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In this paper, we propose a general class of covariate-adjusted response-
adaptive (CARA) designs based on a new functional urn model. We prove
strong consistency concerning the functional urn proportion and the propor-
tion of subjects assigned to the treatment groups, in the whole study and for
each covariate profile, allowing the distribution of the responses conditioned
on covariates to be estimated nonparametrically. In addition, we establish
joint central limit theorems for the above quantities and the sufficient statistics
of features of interest, which allow to construct procedures to make inference
on the conditional response distributions. These results are then applied to
typical situations concerning Gaussian and binary responses.

1. Introduction.

1.1. Adaptive designs in clinical trials. The scientific validation of new treat-
ments or therapies in medicine is typically the result of careful controlled random-
ized clinical trials. The standard methodology is to sequentially assign the patients
to the treatment groups and collect the corresponding responses for statistical in-
ference. The design of such experiments typically involves several aspects, such as
ethical objectives, reduction of costs and inferential properties. Initially, random-
ized adaptive procedures were used to increase the balance among the treatment
groups in order to achieve an unbiased comparison (e.g., see [32, 34]). However,
balance does not ensure efficiency or good ethical properties, except in very par-
ticular circumstances (see [35]). Hence, new procedures, called response-adaptive,
have been considered that use the accrued information on previous subjects’ re-
sponse to treatments to skew the probabilities of assignment away from 1/2 toward
specific target values. An exhaustive review on response-adaptive procedures can
be found for instance in [8, 23]. These designs are typically constructed to sat-
isfy certain optimality criteria related to their performance, with respect to ethical
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aspects, such as minimizing the expected number of failures, or statistical prop-
erties, such as maximizing the power of the test. Specifically, a standard method-
ology is to consider a desired asymptotic allocation proportion ρ depending on
the response distributions that satisfies those optimality criteria. In a common sit-
uation, the response distributions depend on a vector of parameters θ ∈ �, and
the target allocation is defined as a function ρ : � → S , where S is the simplex
of dimension equal to the number of treatments. Thus, the response-adaptive de-
sign is constructed such that the proportion of subjects assigned to the treatments
asymptotically target the desired target proportion, that is, Nn/n

a.s.→ ρ(θ).
When the information on significant covariates is available, adaptive designs

based solely on the patient’s response to treatments are inadequate to implement
the randomized assignments. For instance, when a covariate has a strong influence
on the response to a treatment, it may be inappropriate to use responses observed
by subjects with a specific covariate profile to determine patients’ allocation prob-
ability with a different profile. As described in [35], there are multiple ways for
taking into account the effect of covariates in clinical trials and, in general, there is
no agreement about how to implement such designs and what should be the main
purpose of these procedures.

1.2. Covariate-adjusted randomization designs. A natural way to incorporate
covariates in randomized procedures is to adopt stratification to force balance on
certain important covariates. In fact, although randomization reduces the proba-
bility that the presence of the covariates are strongly different in the treatment
groups (see [34]), perfect balance is reached only asymptotically and for small
samples a significant imbalance can easily occur. Hence, a standard methodology
is to stratify on few important known covariates, then to use restricted randomiza-
tion within each stratum, and finally to let randomization handle the less influential
and unknown covariates. Since this approach is possible only for a small number
of covariates, several procedures have been proposed to individualize which co-
variates should be considered in the trial and how to implement the sequential
assignments. An early work on these covariate-adjusted randomization designs
is represented by the deterministic procedure proposed in [39] to minimize im-
balances on strata and its extensions that include randomization: the biased coin
design of [31] and the marginal urn design formulated by [42]. In this context, dif-
ferent types of imbalances have been controlled in the covariate-adaptive designs
proposed in [25], by using the positive recurrence of the Markov process of the
within-stratum imbalances. Moreover, a wide class of covariate-adaptive designs
aimed at balancing the allocations has been recently presented in [13], in which
the main asymptotic properties have been established. However, as shown in [35],
balance does not guarantee either to have a design with good statistical proper-
ties or to assign more patients to the superior treatment. An alternative approach
was proposed in [6] to incorporate treatment-by-covariate interactions and con-
tinuous covariates. Specifically, the subjects are assigned to treatment groups in
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order to minimize the variance of the treatment responses conditionally on their
covariate profiles. This procedure is based on the DA-optimality criterion with lin-
ear models and, unlike the previous designs, it performs well also for correlated
covariates. However, the minimum variance of the treatment responses can be ob-
tained through balancing covariates in marginal strata only in linear models with
homoscedastic errors, but it is not valid in nonlinear models (see, e.g., logistic
regression [28]) or when errors present a general covariance structure. Hence, in-
formation on the covariates may not be sufficient to achieve efficiency or ethical
goals, and using the responses to treatments in the allocation phase can be essential
to this task. For this reason, adaptive procedures that use ether the covariate pro-
file of the subjects and the performances of the treatments have been considered
in literature under the name covariate-adjusted response-adaptive (CARA) designs
(see [36]).

1.3. CARA designs. In general, a CARA design is defined as a procedure that
randomly assigns subjects to the treatment groups with a probability that depends
on their own covariate profiles and on the previous patients’ covariates, allocations
and responses. The literature on this class of designs is not very long and early
steps in this context can be found in [27] and [36].

Concerning binary responses and polytomous covariates, a relevant CARA de-
sign based on the randomized play-the-winner rule has been proposed in [14]. The
case of binary responses and two competing treatments has been also considered
in [36] for different types of covariates. The allocation rule proposed in [36] uses
a suitable mapping based on a logistic regression model that implements the in-
teraction among covariates and responses to treatments. Specifically, each subject
is assigned according to the odds ratio comparing treatments in correspondence of
his own covariate profile. The main properties of this adaptive allocation rule has
been investigated through simulation, highlighting a significant reduction of the
expected treatment failures. Nevertheless, theoretical results on the design perfor-
mances have not been derived in [36]. A two-stage CARA design for binary re-
sponses based on logistic regression model was implemented in [16], in which the
patients are assigned initially using a restricted procedure to compute the adaptive
parameter estimators and then using a probability that depends on such estimators
and the corresponding covariate profile.

The case of continuous responses and two treatments has been considered
in [15], in which an adaptive design with limiting allocation proportion has been
proposed by using a linear model to incorporate covariate information. However,
the probability of assigning the next patient does not depend on its covariate pro-
file, and hence the design proposed in [15] cannot be included in the classical
CARA framework. The procedure in [15] has been improved in [7] by consider-
ing an adaptive biased-coin design for normal responses based on a generalized
DA-optimal criterion that takes into account both statistical and ethical purposes.
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Although the performances of these allocation rules have been studied through
simulation, their theoretical properties have not been proved.

Ideally, the analysis of the ethical and inferential properties of the experimental
designs should be based on theoretical results concerning the asymptotic behav-
ior of the allocation proportion and adaptive estimators, and none of the previous
work on CARA designs is able to provide such results. In fact, since the alloca-
tion and the estimation process depend on both the responses and the covariates,
CARA designs are very complex to be formulated in a rigorous mathematical set-
ting. Two papers, in particular, formalize CARA in a rigorous mathematical frame-
work. The first of these is the groundbreaking paper of [48], in which consistency
and second-order asymptotic results concerning both adaptive estimators and allo-
cation proportions have been proved for a very wide class of CARA designs. In the
second [12], compound optimal design theory was used to find target allocations of
interest, and these target allocations are attained using an accelerated biased coin
design.

The procedures considered in [48] can be interpreted as generalized biased coin
designs in which the probability of allocation is given by a known target func-
tion evaluated at the adaptive estimators of a finite number of parameters related
to the responses means conditioned on the covariates. For this reason, this design
has been applied to generalized linear models for different types of responses and
covariates (discrete and continuous) and for more than two treatments. Some re-
cent papers have extended the class of CARA designs presented in [48] in order
to improve its inferential properties. For instance, the class of designs proposed
in [50] allows inference also for common parameters in the response distributions.
The unified family of designs presented in [24] takes into account both efficiency
and medical ethics. The distribution of the parameters estimators in reduced gen-
eralized linear models established in [19] allows inference for separately testing
the main effects, the covariate effects or their intersections. One of the aims of this
paper is to construct a new framework for CARA designs in which the probabil-
ity of allocation may depend by nonparametric or semiparametric estimates of the
generic conditional response distribution. To this purpose, the proposed design is
based on the other very popular class of randomized procedures: urn models.

1.4. Urn models. The history of urn models as probabilistic tools to describe
random phenomena is very long and deep in several fields of scientific research
(e.g., [17] in economics, [18] in genetics, [1, 2] in network analysis). Starting from
the Pólya urn proposed in [21] to model contagious disease, many variants have
been considered (see, e.g., [3, 5, 11, 22, 30, 47, 49]). In this paper, we focus on
the broad class of urn schemes known as generalized Pólya urn (GPU); its asymp-
totic behavior has been the objects of several important works: starting from the
asymptotic results proved in [5] by embedding the urn process in a continuous-time
branching process, other significant theoretical results have been derived, for in-
stance in [9–11, 26, 38, 47, 49]. Concerning applications, urn models have known
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a great popularity as adaptive designs in clinical trials for several reasons: (i) the
process of colors sampled from the urn represents a natural way to model the se-
quential randomized assignments of subjects to treatments groups, (ii) the quantity
of balls replaced in the urn may depend on previous patients’ information so that
different types of adaptive procedures can be constructed, (iii) their updating rule
composed by extractions and replacements is intuitive and easy to be implemented
by clinicians. In clinical trials, urn models are mostly adopted as response-adaptive
designs and covariates are not considered. For a review of urn models adopted as
response-adaptive procedures, see [20, 23, 30].

The response-adaptive GPU design presented in [47] is the following: con-
sider an urn containing balls of d colors, each one associated with a specific
treatment; the composition of the urn at time n ≥ 0 is represented by the vec-
tor Yn = (Y1

n, . . . ,Y
d
n)� ∈ R

d+. At any time n ≥ 1, a subject enters the trial, a
ball is sampled at random from the urn and its color is observed; formally, let
Xn ∈ {0,1}d ∩ S represent the color sampled at time n: for each j ∈ {1, . . . , d},
X

j
n = 1 indicates that the sampled ball is of color j , Xj

n = 0 otherwise. Then, let-
ting k ∈ {1, . . . , d} be the sampled color, the subject is assigned to treatment k and
a response ξk

n is observed. The potential responses {ξk
n ;n ≥ 1}, k ∈ {1, . . . , d}, are

defined as d independent sequences of identically distributed (i.i.d.) random vari-
ables. Moreover, for any i, j ∈ {1, . . . , d}, the model uses a function uij : Sj →R+
(Sj indicates the support of ξ

j
n ) to convert the responses into the reinforcements;

then the sampled ball of color k is returned to the urn together with uik(ξk
n ) new

balls of color i ∈ {1, . . . , d}. Formally, denoting Dn the d × d replacement matrix
defined as Dij

n := uij (ξ
j
n ) for any i, j ∈ {1, . . . , d}, the urn is updated as follows:

(1.1) Yn =Yn−1 +DnXn.

Note that Dik
n can be computed only if the subject receives treatment k, because ξk

n

is needed to obtain D
ik
n = uik(ξk

n ). However, the updating rule expressed in (1.1)
does not require the value of Dik

n if the subject receives a treatment different than k,
since in that case X

k
n = 0.

In the GPU model, it is well known that the asymptotic behavior of the urn pro-
portion is related to the limit of the conditional expectation of the replacement ma-
trices, that is, H := limn→∞E[Dn|Fn−1] a.s. (e.g., [5, 9–11, 47, 49]), where Fn−1
indicates the quantities observed up to time (n − 1). Specifically, under suitable
conditions, we have that Yn/w(Yn)

a.s.→ V, where w(Yn) = ∑d
j=1 Y

j
n and V ∈ S is

the right eigenvector of H associated with its maximum eigenvalue and such that
w(V) = 1. Hence, in order to target a specific proportion ρ(θ), one needs to define
appropriately the replacement matrices Dn such that H guarantees ρ(θ) ≡ V. To
this end, the functions uij should depend on the parameters θ , which are usually
unknown in practice. Hence, in [47] the parameter θ is replaced in uij by the adap-
tive estimator θ̂n−1 computed with the information available up to time (n − 1)

obtaining ûij , so that the replacement matrix is represented by D
ij
n = ûij (ξ

j
n ) for
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i, j ∈ {1, . . . , d}. This model proposed in [47] is called a sequential estimation-
adjusted urn model (SEU) and it has been proved that the model targets any desired
limiting proportion ρ(θ).

1.5. Aim and organization of the paper. Although the SEU model represents
a very powerful urn design, as with most response-adaptive procedures, it does not
incorporate the covariates in the randomization process. Hence, the probability of
allocating a subject to a treatment group is independent of his or her covariate pro-
file; moreover, all patients are asymptotically assigned with the same target prob-
ability ρ(θ), regardless of their covariate profiles. In this paper, we want to extend
the SEU model by introducing information on the covariates in the urn scheme, so
obtaining a CARA urn design. Analogously to the CARA coin designs described
in [48], where the covariates are considered in the trial, each subject is assigned
with a probability that depends on his or her own covariate profile. Formally, let
τ be the covariate space, which could be finite, countable or continuous. Condi-
tionally on the covariate profile t ∈ τ , we consider different response distributions
π1

t , . . . , πd
t and the corresponding parameters θ t . Thus, in this framework the main

goal of the design is to asymptotically assign all the subjects with covariate profile
t with a desired probability ρ(θ t ), that is, the design targets the desired functional
allocation ρ(t). We will see that the model presented in this paper achieves this
goal. It is worth noticing that in the design proposed in [48], θ t characterizes the
means of the responses conditionally on t and it is defined as θ t = f (β, t), where
f is a known function and β is a finite set of parameters. As a consequence, in [48]
the target function ρ(t) actually depends on a finite number of unknowns repre-
sented by β . The framework considered in this paper is different since θ t may
represent general features of the conditional response distributions and it can be
estimated nonparametrically; the target function ρ(t) depends on an infinite num-
ber of unknowns. Another difference is that in the existing literature the probability
distribution of the covariates is the same for all the patients, while in this paper this
distribution is allowed to be adaptively modified by the experimenter using the in-
formation collected during the trial.

The CARA design we propose consists of a functional urn model in which the
urn composition is a d-dimensional multivariate function of the covariates. Each
subject is assigned to the treatment group according to the color sampled from
the urn identified by his or her covariate profile. After any allocation, the entire
functional urn composition is updated, even if only the response associated with
the patient’s covariate profile has been observed. For this reason, a crucial point
is the definition of the functional objects Xn and Dn that extend the multivariate
objects Xn and Dn in the updating rule (1.1).

In this paper, we establish first- and second-order asymptotic results concerning
the following quantities:

(i) the probability of allocation of the subjects for each covariate profile,
Zn(t);
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(ii) the proportion of subjects assigned to the treatment groups for each covari-
ate profile, Nt,n/w(Nt,n);

(iii) the proportion of subjects assigned to the treatment groups in the trial,
Nn/n;

(iv) the adaptive estimators θ̂ t,n of features of interest θ t related with the dis-
tribution of the treatments responses conditionally on each covariate profiles (re-
quired for the inference based on covariate-stratification approach);

(v) the adaptive estimators β̂n of features of interest β related with the entire
family of response distributions conditionally on the covariates (required for the
inference based on covariate-adjusted approach).

In particular, we prove strong consistency of the above quantities, allowing the
distribution of the responses conditioned on the covariates to be estimated non-
parametrically. In addition, we establish joint central limit theorems (CLTs) which
provide the essential probabilistic tools to construct inferential procedures on con-
ditional response distributions. These results are then applied to typical situations
concerning Gaussian and binary responses.

In Section 2, we present the CARA urn design based on the functional urn
model. Section 3 is concerned with assumptions and main results. In Sections 4
and 5, the CARA urn design is applied to different practical scenarios and sev-
eral response distributions are considered. Concluding remarks and future devel-
opments are discussed in Section 6. Technical details, including proofs of the the-
orems, are presented in Supplementary Material [4].

2. The functional urn model for CARA designs. In this section, we describe
the design based on a functional urn model. We start by defining the quantities
related to the process of subjects that sequentially enter the trial.

2.1. Notation. Consider a trial in which patients are sequentially and ran-
domly assigned to d ≥ 2 treatments. For any n ≥ 1, let X̄n ∈ {0,1}d ∩ S represent
the treatment assigned to subject n: for any j ∈ {1, . . . , d}, X̄

j
n = 1 indicates that

the assigned treatment is j , X̄
j
n = 0 otherwise. Each subject n is identified by a

vector (Tn, ξ
1
n , . . . , ξd

n ) ∈ (τ × S1 × · · · × Sd), in which Tn indicates his or her

covariate profile and, for any j ∈ {1, . . . , d}, ξ
j
n indicates the patient’s potential re-

sponse to treatment j . In general, the covariate profiles of the patients {Tn;n ≥ 1}
are a sequence of independent but nonidentically distributed random variables,
whose distributions can adaptively depend on the information collected during the
trial: the covariate profiles, the allocations and the responses. This allows a gener-
alization of the typical CARA design, by incorporating a probabilistic mechanism
to select patients with a particular covariate profile if patient selection is also a ran-
dom process. This includes as a special case the typical assumption of {Tn;n ≥ 1}
as i.i.d. random variables, in which the information collected in the trial does not
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affect the choice of the future covariate profiles. This represents the standard clin-
ical trial where the clinician has no control over the patient recruitment process.
We will denote by μn−1 the probability distribution of Tn conditioned on Fn−1,
that is, the information collected up to time (n − 1).

Since any subject receives one treatment, for any n ≥ 1 only one value among
{ξ1

n , . . . , ξd
n } can be observed during the trial and we will denote it ξ̄n. For each

j ∈ {1, . . . , d}, we assume that {ξj
n ;n ≥ 1} is a sequence of independent random

variables whose distribution depends on the sequence of covariate profiles {Tn;n ≥
1}. Specifically, we define a family of probability distributions {πj

t ; t ∈ τ }, where
each one represents the distribution of ξ

j
n conditioned on the event {Tn = t}: π

j
t

indicates the probability law of the response to treatment j observed from a subject
whose covariate profile is equal to t . Note that {Tn = t} could have measure zero.
In the paper, we will also use the corresponding families of cumulative distribution
functions (CDFs) {Fj

t ; t ∈ τ } and the families of quantile functions (QFs) {Qj
t ; t ∈

τ }.

2.2. The model. For any n ≥ 0, let Yn = (Y 1
n , . . . , Y d

n )� be a d-dimensional
vector of nonnegative bounded functions and let Zn = Yn/w(Yn), where w(Yn) :=∑d

j=1 Y
j
n . For any t ∈ τ , Yn(t) ∈ (0,1)d represents an urn containing Y

j
n (t) balls

of color j ∈ {1, . . . , d} and Zn(t) ∈ S indicates the proportions of the colors in the
urn at time n. To avoid inessential complications, we consider a uniform initial
composition Y0 = 1. For any n ≥ 1, let Fn−1 be the σ -algebra composed by the
information related with the first (n − 1) patients, that is, their covariate profiles,
allocations and responses:

(2.1) Fn−1 := σ(T1, X̄1, ξ̄1, . . . , Tn−1, X̄n−1, ξ̄n−1).

When subject n enters the trial, his or her covariate profile Tn is observed, and
we now operate on the conditioning set {Fn−1, Tn}, consistent with the definition
of CARA designs found in [23]. Then a ball is sampled at random from the urn
identified by Tn; that is, with proportions

Zn−1(Tn) = (
Z1

n−1(Tn), . . . ,Z
d
n−1(Tn)

)�
and its color is observed; thus, the subject n receives the treatment associated with
the sampled color and a response ξ̄n is collected. In order to update the functional
urn, we construct a weighting function Xn and a functional replacement matrix Dn

that extend Xn and Dn in the classical updating rule; see (1.1).
First, we define the weighting function Xn. Let Un be a uniform (0,1) random

variable independent of Fn−1 and Tn, and define, for any t ∈ τ and for any j ∈
{1, . . . , d}
(2.2) X̆j

n(t) := 1{∑j−1
i=1 Zi

n−1(t)<Un≤∑j
i=1 Zi

n−1(t)},



3846 G. ALETTI, A. GHIGLIETTI AND W. F. ROSENBERGER

where we use the convention
∑0

i=1(·) = 0. Notice that X̆n(t) represents the color
of the ball that would be sampled if we used the urn identified by t ; that is, if the
covariate profile Tn were equal to t . Thus, X̄n := X̆n(Tn) represents the color ac-
tually sampled from the functional urn at time n: for each j ∈ {1, . . . , d}, X̄

j
n = 1

indicates that the sampled ball is of color j , X̄
j
n = 0 otherwise. Hence, condition-

ally on Fn−1 and Tn, X̄
j
n is Bernoulli distributed with parameter Z

j
n−1(Tn). Since

X̆n(t) models the color hypothetically sampled from the urn identified by t [i.e.,
Yn−1(t)], we define the weighting function Xn as the expected value of X̆n condi-
tioned on the information of the color sampled from the urn identified by Tn, that
is,

(2.3) Xn := E[X̆n|Fn−1, Tn, X̄n].
An analytic expression of Xn derived from (2.3) is provided in (A.1) in the Sup-
plementary Material [4]. Note that by (2.2) and (2.3) we have Xn(t) ∈ S for any
t ∈ τ , since Xn(t) ∈ [0,1]d and

w(Xn) = w
(
E[X̆n|Fn−1, Tn, X̄n]) = E

[
w(X̆n)|Fn−1, Tn, X̄n

] = 1.

Moreover, we also have that

(2.4) E[Xn|Fn−1] = Zn,

since by the law of total expectation E[Xn|Fn−1] = E[X̆n|Fn−1] = Zn−1.
We now define the functional replacement matrix Dn. First, for any i, j ∈

{1, . . . , d} and t ∈ τ , let u
ij
t : Sj → R+ be a function that converts the responses

into the reinforcements. Analogously to the classical updating rule (1.1), for any
t ∈ τ , the urn identified by t should be ideally updated by u

ij
t (ξ

j
n ) balls of color

i ∈ {1, . . . , d} when treatment j is assigned, where ξ
j
n represents the response ob-

served from a subject with covariate profile t . Hence, the urn identified by t should
be updated by u

ij
t (W

j
t ) balls of color i ∈ {1, . . . , d}, where W

j
t represents a ran-

dom variable with probability distribution π
j
t and that, conditionally on Fn−1 and

Tn, is independent of X̄n. This can be equivalently formalized by introducing a
uniform (0,1) random variable Vn independent of Un, Tn and Fn−1, and defining
W

j
t = Q

j
t (Vn) for any j ∈ {1, . . . , d}, where we recall that Q

j
t is the QF asso-

ciated with the probability distribution π
j
t . In fact, by definition, we have that

Q
j
t (Vn) ∼ π

j
t when Vn ∼ U(0,1). Thus, the replacements in the urn identified by

t ∈ τ should be defined by the following random matrix:

(2.5) D̆ij
n (t) := u

ij
t

(
Q

j
t (Vn)

) ∀i, j ∈ {1, . . . , d}.
However, when the subject n with covariate profile Tn is assigned to a treatment
j and the response ξ

j
n is observed, we can only compute D̄

ij
n := u

ij
Tn

(ξ
j
n ) that cor-

responds to D̆
ij
n (Tn). Nevertheless, the response ξ

j
n , associated with the covariate
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profile Tn, contains the information on the quantile Vn that can be taken into ac-
count to update all the urns t ∈ τ using (2.5). Specifically, the d × d replacement
matrix of bounded functions should be defined as the expected value of the poten-
tial replacement matrix D̆n for the urn t , conditionally on the information of the
response observed to treatment k ∈ {1, . . . , d}, that we call ξ̄n = ξk

n , from a subject
with covariate profile Tn, that is,

(2.6) D∗
n := E[D̆n|Tn, X̄n, ξ̄n].

An explicit expression of (2.6) can be derived as follows: for any s ∈ τ , k ∈
{1, . . . , d} and y ∈ Sk ,

(2.7)
D∗ij

n = E
[
D̆ij

n |{Tn = s}, {
X̄k

n = 1
}
, {ξ̄n = y}]

= E
[
u

ij
t

(
Q

j
t (Vn)

)|{Vn ∈ (
Qk

s

)−1
(y)

}]
,

where (
Qk

s

)−1
(y) := {

v ∈ (0,1) : Qk
s (v) = y

}
,

and we recall that Qk
s is the QF associated with the probability distribution πk

s .
Note from (2.6) that D∗

n depends on quantities that are unknown at time n. Specif-

ically, the expression in (2.6) contains the conditional QFs Q
j
t and Qk

s ; moreover,

as mentioned in the Introduction, u
ij
t typically depends on the response distribu-

tion π
j
t in order to obtain some desired asymptotic properties from the design.

Hence, since the conditional distributions π
j
t are typically unknown, we compute

the corresponding functional estimators û
ij
t , Q̂

j
t and Q̂k

s by using the information
related with the first (n − 1) subjects. Thus, the d × d replacement matrix Dn of
bounded functions is defined, on the sets {Tn = s}, {X̄k

n = 1}, {ξk
n = y}, as follows:

(2.8) Dij
n := E

[
ûij (

Q̂
j
t (Vn)

)|{Vn ∈ (
Q̂k

s

)−1
(y)

}]
.

Note that Dn(Tn) = D̄n. The analytic expression of Dn depends on the specific
family of probability distribution {πj

t ; t ∈ τ }, j ∈ {1, . . . , d}, that models the re-
lation among the response ξ

j
n and the covariate profile Tn. See Section A in the

Supplementary Material [4].
Summarizing, for any t ∈ τ and i ∈ {1, . . . , d}, we replace in the urn identified

by t a number of balls of color i equal to
∑d

j=1 D
ij
n (t)X

j
n(t). Hence, for any n ≥ 1

the functional urn is updated as follows:

(2.9) Yn = Yn−1 + DnXn,

and we set Zn = Yn/w(Yn). Finally, we define the σ -algebra Fn generated by the
quantities related with the first n subjects:

Fn := σ(Fn−1, Tn, X̄n, ξ̄n),
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and we compute the probability distribution of the covariate profile of the next
patient μn(dt) := P(Tn+1 ∈ dt |Fn) with the information in Fn.

The key feature of the design is that quantile functions are used to update all
urns, not just the urn for which Tn = t . In theory, there could be an uncountably
infinite number of urns, with only a finite subset of them used for patient allo-
cation. However, in clinical practice, mathematically “continuous” covariates are
really not continuous [34]; for instance, cholesterol is represented by integer val-
ues, likely in some range that would for all intents and purposes, make it a finite
discrete covariate. However, the procedure is well defined for uncountably infinite
urns, and first-order asymptotic properties can be obtained, although some of the
covariate-specific metrics do not make sense in that context. When we move to
second-order asymptotics, we partition τ into K strata, which could be intervals
of a continuous set.

REMARK 2.1. Suppose π1
t , . . . , πd

t are known, then Dn could be replaced by
D∗

n , which does not depend on Fn−1. In that case, the distribution of Yn, condition-
ally on Fn−1, depends only on Yn−1: the functional urn composition {Yn;n ≥ 1}
is a Markov process. However, for any t0 ∈ τ , the distribution of the real random
variable Yn(t0), conditionally on Fn−1, depends on all the quantities contained
in Fn−1 given in (2.1) and not only on Yn−1(t0). Hence, for any t0 ∈ τ , the real-
valued sequence of the urn composition {Yn(t0);n ≥ 1} is not a Markov process.
This emphasizes our choice of a functional urn model.

3. Assumptions and main results. This section is concerned with the as-
sumptions and the main results of the design described in Section 2. Specifically,
we are interested in the asymptotic behavior of the following processes:

(i) the probability of allocation of the subjects for each covariate profile:
{Zn(t); t ∈ τ };

(ii) the proportion of subjects associated with each covariate profile assigned
to the treatments: {Nt,n/w(Nt,n); t ∈ τ }, where Nt,n := ∑n

i=1 X̄i1{Ti=t};
(iii) the proportion of subjects assigned to the treatments: Nn/n, where Nn :=∑n
i=1 X̄i ;
(iv) the adaptive estimators of features of interest related with the distribution

of the treatments responses conditionally on each covariate profile:

{θ̂ t,n; t ∈ τ } := {(
θ̂

j

t,n, j ∈ {1, . . . , d})�; t ∈ τ
}
,

where each estimator θ̂
j

t,n is computed with the responses of the first N
j
t,n subjects

assigned to treatment j with covariate profile t , that is, {1 ≤ i ≤ n : X̄j
i 1{Ti=t} = 1};

(v) the adaptive estimators of features of interest related with the entire family
of distribution of the treatments responses conditionally on the covariates:

β̂n := (
β̂

j

n, j ∈ {1, . . . , d})�;
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each estimator β̂
j

n is now computed with the responses of the first N
j
n subjects

assigned to treatment j , that is, {1 ≤ i ≤ n : X̄j
i = 1}.

REMARK 3.1. In the case where τ is continuous, metrics in (ii) and (iv) have
no meaning.

3.1. First-order asymptotic properties.

3.1.1. Assumptions. We start by providing the main assumptions that are re-
quired for establishing the first-order asymptotic properties.

(A1) Constant balance and positiveness of replacement matrices. Let D
ij
n (t) >

0 for any i, j ∈ {1, . . . , d} and t ∈ τ , which is equivalent to require that u
ij
t (y) > 0

for any y ∈ Sj . Moreover, denoting D̆·j (t) the j th column of D̆(t), we require that
there exists a function c(t) such that inft∈τ c(t) > 0 and for any t ∈ τ

(3.1) P
(
w

(
D̆·1(t)

) = w
(
D̆·2(t)

) = · · · = w
(
D̆·d(t)

) = c(t)
) = 1.

Since by (2.5) D̆
ij
n (t) = u

ij
t (W

j
t ) with W

j
t ∼ π

j
t , (3.1) holds when the function

u
ij
t is chosen such that

∑d
i=1 u

ij
t (W

j
t ) is equal to c(t) with probability one for

all j ∈ {1, . . . , d} and t ∈ τ . To avoid unessential complications, without loss of
generality we assume throughout all the paper that c(t) = 1.

(A2) Limiting generating matrix. For any t ∈ τ , let H(t) := E[D̆1(t)] and
Hn(t) := E[Dn(t)|Fn−1, Tn, X̄n]; then we assume that H(t) is irreducible, diago-
nalizable and there exists α > 0 independent of t ∈ τ such that

(3.2) E
[∣∣Hn(t) − H(t)

∣∣|Fn−1
] = O

(
n−α)

a.s.

We will refer to Hn as generating matrix and to H as limiting generating matrix.

A simple interpretation of (3.2) can be obtained by noticing that H can be ex-
pressed as E[D∗

n|Fn−1, Tn, X̄n] for all n ≥ 1, from which it follows that the as-
sumption in (3.2) is related to the properties of consistency of the adaptive esti-
mators. To see that H ≡ E[D∗

n|Fn−1, Tn, X̄n], observe that E[D∗
n|Fn−1, Tn, X̄n] =

E[D̆n|Fn−1, Tn, X̄n] and by (2.5) D̆
ij
n (t) = u

ij
t (Q

j
t (Vn)), with Vn ∼ U(0,1) inde-

pendent of Fn−1, Tn and X̄n, which implies

E
[
D̆ij

n (t)|Fn−1, Tn, X̄n

] = E
[
u

ij
t

(
Q

j
t (Vn)

)] = Hij (t).

REMARK 3.2. Assumption (A2) ensures that the conditional increments of
the urn composition E[Yn − Yn−1|Fn−1] are asymptotically equal to HZn−1. In-
deed, combining (2.4) and (2.9), we have

E[Yn − Yn−1|Fn−1] = E[HnXn|Fn−1] = O
(
n−α) + HZn−1.

From a probabilistic point of view, this is a key point to develop a functional urn
asymptotic theory.
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REMARK 3.3. Our functional urn model defines Hn as E[Dn|Fn−1, Tn, X̄n]
instead of E[Dn|Fn−1], typically given in the literature (e.g., see [9, 11, 29]). The
two definitions coincide only when no functional dependence occurs. However,
Assumption (A2) ensures that the limiting generating matrix is still the same:

E[Dn|Fn−1] = E[Hn|Fn−1] = H +E[Hn − H |Fn−1] a.s.→ H.

REMARK 3.4. Assumption (A2) is verified under mild conditions on the con-
sistency of the adaptive estimators in û

ij
t and π̂

j
t .

3.1.2. First-order asymptotic results. The main consistency results concern-
ing the design are collected in the following theorem.

THEOREM 3.1. Let v(t) ∈ S be the right eigenvector of H(t) associated with
λ = 1 and assume (A1), (A2). Then:

(a) for any probability measure ν on τ , we have∫
τ

∥∥Zn(t) − v(t)
∥∥ν(dt)

a.s.→ 0,

and hence Zn(t)
a.s.→ v(t) for any t ∈ τ ;

(b) for any t ∈ τ such that
∑n

i=1 μi−1({t}) a.s.→ ∞, we have∥∥Nt,n/w(Nt,n) − v(t)
∥∥ a.s.→ 0;

(c) if there exists a probability measure μ on τ such that
∫
τ |μn(dt)−μ(dt)| a.s.→

0, then we have that ∥∥∥∥Nn/n −
∫
τ

v(t)μ(dt)

∥∥∥∥ a.s.→ 0.

REMARK 3.5. In the special case that the covariate profiles of the subjects
{Tn;n ≥ 1} is a sequence of i.i.d. random variables, we have μi = μ for any i ≥ 0,
and hence the assumptions of (b) and (c) in Theorem 3.1 are immediately satisfied.

REMARK 3.6. Conditioning on any specific covariate profile, these results are
consistent with well-known asymptotic results found in the literature on urn mod-
els (e.g., see [5, 9–11, 46, 47, 49]), in which the urn proportion and the allocation
proportion converges a.s. to the normalized right eigenvector of the limiting irre-
ducible mean replacement matrix associated with λ = 1.

3.2. Second-order asymptotic properties. The convergence results proved in
Section 3.1 consider a general covariate space τ . In order to show second-order
properties, we now partition τ into K finite elements, which could, for instance,
be K intervals of a continuous covariate space. This partitioning induces K urns
used to allocate subjects with covariate profiles in the set {1, . . . ,K}. In clinical
trials practice, K must be considerably smaller than the total sample size.
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3.2.1. Assumptions. We now present further assumptions that are required for
establishing the second-order asymptotic properties.

(A3) Finite partition of the covariate space. We assume that the covariate space
τ is composed by a finite number K ∈ N of distinct elements. When τ contains infi-
nite elements, we can take a partition of τ , that is, {τ1, . . . , τK} such that

⋃
k τk = τ

and τk1 ∩ τk2 =∅ for k1 = k2, and consider these sets to be the elements of τ , that
is, τ := {τ1, . . . , τK}. To facilitate the notation, without loss of generality in the se-
quel we redefine τ = {1, . . . ,K} and μn−1(t) = μn−1({t}) = P(Tn = t |Fn−1) for
any t ∈ τ .

(A4) Conditional response distributions. The analog of the null hypothesis in
classical inferential statistics is given here by assuming that the conditional re-
sponse distributions π1

t , . . . , πd
t are known for any t ∈ τ . As a direct consequence,

we have that Dn = D∗
n and Hn = H with probability one for any n ≥ 1.

(A5) Eigenvalues of the limiting generating matrix. Denoting λ∗
H (t) the eigen-

value of Sp(H(t)) \ {1} with largest real part, assume that maxt∈τ Re(λ∗
H(t)) <

1/2.
(A6) Dynamics of adaptive estimators.

(A6a) (Covariate-stratification approach). For some t ∈ τ and j ∈ {1, . . . , d},
consider that there are features of interest θ

j
t related with the distribution π

j
t of

the responses to treatment j conditionally on the covariate profile t . Then we as-

sume that the corresponding adaptive estimator θ̂
j

t,n is strongly consistent and its
dynamics can be expressed as follows: there exists n0 ≥ 1 such that for any n ≥ n0,

(3.3) θ̂
j

t,n − θ̂
j

t,n−1 = −X̄
j
n1{Tn=t}
N

j
t,n

(
ft,j

(
θ̂

j

t,n−1
) − �Mt,j,n − Rt,j,n

)
,

where:

(i) ft,j is a Lipschitz continuous function such that ft,j (θ
j
t ) = 0;

(ii) �Mt,j,n ∈ Fn is a martingale increment such that E[�Mt,j,n|Fn−1, Tn,

X̄
j
n] = 0, and it converges stably to �Mt,j with kernel K independent of Fn−1:

L(�Mt,j,n|Fn−1, Tn = t, X̄
j
n = 1)

a.s.→ K(t, j);
(iii) Rt,j,n ∈ Fn is such that nE[‖Rt,j,n‖2] → 0.

Moreover, let ft,j be differentiable at θ
j
t , denote by λ∗

θ
j
t

the eigenvalue of

Sp(Dft,j (θ
j
t )) with largest real part and assume that mint∈τ Re(λ∗

θ
j
t

) > 1/2. We

also assume that for some δ > 0,

(3.4) sup
n≥1

E
[‖�yMt,j,n‖2+δ|Fn−1

]
< +∞ a.s.

and

(3.5) E
[
�Mt,j,n(�Mt,j,n)

�|Fn−1
] a.s.−→

n→+∞ t,j ,

where t,j is a symmetric positive matrix.
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(A6b) (Covariate-adjusted approach). For some j ∈ {1, . . . , d}, consider that
there are features of interest βj related with the entire family of distributions
{πj

t ; t ∈ τ } of the responses to treatment j conditionally on the covariates. Then

we assume that the corresponding adaptive estimator β̂
j

n is strongly consistent and
its dynamics can be expressed as follows:

(3.6) β̂
j

n − β̂
j

n−1 = − X̄
j
n

N
j
n

(
fj

(
β̂

j

n−1
) − �Mj,n − Rj,n

)
,

where the quantities in (3.6) fulfill the same conditions presented above for the
dynamics (3.3).

REMARK 3.7. Assumption (A6) is usually satisfied in most relevant cases
(see [40] for the generalized urn model). For instance, a sufficient condition for

the consistency of θ̂
j

t,n, which is generally true for most practical situations, is that
the symmetric part of Dft,j is positive definite in the entire parameter space. This
can be proved using analogous arguments to those used in the proof of part (a) of
Theorem 3.1. As an example, whenever θ

j
t = E[g(ξ

j
n )|Tn = t] for some function g,

the sample mean estimator

θ̂
j

t,n = (
N

j
t,n

)−1
n∑

i=1

1{Ti=t}X̄j
i g(ξ̄i),

satisfies (A6a) with �Mt,j,n = (g(ξ̄n) − θ
j
t ) and ft,j (θ̂

j

t,n−1) = (θ̂
j

t,n−1 − θ
j
t ),

which implies Dft,j = I .

REMARK 3.8. When some parameters are related to the response distribu-
tion of more than one treatment, the corresponding estimators satisfy analogous
conditions to those in (A6). Specifically, if one parameter does not depend on the
treatment, instead of (3.3) we can consider

(3.7) θ̂ t,n − θ̂ t,n−1 = − 1{Tn=t}
w(Nt,n)

(
ft (θ̂ t,n−1) − �Mt,n − Rt,n

)
,

while instead of (3.6) we can consider

(3.8) β̂n − β̂n−1 = −1

n

(
f (β̂n−1) − �Mn − Rn

)
.

Further dynamics may be considered when some parameters depend, for instance,
on a proper subset of the possible treatments.

(A7) Conditional distribution of the covariates.
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(A7a) (Covariate-stratification approach) Let {μn;n ≥ 0} be the sequence of
probability measures on τ such that μn(t) = P(Tn+1 = t |Fn) for any t ∈ τ . As-
sume that there exists n0 ≥ 1 such that for any n ≥ n0,

(3.9) μn(t) = fμ,t

(
θ̂

j

t,n,Nt,n/w(Nt,n)
)
,

where {fμ,t ; t ∈ τ } are differentiable functions, fμ,t (·) ≥ ε for some ε > 0 and∑K
t=1 fμ,t (·) = 1. Denoting λ∗

μ the eigenvalue of Sp(
∑K

s=1 v(s)DNfμ,s(x0,β)�)

with the largest real part, we assume that maxt∈τ Re(λ∗
μ(t)) < 1/2.

(A7b) (Covariate-adjusted approach). Let {μn;n ≥ 0} be the sequence of prob-
ability measures on τ such that μn(t) = P(Tn+1 = t |Fn). Assume that there exists
n0 ≥ 1 such that for any n ≥ n0,

(3.10) μn(t) = fμ,t

(
β̂

j

n,Nn/n
)
,

where {fμ,t ; t ∈ τ } are differentiable functions, fμ,t (·) ≥ 0 and
∑K

t=1 fμ,t (·) = 1.
Moreover, we assume there exists an internal point x0 ∈ S that verifies x0 =∑K

s=1 fμ,s(x0,β)v(s). Denoting λ∗
μ the eigenvalue of Sp(

∑K
s=1 v(s)DNfμ,s(x0,

β)�) with the largest real part, we assume that Re(λ∗
μ) < 1/2.

REMARK 3.9. The condition fμ,t (·) ≥ ε > 0 ensures that any covariate profile
t ∈ τ is asymptotically observable with positive probability. This assumption is

essential to study the behavior of θ̂
j

t,n and Nt,n, while it is not necessary for β̂
j

n

and Nn. For this reason, it will be required in Theorem 3.2 but not in Theorem 3.3.

REMARK 3.10. In the special case that the covariate profiles of the subjects
{Tn;n ≥ 1} is a sequence of i.i.d. random variables, we have μi = μ for any i ≥ 0,
and hence the above assumptions are satisfied in a straightforward manner with
fμ,t (·) = μ(t) and DNfμ,t = DNfβ,t = 0 for any t ∈ τ .

3.2.2. Second-order asymptotic results. We first provide the convergence rate
and the joint asymptotic distribution concerning the quantities of interest in the
design in the framework of covariate-stratification response-adaptive designs. This
result is established in the following central limit theorem. We introduce the vari-
ables independent of σ(Fn;n ≥ 1): T ∈ τ with distribution μ(t), X̄ ∈ {0,1}d ∈ S
such that P(X̄j = 1|T ) = vj (T ), D := E[D̆|T , X̄, ξ̄ ], where the distribution of ξ̄

conditioned on {T = t} and {X̄j = 1} is π
j
t .

THEOREM 3.2. Define Wn := (Zn(t),Nt,n/w(Nt,n), θ̂ t,n, t ∈ τ)�, W :=
(v(t),v(t), θ t , t ∈ τ)� and assume (A1)–(A5), (A6a), (A7a). Then

μn(t)
a.s.−→ μ(t) = fμ,t

(
v(t), θ t

)
, Wn

a.s.−→ W,(3.11)

√
n(Wn − W)

L−→ N (0,�), � :=
∫ ∞

0
eu( I

2 −A)eu( I
2 −A�) du,(3.12)
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where

A :=
⎛
⎝AZZ 0 0

−I I 0
0 0 Aθθ

⎞
⎠ ,  :=

⎛
⎜⎝

ZZ ZN Zθ

�
ZN NN 0

�
Zθ 0 θθ

⎞
⎟⎠ ,

and AZZ , Aθθ , NN , θθ are block-diagonal matrices whose t th block is:

(i) Att
ZZ = (I − H(t) + v(t)1�);

(ii) Att
θθ is a block-diagonal matrices whose j th block is [Att

θθ ]jj := Dft,j (θ
j
t );

(iii) tt
NN := μ−1(t)(diag(v(t)) − v(t)v�(t));

(iv) tt
θθ is a block-diagonal matrices whose j th block is [tt

θθ ]jj :=
(vj (t)μ(t))−1

E[�Mt,j (�Mt,j )
�|T = t, X̄j = 1];

and ZZ , ZN , Zθ are matrices defined as follows: for any t1, t2 ∈ τ ,

(v) 
t1t2
ZZ := E[D(t1)g(t1, T , X̄)g�(t2, T , X̄)D�(t2)] − v(t1)v�(t2);

(vi) 
t1t2
ZN := H(t1)G(t1, t2)diag(v(t2)) − v(t1)v�(t2);

(vii) [t1t2
Zθ ]j := E[D(t1)g(t1, t2, ej )�M�

t2,j
|T = t2, X̄

j = 1];
where g is a d-multivariate function with values in S defined in (B.16) in the Sup-
plementary Material [4], and G(t1, t2) is a matrix with columns {g(t1, t2, ej ); j ∈
{1, . . . , d}}.

We now provide the convergence rate and the joint asymptotic distribution of the
quantities interest in the design in the framework of covariate-adjusted response-
adaptive designs. This result is established in the following central limit theorem.

THEOREM 3.3. Define Wn := (Zn(t), t ∈ τ,Nn/n, β̂n)
�, W := (v(t), t ∈

τ,x0,β)� and assume (A1)–(A5), (A6b), (A7b). Then

μn(t)
a.s.−→ μ(t) = fμ,t (x0,β), Wn

a.s.−→ W,(3.13)

√
n(Wn − W)

L−→ N (0,�), � :=
∫ ∞

0
eu( I

2 −A)eu( I
2 −A�) du(3.14)

and

A :=
⎛
⎝AZZ 0 0

ANZ ANN ANβ

0 0 Aββ

⎞
⎠ ,  :=

⎛
⎜⎝

ZZ ZN Zβ

�
ZN NN 0

�
Zβ 0 ββ

⎞
⎟⎠ ,

where again and AZZ , Aββ , ββ are block-diagonal matrices whose t th or j th
block is:

(i) Att
ZZ = (I − H(t) + v(t)1�);

(ii) A
jj
ββ = Dfj (β

j );

(iii) 
jj
ββ := (E[vj (T )])−1

E[�Mj (�Mj )
�|X̄j = 1];
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and

(iv) ANN := I − ∑K
s=1 v(s)DNfμ,s(x0,β)�;

(v) ANβ := −∑K
s=1 v(s)Dβfμ,s(x0,β)�;

(vi) NN := diag(E[v(T )]) −E[v(T )]E[v�(T )];
and ANZ , ZZ , ZN , Zβ are matrices defined as follows: for any t1, t2 ∈ τ ,

(vii) A
t2
NZ := −μ(t2)I ;

(viii) 
t1t2
ZZ := E[D(t1)g(t1, T , X̄)g�(t2, T , X̄)D�(t2)] − v(t1)v�(t2);

(ix) 
t1
ZN := H(t1)E[G(t1, T )diag(v(T ))] − v(t1)E[v�(T )];

(x) 
t1j
Zβ := E[D(t)g(t1, T , j)�M�

j |X̄j = 1],
where we recall that g is a d-multivariate function with values in S defined
in (B.16) in the Supplementary Material [4], and G(t1, t2) is a matrix with columns
{g(t1, t2, ej ); j ∈ {1, . . . , d}}.

REMARK 3.11. We recall that Theorem 3.2 allows inferential procedures
based on stratified estimators, while Theorem 3.3 allows inference on covariate-
adjusted regression parameters representing the covariate-adjusted treatment ef-
fect.

REMARK 3.12. In the hypothesis of Remark 3.8 when θ̂ t is defined as in (3.7),
Theorem 3.2 holds with (iv) and (vii) in  replaced by:

(iv) tt
θθ := (μ(t))−1

E[�Mt (�Mt )
�|T = t];

(vii) 
t1t2
Zθ := E[D(t1)g(t1, t2, X̄)�M�

t2
|T = t2].

Analogously, when β̂ is defined as in (3.7), Theorem 3.3 holds with (iii) and (x) in
 replaced by:

(iii) ββ := E[�M(�M)�];
(x) t

Zβ := E[D(t)g(t, T , X̄)�M�].
REMARK 3.13. If there are no covariates (i.e., τ is a singleton), these results

reduce to the model investigated in [46]. In this case, (A − I/2) corresponds to
Q� in [46], and indeed

AZZ = (
I − H + v1�) = I/2 − Q�

ZZ,

ANN = I = I/2 − Q�
NN and AZN = −I = −Q�

ZN.

We compute

NN = diag(v) − vv� = �1,

ZN = H diag(v) − vv� = H�1,

ZZ = E
[
DX̄X̄D�] − vv� = H�1H

� + �2.
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The last equation follows, since using Hv = v and denoting Vj the covariance
matrix of D·j , that is, the j th column of D, we have

E
[
DX̄X̄D�] =

d∑
j=1

vj
E

[
D·j D�·j

] =
d∑

j=1

vj (
Vj + H·j H�·j

) = �2 + H diag(v)H�

and

vv� = H diag(v)H� − H�1H
�.

EXAMPLE 3.1. Consider the inferential problem of testing the equivalence
of the effects of d = 2 treatments in presence K = 2 covariate profiles, under
the following CDFs of the responses: F

j
1 (y) = y1/α when T = 1 and F

j
2 (y) =

y1/β when T = 2, where α and β are positive parameters. Since log(1/ξ̄i) is an
exponential random variable with mean α when T = 1, we consider the following
adaptive estimator:

α̂n =
∑n

i=1 1{Ti=1} log(ξ̄−1
i )∑n

i=1 1{Ti=1}
,

which satisfies (3.7) in (A6) with f1(α̂n−1) = (α̂n−1 − α) and �M1,n =
(log(ξ̄−1

n ) − α). Analogous arguments hold to construct the estimator β̂n of β .
In this case, Df1 = Df2 = 1, we have Aθθ = I and we need to compute H(t) to
find AZZ . To this end note that, since the QFs are Q

j
1(v) = vα and Q

j
2(v) = vβ ,

we have

Dn(1) =
(

V α
n 1 − V α

n

1 − V α
n V α

n

)
, Dn(2) =

(
V β

n 1 − V β
n

1 − V β
n V β

n

)
,

where we recall that Vn ∼ U(0,1), which implies

H(1) = (1 + α)−1
(

1 α

α 1

)
, H(2) = (1 + β)−1

(
1 β

β 1

)
.

From the structure of H(t) above, we obtain v(t) = (1/2,1/2)� for any t ∈ {1,2}
and the condition {maxt λ

∗
H (t) < 1/2} in (A5) is verified for α,β > 1/3. Hence,

we can compute

A11
ZZ =

(
1/2 + α 1/2 − α

1/2 − α 1/2 + α

)
, A22

ZZ =
(

1/2 + β 1/2 − β

1/2 − β 1/2 + β

)
.

Since v(t) = (1/2,1/2)� implies g(t1, t2, ej ) = ej for any t1, t2, we obtain

11
ZZ = [

(2α + 1)(α + 1)
]−1

(
2α2 + α + 1 2α

2α 2α2 + α + 1

)
,

12
ZZ = [

(α + β + 1)(α + 1)(β + 1)
]−1
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×
(

α2 + α + β2 + β

2(α + 1)(β + 1) + (α + β + 1)(αβ + 1)

2(α + 1)(β + 1) + (α + β + 1)(αβ + 1)

α2 + α + β2 + β

)
,

while 22
ZZ is the same as 11

ZZ with α replaced by β . Then, defining the 2 × 2-
matrix J := (2I − 11�), we have 11

NN = (4μ(1))−1J and 22
NN = (4μ(2))−1J ,

while for any t = 1,2 we have 1t
ZN = (α − 1)/(2α + 2)J and 2t

ZN = (β −
1)/(2β + 2)J . Moreover, αα = (μ(1))−1α2, ββ = (μ(2))−1β2. Finally, t

Zα =
t

Zβ = 0 for any t ∈ τ .

4. Application to responses with Gaussian conditional distribution. In this
section, we analyze the functional urn model in the case that the distribution of the
responses to treatments, conditionally on the covariates, are Gaussian. In partic-
ular, consider the following model between the covariates and the responses to
treatment j , j ∈ {1, . . . , d}:
(4.1) ξj

n = gj (Tn) + εj
n ∀n ≥ 1,

where gj ∈ L2(τ ) and {εj
n;n ≥ 1} ∼ i.i.d. N (0, σ 2

j ). We consider gj and σ 2
j un-

known and we denote by ĝj and σ̂ 2
j the corresponding consistent estimators. For

instance, in a parametric setting we may assume gj (t) = ∑M
i=1 β

j
i φi(t) for some

M ∈ N, β
j
i ∈ R and φi ∈ L2(τ ). Then, letting σj = σ for all j ∈ {1, . . . , d}, the

model (4.1) represents the classical regression analysis with independent and ho-
moscedastic errors. In this case, ĝj (t) = ∑M

i=1 β̂
j
i φi(t), where β̂

j
i are the least

square estimators.
From (4.1), we have that, conditionally on the set {Tn = t}, the response ξ

j
n

is normally distributed with mean gj (t) and variance σ 2
j . Hence, the family of

probability distribution {πj
t , t ∈ τ } is represented by

(4.2) π
j
t = N

(
gj (t), σ 2

j

)
.

Analogously, we can define the CDF for any y ∈ R and the QF for any v ∈ (0,1)

as follows:

(4.3) F
j
t (y) = φ

(
y − gj (t)

σj

)
, Q

j
t (v) = gj (t) + σjzv,

where φ and zv are, respectively, the CDF and the QF of a standard normal vari-
able.
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4.1. Convergence to target functions. We now show how in the model (4.1)
the probability of assigning a patient with covariate profile t ∈ τ , that is, Zn(t),
can converge to any desired target ρ(t) = ρ(θ t ), where θ t are parameters of the
conditional distributions π

j
t , j = {1, . . . , d}. Since π

j
t admits a density function in

R, we can express the functional replacement matrix Dn as defined in (A.2) in the
Supplementary Material [4]: conditionally on {Tn = s}, {X̄k

n = 1} and {ξk
n = y},

we have that for any t ∈ τ

Dij
n (t) = ûij (

ĝj (t) + σ̂j zF̂ k
s (y)

) = ûij

(
ĝj (t) + σ̂j

σ̂k

(
y − ĝk(s)

))
.

The consistency of the estimators ensures that Assumption (A2) is satisfied and the
asymptotic behavior of the urn process is determined by the limiting generating
matrix H defined as

Hij (t) = E
[
D̆ij

n (t)
] = E

[
uij (

Q
j
t (Vn)

)] = E
[
uij (

gj (t) + σjzVn

)]
,

where zVn ∼ N (0,1) since Vn ∼ U(0,1). Thus, from Theorem 3.1 we have that

Zn(t)
a.s.→ v(t), where v is such that w(v) = 1 and Hv = v. Hence, the functions

uij , i, j ∈ {1, . . . , d}, can be chosen such that v(t) coincides with the desired target
function (ρ1(t), . . . , ρd(t))�.

In the case when d = 2 treatments, we now consider the target proportion allo-
cation proposed in [45] for responses distributed as N (m1, σ1) for treatment 1 and
N (m2, σ2) for treatment 2:

(4.4) ρ̃(m1,m2, σ1, σ2) = σ1
√

m2

σ1
√

m2 + σ2
√

m1
, m1,m2 > 0.

As described in [45], the allocation proportion (4.4) minimizes the total expected
responses from all the subjects [n(m1 · ρ̃ + m2 · (1 − ρ̃))] with a fixed variance,
[n−1(σ 2

1 /ρ̃ +σ 2
2 /(1 − ρ̃))]. In our framework, the target proportion is the function

(ρ(t),1 − ρ(t))�, where ρ(t) = ρ̃(g1(t), g2(t), σ1, σ2). To achieve this limiting
proportion, we need to define the functions u11

t , u12
t , u21

t and u22
t such that the

normalized right eigenvector of H(t) is v(t) = (ρ(t),1 − ρ(t))�. For instance, a
possible choice is the following: for any y ∈ R,

û11
t (y) = ρ̃

(
ĝ1(t), ĝ2(t), σ̂1, σ̂2

)
,

û12
t = û11

t and û21
t = û22

t = 1 − û11
t . Hence, we have that H 11(t) =

limn→∞E[û11
t (ξ1

n )|Tn = t] = ρ(t) a.s. and, analogously, H 12(t) = ρ(t) and
H 21(t) = H 22(t) = 1 − ρ(t), which implies v = (ρ(t),1 − ρ(t))�.

4.2. Inference on conditional response distribution. We now analyze how to
do inference in the model (4.1). Specifically, we consider the problem of test-
ing the equivalence of the response means conditionally on the covariates, that is,
H0 : gj = g for any j ∈ {1, . . . , d}, with g given function in L2(τ ). Take d = 2
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treatments, consider K ≥ 1 possible covariate profiles and assume σ1 = σ2 = σ ∈
(0,∞) to be known. We set

u11
t (y) = u22

t (y) = φ

(
y − g(t)

σ

)
,

u21
t = 1 − u11

t and u12
t = 1 − u22

t . From this choice, under H0 we have that:

D
jj
n (t) = φ((ξ

j
n − g(t))/σ ) ∼ U(0,1) and for i = j D

ij
n = 1 − D

jj
n ∼ U(0,1),

which implies Hij (t) = 1/2 for any i, j ∈ {1,2}, and hence v(t) = (1/2,1/2)�
and λ∗

H (t) = 0 for any t ∈ τ . Then we can apply the CLT established in Theo-
rem 3.3 to construct inferential procedures to test the null hypothesis. It is worth
seeing how the dynamics of the functional urn model changes when H0 does not
hold. In particular, under H1 : {g1 = g + �}, for some � ∈ L2(τ ), we have

D11
n (t) = φ

(
ξ1
n − g1(t)

σ
+ �(t)

σ

)
∼ φ

(
zVn + �(t)

σ

)
,

where zVn ∼ N (0,1).

5. Application to responses with Bernoulli conditional distribution. In this
section, we analyze the functional urn model when the responses to treatments,
conditionally on the covariates, are Bernoulli distributed. In particular, consider
the following model between the covariates and the responses to treatment j , j ∈
{1, . . . , d}:
(5.1) ξ j

n = 1{Uj
n ≤pj (Tn)} ∀n ≥ 1,

where U
j
n ∼ i.i.d. U(0,1) and 0 < pj(t) < 1 for any t ∈ τ . We consider pj un-

known and we denote by p̂j its consistent estimator. If we assume there exist
M ∈M, β

j
i ∈ R and φi ∈ L2(τ ) such that

(5.2) log
(

pj (t)

1 − pj (t)

)
=

M∑
i=1

β
j
i φi(t),

the model (5.1) represents the classical logistic regression for binary responses. In
this case, p̂j (t) = ∑M

i=1 β̂
j
i φi(t), where β̂

j
i are the maximum likelihood estimators

(MLEs) of β
j
i .

From (5.1), we have that, conditionally on the set {Tn = t}, {ξj
n ;n ≥ 1} repre-

sents a sequence of independent Bernoulli random variables with parameter pj (t).
Hence, the probability measures {πj

t , t ∈ τ } are Bernoulli distributed as

(5.3) π
j
t = Be

(
pj (t)

) ∀n ≥ 1.

Analogously, we can define the CDF for any y ∈ R and the QF for any v ∈ (0,1):

(5.4) F
j
t (y) = (

1 − pj (t)
)
1{y≥0} + pj (t)1{y≥1}, Q

j
t (v) = 1{v≥1−pj (t)}.
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5.1. Convergence to target functions. Since π
j
t is a discrete distribution, the

functional replacement matrix Dn can be expressed as in (A.3) in the Supplemen-
tary Material [4]: conditionally on {Tn = s}, {X̄k

n = 1} and {ξk
n = y}, for any t ∈ τ

we have that

Dij
n (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − p̂k(s)

)−1 ·
∫ 1−p̂k(s)

0
ûij (1{v≥1−p̂j (t)}) dv if y = 0;

(
p̂k(s)

)−1 ·
∫ 1

1−p̂k(s)
ûij (1{v≥1−p̂j (t)}) dv if y = 1.

The consistency of the estimators ensures that Assumption (A2) is satisfied and the
asymptotic behavior of the urn process is determined by the limiting generating
matrix H defined as

Hij (t) = E
[
D̆ij

n

] = E
[
uij (

Q
j
t (Vn)

)] = E
[
uij (1{Vn≥1−pj (t)})

]
,

where Vn ∼ U(0,1). Thus, from Theorem 3.1 we have that Zn(t)
a.s.→ v(t),

where v is such that w(v) = 1 and Hv = v. Hence, the functions u
ij
t , i, j ∈

{1, . . . , d}, can be chosen such that v(t) coincides with the desired target function
(ρ1(t), . . . , ρd(t))�.

For instance, consider play-the-winner design for binary responses proposed
in [43] and [44]. In the multi-treatments play-the-winner design, when treatment
j ∈ {1, . . . , d} is assigned, we replace in the urn a ball of color j if the response
is a success or (d − 1)−1 balls of each other color if the response is a failure.
Thus, the play-the-winner rule can be implemented in our framework by setting
u

ij
t (y) = yδij + (1−y)(1− δij )(d −1)−1, for any y ∈ {0;1}, where δij is the delta

of Kronecker. Note that this choice of u
ij
t guarantees the constant balance of the

urn required in (A1). Then each element D
ij
n (t) of the replacement matrix can be

explicitly expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
max{p̂j (t); p̂k(s)} − p̂k(s)

1 − p̂k(s)

)
δij

+
(

1 − max{p̂j (t); p̂k(s)}
1 − p̂k(s)

)
(1 − δij )(d − 1)−1 if y = 0;(

min{p̂j (t); p̂k(s)}
p̂k(s)

)
δij

+
(

p̂k(s) − min{p̂j (t); p̂k(s)}
p̂k(s)

)
(1 − δij )(d − 1)−1 if y = 1.

In this case, since 1{Vn≥1−pj (t)} ∼ Be(pj (t)) when Vn ∼ U(0,1), we have

H
ij
n−1(t) = E

[
1{Vn≥1−pj (t)}δij + (1 − 1{Vn≥1−pj (t)})(1 − δij )(d − 1)−1]

= pj (t)δij + (
1 − pj (t)

)
(1 − δij )(d − 1)−1.
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Hence, the first right eigenvector v(t) of H(t) associated with the eigenvalue λ = 1
is

(5.5) vj (t) = ρj (
p1(t), . . . , pd(t)

) = (1 − pj (t))−1∑d
i=1(1 − pi(t))−1

,

and from Theorem 3.1 we have that Zn(t)
a.s.→ (ρ1(t), . . . , ρd(t))�.

5.2. Inference on conditional response distribution. We now analyze how to
do inference in the model (5.1). Specifically, we consider the problem of testing
the equivalence of the success probabilities conditionally on the covariates, that is,
H0 : pj = p for any j ∈ {1, . . . , d}, with p given function with values in (0,1). Us-
ing the same functions defined above, that is, u

ij
t (y) = yδij + (1 − y)(1 − δij )(d −

1)−1, we have that, under H0,

Dij (t) = δij1{ξ̄n=1} + (1 − δij )1{ξ̄n=0}(d − 1)−1

∼ δijW + (1 − δij )(1 − W)(d − 1)−1,

where W ∼ Be(p). This implies Hjj (t) = p(t) and Hij (t) = (1 −p(t))(d − 1)−1

for i = j , and hence v(t) = d−11 and λ∗
H(t) = (dp(t) − 1)/(d − 1) for any t ∈ τ .

Then, if maxt∈τ p(t) < (d + 1)/(2d) we have maxt∈τ λ∗
H(t) < 1/2, and hence we

can apply the CLT established in Theorem 3.3 to construct inferential procedures
to test the null hypothesis. It is worth seeing how the dynamics of the functional urn
model changes when H0 does not hold. In particular, under H1 : {p1 = p +�}, for
some � with values in (0,1), we have Di1(t) ∼ δi1W +(1−δi1)(1−W)(d −1)−1,
with W ∼ Be(p + �).

5.3. Example. We provide a very simple example from a clinical trial of ex-
ternal cooling in patients with septic shock (the Sepsicool trial [37]). The trial
found little difference in the primary outcome in the entire clinical trials popu-
lation, but 14-day mortality, a different endpoint, was significantly lower among
patients given external cooling in the subgroup with a lower baseline vasopres-
sor dose (i.e., those patients who had less severe illness at baseline). We take
the approach of [41] by redesigning the study using our methodology. Using
their parameter values, obtained from the results presented in [37], we determine
that the underlying probability of survival in the “no cooling” group is 0.657
regardless of severity; the probability of survival in the cooling group is 0.842
for those with low severity, and 0.406 for those with high or moderate sever-
ity. As in [41], we assume that 225 patients have low severity and 225 patients
have high or moderate severity. We now redesign the trial using our methodol-
ogy. For the underlying parameter set p = (p1(1),p1(2),p2(1),p2(2)) is given by
(p1(1) = p1(2) = 0.657,p2(1) = 0.842,p2(2) = 0.406). Computing the asymp-
totic target allocation using (5.5), we can compute the expected number of deaths
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in 450 patients using our methodology is 146.5. If we ignore the binary covariate
in the urn process, the resulting expected number of deaths is 161.4.

We can conduct hypothesis testing on pj (t) using Theorem 3.2. For the simple
case of two treatments and a single binary covariate, the joint asymptotic distri-
bution of observed proportions p̂ = (p̂1(1), p̂1(2), p̂2(1), p̂2(2)) can be expressed
as

√
n(p̂n − p)

L−→ N
(
0,diag

(
d1(1), d1(2), d2(1), d2(2)

))
,

where dj (t) = 2

vj (t)
pj (t)

(
1 − pj (t)

)
.

Note that, when there are no covariates, this is the same asymptotic result from the
generalized Pólya urn model [33].

REMARK 5.1. Several recent papers on CARA designs show that results on
parameter estimation in the binary case are analogous to those presented in Exam-
ple 5.3, either for the parameters of the logistic regression βj (see, e.g., [19, 48,
50]) and for the parameters of the success probability pj (t) (see, e.g., [24]). The
connection between these two approaches is also highlighted in [24], Section 2.2.
Naturally, the same results presented in Example 5.3 can be obtained with the uni-
fied family of CARA designs recently proposed in [24]. Indeed, this follows by
combining [24], Theorem 1 and [24], Example 2, setting ek(·) = (1 − pk(·))−1

and γ = 0.

6. Conclusions. This paper proposes a general class of CARA designs that
randomly assigns subjects to the treatment groups with a probability that depends
on their own covariate profiles and on the previous patients’ covariates, treatment
assignments and responses. This procedure can be considered as a general method-
ology to incorporate both the responses and the covariates in the randomized treat-
ment allocation scheme, as a possible alternative to the class of designs presented
in [48]. The generality of the proposed framework includes several different ways
to model the relationship between covariates and treatment responses, allowing
and facilitating the implementation of these designs to a wide range of applica-
tions. In particular, in the paper we have discussed the properties with generalized
linear models for different types of responses and covariates (discrete and contin-
uous) and for more than two treatments. Moreover, this class of designs does not
require that the probability distribution of the covariates be the same for all pa-
tients, which is a standard assumption in CARA designs (e.g., see [48]). In fact,
we allow this distribution to be adaptively modified by the experimenter using the
information collected during the trial. This improvement opens the possibility to
apply the theory of optimal designs (see [12]) within the CARA framework for
future research.
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The class of CARA designs presented here is based on a new functional urn
model that extends the classical theory of urn models adopted for responses-
adaptive designs, in which the covariate information is not considered in the ran-
domization process (e.g., [20, 23, 30, 47]). The urn is represented by a multivariate
function of the covariates, and each patient is assigned by sampling from the urn
evaluated at his own covariate profile. After any allocation, the entire functional
urn composition is updated, even if only the response associated with the patient’s
covariate profile has been observed, and this allows the incorporation of general
covariate spaces in the design. In the context of personalized medicine, this feature
can allow the investigation to determine optimal treatments based on the covari-
ate model, even when there is insufficient information about a particular covariate
profile.

In response-adaptive randomization, desirable ethical or inferential properties
of the design are achieved by targeting an optimal allocation proportion, which
is typically determined by some optimality criterion based on the response dis-
tribution. Analogously, when covariate information is considered in the trial, the
purpose becomes to target an optimal allocation for each fixed value of the co-
variates. In this paper, we achieve this goal by establishing, in Theorem 3.1, the
convergence to any optimal allocation. This result is obtained by allowing non-
parametric or semiparametric estimates of the response distribution conditioned
on the covariates. This extends the class of designs proposed in [48] in which the
target allocation proportion depends on a finite number of parameters.

In addition, statistical inference on the treatment effects requires the establish-
ment of the joint distribution of sufficient statistics that, in an adaptive setting, are
represented by both allocation proportion and adaptive estimators. This is typi-
cally a hard task in the framework of CARA designs (see [35]). Theorem 3.2 and
Theorem 3.3 provide the theoretical results which allow us to construct inferential
procedures based on two different approaches: stratified and covariate-adjusted es-
timators. The study of their power under different types of alternative hypotheses is
essential to investigate the performances of these procedures and to conduct com-
parisons with other existing CARA designs. In this paper, we have provided the
general framework for investigations of this type under different models.

SUPPLEMENTARY MATERIAL

Online supplementary materials: Nonparametric covariate-adjusted
response-adaptive design based on a functional urn model (DOI: 10.1214/17-
AOS1677SUPP; .pdf). This supplement gives the analytic expressions used in the
paper and the proofs of the theorems.
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