some bounded

noise, as stated below.

DEFINITION 2 (Noise-free and tubular noise models).
– (Noise-free model) For k ≥ 2, τmin > 0, L = (L⊥,L3, . . . ,Lk) and fmin ≤

fmax, we let Pk
τmin,L,fmin,fmax

denote the set of distributions P0 with support M ∈
Ck

τmin,L
that have a density f with respect to the volume measure on M , and such

that for all y ∈ M ,

0 < fmin ≤ f (y) ≤ fmax < ∞.

– (Tubular noise model) For 0 ≤ σ < τmin, we denote by Pk
τmin,L,fmin,fmax

(σ )

the set of distributions of random variables X = Y + Z, where Y has distribution
P0 ∈ Pk

τmin,L,fmin,fmax
, and Z ∈ TY M⊥ with ‖Z‖ ≤ σ and E(Z|Y) = 0.

For short, we write Pk and Pk(σ ) when there is no ambiguity. We denote by
Xn an i.i.d. n-sample {X1, . . . ,Xn}, that is, a sample with distribution P ⊗n for
some P ∈ Pk(σ ), so that Xi = Yi + Zi , where Y has distribution P0 ∈ Pk , Z ∈
BTY M⊥(0, σ ) with E(Z|Y) = 0. It is immediate that for σ < τmin, we have Y =
πM(X). Note that the tubular noise model Pk(σ ) is a slight generalization of that
in [15].

In what follows, though M is unknown, all the parameters of the model will
be assumed to be known, including the intrinsic dimension d and the order of
regularity k. We will also denote by Pk

(x) the subset of elements of Pk whose

supports contain a prescribed x ∈ R
D .

In view of our minimax study on Pk , it is important to ensure by now that Pk

is stable with respect to deformations and dilations.

PROPOSITION 1. Let � :RD →R
D be a global Ck-diffeomorphism. If ‖d�−

ID‖op, ‖d2�‖op, . . . , ‖dk�‖op are small enough, then for all P in Pk
τmin,L,fmin,fmax

,

the push-forward distribution P ′ = �∗P belongs to Pk
τmin/2,2L,fmin/2,2fmax

.
Moreover, if � = λID (λ > 0) is an homogeneous dilation, then P ′ ∈

Pk
λτmin,L(λ),fmin/λ

d ,fmax/λd , where L(λ) = (L⊥/λ,L3/λ
2, . . . ,Lk/λ

k−1).

Proposition 1 follows from a geometric reparametrization argument (Proposi-
tion A.5 in the Supplementary Material) and a change of variable result for the
Hausdorff measure (Lemma A.6 in the Supplementary Material).
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2.3. Necessity of a global assumption. In the previous Section 2.2, we gen-
eralized C2-like models—stated in terms of reach—to Ck , for k ≥ 3, by imposing
higher order differentiability bounds on parametrizations �p’s. The following The-
orem 1 shows that, in these models, the global assumption τM ≥ τmin > 0 is still
necessary for estimation purpose.

THEOREM 1. Assume that τmin = 0. If D ≥ d +3, then for all k ≥ 3 and L⊥ >

0, provided that L3/L
2⊥, . . . ,Lk/L

k−1
⊥ ,Ld⊥/fmin and fmax/L

d⊥ are large enough
(depending only on d and k), for all n ≥ 1,

inf
T̂

sup
P∈Pk

(x)

EP ⊗n∠(TxM, T̂ ) ≥ 1

2
> 0,

where the infimum is taken over all the estimators T̂ = T̂ (X1, . . . ,Xn).
Moreover, for any D ≥ d + 1, provided that L3/L

2⊥, . . . ,Lk/L
k−1
⊥ ,Ld⊥/fmin

and fmax/L
d⊥ are large enough (depending only on d and k), for all n ≥ 1,

inf
ÎI

sup
P∈Pk

(x)

EP ⊗n

∥∥IIM
x ◦ πTxM − ÎI

∥∥
op ≥ L⊥

4
> 0,

where the infimum is taken over all the estimators ÎI = ÎI(X1, . . . ,Xn).

The proof of Theorem 1 can be found in Section C.5 of the Supplementary
Material. In other words, if the class of submanifolds is allowed to have arbitrarily
small reach, no estimator can perform uniformly well to estimate neither TxM nor
IIM

x . And this, even though each of the underlying submanifolds have arbitrarily
smooth parametrizations. Indeed, if two parts of M can nearly intersect around x

at an arbitrarily small scale 
 → 0, no estimator can decide whether the direction
(resp., curvature) of M at x is that of the first part or the second part (see Figures 2
and 3).

FIG. 2. Inconsistency of tangent space estimation for τmin = 0.
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FIG. 3. Inconsistency of curvature estimation for τmin = 0.

3. Main results. Let us now move to the statement of the main results. Given
an i.i.d. n-sample Xn = {X1, . . . ,Xn} with unknown common distribution P ∈
Pk(σ ), writing Yj = πM(Xj ), we detail the nonasymptotic rates for the estimation
of tangent spaces TYj

M , second fundamental forms IIM
Yj

, and M itself.

For this, we need one more piece of notation. For 1 ≤ j ≤ n, P
(j)
n−1 denotes

integration with respect to 1/(n − 1)
∑

i �=j δ(Xi−Xj ), and z⊗i denotes the D × i-
dimensional vector (z, . . . , z). For a constant t > 0 and a bandwidth h > 0 to be
chosen later, we define the local polynomial estimator (π̂j , T̂2,j , . . . , T̂k−1,j ) at Xj

to be any element of

argmin
π,sup2≤i≤k ‖Ti‖op≤t

P
(j)
n−1

[∥∥∥∥∥x − π(x) −
k−1∑
i=2

Ti

(
π(x)⊗i)∥∥∥∥∥

2

1B(0,h)(x)

]
,(2)

where π ranges among all the orthogonal projectors on d-dimensional subspaces,
and Ti : (RD)i →R

D among the symmetric tensors of order i such that ‖Ti‖op ≤ t .
By compactness of the domain of minimization, such a minimizer exists almost
surely. For k = 2, the sum over the tensors Ti is empty and the integrated term
reduces to ‖x − π(x)‖21B(0,h)(x), leading to local PCA. In what follows, we will
work with a maximum scale h ≤ h0, with

h0 = τmin ∧ L−1
⊥

8
.

The set of d-dimensional orthogonal projectors is not convex, which leads to
a more involved optimization problem than usual least squares. In practice, this
problem may be solved using tools from optimization on Grassman manifolds
[28], or adopting a two-stage procedure such as in [6]: using local PCA, a first
d-dimensional space is estimated at each sample point, along with an orthonor-
mal basis of it. Then the optimization problem (2) is expressed as a minimization
problem in terms of the coefficients of (πj , T2,j , . . . , Tk,j ) in this basis under or-
thogonality constraints. A similar problem is explicitly solved in [7], leading to an
optimal tangent space estimation procedure in the case k = 3.

The constraint ‖Ti‖op ≤ t involves a parameter t to be calibrated. As will be
shown in the following section, it is enough to choose t roughly smaller than 1/h,
but still larger than the unknown norm of the optimal tensors ‖T ∗

i ‖op. Hence, for
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h → 0, the choice t = h−1 works to guarantee optimal convergence rates. Such a
constraint on the higher order tensors might have been stated under the form of a
‖ · ‖op-penalized least squares minimization—as in ridge regression—leading to
the same results.

3.1. Tangent spaces. By definition, the tangent space TYj
M is the best linear

approximation of M nearby Yj . Thus, it is natural to take the range of the first order
term minimizing (2) and write T̂j = im π̂j . The T̂j ’s approximate simultaneously
the TYj

M’s with high probability, as stated below.

THEOREM 2. Assume that t ≥ Ck,d,τmin,L ≥ sup2≤i≤k ‖T ∗
i ‖op. Set h =

(Cd,k
f 2

max logn

f 3
min(n−1)

)1/d , for Cd,k large enough, and assume that σ ≤ h/4. If n is large

enough so that h ≤ h0, then with probability at least 1 − ( 1
n
)k/d ,

max
1≤j≤n

∠(TYj
M, T̂j ) ≤ Cd,k,τmin,L

√
fmax

fmin

(
hk−1 ∨ σh−1)

(1 + th).

As a consequence, taking t = h−1, for n large enough,

sup
P∈Pk(σ )

EP ⊗n max
1≤j≤n

∠(TYj
M, T̂j ) ≤ C

(
logn

n − 1

) k−1
d

{
1 ∨ σ

(
logn

n − 1

)− k
d
}
,

where C = Cd,k,τmin,L,fmin,fmax .

The proof of Theorem 2 is given in Section 5.1.2. The same bound holds for the
estimation of TyM at a prescribed y ∈ M in the model Pk

(y)(σ ). For that, simply

take P
(y)
n = 1/n

∑
i δ(Xi−y) as integration in (2).

In the noise-free setting, or when σ ≤ hk , this result is in line with those of [6]
in terms of the sample size dependency (1/n)(k−1)/d . Besides, it shows that the
convergence rate of our estimator does not depend on the ambient dimension D,
even in codimension greater than 2. When k = 2, we recover the same rate as [1],
where we used local PCA, which is a reformulation of (2). When k ≥ 3, the proce-
dure (2) outperforms PCA-based estimators of [25] and [27], where convergence
rates of the form (1/n)β with 1/d < β < 2/d are obtained. This bound also re-
covers the result of [7] in the case k = 3, where a similar procedure is used. When
the noise level σ is of order hα , with 1 ≤ α ≤ k, Theorem 2 yields a convergence
rate in hα−1. Since a polynomial decomposition up to order kα = �α� in (2) results
in the same bound, the noise level σ = hα may be thought of as an α-regularity
threshold. At last, it may be worth mentioning that the results of Theorem 2 also
hold when the assumption E(Z|Y) = 0 is relaxed.

Theorem 2 nearly matches the following lower bound.
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THEOREM 3. If τminL⊥, . . . , τ k−1
min Lk, (τ

d
minfmin)

−1 and τd
minfmax are large

enough (depending only on d and k), then

inf
T̂

sup
P∈Pk(σ )

EP ⊗n∠(TπM(X1)M, T̂ ) ≥ cd,k,τmin

{(
1

n − 1

) k−1
d ∨

(
σ

n − 1

) k−1
d+k

}
,

where the infimum is taken over all the estimators T̂ = T̂ (X1, . . . ,Xn).

A proof of Theorem 3 can be found in Section 5.2.2. When σ � (1/n)k/d , the
lower bound matches Theorem 2 in the noise-free case, up to a logn factor. Thus,
the rate (1/n)(k−1)/d is optimal for tangent space estimation on the model Pk .
The rate (logn/n)1/d obtained in [1] for k = 2 is therefore optimal, as well as the
rate (logn/n)2/d given in [7] for k = 3. The rate (1/n)(k−1)/d naturally appears
on the the model Pk , as the estimation rate of differential objects of order 1 from
k-smooth submanifolds.

When σ � (1/n)α/d with α < k, the lower bound provided by Theorem 3 is of
order (1/n)(k−1)(α+d)/[d(d+k)], hence smaller than the (1/n)(α−1)/d rate of Theo-
rem 2. This suggests that the local polynomial estimator (2) is suboptimal when-
ever σ � (1/n)k/d on the model Pk(σ ).

Here again, the same lower bound holds for the estimation of TyM at a fixed
point y in the model Pk

(y)(σ ).

3.2. Curvature. The second fundamental form IIM
Yj

: TYj
M × TYj

M →
TYj

M⊥ ⊂ R
D is a symmetric bilinear map that encodes completely the curva-

ture of M at Yj ([9], Chapter 6, Proposition 3.1). Estimating it only from a point
cloud Xn does not trivially make sense, since IIM

Yj
has domain TYj

M which is

unknown. To bypass this issue, we extend IIM
Yj

to R
D . That is, we consider the

estimation of IIM
Yj

◦ πTYj
M which has full domain R

D . Following the same ideas

as in the previous Section 3.1, we use the second order tensor T̂2,j ◦ π̂j obtained
in (2) to estimate IIM

Yj
◦ πTYj

M .

THEOREM 4. Let k ≥ 3. Take h as in Theorem 2, σ ≤ h/4, and t = 1/h. If n

is large enough so that h ≤ h0 and h−1 ≥ C−1
k,d,τmin,L

≥ (sup2≤i≤k ‖T ∗
i ‖op)

−1, then

with probability at least 1 − ( 1
n
)k/d ,

max
1≤j≤n

∥∥IIM
Yj

◦ πTYj
M − T̂2,j ◦ π̂j

∥∥
op ≤ Cd,k,τmin,L

√
fmax

fmin

(
hk−2 ∨ σh−2)

.

In particular, for n large enough,

sup
P∈Pk(σ )

EP ⊗n max
1≤j≤n

∥∥IIM
Yj

◦ πTYj
M − T̂2,j ◦ π̂j

∥∥
op ≤ C

(
logn

n − 1

) k−2
d

{
1 ∨ σ

(
logn

n − 1

)− k
d
}
,

where C = Cd,k,τmin,L,fmin,fmax .
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The proof of Theorem 4 is given in Section 5.1.3. As in Theorem 2, the case
σ ≤ hk may be thought of as a noise-free setting, and provides an upper bound of
the form hk−2. Interestingly, Theorems 2 and 4 are enough to provide estimators
of various notions of curvature. For instance, consider the scalar curvature ([9],
Section 4.4) at a point Yj , defined by

ScM
Yj

= 1

d(d − 1)

∑
r �=s

[〈
IIM

Yj
(er , er), IIM

Yj
(es, es)

〉 − ∥∥IIM
Yj

(er , es)
∥∥2]

,

where (er)1≤r≤d is an orthonormal basis of TYj
M . A plug-in estimator of ScM

Yj
is

Ŝcj = 1

d(d − 1)

∑
r �=s

[〈
T̂2,j (êr , êr ), T̂2,j (ês, ês)

〉 − ∥∥T̂2,j (êr , ês)
∥∥2]

,

where (êr )1≤r≤d is an orthonormal basis of T̂2,j . Theorems 2 and 4 yield

EP ⊗n max
1≤j≤n

∣∣Ŝcj − ScM
Yj

∣∣ ≤ C

(
logn

n − 1

) k−2
d

{
1 ∨ σ

(
logn

n − 1

)− k
d
}
,

where C = Cd,k,τmin,L,fmin,fmax .
The (near-)optimality of the bound stated in Theorem 4 is assessed by the fol-

lowing lower bound.

THEOREM 5. If τminL⊥, . . . , τ k−1
min Lk, (τ

d
minfmin)

−1 and τd
minfmax are large

enough (depending only on d and k), then

inf
ÎI

sup
P∈Pk(σ )

EP⊗n

∥∥IIM
πM(X1)

◦ πTπM(X1)M − ÎI
∥∥

op ≥ cd,k,τmin

{(
1

n − 1

) k−2
d ∨

(
σ

n − 1

) k−2
d+k

}
,

where the infimum is taken over all the estimators ÎI = ÎI(X1, . . . ,Xn).

The proof of Theorem 5 is given in Section 5.2.2. The same remarks as in Sec-
tion 3.1 hold. If the estimation problem consists in approximating IIM

y at a fixed
point y known to belong to M beforehand, we obtain the same rates. The ambient
dimension D still plays no role. The shift k − 2 in the rate of convergence on a
Ck-model can be interpreted as the order of derivation of the object of interest, that
is 2 for curvature.

Notice that the lower bound (Theorem 5) does not require k ≥ 3. Hence, we
get that for k = 2, curvature cannot be estimated uniformly consistently on the C2-
model P2. This seems natural, since the estimation of a second order differential
quantity should require an additional degree of smoothness.
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3.3. Support estimation. For each 1 ≤ j ≤ n, the minimization (2) outputs a
series of tensors (π̂j , T̂2,j , . . . , T̂k−1,j ). This collection of multidimensional mono-
mials can be further exploited as follows. By construction, they fit M at scale h

around Yj , so that

�̂j (v) = Xj + v +
k−1∑
i=2

T̂i,j

(
v⊗i)

is a good candidate for an approximate parametrization in a neighborhood of Yj .
We do not know the domain TYj

M of the initial parametrization, though we have

at hand an approximation T̂j = im π̂j which was proved to be consistent in Sec-
tion 3.1. As a consequence, we let the support estimator based on local polynomials
M̂ be

M̂ =
n⋃

j=1

�̂j

(
B

T̂j
(0,7h/8)

)
.

The set M̂ has no reason to be globally smooth, since it consists of a mere union
of polynomial patches (Figure 4). However, M̂ is provably close to M for the
Hausdorff distance.

THEOREM 6. With the same assumptions as Theorem 4, with probability at

least 1 − 2( 1
n
)

k
d , we have

dH (M,M̂) ≤ Cd,k,τmin,L,fmin,fmax

(
hk ∨ σ

)
.

In particular, for n large enough,

sup
P∈Pk(σ )

EP ⊗ndH (M,M̂) ≤ Cd,k,τmin,L,fmin,fmax

{(
logn

n − 1

) k
d ∨ σ

}
.

A proof of Theorem 6 is given in Section 5.1.4. As in Theorem 2, for a noise
level of order hα , α ≥ 1, Theorem 6 yields a convergence rate of order h(k∧α)/d .
Thus the noise level σ may also be thought of as a regularity threshold. Contrary to
[15], Theorem 2, the case h/4 < σ < τmin is not in the scope of Theorem 6. More-
over, for 1 ≤ α < 2d/(d + 2), [15], Theorem 2, provides a better convergence rate

FIG. 4. M̂ is a union of polynomial patches at sample points.
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of h2/(d+2). Note however that Theorem 6 is also valid whenever the assumption
E(Z|Y) = 0 is relaxed. In this noncentered noise framework, Theorem 6 outper-
forms [20], Theorem 7, in the case d ≥ 3, k = 2, and σ ≤ h2.

In the noise-free case or when σ ≤ hk , for k = 2, we recover the rate
(logn/n)2/d obtained in [1, 14, 19] and improve the rate (logn/n)2/(d+2) of [15,
20]. However, our estimator M̂ is an unstructured union of d-dimensional balls in
R

D . Consequently, M̂ does not recover the topology of M as the estimator of [1]
does.

When k ≥ 3, M̂ outperforms reconstruction procedures based on a somewhat
piecewise linear interpolation [1, 14, 20], and achieves the faster rate (logn/n)k/d

for the Hausdorff loss. This seems quite natural, since our procedure fits higher
order terms. This is done at the price of a probably worse dependency on the
dimension d than in [1, 14]. Theorem 6 is now proved to be (almost) minimax
optimal.

THEOREM 7. If τminL⊥, . . . , τ k−1
min Lk, (τ

d
minfmin)

−1 and τd
minfmax are large

enough (depending only on d and k), then for n large enough,

inf
M̂

sup
P∈Pk(σ )

EP ⊗ndH (M,M̂) ≥ cd,k,τmin

{(
1

n

) k
d ∨

(
σ

n

) k
d+k

}
,

where the infimum is taken over all the estimators M̂ = M̂(X1, . . . ,Xn).

Theorem 7, whose proof is given in Section 5.2.1, is obtained from Le Cam’s
lemma (Theorem 8). Let us note that it is likely for the extra logn term appearing
in Theorem 6 to actually be present in the minimax rate. Roughly, it is due to the
fact that the Hausdorff distance dH is similar to a L∞ loss. The logn term may be
obtained in Theorem 7 with the same combinatorial analysis as in [19] for k = 2.

As for the estimation of tangent spaces and curvature, Theorem 7 matches the
upper bound in Theorem 6 in the nearly noise-free case σ � (1/n)k/d . Moreover,
for σ < τmin, it also generalizes Theorem 1 in [15] to higher orders of regularity
(k ≥ 3). Again, for σ � (1/n)k/d , the upper bound in Theorem 6 is larger than the
lower bound stated in Theorem 7. However, our estimator M̂ achieves the same
convergence rate if the assumption that E(Z|Y) = 0 is dropped.

4. Conclusion, prospects. In this article, we derived nonasymptotic bounds
for inference of geometric objects associated with smooth submanifolds M ⊂ R

D .
We focused on tangent spaces, second fundamental forms and the submanifold
itself. We introduced new regularity classes Ck

τmin,L
for submanifolds that extend

the case k = 2. For each object of interest, the proposed estimator relies on local
polynomials that can be computed through a least square minimization. Minimax
lower bounds were presented, matching the upper bounds up to logn factors in the
regime of small noise.
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The implementation of (2) needs to be investigated. The nonconvexity of the
criterion comes from that we minimize over the space of orthogonal projectors,
which is nonconvex. However, that space is pretty well understood, and it seems
possible to implement gradient descents on it [28]. Another way to improve our
procedure could be to fit orthogonal polynomials instead of monomials. Such a
modification may also lead to improved dependency on the dimension d and the
regularity k in the bounds for both tangent space and support estimation.

Though the stated lower bounds are valid for quite general tubular noise levels
σ , it seems that our estimators based on local polynomials are suboptimal when-
ever σ is larger than the expected precision for Ck models in a d-dimensional space
[roughly (1/n)k/d ]. In such a setting, it is likely that a preliminary centering pro-
cedure is needed, as the one exposed in [15]. Other pre-processings of the data
might allow to adapt our estimators to other types of noise. For instance, whenever
outliers are allowed in the model C2, [1] proposes an iterative denoising procedure
based on tangent space estimation. It exploits the fact that tangent space estimation
allows to remove a part of outliers, and removing outliers enhances tangent space
estimation. An interesting question would be to study how this method can apply
with local polynomials.

Another open question is that of exact topology recovery with fast rates for
k ≥ 3. Indeed, M̂ converges at rate (logn/n)k/d but is unstructured. It would be
nice to glue the patches of M̂ together, for example, using interpolation techniques,
following the ideas of [12].

5. Proofs.

5.1. Upper bounds.

5.1.1. Preliminary results on polynomial expansions. To prove Theorem 2,
4 and 6, the following lemmas are needed. First, we relate the existence of
parametrizations �p’s mentioned in Definition 1 to a local polynomial decom-
position.

LEMMA 2. For any M ∈ Ck
τmin,L

and y ∈ M , the following holds:

(i) For all v1, v2 ∈ BTyM(0, 1
4L⊥ ),

3

4
‖v2 − v1‖ ≤ ∥∥�y(v2) − �y(v1)

∥∥ ≤ 5

4
‖v2 − v1‖.

(ii) For all h ≤ 1
4L⊥ ∧ 2τmin

5 ,

M ∩B
(
y,

3h

5

)
⊂ �y

(
BTyM(y,h)

) ⊂ M ∩B
(
y,

5h

4

)
.
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(iii) For all h ≤ τmin
2 ,

BTyM

(
0,

7h

8

)
⊂ πTyM

(
B(y,h) ∩ M

)
.

(iv) Denoting by π∗ = πTyM the orthogonal projection onto TyM , for all y ∈
M , there exist multilinear maps T ∗

2 , . . . , T ∗
k−1 from TyM to R

D , and Rk such that

for all y′ ∈ B(y,
τmin∧L−1

⊥
4 ) ∩ M ,

y′ − y = π∗(
y′ − y

) + T ∗
2

(
π∗(

y′ − y
)⊗2) + · · · + T ∗

k−1
(
π∗(

y′ − y
)⊗k−1)

+ Rk

(
y′ − y

)
,

with ∥∥Rk

(
y′ − y

)∥∥ ≤ C
∥∥y′ − y

∥∥k and
∥∥T ∗

i

∥∥
op ≤ L′

i for 2 ≤ i ≤ k − 1,

where L′
i depends on d, k, τmin,L⊥, . . . ,Li , and C on d , k, τmin, L⊥, . . . , Lk .

Moreover, for k ≥ 3, T ∗
2 = IIM

y .
(v) For all y ∈ M , ‖IIM

y ‖op ≤ 1/τmin. In particular, the sectional curvatures of
M satisfy

−2

τ 2
min

≤ κ ≤ 1

τ 2
min

.

The proof of Lemma 2 can be found in Section A.2 of the Supplementary Ma-
terial. A direct consequence of Lemma 2 is the following Lemma 3.

LEMMA 3. Set h0 = (τmin ∧ L−1
⊥ )/8 and h ≤ h0. Let M ∈ Ck

τmin,L
, x0 = y0 +

z0, with y0 ∈ M and ‖z0‖ ≤ σ ≤ h/4. Denote by π∗ the orthogonal projection
onto Ty0M , and by T ∗

2 , . . . , T ∗
k−1 the multilinear maps given by Lemma 2, (iv).

Then, for any x = y + z such that y ∈ M , ‖z‖ ≤ σ ≤ h/4 and x ∈ B(x0, h), for
any orthogonal projection π and multilinear maps T2, . . . , Tk−1, we have

x − x0 − π(x − x0) −
k−1∑
j=2

Tj

(
π(x − x0)

⊗j ) =
k∑

j=1

T ′
j

(
π∗(y − y0)

⊗j )
+ Rk(x − x0),

where T ′
j is a j -linear map, and ‖Rk(x − x0)‖ ≤ C(σ ∨ hk)(1 + th), with t =

maxj=2...,k ‖T ′
j‖op and C depending on d , k, τmin, L⊥, . . . , Lk . Moreover, we

have

T ′
1 = (

π∗ − π
)
,

T ′
2 = (

π∗ − π
) ◦ T ∗

2 + (
T ∗

2 ◦ π∗ − T2 ◦ π
)
,

and, if π = π∗ and Ti = T ∗
i , for i = 2, . . . , k − 1, then T ′

j = 0, for j =
1, . . . , k.
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Lemma 3 roughly states that, if π , Tj , j ≥ 2 are designed to locally approximate
x = y + z around x0 = y0 + z0, then the approximation error may be expressed as
a polynomial expansion in π∗(y − y0).

PROOF OF LEMMA 3. For short, assume that y0 = 0. In what follows, C will
denote a constant depending on d , k, τmin, L⊥, . . . , Lk . We may write

x − x0 − π(x − x0) −
k−1∑
j=2

Tj

(
π(x − x0)

⊗j ) = y − π(y) −
k−1∑
j=2

Tj

(
π(y)⊗j )

+ R′
k(x − x0),

with ‖R′
k(x − x0)‖ ≤ Cσ(1 + th). Since σ ≤ h/4, y ∈ B(0,3h/2), with h ≤ h0.

Hence, Lemma 2 entails

y = π∗(y) + T ∗
2

(
π∗(y)⊗2) + · · · + T ∗

k−1
(
π∗(y)⊗k−1)

+ R′′
k (y),

with ‖R′′
k (y)‖ ≤ Chk . We deduce that

y − π(y) −
k−1∑
j=2

Tj

(
π(y)⊗j )

= (
π∗ − π ◦ π∗)

(y) + T ∗
2

(
π∗(y)⊗2) − π

(
T ∗

2
(
π∗(y)⊗2))

− T2
(
π ◦ π∗(y)⊗2) +

k∑
j=3

T ′
k

(
π∗(y)⊗j ) − π

(
R′′

k (y)
) − R′′′

k (y),

with ‖R′′′
k (y)‖ ≤ Cthk+1, since only tensors of order greater than 2 are involved

in R′′′
k . Since T ∗

2 = IIM
0 , π∗ ◦ T ∗

2 = 0, hence the result. �

At last, we need a result relating deviations in terms of polynomial norm and
L2(P

(j)
0,n−1) norm, where P0 ∈Pk , for polynomials taking arguments in π∗,j (y) :=

πTYj
M(y − Yj ). For clarity’s sake, the bounds are given for j = 1, and we denote

P
(1)
0,n−1 by P0,n−1. Without loss of generality, we can assume that Y1 = 0.
Let Rk[y1:d ] denote the set of real-valued polynomial functions in d variables

with degree less than k. For S ∈ R
k[y1:d ], we denote by ‖S‖2 the Euclidean norm

of its coefficients, and by Sh the polynomial defined by Sh(y1:d) = S(hy1:d). With
a slight abuse of notation, S(π∗(y)) will denote S(e∗

1(π
∗(y)), . . . , e∗

d(π∗(y))),
where e∗

1, . . . , e
∗
d form an orthonormal coordinate system of T0M .

PROPOSITION 2. Set h = (K
logn
n−1 )

1
d . There exist constants κk,d , ck,d and Cd

such that, if K ≥ (κk,df 2
max/f

3
min) and n is large enough so that h ≤ h0 ≤ τmin/8,
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then with probability at least 1 − ( 1
n
)

k
d
+1, we have

P0,n−1
[
S2(

π∗(y)
)
1B(h/2)(y)

] ≥ ck,dhdfmin‖Sh‖2
2,

and

N(3h/2) ≤ Cdfmax(n − 1)hd,

for every S ∈ R
k[y1:d ], where N(3h/2) = ∑n

j=2 1B(0,3h/2)(Yj ).

The proof of Proposition 2 is deferred to Section B.2 of the Supplementary
Material.

5.1.2. Upper bound for tangent space estimation.

PROOF OF THEOREM 2. We recall that for every j = 1, . . . , n, Xj = Yj +Zj ,
where Yj ∈ M is drawn from P0 and ‖Zj‖ ≤ σ ≤ h/4, where h ≤ h0 as de-
fined in Lemma 3. Without loss of generality, we consider the case j = 1,
Y1 = 0. From now on, we assume that the probability event defined in Proposi-
tion 2 occurs, and denote by Rn−1(π,T2, . . . , Tk−1) the empirical criterion de-
fined by (2). Note that Xj ∈ B(X1, h) entails Yj ∈ B(0,3h/2). Moreover, since for
t ≥ maxi=2,...,k−1 ‖T ∗

i ‖op, Rn−1(π̂, T̂1, . . . , T̂k−1) ≤ Rn−1(π
∗, T ∗

2 , . . . , T ∗
k−1), we

deduce that

Rn−1(π̂ , T̂1, . . . , T̂k−1) ≤ Cτmin,L(σ 2 ∨ h2k)(1 + th)2N(3h/2)

n − 1
,

according to Lemma 3. On the other hand, note that if Yj ∈ B(0, h/2), then Xj ∈
B(X1, h). Lemma 3 then yields

Rn−1(π̂, T̂2, . . . , T̂k−1) ≥ 1

2
P0,n−1

(∥∥∥∥∥
k∑

j=1

T̂ ′
j

(
π∗(y)⊗j )∥∥∥∥∥

2

1B(0,h/2)(y)

)

− Cτmin,L(σ 2 ∨ h2k)(1 + th)2N(3h/2)

n − 1
.

Using Proposition 2, we can decompose the right-hand side as

D∑
r=1

P0,n−1

(
k∑

j=1

T̂
′(r)
j

(
π∗(y)⊗j )

1B(0,h/2)(y)

)2

≤ Cτmin,Lfmaxh
d(

σ 2 ∨ h2k)(1 + th)2,

where for any tensor T , T (r) denotes the r th coordinate of T and is considered as
a real valued r-order polynomial. Then, applying Proposition 2 to each coordinate
leads to

cd,kfmin

D∑
r=1

k∑
j=1

∥∥(
T

′(r)
j

(
π∗(y)⊗j ))

h

∥∥2
2 ≤ Cτmin,Lfmaxh

d(
σ 2 ∨ h2k)(1 + th)2.
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It follows that, for 1 ≤ j ≤ k,∥∥T̂ ′
j ◦ π∗∥∥2

op ≤ Cd,k,L,τmin

fmax

fmin

(
h2(k−j) ∨ σ 2h−2j )(

1 + t2h2)
.(3)

Noting that, according to [16], Section 2.6.2,∥∥T̂ ′
1 ◦ π∗∥∥

op = ∥∥(
π∗ − π̂

)
π∗∥∥

op = ∥∥π
T̂ ⊥

1
◦ π∗∥∥ = ∠(TY1M, T̂1),

we deduce that

∠(TY1M, T̂1) ≤ Cd,k,L,τmin

√
fmax

fmin

(
h(k−1) ∨ σh−1)

(1 + th).

Theorem 2 then follows from a straightforward union bound. �

5.1.3. Upper bound for curvature estimation.

PROOF OF THEOREM 4. Without loss of generality, the derivation is con-
ducted in the same framework as in the previous Section 5.1.2. In accordance with
assumptions of Theorem 4, we assume that max2≤i≤k ‖T ∗

i ‖op ≤ t ≤ 1/h. Since,
according to Lemma 3,

T ′
2
(
π∗(y)⊗2) = (

π∗ − π̂
)(

T ∗
2

(
π∗(y)⊗2)) + (

T ∗
2 ◦ π∗ − T̂2 ◦ π̂

)(
π∗(y)⊗2)

,

we deduce that∥∥T ∗
2 ◦ π∗ − T̂2 ◦ π̂

∥∥
op ≤ ∥∥T ′

2 ◦ π∗∥∥
op + ∥∥π̂ − π∗∥∥

op

+ ∥∥T̂2 ◦ π̂ ◦ π∗ − T̂2 ◦ π̂ ◦ π̂
∥∥

op.

Using (3) with j = 1,2 and th ≤ 1 leads to

∥∥T ∗
2 ◦ π∗ − T̂2 ◦ π̂

∥∥
op ≤ Cd,k,L,τmin

√
fmax

fmin

(
h(k−2) ∨ σh−2)

.

Finally, Lemma 2 states that IIM
Y1

= T ∗
2 . Theorem 4 follows from a union bound.

�

5.1.4. Upper bound for manifold estimation.

PROOF OF THEOREM 6. Recall that we take Xi = Yi + Zi , where Yi has
distribution P0 and ‖Zj‖ ≤ σ ≤ h/4. We also assume that the probability events
of Proposition 2 occur simultaneously at each Yi , so that (3) holds for all i, with
probability larger than 1 − (1/n)k/d . Without loss of generality, set Y1 = 0. Let
v ∈ B

T̂1
(0,7h/8) be fixed. Notice that π∗(v) ∈ BT0M(0,7h/8). Hence, according
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to Lemma 2, there exists y ∈ B(0, h) ∩ M such that π∗(v) = π∗(y). According to
(3), we may write

�̂(v) = Z1 + v +
k−1∑
j=2

T̂j

(
v⊗j ) = π∗(v) +

k−1∑
j=2

T̂j

(
π∗(v)⊗j ) + Rk(v),

where, since ‖T̂j‖op ≤ 1/h, ‖Rk(v)‖ ≤ Ck,d,τmin,L
√

fmax/fmin(h
k ∨ σ). Using (3)

again leads to

π∗(v) +
k−1∑
j=2

T̂j

(
π∗(v)⊗j ) = π∗(v) +

k−1∑
j=2

T ∗
j

(
π∗(v)⊗j ) + R′(π∗(v)

)

= π∗(y) +
k−1∑
j=2

T ∗
j

(
π∗(y)⊗j ) + R′(π∗(y)

)
,

where ‖R′(π∗(y))‖ ≤ Ck,d,τmin,L
√

fmax/fmin(h
k ∨σ). According to Lemma 2, we

deduce that ‖�̂(v) − y‖ ≤ Ck,d,τmin,L
√

fmax/fmin(h
k ∨ σ), hence

sup
u∈M̂

d(u,M) ≤ Ck,d,τmin,L

√
fmax

fmin

(
hk ∨ σ

)
.(4)

Now we focus on supy∈M d(y, M̂). For this, we need a lemma ensuring that Yn =
{Y1, . . . , Yn} covers M with high probability.

LEMMA 4. Let h = (
C′

dk

fmin

logn
n

)1/d with C′
d large enough. Then for n large

enough so that h ≤ τmin/4, with probability at least 1 − ( 1
n
)k/d ,

dH (M,Yn) ≤ h/2.

The proof of Lemma 4 is given in Section B.1 of the Supplementary Mate-
rial. Now we choose h satisfying the conditions of Proposition 2 and Lemma 4.
Let y be in M and assume that ‖y − Yj0‖ ≤ h/2. Then y ∈ B(Xj0,3h/4).
According to Lemma 3 and (3), we deduce that ‖�̂j0(π̂j0(y − Xj0)) − y‖ ≤
Ck,d,τmin,L

√
fmax/fmin(h

k ∨ σ). Hence, from Lemma 4,

sup
y∈M

d(y, M̂) ≤ Ck,d,τM,L

√
fmax

fmin

(
hk ∨ σ

)
(5)

with probability at least 1 − 2( 1
n
)k/d . Combining (4) and (5) gives Theorem 6. �

5.2. Lower bounds. This section is devoted to describe the main ideas of the
proofs for the minimax lower bounds. We prove Theorem 7 on one side, and The-
orem 3 and Theorem 5 in a unified way on the other side. The methods used rely
on hypothesis comparison [30].
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5.2.1. Lower bound for manifold estimation. We recall that for two distribu-
tions Q and Q′ defined on the same space, the L1 test affinity ‖Q ∧ Q′‖1 is given
by ∥∥Q ∧ Q′∥∥

1 =
∫

dQ ∧ dQ′,

where dQ and dQ′ denote densities of Q and Q′ with respect to any dominating
measure.

The first technique we use, involving only two hypotheses, is usually referred
to as Le Cam’s lemma [30]. Let P be a model and θ(P ) be the parameter of
interest. Assume that θ(P ) belongs to a pseudo-metric space (D, d), that is, d(·, ·)
is symmetric and satisfies the triangle inequality. Le Cam’s lemma can be adapted
to our framework as follows.

THEOREM 8 (Le Cam’s lemma [30]). For all pairs P,P ′ in P ,

inf
θ̂

sup
P∈P

EP ⊗nd
(
θ(P ), θ̂

) ≥ 1

2
d
(
θ(P ), θ

(
P ′))∥∥P ∧ P ′∥∥n

1,

where the infimum is taken over all the estimators θ̂ = θ̂ (X1, . . . ,Xn).

In this section, we will get interested in P = Pk(σ ) and θ(P ) = M , with d =
dH . In order to derive Theorem 7, we build two different pairs (P0,P1), (P σ

0 ,P σ
1 )

of hypotheses in the model Pk(σ ). Each pair will exploit a different property of
the model Pk(σ ).

The first pair (P0,P1) of hypotheses (Lemma 5) is built in the model Pk ⊂
Pk(σ ), and exploits the geometric difficulty of manifold reconstruction even when
no noise is present. These hypotheses, depicted in Figure 5, consist of bumped
versions of one another.

LEMMA 5. Under the assumptions of Theorem 7, there exist P0,P1 ∈Pk with
associated submanifolds M0,M1 such that

dH (M0,M1) ≥ ck,d,τmin

(
1

n

) k
d

and ‖P0 ∧ P1‖n
1 ≥ c0.

The proof of Lemma 5 is to be found in Section C.4.1 of the Supplementary
Material.

The second pair (P σ
0 ,P σ

1 ) of hypotheses (Lemma 6) has a similar construction
as (P0,P1). Roughly speaking, they are the uniform distributions on the offsets of
radii σ/2 of M0 and M1 of Figure 5. Here, the hypotheses are built in Pk(σ ), and
fully exploit the statistical difficulty of manifold reconstruction induced by noise.
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FIG. 5. Manifolds M0 and M1 of Lemma 5 and Lemma 6. The width δ of the bump is chosen to
have ‖Pσ

0 ∧ Pσ
1 ‖n

1 constant. The distance 
 = dH (M0,M1) is of order δk to ensure that M1 ∈ Ck .

LEMMA 6. Under the assumptions of Theorem 7, there exist P σ
0 ,P σ

1 ∈Pk(σ )

with associated submanifolds Mσ
0 ,Mσ

1 such that

dH

(
Mσ

0 ,Mσ
1

) ≥ ck,d,τmin

(
σ

n

) k
d+k

and
∥∥P σ

0 ∧ P σ
1

∥∥n
1 ≥ c0.

The proof of Lemma 6 is to be found in Section C.4.2 of the Supplementary
Material. We are now in position to prove Theorem 7.

PROOF OF THEOREM 7. Let us apply Theorem 8 with P =Pk(σ ), θ(P ) = M

and d = dH . Taking P = P0 and P ′ = P1 of Lemma 5, these distributions both
belong to Pk ⊂Pk(σ ), so that Theorem 8 yields

inf
M̂

sup
P∈Pk(σ )

EP ⊗ndH (M,M̂) ≥ dH (M0,M1)‖P0 ∧ P1‖n
1

≥ ck,d,τmin

(
1

n

) k
d × c0.

Similarly, setting hypotheses P = P σ
0 and P ′ = P σ

1 of Lemma 6 yields

inf
M̂

sup
P∈Pk(σ )

EP ⊗ndH (M,M̂) ≥ dH

(
Mσ

0 ,Mσ
1

)∥∥P σ
0 ∧ P σ

1
∥∥n

1

≥ ck,d,τmin

(
σ

n

) k
k+d × c0,

which concludes the proof. �

5.2.2. Lower bounds for tangent space and curvature estimation. Let us now
move to the proof of Theorems 3 and 5, that consist of lower bounds for the esti-
mation of TY1M and IIM

Y1
with random base point Y1 = πM(X1). In both cases, the

loss can be cast as

EP ⊗nd
(
θX1(P ), θ̂

) = EP ⊗n−1
[
EP d

(
θX1(P ), θ̂

)]
= EP ⊗n−1

[∥∥d(
θ·(P ), θ̂

)∥∥
L1(P )

]
,
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where θ̂ = θ̂ (X,X′), with X = X1 driving the parameter of interest, and X′ =
(X2, . . . ,Xn) = X2:n. Since ‖ · ‖L1(P ) obviously depends on P , the technique ex-
posed in the previous section does not apply anymore. However, a slight adapta-
tion of Assouad’s lemma [30] with an extra conditioning on X = X1 carries out
for our purpose. Let us now detail a general framework where the method ap-
plies.

We let X ,X ′ denote measured spaces. For a probability distribution Q on X ×
X ′, we let (X,X′) be a random variable with distribution Q. The marginals of Q

on X and X ′ are denoted by μ and ν, respectively. Let (D, d) be a pseudo-metric
space. For Q ∈ Q, we let θ·(Q) : X → D be defined μ-almost surely, where μ is
the marginal distribution of Q on X . The parameter of interest is θX(Q), and the
associated minimax risk over Q is

inf
θ̂

sup
Q∈Q

EQ

[
d
(
θX(Q), θ̂

(
X,X′))],(6)

where the infimum is taken over all the estimators θ̂ : X ×X ′ → D.
Given a set of probability distributions Q on X × X ′, write Conv(Q) for

the set of mixture probability distributions with components in Q. For all τ =
(τ1, . . . , τm) ∈ {0,1}m, τ k denotes the m-tuple that differs from τ only at the kth
position. We are now in position to state the conditional version of Assouad’s
lemma that allows to lower bound the minimax risk (6).

LEMMA 7 (Conditional Assouad). Let m ≥ 1 be an integer and let
{Qτ }τ∈{0,1}m be a family of 2m submodels Qτ ⊂ Q. Let {Uk × U ′

k}1≤k≤m be a
family of pairwise disjoint subsets of X × X ′, and Dτ,k be subsets of D. Assume
that for all τ ∈ {0,1}m and 1 ≤ k ≤ m:

• for all Qτ ∈ Qτ , θX(Qτ ) ∈Dτ,k on the event {X ∈ Uk};
• for all θ ∈ Dτ,k and θ ′ ∈ Dτ k,k , d(θ, θ ′) ≥ �.

For all τ ∈ {0,1}m, let Qτ ∈ Conv(Qτ ), and write μ̄τ and ν̄τ for the marginal dis-
tributions of Qτ on X and X ′, respectively. Assume that if (X,X′) has distribution
Qτ , X and X′ are independent conditionally on the event {(X,X′) ∈ Uk × U ′

k},
and that

min
τ∈{0,1}m
1≤k≤m

{(∫
Uk

dμ̄τ ∧ dμ̄τk

)(∫
U ′

k

dν̄τ ∧ dν̄τk

)}
≥ 1 − α.

Then

inf
θ̂

sup
Q∈Q

EQ

[
d
(
θX(Q), θ̂

(
X,X′))] ≥ m

�

2
(1 − α),

where the infimum is taken over all the estimators θ̂ : X ×X ′ → D.
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Note that for a model of the form Q = {δx0 ⊗ P,P ∈ P} with fixed x0 ∈ X , one
recovers the classical Assouad’s lemma [30] taking Uk =X and U ′

k = X ′. Indeed,
when X = x is deterministic, the parameter of interest θX(Q) = θ(Q) can be seen
as nonrandom.

In this section, we will get interested in Q = Pk(σ )⊗n, and θX(Q) = θX1(Q)

being alternatively TπM(X1)M and IIM
πM(X1)

. Similarly to Section 5.2.1, we build
two different families of submodels, each of them will exploit a different kind of
difficulty for tangent space and curvature estimation.

The first family, described in Lemma 8, highlights the geometric difficulty of
the estimation problems, even when the noise level σ is small, or even zero. Let
us emphasize that the estimation error is integrated with respect to the distribution
of X1. Hence, considering mixture hypotheses is natural, since building manifolds
with different tangent spaces (or curvature) necessarily leads to distributions that
are locally singular. Here, as in Section 5.2.1, the considered hypotheses are com-
posed of bumped manifolds (see Figure 6). We defer the proof of Lemma 8 to
Section C.3.1 of the Supplementary Material.

LEMMA 8. Assume that the conditions of Theorems 3 or 5 hold. Given i ∈
{1,2}, there exists a family of 2m submodels {P(i)

τ }τ∈{0,1}m ⊂ Pk , together with
pairwise disjoint subsets {Uk ×U ′

k}1≤k≤m of RD ×(RD)n−1 such that the following
holds for all τ ∈ {0,1}m and 1 ≤ k ≤ m.

For any distribution P
(i)
τ ∈ P(i)

τ with support M
(i)
τ = Supp(P

(i)
τ ), if

(X1, . . . ,Xn) has distribution (P
(i)
τ )⊗n, then on the event {X1 ∈ Uk}, we have:

• if τk = 0,

TX1M
(i)
τ = R

d × {0}D−d,
∥∥IIM

(i)
τ

X1
◦ π

TX1M
(i)
τ

∥∥
op = 0,

• if τk = 1,
– for i = 1:

∠
(
TX1M

(1)
τ ,Rd × {0}D−d) ≥ ck,d,τmin

(
1

n − 1

) k−1
d

,

– for i = 2:

∥∥IIM
(2)
τ

X1
◦ π

TX1M
(2)
τ

∥∥
op ≥ ck,d,τmin

(
1

n − 1

) k−2
d

.

Furthermore, there exists Q̄
(i)
τ,n ∈ Conv((P(i)

τ )⊗n) such that if (Z1, . . . ,Zn) =
(Z1,Z2:n) has distribution Q̄

(i)
τ,n, Z1 and Z2:n are independent conditionally

on the event {(Z1,Z2:n) ∈ Uk × U ′
k}. The marginal distributions of Q̄

(i)
τ,n on

R
D × (RD)n−1 are Q̄

(i)
τ,1 and Q̄

(i)
τ,n−1, and we have∫

U ′
k

dQ̄
(i)
τ,n−1 ∧ dQ̄

(i)

τ k,n−1 ≥ c0 and m ·
∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)

τ k,1 ≥ cd.
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FIG. 6. Distributions of Lemma 8 in the neighborhood of Uk (1 ≤ k ≤ m). Black curves correspond

to the support M
(i)
τ of a distribution of P(i)

τ ⊂ Pk . The area shaded in grey depicts the mixture

distribution Q̄
(i)
τ,1 ∈ Conv(P(i)

τ ).

The second family, described in Lemma 9, testifies of the statistical difficulty of
the estimation problem when the noise level σ is large enough. The construction
is very similar to Lemma 8 (see Figure 6). Though, in this case, the magnitude
of the noise drives the statistical difficulty, as opposed to the sampling scale in
Lemma 8. Note that in this case, considering mixture distributions is not necessary
since the ample-enough noise make bumps that are absolutely continuous with
respect to each other. The proof of Lemma 9 can be found in Section C.3.2 of the
Supplementary Material.

LEMMA 9. Assume that the conditions of Theorems 3 or 5 hold, and that
σ ≥ Ck,d,τmin(1/(n − 1))k/d for Ck,d,τmin > 0 large enough. Given i ∈ {1,2}, there

exists a collection of 2m distributions {P(i),σ
τ }τ∈{0,1}m ⊂ Pk(σ ) with associated

submanifolds {M(i),σ
τ }τ∈{0,1}m , together with pairwise disjoint subsets {Uσ

k }1≤k≤m

of RD such that the following holds for all τ ∈ {0,1}m and 1 ≤ k ≤ m.
If x ∈ Uσ

k and y = π
M

(i),σ
τ

(x), we have

• if τk = 0,

TyM
(i),σ
τ =R

d × {0}D−d,
∥∥IIM

(i),σ
τ

y ◦ π
TyM

(i),σ
τ

∥∥
op = 0,
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• if τk = 1,
– for i = 1:

∠
(
TyM

(1),σ
τ ,Rd × {0}D−d) ≥ ck,d,τmin

(
σ

n − 1

) k−1
k+d

,

– for i = 2:

∥∥IIM
(2),σ
τ

y ◦ π
TyM

(2),σ
τ

∥∥
op ≥ c′

k,d,τmin

(
σ

n − 1

) k−2
k+d

.

Furthermore,∫
(RD)n−1

(
P(i),σ

τ

)⊗n−1 ∧ (
P(i),σ

τk

)⊗n−1 ≥ c0 and m ·
∫
Uσ

k

P(i),σ
τ ∧ P(i),σ

τk ≥ cd.

PROOF OF THEOREM 3. Let us apply Lemma 7 with X = R
D , X ′ =

(RD)n−1, Q = (Pk(σ ))⊗n, X = X1, X′ = (X2, . . . ,Xn) = X2:n, θX(Q) = TXM

and the angle between linear subspaces as the distance d .
If σ < Ck,d,τmin(1/(n − 1))k/d , for Ck,d,τmin > 0 defined in Lemma 9, then, ap-

plying Lemma 7 to the family {Q̄(1)
τ,n}τ together with the disjoint sets Uk × U ′

k of
Lemma 8, we get

inf
T̂

sup
P∈Pk(σ )

EP ⊗n∠(TπM(X1)M, T̂ ) ≥ m · ck,d,τmin

(
1

n − 1

) k−1
d · c0 · cd

= c′
d,k,τmin

{(
1

n − 1

) k−1
d ∨

(
σ

n − 1

) k−1
d+k

}
,

where the second line uses that σ < Ck,d,τmin(1/(n − 1))k/d .
If σ ≥ Ck,d,τmin(1/(n − 1))k/d , then Lemma 9 holds, and considering the family

{(P(1),σ
τ )⊗n}τ , together with the disjoint sets Uσ

k × (RD)n−1, Lemma 7 gives

inf
T̂

sup
P∈Pk(σ )

EP ⊗n∠(TπM(X1)M, T̂ ) ≥ m · ck,d,τmin

(
σ

n − 1

) k−1
k+d · c0 · cd

= c′′
d,k,τmin

{(
1

n − 1

) k−1
d ∨

(
σ

n − 1

) k−1
d+k

}
,

hence the result. �

PROOF OF THEOREM 5. The proof follows the exact same lines as that of
Theorem 3 just above. Namely, consider the same setting with θX(Q) = IIM

πM(X). If

σ ≥ Ck,d,τmin(1/(n − 1))k/d , apply Lemma 7 with the family {Q̄(2)
τ,n}τ of Lemma 8.

If σ > Ck,d,τmin(1/(n − 1))k/d , Lemma 7 can be applied to {(P(2),σ
τ )⊗n}τ of

Lemma 9. This yields the announced rate. �
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SUPPLEMENTARY MATERIAL

Appendix: Geometric background and proofs of intermediate results (DOI:
10.1214/18-AOS1685SUPP; .pdf). Due to space constraints, we relegate technical
details of the remaining proofs to the supplement [2].
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