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THINK GLOBALLY, FIT LOCALLY UNDER THE MANIFOLD
SETUP: ASYMPTOTIC ANALYSIS OF LOCALLY LINEAR

EMBEDDING

BY HAU-TIENG WU∗,†,1 AND NAN WU‡

Duke University∗, National Center for Theoretical Sciences† and
University of Toronto‡

Since its introduction in 2000, Locally Linear Embedding (LLE) has
been widely applied in data science. We provide an asymptotical analysis of
LLE under the manifold setup. We show that for a general manifold, asymp-
totically we may not obtain the Laplace–Beltrami operator, and the result may
depend on nonuniform sampling unless a correct regularization is chosen. We
also derive the corresponding kernel function, which indicates that LLE is not
a Markov process. A comparison with other commonly applied nonlinear al-
gorithms, particularly a diffusion map, is provided and its relationship with
locally linear regression is also discussed.

1. Introduction. Dimension reduction is a fundamental step in data analysis.
In past decades, due to the high demand for analyzing the large scale, massive
and complicated datasets accompanying technological advances, there have been
many efforts to solve this problem from different angles. The resulting algorithms
can be roughly classified into two types: linear and nonlinear. Linear methods in-
clude Principal Component Analysis (PCA), multidimensional scaling and others.
Nonlinear methods include ISOMAP [29], Locally Linear Embedding (LLE) [22]
and its variations such as Hessian LLE [12] and modified LLE [35], eigenmap
[1], Diffusion Map (DM) [8], local tangent space alignment [36], vector diffusion
map [24, 26], horizontal diffusion map [16], maximal variance unfolding [33] and
t-distributed stochastic neighbor embedding [30] to name a few.

The subject of this paper, LLE, was published in Science in 2000 [22]. Accord-
ing to the Google Scholar, it had been cited almost 10,000 times as of mid-January,
2017. The algorithm is designed to be intuitive and simple. It has also been found
to be efficient and practical. It contains two main parts. The first part is to determine
the nearest neighbors of each data point, and catch the local geometric structure of
the dataset through finding the barycenter coordinate for those neighboring points
using a regularization. This is the “fit locally” part of LLE. Second, by viewing the
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barycenter coordinates as the “weights” for the neighboring points, the eigenvec-
tors and eigenvalues of the associated “affinity matrix” are evaluated to organize
the data points. This is the “think globally” part of LLE. However, unlike the fruit-
ful theoretical results from discussing a diffusion-based approach like DM [2, 3, 8,
14, 17–19, 23, 26, 27, 31, 32], to the best of our knowledge, no systematic analysis
of LLE has been undertaken, except an ad hoc argument shown in [1] based on
some conditions.

The main contribution of this paper is to analyze the “fit locally” part of LLE.
Based on a careful analysis of the barycentric coordinate by the covariance analy-
sis, we provide an asymptotic pointwise convergence analysis of LLE under the
manifold setup. Although it is widely believed that under the manifold setup,
asymptotically LLE should lead to the Laplace–Beltrami operator; in this paper,
we show that this might not always be the case. It fundamentally depends on the
geometric structure of the data set. Specifically, under the assumption that the point
cloud is (non)uniformly sampled from a low dimensional manifold isometrically
embedded in the Euclidean space, we show that the asymptotical behavior of LLE
depends on its regularization. If the regularization is chosen properly, we obtain
the Laplace–Baltrami operator, even if the sampling is nonuniform. If the regu-
larization is not chosen properly, the acquired information will be contaminated
by the extrinsic information (the second fundamental form), and we even obtain a
fourth-order differential operator in some extreme cases. To catch this dependence
on the extrinsic information, we carefully analyze the “local covariance structure”
of the dataset up to a higher order term. One key step toward the analysis is to
establish the kernel function associated with LLE that comes from the barycentric
coordinate estimation. Via the established kernel function, we have a direct com-
parison of LLE and other relevant nonlinear machine learning algorithms, such as
eigenmap and DM. Unlike eigenmap or DM, LLE in general is not a diffusion
process on the dataset, and the convergence rate might be different, depending on
the regularization used. In the end, we link LLE back to the widely applied kernel
regression technique, Locally Linear Regression (LLR) and the measurement error
problem. While it is not explored in this paper, we mention that based on the es-
tablished pointwise convergence, we could further understand the “think globally”
part of LLE from the spectral geometry viewpoint [4, 5].

The paper is organized as follows: In Section 2, we review LLE. In Section 3,
we provide the asymptotical analysis of LLE under the manifold setup. In Sec-
tion 4, we provide numerical simulations to support our theoretical findings. The
relationship between two common nearest neighbor search schemes is discussed in
Section 5. The relationship between LLE, LLR and the shrinkage scheme for the
high dimensional covariance matrix are discussed in Section 6. The discussion is
shown in Section 7. The technical proofs of the theorems are included in the online
supplementary information (SI) [34]. The perturbation argument of the eigenvalues
and eigenvectors of a symmetric matrix is summarized in Section SI.1. The state-
ment of technical lemmas for the proof is given in Section SI.2. The covariance
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TABLE 1
Commonly used notation in this paper

Symbol Meaning

p Dimension of the ambient space
d Dimension of the low dimensional Riemannian manifold
(M,g) d-dimensional smooth Riemannian manifold
dV Riemannian volume form of (M,g)

expx Exponential map at x

TxM Tangent space of M at x

Ricx Ricci curvature tensor of (M,g) at x

ι, ι∗ Isometric embedding of M into Rp and its differential
Ix Second fundamental form of the embedding ι at x

P Probability density function on ι(M)

n ∈N Number of data points sampled from M

X = {zi}ni=1 Point cloud sampled from ι(M) ⊂R
p

wzk ∈R
N Barycentric coordinates of zk with respect to data points in the ε-neighborhood

structure analysis is provided in Section SI.3. The proofs of the main theorems
are given in Appendices SI.4 and SI.5. The technical lemmas for the theorems are
given in Section SI.6.

Here, we fix the notation used in this paper. For d ∈ N, Id×d means the iden-
tity matrix of size d × d . For n ∈ N, denote 1n to be the n-dim vector with
all entries 1. For ε ≥ 0, denote BR

p

ε (x) := {y ∈ R
p|‖x − y‖Rp ≤ ε}. Denote

ei = [0, . . . ,1, . . .0]� ∈ R
p to be the unit p-dim vector with 1 in the ith entry.

For p, r ∈ N so that r ≤ p, denote Jp,r ∈ R
p×r so that the (i, i) entry is 1 for

i = 1, . . . , r , and zeros elsewhere and denote J̄p,r ∈ R
p×r so that the (p − r + i, i)

entry is 1 for i = 1, . . . , r , and zeros elsewhere. Ip,r := Jp,rJ
�
p,r is a p × p matrix

so that the (i, i)th entry is 1 for i = 1, . . . , r and 0 elsewhere; and Īp,r := J̄p,r J̄
�
p,r

is a p × p matrix so that the (i, i)th entry is 1 for i = p − r + 1, . . . , p and 0
elsewhere. Denote S(p) to be the set of a real symmetric matrix of size p × p,
O(p) to be the orthogonal group in dimension p, and o(p) to be the set of anti-
symmetric matrix of size p × p. For M ∈ R

p×p , denote M� to be the transpose
of M and M† to be the Moore–Penrose pseudo-inverse of M . For a, b ∈ R, we use
a ∧ b := min{a, b} and a ∨ b := max{a, b} to simplify the notation. We summa-
rize the commonly used notation for the asymptotical analysis in Table 1 for the
convenience of the readers.

2. Review of locally linear embedding. We start by summarizing LLE. Sup-
pose X = {zi}ni=1 ⊂ R

p is the provided dataset, or the point cloud:

1. Fix ε > 0. For each zk ∈ X , denote Nzk
:= BR

p

ε (zk)∩ (X \{zk}) = {zk,j }nk

j=1,
where nk ∈ N is the number of points in Nzk

. Nzk
is called the ε-radius neighbor-

hood of zk . Alternatively, we can also fix a number K , and choose the K nearest
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points of zk . This is called the K-nearest neighbors (KNN) scheme. While the
ε-radius neighborhood scheme and the KNN scheme are closely related, they are
different. In this paper, we study LLE with the ε-radius neighborhood scheme,
and postpone the discussion of the relationship between these two schemes to Sec-
tion 5.

2. For each zk ∈X , find its barycentric coordinate associated with Nzk
by

(2.1) wzk
= argmin

w∈Rnk ,w�1nk
=1

∥∥∥∥∥zk −
nk∑

j=1

w(j)zk,j

∥∥∥∥∥
2

∈ R
nk .

Notice that wzk
satisfies w�

zk
1nk

= ∑nk

j=1 wzk
(j) = 1.

3. Define a n × n matrix W , called the LLE matrix, by

(2.2) Wk,l =
{
wzk

(j) if zl = zk,j ∈ Nzk
;

0 otherwise.

4. To reduce the dimension of X , it is suggested in [22] to embed X into a low
dimension Euclidean space

(2.3) zk �→ Yk = [
v1(k), . . . , v�(k)

]� ∈ R
�,

for each zk ∈ X , where � is the dimension of the embedded points chosen by the
user, and v1, . . . , v� ∈ R

n are eigenvectors of (I − W)�(I − W) corresponding
to the � smallest eigenvalues. Note that this is equivalent to minimizing the cost
function

∑n
k=1 ‖Yk − ∑n

l=1 Wk,lYl‖2, where Y = [Y1, . . . , Yn] ∈ R
�×n, subject to

the constraint YY� = I�×�.

Although the algorithm looks relatively simple, there are actually several de-
tails that should be discussed prior to the asymptotical analysis. To simplify the
discussion, we focus on one point zk ∈ X and assume that there are N data points
in Nzk

= {zk,1, . . . , zk,N }. To find the barycentric coordinate of zk , we define the
local data matrix associated with Nzk

:

(2.4) Gn :=
⎡⎣ | |
zk,1 − zk . . . zk,N − zk

| |

⎤⎦ ∈ R
p×N.

It is important to note that Gn depends not only on n, but also ε and zk . However,
we only keep n to make the notation easier. The other notation in this section are
simplified in the same way. Minimizing (2.1) is equivalent to minimizing the func-
tional w�G�

n Gnw over w ∈ R
N under the constraint w�1N = 1. Here, G�

n Gn is
the Gramian matrix associated with the dataset {zk,1 − zk, . . . , zk,N − zk}. In gen-
eral, G�

n Gn might be singular, and it is suggested in [22] to stabilize the algorithm
through regularizing the equation by

(2.5)
(
G�

n Gn + cIN×N

)
y = 1N,
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where c > 0 is the regularizer chosen by the user. For example, in [22], c is sug-
gested to be δ

N
, where 0 < δ < ‖Gn‖2

F is chosen by the user and ‖Gn‖F is the
Frobenius norm of Gn. It has been observed that LLE is sensitive to the choice of
the regularizer (see, e.g., [35]). We will later quantify this dependence under the
manifold setup. Using the Lagrange multiplier method, the minimizer is

(2.6) wn = yn

y�
n 1N

,

where yn is the solution of (2.5). We will consider the regularized equation (2.5)
in the following discussion.

Next, we explicitly express wn, which is the essential step toward the asymp-
totical analysis. Suppose rank(G�

n Gn) = rn. Note that rn = rank(GnG
�
n ) =

rank(Gn) ≤ p, so G�
n Gn is singular when p < N . Moreover, G�

n Gn is positive
semidefinite. Denote the eigendecomposition of G�

n Gn as Vn�nV
�
n , where

(2.7) �n = diag(λn,1, λn,2, . . . , λn,N),

λn,1 ≥ λn,2 ≥ · · · ≥ λn,rn > λn,rn+1 = · · · = λn,N = 0, and

(2.8) Vn =
⎡⎣ | |
vn,1 . . . vn,N

| |

⎤⎦ ∈ O(N).

Clearly, {vn,i}Ni=rn+1 forms an orthonormal basis of the null space of

Null(G�
n Gn), which is equivalent to Null(Gn). Then (2.5) is equivalent to solv-

ing

(2.9) Vn(�n + cIN×N)V �
n y = 1N,

and the solution is

(2.10)
yn = Vn(�n + cIN×N)−1V �

n 1N

= c−11N + Vn

[
(�n + cIN×N)−1 − c−1IN×N

]
V �

n 1N.

Therefore,

(2.11) w�
n = 1�

N + 1�
NVn[c(�n + cIN×N)−1 − IN×N ]V �

n

N + 1�
NVn[c(�n + cIN×N)−1 − IN×N ]V �

n 1N

.

Without recasting (2.11) into a proper form, it is not clear how to capture the ge-
ometric information contained in (2.11). Observe that while G�

n Gn is the Gramian
matrix, GnG

�
n is related to the sample covariance matrix associated with Nzk

.
We call 1

n
GnG

�
n the local sample covariance matrix. Note that this local sam-

ple covariance matrix is different from the usual sample covariance matrix asso-
ciated with Nzk

, which is defined as 1
n−1

∑N
j=1(zk,j − μk)(zk,j − μk)

�, where

μk = 1
n

∑N
j=1 zk,j . Clearly, rn ≤ p and GnG

�
n and G�

n Gn share the same positive
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eigenvalues, λn,1 · · ·λn,rn . Denote the eigendecomposition of GnG
�
n as Un�̄nU

�
n ,

where Un ∈ O(p) and �̄n is a p × p diagonal matrix. By direct calculation, the
first rn columns of Vn are related to Un by

(2.12) VnJN,rn = G�
n Un

(
�̄†

n

)1/2
Jp,rn,

where Vn = [VnJN,rn |VnJ̄N,N−rn]. Since (�n + cIN×N)−1 − c−1IN×N has only
rn nonzero diagonal entries, based on (2.10), we have

y�
n = c−11�

N + 1�
NVn

[
(�n + cIN×N)−1 − c−1IN×N

]
V �

n

= c−11�
N + 1�

NG�
n Un

(
�̄†

n

)1/2
Jp,rnJ

�
p,rn

[
(�̄n + cIp×p)−1 − c−1Ip×p

]
× Jp,rnJ

�
p,rn

(
�̄†

n

)1/2
U�

n Gn.

Note that we have

(2.13)
Un

(
�̄†

n

)1/2
Jp,rnJ

�
p,rn

[
(�̄n + cIp×p)−1 − c−1Ip×p

]
Jp,rnJ

�
p,rn

(
�̄†

n

)1/2
U�

n

= −c−1UnJp,rnJ
�
p,rn

(�̄n + cIp×p)−1Jp,rnJ
�
p,rn

U�
n ,

which could be understood as a “regularized pseudo-inverse.” Specifically, when c

is small, we have

(2.14) UnJp,rnJ
�
p,rn

(�̄n + cIp×p)−1Jp,rnJ
�
p,rn

U�
n ≈ (

GnG
�
n

)†
.

We mention that −c−1UnJp,rnJ
�
p,rn

(�̄n + cIp×p)−1Jp,rnJ
�
p,rn

U�
n can be simpli-

fied to −c−1Un(�̄n + cIp×)−1Ip,rnU
�
n . Denote

(2.15) Ic

(
GnG

�
n

) := UnJp,rnJ
�
p,rn

(�̄n + cIp×p)−1Jp,rnJ
�
p,rn

U�
n .

Hence, we can recast (2.10) and (2.11) into

y�
n = c−11�

N − c−11�
NG�

n Ic

(
GnG

�
n

)
Gn(2.16)

and

w�
n = 1�

N − 1�
NG�

n Ic(GnG
�
n )Gn

N − 1�
NG�

n Ic(GnG�
n )Gn1N

= 1�
N − T�

n,zk
Gn

N − T�
n,zk

Gn1N

,(2.17)

where

Tn,zk
:= Ic

(
GnG

�
n

)
Gn1N(2.18)

is chosen in order to have a better geometric insight into LLE. We now summarize
the expansion of the barycentric coordinate.

PROPOSITION 2.1. Take a data set X = {zi}ni=1 ⊂ R
p . Suppose there are N

data points in the ε neighborhood of zk , namely {zk,1, . . . , zk,N } ⊂ BR
p

ε (zk) ∩
(X \ {zk}). Assume p < N . Let G�

n Gn be the Gramian matrix associated with
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{zk,1 − zk, . . . , zk,N − zk} and let {λn,i}ri=1 and {un,i}ri=1, where r ≤ p is the rank
of G�

n Gn, be the nonzero eigenvalues and the corresponding orthonormal eigen-
vectors of GnG

�
n satisfying (2.12). With Tn,zk

defined in (2.18), the barycentric
coordinates of zk coming from the regularized equation (2.5) are

(2.19) w�
n = 1�

N − T�
n,zk

Gn

N − T�
n,zk

Gn1N

.

REMARK 2.1. The denominator N − T�
n,zk

Gn1N is the sum of all entries of
the numerator 1�

N − T�
n,zk

Gn. We could thus view the LLE matrix defined in (2.2)
as a “normalized kernel” defined on the point cloud. However, while all entries
of wn are summed to 1, the vector 1�

N − T�
n,zk

Gn might have negative entries,
depending on the vector T�

n,zk
. Hence, in general, W is not a transition matrix.

How LLE achieves the nonlinear dimension reduction and captures the geomet-
ric structure of the point cloud could thus be understood by understanding Tn,zk

.
In the next section, we will show that under the manifold assumption, Tn,zk

is in-
timately related to the “normal bundle” associated with the manifold, and see how
the selection of c influences the convergence behavior.

3. Asymptotic behavior of LLE. In this section, we focus on the asymptotic
analysis of LLE assuming an underlying manifold setup. We start by introducing
the manifold setup and assumptions for the analysis.

3.1. Manifold setup. Let X be a p-dimensional random vector. Assume that
the range of X is supported on a d-dimensional compact, smooth Riemannian
manifold (M,g) isometrically embedded in R

p via ι : M ↪→ R
p , where we as-

sume that M is boundary-free to simplify the discussion. Denote d(·, ·) to be the
geodesic distance associated with g. For the tangent space TyM on y ∈ M , denote
ι∗TyM to be the embedded tangent space in R

p . Denote expy : TyM → M to be
the exponential map at y. Denote Ric to be the Ricci curvature, ∇ to be the covari-
ant derivative and 	 to be the Laplace–Beltrami operator. Unless otherwise stated,
in this paper we will carry out the calculations with the normal coordinate [10].

Let z = ι(y). Denote Iy to be the second fundamental form of ι at y. De-
note the normal space at z as (ι∗TyM)⊥, which could be viewed as R

p−d . Re-
call that the second fundamental form at y is a symmetric bilinear map from
TyM × TyM to (ι∗TyM)⊥. If Sd−1 is the (d − 1)-dim unit sphere in TyM and θ =
(θ1, . . . , θd) ∈ Sd−1, then for a fixed ek ∈ (ι∗TyM)⊥, we can expand e�

k Iy(θ, θ) as∑d
i,j=1 pk

ij θ
iθj , where pk

ij ∈ R. The eigenvalues of the matrix A(k) ∈ R
d×d , where

A
(k)
ij = pk

ij for i, j = 1, . . . , d , are the principal curvatures at z in the direction ek .
We now quickly summarize how the probability density function (p.d.f.) as-

sociated with X is defined [7]. The random vector X : � → R
p is a measurable
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function with respect to the probability space (�,F,P), where P is the probabil-
ity measure defined on the sigma algebra F in �. By assumption, the range of X is
supported on ι(M). Let B̃ be the Borel sigma algebra of ι(M), and denote by P̃X

the probability measure defined on B̃ that is induced from P . If P̃X is absolutely
continuous with respect to the volume density on ι(M) by the Radon–Nikodym
theorem, dP̃X(z) = P(z)ι∗ dV (z), where dV is the volume form associated with
the metric g, ι∗ dV (z) is the induced measure on ι(M) via ι and P is a nonnegative
measurable function defined on ι(M). We call P the p.d.f. of X on M . When P

is constant, we call X a uniform random sampling scheme; otherwise it is nonuni-
form.

To facilitate the discussion and the upcoming analysis, we make the following
assumption about the random vector X and the regularity of the associated p.d.f.

ASSUMPTION 3.1. Assume P̃X is absolutely continuous with respect to the
volume density on ι(M) so that dP̃X = P ι∗ dV , where P is a measurable function.
We further assume that P ∈ C5(ι(M)) and there exist Pm > 0 and PM ≥ Pm so that
Pm ≤ P(x) ≤ PM < ∞ for all x ∈ ι(M).

Let X = {ι(xi)}ni=1 ⊂ ι(M) ⊂ R
p denote a set of identical and independent

(i.i.d.) random samples from X, where xi ∈ M . We could then run LLE on X .
For ι(xk) ∈ X and ε > 0, we have Nι(xk) := {ι(xk,1), . . . , ι(xk,N)} ⊂ BR

p

ε (ι(xk)) ∩
(X \ {ι(xk)}). Take Gn ∈ R

p×N to be the local data matrix associated with Nι(xk)

and evaluate the barycentric coordinate wn = [wn,1, . . . ,wn,N ]� ∈ R
N . Again, al-

though Gn and wn depend on ε, n and xk , to ease the notation, we only keep n to
indicate that we have finite sampling points.

3.2. Local covariance structure and local PCA. We call

(3.1) Cx := E
[(

X − ι(x)
)(

X − ι(x)
)�

χBRp
ε (ι(x))(X)

] ∈R
p×p

the local covariance matrix at ι(x) ∈ ι(M), which is the covariance matrix asso-
ciated with local PCA [7, 24]. In the proof of LLE under the manifold setup, the
eigenstructure of Cx plays an essential role due to its relationship with the barycen-
tric coordinate. Geometrically, for a d-dim manifold, the first d eigenvectors of Cx

corresponding to the largest d eigenvalues provide an estimated basis for the em-
bedded tangent space ι∗TxM , and the remaining eigenvectors form an estimated
basis for the normal space at ι(x). To be more precise, a smooth manifold can
be well approximated locally by an affine subspace. However, this approximation
cannot be perfect, in case of nonvanishing curvature. It is well known that the con-
tribution of curvature is of high order. For the purpose of fitting the manifold, we
can ignore its contribution. For example, in [7, 24] local PCA is applied to es-
timate the tangent space. However, in LLE, the curvature plays an essential role
and a careful analysis is needed to understand its role. In Lemma SI.5, we show a
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generalization of the result shown in [7, 24] by expanding the Cx up to the third
order for the sake of capturing the LLE behavior. The third-order term is needed
for analyzing the regularization step shown in (2.5).

ASSUMPTION 3.2. Since the barycentric coordinate is rotational and transla-
tional invariant, without loss of generality, we assume that the manifold is trans-
lated and rotated properly, so that ι∗TxM is spanned by e1, . . . , ed .

PROPOSITION 3.1. Fix x ∈ M and suppose Assumption 3.2 holds. When ε is
sufficiently small, we have

Cx = |Sd−1|P(x)

d(d + 2)
εd+2

⎛⎝[
Id×d 0

0 0

]
+

⎡⎣M
(2)
11 M

(2)
12

M
(2)
21 M

(2)
22

⎤⎦ ε2

+
⎡⎣M

(4)
11 M

(4)
12

M
(4)
21 M

(4)
22

⎤⎦ ε4 + O
(
ε6)⎞⎠ ,

where M
(2)
11 ,M

(4)
11 ∈ S(d), M(2)

22 ,M
(4)
22 ∈ S(p−d), M(2)

12 ,M
(4)
12 ∈ R

d×(p−d), M(2)
12 =

M
(2)�
21 and M

(4)
12 = M

(4)�
21 . These matrices are defined in (SI.4), (SI.6), (SI.8) and

(SI.9), and S(d) and S(p − d) are defined in the end of Section 1. M
(2)
22 depends

on Ix but does not depend on the p.d.f. P , and M
(4)
22 depends on the Ix and its

derivatives, the Ricci curvature and P .

The proof of Proposition 3.1 is postponed to Section SI.3. Since P is bounded
by Pm from below, when ε is sufficiently small, the εd+2 term is dominant and
the largest d eigenvalues of Cx are of order εd+2. The other eigenvalues of Cx

are of higher order and depend on the εd+4 term or even the εd+6 term. The be-
havior of eigenvectors is more complicated, due to the possible multiplicity of the
corresponding eigenvalues.

To precisely calculate the eigenvalues and the corresponding eigenvectors of
Cx , we apply the perturbation technique. We summarize the key steps here. Propo-
sition 3.1 provides a Taylor expansion of Cx in terms of ε up to the third order,
and we could view Cx as a function depending on ε around 0. Consider the eigen-
decomposition of Cx as

(3.2) CxUx = Ux�x,

where �x is diagonal and Ux ∈ O(p). �x and Ux satisfy �x = �x(0)εd+2 +
�′

x(0)εd+4 + O(εd+6) and Ux = Ux(0)εd+2 + U ′
x(0)εd+4 + O(εd+6). Therefore,

we obtain Ux and �x if we find �x(0), �′
x(0), Ux(0) and U ′

x(0). To achieve this
goal, we differentiate (3.2), and compare terms with the same order of ε. This
technique fails to uniquely determine Ux when the eigenvalue repeats, and we
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need higher order terms in Cx to determine the eigenvectors. The details can be
found in Appendix SI.1.

To simplify the statement of the eigenstructure, following Assumption 3.2, we
make one more assumption.

ASSUMPTION 3.3. Following Assumption 3.2, without loss of generality, we
assume that the manifold is translated and rotated properly, so that ed+1, . . . , ep

“diagonalize” the second fundamental form; that is, M
(2)
22 in Proposition 3.1 is

diagonalized to �
(2)
2 = diag(λ

(2)
d+1, . . . , λ

(2)
p ).

The eigenstructure of the local covariance matrix is summarized in the following
proposition. The detailed proof of the proposition is postponed to Section SI.3.

PROPOSITION 3.2. Fix x ∈ M . Suppose ε is sufficiently small and Assump-
tions 3.2 and 3.3 hold. The eigendecomposition of Cx = Ux�xU

�
x , where Ux ∈

O(p) and �x ∈ R
p×p is a diagonal matrix, is summarized below.

Case 1: When all diagonal entries of �
(2)
2 are nonzero, we have

�x = |Sd−1|P(x)εd+2

d(d + 2)

[
Id×d + ε2�

(2)
1 + ε4�

(4)
1 0

0 ε2�
(2)
2 + ε4�

(4)
2

]
+ O

(
ε6),

Ux = Ux(0)
(
Ip×p + ε2S

)+ O
(
ε4) ∈ O(p),

where �
(2)
1 ,�

(4)
1 ∈ R

d×d and �
(4)
2 ∈ R

(p−d)×(p−d) are diagonal matrices with

diagonal entries of order 1, Ux(0) = [X1 0
0 X2

] ∈ O(p), X1 ∈ O(d), X2 ∈ O(p −
d) and S ∈ o(p). The explicit expression of these matrices are listed in (SI.11)–
(SI.18).

Case 2: When l diagonal entries for �
(2)
2 are 0, where 1 ≤ l ≤ p − d , we have

the following eigendecomposition under some conditions. Divide Cx into blocks
corresponding to the multiplicity l as

(3.3)

Cx = |Sd−1|P(x)

d(d + 2)
εd+2

⎛⎜⎜⎝
⎡⎣Id×d 0 0

0 0 0
0 0 0

⎤⎦+

⎡⎢⎢⎣
M

(2)
11 M

(2)
12,1 M

(2)
12,2

M
(2)
21,1 �

(2)
2,1 0

M
(2)
21,2 0 0

⎤⎥⎥⎦ ε2

+

⎡⎢⎢⎣
M

(4)
11 M

(4)
12,1 M

(4)
12,2

M
(4)
21,1 M

(4)
22,11 M

(4)
22,12

M
(4)
21,2 M

(4)
22,21 M

(4)
22,22

⎤⎥⎥⎦ ε4 + O
(
ε6)

⎞⎟⎟⎠ ,

where M
(2)
12,1,M

(4)
12,1 ∈R

d×(p−d−l), M
(2)
12,2,M

(4)
12,2 ∈ R

d×l , M
(2)
12,1 = M

(2)�
21,1 , M

(4)
12,1 =

M
(4)�
21,1 , M

(2)
12,2 = M

(4)�
21,2 , M

(2)
12,2 = M

(4)�
21,2 , M

(4)
22,11 ∈ S(p − d − l), M

(4)
22,22 ∈ S(l),

M
(4)
22,12 ∈ R

(p−d−l)×l , and M
(4)
22,21 = M

(4)�
22,12.
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Denote the eigendecomposition of the matrix M
(4)
22,22 − 2M

(2)
21,2M

(2)
12,2 as

(3.4) M
(4)
22,22 − 2M

(2)
21,2M

(2)
12,2 = U2,2�

(4)
2,2U

�
2,2,

where U2,2 ∈ O(l) and �
(4)
2,2 = diag[λ(4)

p−l+1, . . . , λ
(4)
p ] is a diagonal matrix. If we

further assume that all diagonal entries of �
(4)
2,2 are nonzero, we have

�x = |Sd−1|P(x)εd+2

d(d + 2)

⎡⎢⎢⎣
Id×d + ε2�

(2)
1 + ε4�

(4)
1 0 0

0 ε2�
(2)
2,1 + ε4�

(4)
2,1 0

0 0 ε4�
(4)
2,2

⎤⎥⎥⎦
+ O

(
ε6),

Ux = Ux(0)
(
Ip×p + ε2S

)+ O
(
ε4) ∈ O(p),

where �
(4)
1 and �

(4)
2,1 are diagonal matrices,

Ux(0) =
⎡⎣X1 0 0

0 X2,1 0
0 0 X2,2

⎤⎦ ∈ O(p),

X1 ∈ O(d), X2,1 ∈ O(p−d − l), X2,2 ∈ O(l), and S ∈ o(p). The explicit formulae
for these matrices are listed in (SI.19)–(SI.21).

In general, the eigenstructure of Cx may be more complicated than the two
cases considered in Proposition 3.2. In this general case, we could apply the same
perturbation theory to evaluate the eigenvalues. Since the proof is similar but there
is extensive notational loading, and it does not bring further insight to LLE, we
skip details of these more general situations.

3.3. Variance analysis of LLE. We now study the asymptotic behavior of LLE.
Under the manifold setup, from now on, we fix

(3.5) c = nεd+ρ,

and we call ρ the regularization order. By (2.19), for v ∈ R
N , we have

N∑
j=1

wk(j)v(j) = 1�
Nv − 1�

NG�
n Inεd+ρ (GnG

�
n )Gnv

N − 1�
NG�

n Inεd+ρ (GnG�
n )Gn1N

.(3.6)

Before proceeding, we provide a geometric interpretation of this formula. By the
eigendecomposition GnG

�
n = Un�̄nU

�
n and the fact that

Inεd+ρ

(
GnG

�
n

) = UnJp,rnJ
�
p,rn

(
�̄n + nεd+ρIp×p

)−1
Jp,rnJ

�
p,rn

U�
n

= UnInεd+ρ (�̄n)U
�
n
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by the definition of Iρ in (2.15), we have

1�
NG�

n Inεd+ρ

(
GnG

�
n

)
Gnv = 1�

NG�
n UnInεd+ρ (�̄n)U

�
n Gnv

and

1�
NG�

n Inεd+ρ

(
GnG

�
n

)
Gn1 = 1�

NG�
n UnInεd+ρ (�̄n)U

�
n Gn1N.

By the discussion of local PCA in Section 3.2, U�
n Gn means evaluating the co-

ordinates of all neighboring points of ι(xk) with the basis composed of the col-
umn vectors of Un, U�

n Gn1 means the mean coordinate of all neighboring points,
Inεd+ρ (�̄n) means a regularized weighting of the coordinates that helps to en-
hance the nonlinear geometry of the point cloud, and G�

n UnInεd+ρ (�̄n)U
�
n Gn is

a quadratic form of the averaged coordinates of all neighboring points. We could
thus view the “kernel” part, 1�

NG�
n UnInεd+ρ (�̄n)U

�
n Gn, as preserving the geom-

etry of the point cloud, by evaluating how strongly the weighted coordinates of
neighboring points are related to the mean coordinate of all neighboring points by
the inner product.

Asymptotically, by the law of large numbers, when conditional on ι(xk),

1

n
Gn1N = 1

n

N∑
j=1

(
ι(xk,j ) − ι(xk)

) n→∞−−−→ E
[(

X − ι(xk)
)
χBRp

ε (ι(xk))
(X)

]
and we “expect” the following holds:

nInεd+ρ

(
GnG

�
n

) = Iεd+ρ

(
1

n
GnG

�
n

)
n→∞−−−→ Iεd+ρ (Cxk

).

Also, we would “expect” to have

nInεd+ρ

(
GnG

�
n

)1

n
Gn1N

n→∞−−−→ Iεd+ρ (Cxk
)
[
E
(
X − ι(xk)

)
χBRp

ε (xk)

] =: Tι(xk).

Hence, for f ∈ C(ι(M)), for ι(xk) and its corresponding Nι(xk), we would “ex-
pect” to have

N∑
j=1

wn(j)f (xk,j )

n→∞−−−→ E[χBRp
ε (xk)

(X)f (X)] − T�
ι(xk)

E[(X − ι(xk))χBRp
ε (xk)

(X)f (X)]
E[χBRp

ε (xk)
(X)] − T�

ι(xk)
E[(X − ι(xk))χBRp

ε (xk)
(X)](3.7)

= E[f (X)(1 − T�
ι(x)(X − ι(x)))χBRp

ε (x)(X)]
E[(1 − T�

ι(x)(X − ι(x)))χBRp
ε (x)(X)] .

However, it is not possible to directly see how the convergence happens, due to
the dependence among different terms and how the regularized pseudo-inverse
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converges. The dependence on the regularization order is also unclear. A careful
theoretical analysis is needed.

To proceed with the proof, we need to discuss a critical observation. Note that
the term Cx might be ill-conditioned for the pseudo-inverse procedure, and the
regularized pseudo inverse depends on how the regularization penalty ρ is chosen.
As we will see later, the choice of ρ is critical for the outcome. The ill condition
depends on the manifold geometry, and can be complicated. In this paper, we focus
on the following three cases.

CONDITION 3.1. Follow the notation used in Proposition 3.2. For the local
covariance matrix Cx with the rank r , without loss of generality, we consider the
following three cases:

• Case 0: r = d;
• Case 1: r = p > d , and λ

(2)
d+1, . . . , λ

(2)
p are nonzero;

• Case 2: r = p > d , λ(2)
d+1, . . . , λ

(2)
p−l , are nonzero, where 1 ≤ l ≤ p−d , λ(2)

p−l+1 =
· · · = λ

(2)
p = 0, and λ

(4)
p−l+1, . . . , λ

(4)
p are nonzero.

At first glance, it is limited to assume that when r > d , we have r = p in Cases 1
and 2. However, it is general enough in the following sense. In Cases 1 and 2, if Cx

is degenerate, that is, d < r < p, it means that locally the manifold only occupies
a lower dimensional affine subspace. Therefore, the sampled data are constrained
to this affined subspace, and hence the rank of the local sample covariance matrix
satisfies rn ≤ r . As a result, the analysis can be carried out only on this affine sub-
space without changing the outcome. More general situations could be studied by
the same analysis techniques shown below, but they will not provide more insights
about our understanding of the algorithm and will introduce additional notational
burdens. For f ∈ C(ι(M)), define

(3.8) Qf (x) := E[f (X)(1 − T�
ι(x)(X − ι(x)))χBRp

ε (x)(X)]
E[(1 − T�

ι(x)(X − ι(x)))χBRp
ε (x)(X)] ,

The following theorem summarizes the relationship between LLE and Qf under
these three cases.

THEOREM 3.1. Fix f ∈ C(ι(M)). Suppose the regularization order is ρ ∈ R,

ε = ε(n) so that
√

log(n)

n1/2εd/2+1 → 0 and ε → 0 as n → ∞. With probability greater

than 1 −n−2, for all xk ∈ X , under different conditions listed in Condition 3.1, we
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have

(3.9)

N∑
j=1

wk(j)f (xk,j ) − f (xk)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qf (xk) − f (xk) + O

( √
log(n)

n1/2εd/2−1

)
in Case 0,

Qf (xk) − f (xk) + O

( √
log(n)

n1/2εd/2+[(−1)∨(0∧(ρ−4)]
)

in Cases 1, 2.

Particularly, when ρ ≤ 3, with probability greater than 1 − n−2, for all xk ∈ X ,
for all cases listed in Condition 3.1, we have

N∑
j=1

wk(j)f (xk,j ) − f (xk) = Qf (xk) − f (xk) + O

( √
log(n)

n1/2εd/2−1

)
.(3.10)

The proof of Theorem 3.1 is postponed to Appendix SI.5. Note that the con-
vergence rate of Case 0 is fast, no matter what regularization order ρ is chosen,
while the convergence rate of Cases 1 and 2 depends on ρ. This theorem echoes
several practical findings of LLE that the choice of regularization is critical in the
performance, and it suggests that we should choose ρ = 3.

REMARK 3.1. We should compare the convergence rate of LLE with that of
DM. The convergence rate of Case 0 is the same as that of eigenmap or DM with-
out any normalization [26], while the convergence rate of Case 1 and Case 2 is the
same as that of the α-normalized DM [8, 26] when ρ ≥ 4. Note that the main con-
vergence rate bottleneck for the α-normalized DM comes from the p.d.f. estima-
tion, while the convergence bottleneck for LLE is the regularized pseudo-inverse.

3.4. The kernel function corresponding to LLE. Theorem 3.1 describes how
LLE could be viewed as a “diffusion process” on the dataset. Note that

(3.11)
E
[
f (X)

(
1 − T�

ι(x)

(
X − ι(x)

))
χBRp

ε (x)(X)
]

=
∫
M

(
1 − T�

ι(xk)

(
ι(y) − ι(xk)

))
χBRp

ε (xk)

(
ι(y)

)
f
(
ι(y)

)
P(y)dV (y).

Therefore, we can view wn as a “zero-one” kernel supported on BR
p

ε (xk) ∩ ι(M)

with the correction depending on Tι(xk). Note that after the correction, the whole
operator may no longer be a diffusion.
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COROLLARY 3.1. The integral kernel associated with LLE when the regular-
ization order is ρ ∈R is

(3.12) KLLE(x, y) = [
1 − T�

ι(x)

(
ι(y) − ι(x)

)]
χBRp

ε (ι(x))∩ι(M)

(
ι(y)

)
,

where x, y ∈ M and

(3.13) Tι(x) := Iεd+ρ (Cx)
[
E
(
X − ι(x)

)
χBRp

ε (x)

] ∈ R
p.

Note that KLLE depends on ε, the geometry of the manifold near x, and ρ via
Tι(x). We provide some properties of the kernel function KLLE. By a direct expan-

sion, we have T�
ι(x) = ∑r

i=1

u�
i E[(X−xk)χ

BRp
ε (xk)

(X)]
λi+εd+ρ u�

i , where ui and λi are the ith

eigenpair of Cx . Since |E(X − ι(xk))χBRp
ε (xk)

(X)| is bounded above by vol(M)ε,

λi + εd+ρ is bounded below by εd+ρ and each ui is a unit vector, |Txk
| is bounded

above by
∑r

i=1
ε vol(M)

λi+εd+ρ . Consequently, we have the following proposition.

PROPOSITION 3.3. The kernel KLLE is compactly supported and is in
L2(M × M). Thus, the linear operator A : L2(M,PdV ) → L2(M,PdV ) defined
by

(3.14) Af (x) := E
[
f (X)

(
1 − T�

ι(x)

(
X − ι(x)

))
χBRp

ε (x)(X)
]

is Hilbert–Schmidt.

Note that the kernel function KLLE(x, ·) depends on x, and hence the mani-
fold, and the kernel are dominated by normal bundle information, due to the reg-
ularized pseudo-inverse procedure. For example, if M is an affine subspace of
R

p and the data is uniformly sampled, then E[(X − x)χBRp
ε (x)(X)] = 0, Tx = 0

and K(x, y) = 1. If M is Sp−1, a unit sphere centered at origin embedded in R
p

and the data is uniformly sampled, the first dominant p − 1 eigenvectors are per-
pendicular to x and the last eigenvector is parallel to x. By a direct calculation,
E[(X −x)χBRp

ε (x)(X)] is parallel to x, and hence K(x, y) behaves like a quadratic

function 1 − cu�
p (y − x) = 1 − cx�(y − x), where c is the constant depending on

the eigenvalues.

3.5. Bias analysis. For f ∈ C(ι(M)), by the definition of A, we have

(3.15) Qf (x) = (Af )(x)

(A1)(x)
,

where 1 means the constant function. We now provide an approximation of identity
expansion of the Q operator. By direct expansion, we have

(3.16) Af (x) =
∫
M

KLLE(x, y)f
(
ι(y)

)
P(y)dV (y).
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While the formula of the Q operator looks like the diffusion process commonly
encountered in the graph Laplacian based approach, like DM [8], the proof and the
result are essentially different. To ease the notation, define

(3.17)

N0(x) := 1

|Sd−1|
∫
Sd−1

Ix(θ, θ) dθ,

M2(x) := 1

|Sd−1|
∫
Sd−1

Ix(θ, θ)θθ� dθ,

Hf (x) := tr
(
M2(x)∇2f (x)

)
,

where f ∈ C3(ι(M)).

THEOREM 3.2. Suppose f ∈ C3(ι(M)) and P ∈ C5(ι(M)) and fix x ∈ M .
Assume that Assumptions 3.2 and 3.3 hold and the regularization order is ρ ∈ R.
Following the same notation used in Proposition 3.2, we have the following result:

(3.18) Qf (x) − f (x) = (
C1(x) + C2(x)

)
ε2 + O

(
ε3),

where C1(x) and C2(x) depend on different cases stated in Condition 3.1.
• Case 0. In this case,

C1(x) = 1

d + 2

[
1

2
	f (x) + ∇f (x) · ∇P(x)

P (x)
− ∇f (x) · ∇P(x)

P (x) + d(d+2)

|Sd−1| ερ−2

]
,(3.19)

C2(x) = 0.(3.20)

• Case 1. In this case,

C1(x) =
1

d+2 [1
2	f (x) + ∇f (x)·∇P(x)

P (x)
− ∇f (x)·∇P(x)

P (x)+ d(d+2)

|Sd−1| ε
ρ−2

]

1 − d
2(d+2)

∑p
i=d+1

(N�
0 (x)ei )

2

2
d
λ

(2)
i + 2(d+2)

P (x)|Sd−1| ε
ρ−4

,(3.21)

C2(x) = −
1

4(d+4)

∑p
i=d+1

(N�
0 (x)ei )(H

�
f (x)ei )

2
d
λ

(2)
i + 2(d+2)

P (x)|Sd−1| ε
ρ−4

1
d

− 1
2(d+2)

∑p
i=d+1

(N�
0 (x)ei)

2

2
d
λ

(2)
i + 2(d+2)

P (x)|Sd−1| ε
ρ−4

.(3.22)

• Case 2. In this case,

C1(x) =
1

d+2 [1
2	f (x) + ∇f (x)·∇P(x)

P (x)
− ∇f (x)·∇P(x)

P (x)+ d(d+2)

|Sd−1| ε
ρ−2

]

1 − d
2(d+2)

∑p−l
i=d+1

(N�
0 (x)ei )

2

2
d
λ

(2)
i + 2(d+2)

P (x)|Sd−1| ε
ρ−4

,(3.23)
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C2(x) = −
1

4(d+4)

∑p−l
i=d+1

(N�
0 (x)ei )(H

�
f (x)ei )

2
d
λ

(2)
i + 2(d+2)

P (x)|Sd−1| ε
ρ−4

1
d

− 1
2(d+2)

∑p−l
i=d+1

(N�
0 (x)ei )

2

2
d
λ

(2)
i + 2(d+2)

P (x)|Sd−1| ε
ρ−4

.(3.24)

The proof of this long theorem is postponed to Appendix SI.4. Intuitively, based
on the approximation of the identity, the kernel representation of the Q operator
suggests that asymptotically we get the function value back, with the second-order
derivative popping out in the second-order error term. In the GL setup, it has been
well known that the second-order derivative term is the Laplace–Beltrami oper-
ator when the p.d.f. is constant [8]. However, due to the interaction between the
geometric structure and the barycentric coordinate, LLE usually does not lead to
the Laplace–Beltrami operator, unless under special situations. Note that while we
could still see the Laplace–Beltrami operator in C1, it is contaminated by other
quantities, including N0(x), Hf (x) and λ

(2)
i . These terms all depend on the sec-

ond fundamental form. When ρ > 4, a curvature term appears in the ε2 order
term.

This theorem states that the asymptotic behavior of LLE is sensitive to the
choice of ρ. We discuss each case based on different choices of ρ. If ρ < 2, for all
cases,

C1(x) = 1

(d + 2)

[
1

2
	f (x) + ∇f (x) · ∇P(x)

P (x)

]
and C2(x) = 0,(3.25)

which comes from the fact that when ερ is large, Tι(x) is small, and hence KLLE is
dominated by 1. Note that not only the Laplacian–Beltrami operator but also the
p.d.f are involved, if the sampling is nonuniform. Therefore, when the choice of
ρ is too small, the resulting asymptotic operator is the Laplace–Beltrami operator,
only when the sampling is uniform. If ρ = 3, for all cases we have

C1(x) = 1

2(d + 2)
	f (x) and C2(x) = 0.(3.26)

In this case, we recover the Laplacian–Beltrami operator, and the asymptotic result
of LLE is independent of the nonuniform p.d.f.. This theoretical finding partially
explains why such regularization could lead to a good result. If ρ > 4, since εd+ρ

is smaller than all eigenvalues of the local covariance matrix, asymptotically εd+ρ

is negligible and the result depends on different cases considered in Condition 3.1:
for Case 0, we have

C1(x) = 1

2(d + 2)
	f (x) and C2(x) = 0,
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for Case 1, we have

C1(x) =
1

2(d+2)
	f (x)

1 − d2

4(d+2)

∑p
i=d+1

(N�
0 (x)ei )

2

λ
(2)
i

,

C2(x) = −
d

8(d+4)

∑p
i=d+1

(N�
0 (x)ei )(H

�
f (x)ei )

λ
(2)
i

1
d

− d
4(d+2)

∑p
i=d+1

(N�
0 (x)ei )

2

λ
(2)
i

,

and for Case 2, we have

C1(x) =
1

2(d+2)
	f (x)

1 − d2

4(d+2)

∑p−l
i=d+1

(N�
0 (x)ei)

2

λ
(2)
i

,

C2(x) = −
d

8(d+4)

∑p−l
i=d+1

(N�
0 (x)ei )(H

�
f (x)ei )

λ
(2)
i

1
d

− d
4(d+2)

∑p−l
i=d+1

(N�
0 (x)ei )

2

λ
(2)
i

.

Note that when ρ > 4, we do not get the Laplace–Beltrami operator asymptotically
in Cases 1 and 2. Furthermore, the behavior of LLE is dominated by the curvature
and is independent of the p.d.f.

It is worth mentioning a specific situation when ρ > 4. Suppose the principal
curvatures are equal to p ∈ R in the direction ei , where i = d + 1, . . . , p, and
vanish in the other directions. Then there is a choice of basis e1, . . . , ed so that
Ix(θ, θ) · ei = ∑d

j=1 pθ
2
j = p, where θ = (θ1, . . . , θd) ∈ Sd−1. Under this specific

situation, by a direct expansion, we have a simplification that

d

8(d + 4)

(
N�

0 (x)ei

)(
H�

f (x)ei

) = 1

2(d + 2)
	f (x),

which leads to C1(x) + C2(x) = 0, and hence we obtain a fourth-order term.
The relationship between ε and the intrinsic geometry of the manifold requires

further discussion, in order to better understand how the curvature plays a role
in the whole analysis. We mention that the statement “suppose ε is sufficiently
small” in Proposition 3.1, Proposition 3.2 and Theorem 3.2 is a technical con-
dition needed in the proof of Lemma SI.3, which describes how well we could
estimate the local geodesic distance by the ambient space metric. This technical
condition depends on the fact that the exponential map is a diffeomorphism only
if it is restricted to a subset of ι∗TxM that is bounded by the injectivity radius
of the manifold. That is, ε needs to be less than the injectivity radius. For any
closed (compact without boundary) and smooth manifold, it is clear that differ-
ent kinds of curvatures are bounded and the injectivity radius is strictly positive,
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so there exists ε0 > 0 less than the injectivity radius, so that for all ε ≤ ε0, the
statement “suppose ε is sufficiently small” is satisfied. The relationship between
the curvature and ε0 could be further elaborated by quoting the well-known result
in [6]: for a closed Riemannian manifold of dimension d with the sectional cur-
vature bounded by K , where K ≥ 0, and with the volume lower bound v, where
v > 0, the injectivity radius is bounded below by i(d,K,v) > 0, where i(d,K,v)

can be expressed explicitly in terms of d , K and v. Hence, ε0 needs to satisfy
ε0 < i(d,K,v).

3.6. Convergence of LLE. By combining the variation analysis and the bias
analysis shown above, we conclude the following pointwise convergence theorem
for LLE, when we have a proper choice of ρ.

THEOREM 3.3. Take f ∈ C3(ι(M)) and P ∈ C5(ι(M)), ρ = 3 and ε = ε(n)

so that
√

log(n)

n1/2εd/2+1 → 0 and ε → 0 as n → ∞. With probability greater than 1−n−2,
for all xk ∈X ,

1

ε2

[
N∑

j=1

wk(j)f (xk,j ) − f (xk)

]
= 1

2(d + 2)
	f (x) + O(ε) + O

( √
log(n)

n1/2εd/2+1

)
.

Based on the Borel–Cantelli lemma, it is clear that asymptotically LLE con-
verges almost surely. For practical purposes, we need to discuss the bandwidth
choice when ρ = 3. Based on the assumption about the relationship between n

and ε, we have
√

log(n)

n1/2εd/2+1 → 0 as n → ∞, but the convergence rate of
√

log(n)

n1/2εd/2+1

might be slower than ε → 0. Suppose we call a bandwidth “optimal,” if it bal-
ances the standard deviation and the bias for all cases in Condition 3.1; that is,√

log(n)

n1/2εd/2+1 � ε. We then have n
log(n)

� 1
εd+4 , and we can estimate the optimal band-

width from n.

4. Numerical examples. We adapt the LLE code provided in https://www.
cs.nyu.edu/~roweis/lle/code.html to implement LLE with the ε-radius neighbor-
hood. The Matlab code for the figures can be found in https://sites.google.com/
site/hautiengwu/home/download.

4.1. Sphere. Suppose that Sp−1 ∈ R
p is the unit sphere in R

p . Denote Hk

to be the space of homogeneous polynomials in R
p restricted on Sp−1. We have

that the space Hk is the eigenspace of the Laplace–Beltrami operator on Sp−1

corresponding to eigenvalue −k(k+p−2), and the dimension of Hk is
(p+k−1

p−1

)−(p+k−3
p−1

)
[28]. In this example, we show that if we choose a εd+ρ that is too small,

then we are not going to get the Laplace–Beltrami operator. When ρ = 8, which is

https://www.cs.nyu.edu/~roweis/lle/code.html
https://sites.google.com/site/hautiengwu/home/download
https://www.cs.nyu.edu/~roweis/lle/code.html
https://sites.google.com/site/hautiengwu/home/download
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much greater than 3, by Theorem 3.2, we have

(4.1)

Qf (xk) − f (xk) =
( −(p − 1)

8(p + 3)(p + 5)

p−1∑
i=1

∂4
i f (xk)

− (p − 1)

24(p + 3)(p + 5)

∑
i �=j

∂2
i ∂2

j f (xk)

− p + 1

24(p + 3)(p + 5)

p−1∑
i=1

∂2
i f (xk)

)
ε4 + O

(
ε6).

A detailed calculation is shown in Section SI.7 (a calculation for the torus case is
also provided). It is obvious that asymptotically, we get a fourth-order differen-
tial operator, instead of the Laplace–Beltrami operator. Specifically, when p = 2,
or S1,

Qf (xk) − f (xk) = − 1

280

(
f ′′′′(xk) + f ′′(xk)

)
ε4 + O

(
ε6).(4.2)

We mention that if the data set {xi}ni=1 is nonuniformly sampled based on the p.d.f.
P from S1, then for any xk we have Qf (xk) − f (xk) = Cε4 + O(ε6), where C

depends on the first four order differentiation of f at xk and the first three order
differentiations of P at xk .

We now numerically show the relationship between the nonuniform sampling
scheme and the regularization term. Fix n = 30,000. Take nonuniform sampling
points θi := 2πUi + 0.3 sin(2πi/n) on (0,2π ], where i = 1, . . . , n and Ui is the
uniform distribution on [0,1], and construct X2 = {(cos(θi), sin(θi))

�}ni=1 ⊂ R
2.

Run LLE with ε = 0.0002 and different ρ’s, and evaluate the first 400 eigenvalues.
Based on the theory, we know that when ρ < 3, the asymptotics depends on the
nonuniform p.d.f.; when ρ = 3, we recover the Laplace–Beltrami operator in the ε2

order; when ρ > 3, we get a fourth-order differential operator in the ε4, which de-
pends on the p.d.f. See Figure 1 for a comparison of the estimated eigenvalues and
the predicted eigenvalues under different setups. We clearly see that the eigenval-
ues are well predicted under different ρ. When ρ = 8, we get a fourth-order term
that depends on the nonuniform p.d.f.; when ρ = 3, LLE is independent of the
nonuniform p.d.f. and we recover the spectrum of the Laplace–Beltrami operator
in the second-order term, as is predicted by the developed theory; when ρ = −5,
the nonuniform p.d.f. comes into play, and the eigenvalues are slightly shifted. To
enhance the visualization, the difference between the estimated eigenvalues of S1

and the theoretical values are shown on the middle subplot. The eigenfunctions
provide more information. When ρ = −5 and ρ = 8, the dependence of the eigen-
functions on the p.d.f. could be clearly seen. For the nonuniform sampling scheme
and ρ = 8, theoretically the first three eigenvalues come from the six-order term
and depend on the p.d.f. Thus, numerically the first three eigenvalues are nonzero.
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(a) S1 Eigenvalues (b) S1 Eigenvalues error

(c) S1 Eigenfunctions

FIG. 1. The first 400 eigenvalues of LLE on 30,000 points sampled from S1 under a nonuniform
sampling scheme with ρ = −5,3,8. λ̃k and ψk are the kth largest eigenvalue and the correspond-
ing eigenfunction of LLE under different situations. The theoretical value, Lk := � k−1

2 �2 for the

Laplace–Beltrami operator and L̄k := � k−1
2 �4 − � k−1

2 �2 for the fourth-order differential operator
f ′′′′ + f ′′, where �x� means the smallest integer greater than or equal to x, are provided for a com-
parison. The eigenvalues and the theoretical values under different setups are shown in (a), with Lk

shown as the black crosses and L̄k as the black circles. The deviation of the evaluated eigenvalues
from the theoretical values under different setups are shown in (b). The tenth eigenfunctions of LLE
under different setups are shown in (c).

Next, we show the results on S2 with different radii under the nonuniform sam-
pling scheme with ρ = 3 and different ε’s. Fix n = 30,000. Take uniform sampling
points xi = (xi1, xi2, xi3)

� ∈ S2 ⊂ R
3, where i = 1, . . . , n, randomly choose n/10

points, randomly perturb those n/10 points by setting x̄i3 := xi3 + 1 − cos(2πUi),

where Ui is the uniform distribution on [0,1] and yi := (xi1,xi2,x̄i3)
�

‖(xi1,xi2,x̄i3)
�‖ . As a re-

sult, Y := {yi}ni=1 ⊂ S2 is nonuniformly distributed on S2. Denote rY to be the
scaled sampling points on the sphere with radius r > 0. Run LLE on rY with dif-
ferent ε’s, and evaluate the first 400 eigenvalues. We consider r = 0.5,1,2. For
r = 1, consider ε = 0.02; for r = 0.5, consider ε = 0.02/4 and 0.02/6; for r = 2,
consider ε = 0.02 × 4 and 0.02 × 3. Based on the theory, when ρ = 3, LLE is
independent of the p.d.f. and we obtain the eigenvalues of the Laplace–Beltrami
operator in all cases. See Figure 2 for the results under different setups. Theoret-
ically, the eigenvalues of S2 without counting multiplicities are νi = −i(i + 1),
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(a) S2 Eigenvalues (b) S2 Eigenvalues error

(c) S2 Eigenfunctions

FIG. 2. (a) The first 400 eigenvalues of LLE with ρ = 3 but different ε, over a n = 30,000 nonuni-
form sampling points on S2 with different radii r > 0. λ̃k is the kth smallest eigenvalue of the
Laplace–Beltrami operator estimated by LLE under different situations. When r = 0.5 (resp., r = 1
and r = 2), λ̃k are shown in the black (resp., blue and gray) curve. The results with different ε are
shown as the red dash (resp., blue dash) when r = 0.5 (resp., r = 2). The theoretical eigenvalues
for the canonical S2 (with the radius 1), denoted as Lk , k = 1, . . . , are provided for a comparison
(superimposed as black circles). (b) To enhance the visualization, the difference between the theo-
retical values and numerical values, log10(λ̃k) − log10(Lk), are shown with the same color and line
properties as those shown on (a). Some eigenfunctions evaluated when r = 0.5 are shown on (c).

where i = 0,1, . . .. The multiplicity of νi is 2i + 1. When the radius is r > 0, the
eigenvalues are scaled by r−2. The eigenvalues, as is shown in Figure 2, can be
well estimated by LLE, and the gap between the eigenvalues of spheres with dif-
ferent radii is predicted. The sawtooth behavior of the error comes from the spec-
tral convergence behavior of eigenvalues with multiplicities. Note that there are
19 eigenvalues with multiplicity greater than 1 in the first 400 eigenvalues, which
match the 19 oscillations found in Figure 2(b). The eigenfunctions are shown in
Figure 2(c). As is predicted, the first eigenfunction is constant, as is shown in ψ1.
The eigenspace of ν1 is spanned by three linear functions x, y and z, restricted on
S2. Therefore, ψ4 is linear. The eigenspace of ν� is spanned by spherical harmon-
ics of order �, and its oscillation is illustrated in ψ9 associated with ν2 and ψ16
associated with ν3.

4.2. Examining the kernel. We now show the numerical simulations of the
corresponding kernel on the unit circle S1 embedded in R

2. We take a uni-
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(a) S1 kernel (b) T1 kernel

(c) S2 kernel

FIG. 3. (a) The sampled S1 is illustrated as the gray circle embedded in the (x, y)-plane. The
black thick line indicates the first 320 neighbors of the central point x1000. The red (resp., blue)
line is the corresponding normalized kernel when K = 80 (resp., K = 320). (b) A surrogate of the
sampled flat 1-dim torus T1 is illustrated as the gray circle embedded in the (x, y)-plane. The black
thick line indicates the first 320 neighbors of the central point x1000. The red (resp., blue) line is the
corresponding normalized kernel when K = 80 (resp., K = 320). (c) A surrogate of the uniformly
sampled S

2. Only the first 10,000 nearest points of the chosen x = (0,0,0) are plotted as the gray
points. Note that the scale of the x and y axes and the z axis are different. The black points indicate
the first 400 neighbors of x. The red points are the corresponding normalized kernel values when
K = 400.

form grid θi := 2πi/n on (0,2π ], where n ∈ N and i = 1, . . . , n, and construct
X = {xi := (cos(θi), sin(θi))

�}ni=1 ⊂ R
2, which could be viewed as a uniform

sampled set from the unit circle. We fix n = 10,000. We then run LLE with
ε = [(cos(θK/2) − 1)2 + sin(θK/2)

2]1/2, where K ∈ N. See Figure 3 for an ex-
ample of the corresponding kernels when K = 80 and K = 320. Note that the
constructed normalized kernel, KLLE(x1000,y)∫

KLLE(x1000,y) dV (y)
, is nonpositive.

Next, we show the numerical simulations of the corresponding kernel on the
1-dim flat torus T

1 ∼ R/Z with the induced metric from the canonical metric
on R

1. We take a uniform grid on T
1 as {θi = 2πi/n}ni=1, and take X = {xi :=

(cos(θi), sin(θi))
�}ni=1 ⊂ R

2 to illustrate the flat torus. Fix n = 10,000 and run
LLE with ε = |θK/2|, where K ∈ N. See Figure 3 for an example of the corre-
sponding kernels when K = 80 and K = 320. The constructed normalized kernel,
as the theory predicts, is constant. Note that in this case, we can view the flat 1-dim
flat torus as the unit circle, when we have access to the geodesic distance.
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Finally, we take a look at the unit sphere S2 embedded in R
3 with the center

at (0,0,1), and its corresponding kernel. We uniformly sample n points, X =
{xi}ni=1 ⊂ R

3, from S2. Fix n = 10,000 and run LLE with 400 nearest neighbors.
See Figure 3 for the corresponding kernel. Note that the normalized kernel is not
positive. These examples show that even for simple manifolds, the corresponding
kernels might be complicated.

4.3. Two-dimensional random tomography example. To further examine the
capability of LLE from the viewpoint of nonlinear dimension reduction, we con-
sider the two-dimensional random tomography problem [25]. It is chosen due to
its well-known and complicated geometrical structure.

We briefly describe the dataset and refer the interested reader to [25]. The classi-
cal two-dimensional transmission computerized tomography problem is to recover
the function f :R2 →R from its Radon transform. In the parallel beam model, the
Radon transform of f is given by the line integral Rθf (s) = ∫

x·θ=s f (x) dx, where
θ ∈ S1 is perpendicular to the beaming direction θ⊥ ∈ S1, where S1 is the unit cir-
cle, and s ∈ R. We call θ the projection direction and Rθf the projected image.
There are cases, however, in which we only have the projected images and the pro-
jection directions are unknown. In such cases, the problem at hand is to estimate
f from these projected images without knowing their corresponding projection di-
rections. To better study this random projection problem, we need the following
facts and assumptions. First, we know that for f ∈ L2(R2) with a compact support
within B1(0), the map R·f : θ ∈ S1 �→ L2([−1,1]) is continuous [25]. To simplify
the discussion, we assume that there is no symmetry in f ; that is, Rθ1f and Rθ2f

are different for all pairs of θ1 �= θ2. Next, take S := {si}pi=1 to be the chosen set of
sampling points on [−1,1], where p ∈ N. In this example, we assume that S is a
uniform grid on [−1,1]; that is, si = −1 + 2(i − 1)/(p − 1). For θ ∈ S1, denote
the discretization of the projection image Rθf as DS : L2([−1,1]) → R

p , which
is defined by DS : Rθf �→ (Rθf �hε(s1),Rθf �hε(s2), . . . ,Rθf �hε(sp))� ∈ R

p ,
where hε(x) := 1

ε
h(x

ε
), h is a Schwartz function and hε converges weakly to the

Dirac delta measure at 0 as ε → 0. Note that, in general, Rθf is a L2 func-
tion when f is a L2 function. Therefore, we need a convolution to model the
sampling step. We assume that the discretization DS is dense enough, so that
M1 := {Dp ◦ Rθf }θ∈S1 is also simple. In other words, we assume that p is large
enough so that M1 is a one-dimensional closed simple curve embedded in R

p and
M1 is diffeomorphic to S1. Finally, we sample finite points from S1 uniformly and
obtain the simulation.

With the above facts and assumptions, we sample the Radon transform X :=
{xi := DS ◦Rθi

f }ni=1 ⊂R
p with finite projection directions {θi}ni=1, where {θi}ni=1

is a finite uniform grid on S1; that is, X is sampled from the one-dimensional
manifold M1. For the simulations with the Shepp–Logan phantom, we take n =
4096, and the number of discretization points was p = 128. It has been shown
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in [25] that DM could recover the M1 up to diffeomorphism, that is, we could
achieve the nonlinear dimensional reduction. In order to avoid distractions, we do
not consider any noise as is considered in [25], and focus our analysis on the clean
dataset. The Shepp–Logan image, some examples of the projections and the results
of PCA, DM and LLE, are shown in Figure 4. As is shown in [25], PCA fails to

FIG. 4. Top row: the left panel is the Shepp–Logan phantom, the middle panel shows two projec-
tion images from two different projection directions and the right panel shows the linear dimension
reduction of the dataset by the first three principal components, u1, u2 and u3. Middle row: the left
panel shows DM without the α-normalization technique [8], where the embedding is done by choos-
ing the first two nontrivial eigenvectors of the graph Laplacian, φ2 and φ3, the middle panel shows
DM with the α-normalization technique when α = 1, and the right panel shows that the sign of the
kernel corresponding to LLE is indeterminate, where the black cross indicates x3555, and the kernel
values on its neighbors are encoded by color (the neighbors are visualized by the top three principal
components, v1, v2 and v3). Bottom row: the embedding using the second and third eigenvectors of
LLE, ψ2 and ψ3, under different setups is shown. The left, middle and right panels show the result
with ρ = −5, ρ = 3 and ρ = 8, respectively.
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embed X with only the first three principal components, while DM succeeded.
There is more discussion for DM, particularly its robustness to the noise and metric
design [25], so they are not discussed here. For LLE, we take ε = 0.004. The
embedding results of LLE with different regularization orders, ρ = 8,3,−5, are
shown. Due to the complicated geometrical structure, we encounter difficulty even
to recover the topology of M1 by LLE, if the regularization is not chosen properly.

To examine whether the sign of the kernel corresponding to LLE is indetermi-
nate in this database, we fix x3555 ∈ X , and apply PCA to visualize its K = 150
neighbors. The kernel function is shown in Figure 4 as the color encoded on the
embedded points. The sign of the kernel is indeterminate, as is predicted by the
above theory due to the existence of curvature. In summary, we should be careful
when we apply LLE to a complicated real database.

5. ε-radius neighborhood v.s. K nearest neighborhood. In the original ar-
ticle [22], the KNN scheme was proposed for LLE. However, the analysis in this
paper has been based on the ε-radius neighborhood scheme. These two schemes
are closely related asymptotically from the viewpoint of p.d.f. estimation [21]. The
following argument shows that the developed theorems are actually transferrable
to the KNN scheme under the manifold setup.

We follow the notation in Section 3.1. For ι(xk) ∈ X , take K nearest neighbors
of ι(xk), namely ι(xk,1), . . . , ι(xk,K), with respect to the Euclidean distance. Intu-
itively, K is closely related to the volume of the minimal ball centered at xk with
the radius ε(xk) containing the K nearest neighbors of xk , where ε(xk) depends
on K and the p.d.f.; that is, we expect to have

(5.1) nP (xk)vol(Dxk
) ≈ K,

where Dx := BR
p

ε(x)(ι(x))∩ ι(M) is the minimal ball centered at x ∈ M with the ra-
dius ε(x) > 0 so that Dx contains the K nearest neighbors of x. Under the smooth-
ness assumption of the p.d.f. and the manifold setup, we claim that asymptotically
when n → ∞, this relationship holds uniformly over the manifold a.s., if K =
K(n), K/ log(n) → ∞ and K/n → 0 as n → ∞. This claim could be achieved by
slightly modifying the argument for the Theorem in [9] to obtain the large devia-
tion bound for (5.1) when n is finite. To bound Pr{supx∈M | K

nvol(Dx)
− P(x)| > α},

where α > 0, it is sufficient to bound the two terms on the right-hand side of [9],
equation (10). By a straightforward calculation of the equations on page 539 in
[9], we achieve the bound Pr{supx∈M | K

nvol(Dx)
− P(x)| > α} ≤ poly(n)e−cKα3

,
where c is a constant depending on d and the upper bounds of P(x) on M , and
poly(n) = 3(1 + 2p+3np+3). This can be observed by combining [9], equations
(6), (7), (9) and (10)—the second term on the right-hand side of [9], equation
(10), is dominated by the first term. To bound the first term, we can substitute
δ = Kβ

4n(PM+β)
and M = 4kPM

nβ
into the fourth unlabeled equation on page 539 in

[9], where PM is the upper bound of p.d.f. In the fourth unlabeled equation, α is
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the upper bound of the volume ratio of BRp

2ε(x)(ι(x))∩ ι(M) and BRp

ε(x)(ι(x))∩ ι(M),

which can be chosen as 3d when ε(x) is sufficiently small. To conclude the bound
for Pr{supx∈M | K

nvol(Dx)
− P(x)| > α}, we use the fact that when β is small, the

equation follows. Therefore, if we choose α = (
2p+10

c
)1/3(

logn
K

)1/3, with probabil-

ity greater than 1 − n−2, we have uniformly K
nvol(Dx)

= P(x) + O(α). Note that
by assumption, α → 0 as n → ∞. We conclude that with probability greater than
1 − n−2,

(5.2) ε(x) =
(

d

|Sd−1|
)1/d( K

nP(x)

)1/d(
1 + O

((
logn

K

)1/3))
,

where we use the fact that vol(Dx) = |Sd−1|
d

ε(x)d +O(ε(x)d+1) when ε(x) is suffi-
ciently small. It is transparent that ε(x) depends on n and ε(x) → 0 a.s. as n → ∞
since K(n)/n → 0 by assumption. In other words, ε is not a constant value. It is
a function depending on the p.d.f.. If we require K = K(n) to additionally satisfy
K(n)

n
K(n)d/2

log(n)d/2 → ∞, then ε(xk) satisfies
√

n

n1/2ε(x)d/2+1 → 0 a.s. On the other hand,

notice that the statement of Theorem 3.3 is pointwise. Therefore, its proof could
be directly employed to the case when ε is chosen pointwisely, and hence the
KNN scheme. As a result, if we take ρ = 3 and is K/n → 0, K/ log(n) → ∞, and
(K/n)(K/ log(n))d/2 → ∞ when n → ∞, by plugging (5.2) into Theorem 3.3,
when n is sufficiently large, the following convergence holds for all xk with prob-
ability greater than 1 − 2n−2:

(5.3)

K∑
j=1

wk(j)f (xk,j ) − f (xk)

=
( d
|Sd−1|)

1/d

2(d + 2)

	f (xk)

P (xk)2/d

(
K

n

)2/d

+ O

((
log(n)

K

)1/3(K

n

)2/d)
+ O

((
log(n)

K

)1/2(K

n

)1/d)
.

In summary, unless the sampling is uniform, we do not obtain the Laplace–
Beltrami operator with the KNN scheme. Based on the expansion (5.3), to ob-
tain the Laplace–Beltrami operator with the KNN scheme, we could numeri-
cally consider a “normalized LLE matrix”; that is, find the eigenstructure of
L̃ := E−1(W − I ), where W is the ordinary LLE matrix, and E ∈R

n×n is a diago-
nal matrix so that Eii = ε(xi)

2. Since the analysis of the pointwise convergence of
L̃ is similar to that of Theorem 3.3, we skip the details here.



3832 H.-T. WU AND N. WU

6. Relationship with two statistical topics.

6.1. Locally linear regression. Based on the above theoretical study under the
manifold setup, we could link LLE to LLR [7, 15]. Recall that in LLR, we locally
fit a linear function to the response, and the associated kernel depends on the in-
verse of a variation of the covariance matrix. We summarize how LLR is operated.
Consider the following regression model:

(6.1) Y = m(X) + σ(X)ξ,

where ξ is a random error independent of X with E(ξ) = 0 and Var(ξ) = 1, and
both the regression function m and the conditional variance function σ 2 are defined
on R

d . Let {(Xl, Yl)}nl=1 denote a random sample observed from model (6.1) with
X := {Xl}nl=1 being sampled from X. Given {(Xl, Yl)}nl=1 and x ∈ R

d , the problem
is then to estimate m(x) assuming enough smoothness of m. Choose a smooth
kernel function with fast decay K : [0,∞] → R and a bandwidth ε > 0. The LLR
estimator for m(x) is defined as e�

1 β̂x , where

(6.2)

β̂x = arg min
β∈Rd+1

(Y − Xxβ)�Wx(Y − Xxβ),

Y = (Y1, . . . , Yn)
�, Xx =

[
1 . . . 1

X1 . . . Xn

]�
∈ R

n×(d+1),

Wx = diag
(
Kε(X1, x), . . . ,Kε(Xn, x)

) ∈ R
n×n,

and Kε(Xl, x) := ε−dK(‖Xl − x‖Rd /ε). By a direct expansion, (6.2) becomes

(6.3) β̂x = (
X�

x WxXx

)−1X�
x WxY

if (X�
x WxXx)

−1 exists. We have Xx = [ 1�
n

Gx

]
, where Gx is the data matrix asso-

ciated with {Xi}ni=1 centered at x. By yet another direct expansion by the block
inversion,

(6.4) e�
1 β̂x = w(LLR)

x

�
Y,

where w
(LLR)
x is called the “smoothing kernel” and satisfies

(6.5) w(LLR)
x := 1�

n Wx − 1�
n WxG�

x (GxWxG�
x )−1GxWx

1�
n Wx1n − 1�

n WxG�
x (GxWxG�

x )−1GxWx1n

.

Through a direct comparison, we see that the vector w
(LLR)
x is almost the same

as the weight matrix in LLE shown in (2.17), except the weighting by the chosen
kernel—in LLE, the kernel function and its support are both determined by the
data, while in LLR the kernel is selected in the beginning and the data points are



ASYMPTOTIC ANALYSIS OF LLE 3833

weighted by the chosen kernel like GxWx . If we choose the kernel to be a zero-
one kernel with the support on the ball centered at x with the radius ε, then we
“recover” (2.17).

Under the low dimensional manifold setup, GxWxG�
x might not be of full rank.

Note that the term GxWxG�
x is the weighted local covariance matrix, which is

considered in [24] to estimate the tangent space. Unlike the regularized pseudo-
inverse (2.15) in LLE, to handle this degeneracy issue, in LLR the data matrix Gx

is constructed by projecting the point cloud to the estimated tangent plane. This
projection step could be understood as taking the Moore–Penrose pseudo-inverse
approach to handle the degeneracy. We mention that in [7], Section 6, the relation-
ship between LLR and manifold learning under the manifold setup is established.
It is shown that asymptotically, the smooth matrix from the kernel w

(LLR)
x leads to

the Laplace–Beltrami operator, which is parallel to the reported result in this paper.
These relationships between LLE and LLR suggest the possibility of fitting the

data locally by taking the locally polynomial regression into account, and gener-
alizing the barycentric coordinate by fitting a polynomial function locally. By this
generalization, it is possible to catch more delicate structure of the manifold in a
different adaptive way. Since this direction is outside the scope of this paper, the
study of this possibility is left to future studies.

6.2. Measurement errors. In this work, we analyze LLE under the assumption
that the dataset is randomly sampled directly from a manifold, without any influ-
ence of noise. However, noise is inevitable and a further study is needed. By the
analysis, we observe that LLE takes care of the measurement error (or “error in
variable”) challenge “in some sense.”

Suppose the dataset is {yi}ni=1 ⊂ R
p , where yi = zi + ξi , zi is supported on a

manifold and ξi is an i.i.d. noise with good properties. The question of interest is:
how much information LLE could recover from {zi}ni=1. A parallel problem for
the GL, or the more general graph connection Laplacian (GCL), has been studied
in [13, 14]. It shows that the spectral properties of the GL and GCL are robust
to noise. For LLE, while a similar analysis could be applied, if we view LLE as
a kernel method and show a similar result, we mention that we might benefit by
taking the special algorithmic structure of LLE into account.

When the dimension of the dataset is high, the noise might have a nontrivial
behavior. For example, when the dimension of the database p = p(n) satisfies
p(n)/n → γ > 0 when n → ∞ (known as the large p and large n setup), it is
problematic to even estimate the covariance matrix. Note that the covariance ma-
trix is directly related to LLE since the covariance matrix appears in the regularized
pseudo inverse, Inεd+ρ (ḠnḠ

�
n ), where Ḡn is the local data matrix associated with

yk determined from the noisy database {yi}ni=1, and ḠnḠ
�
n is the covariance ma-

trix. Under the large p and large n setup, the eigenvalues and eigenvectors of the
covariance matrix will both be biased, depending on the “signal-to-noise ratio”
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and γ [20]. A careful manipulation of the noise, or a modification of the covari-
ance matrix estimator, is needed in order to address these introduced biases. For
example, the “shrinkage technique” was introduced to correct the eigenvalue bias
with a theoretical guarantee [11, 25]. The covariance matrix estimator based on
the shrinkage technique is C̃n := ∑p

l=1 f (λl)ulu
�
l , where ul and λl form the lth

eigenpair of ḠnḠ
�
n and f is the designed shrinkage function.

A direct comparison shows that the regularized pseudo inverse in LLE be-
haves like a shrinkage technique. Recall that Inεd+ρ (ḠnḠ

�
n ) = ∑rn

l=1
1

λl+nεd+ρ ulu
�
l

(2.15), where rn is the rank of ḠnḠ
�
n , the shrinkage function is f (x) =

1
x+nεd+ρ χ(0,∞)(x) and χ is the indicator function. Although how f corrects the
noise impact is outside the scope of this paper, it would be possible to carefully
improve the regularized pseudo inverse by taking the shrinkage technique into
account. In other words, by modifying the barycentric coordinate evaluation and
applying the technique discussed in [13, 14], it is possible to improve LLE. An
extensive study of the topic will be reported in upcoming research.

7. Conclusions and discussion. We provide an asymptotical analysis of LLE
under the manifold setup. The theoretical results indicate that asymptotically, LLE
generally may not give the expected Laplace–Beltrami operator, unless the regular-
ization is chosen properly. From the integral operator viewpoint, the corresponding
kernel of LLE in general is not positive. Therefore, LLE in general is not a diffu-
sion operator. Some direct calculations of the operator associated with LLE over
simple manifolds, like the sphere, indicate that asymptotically a fourth-order dif-
ferential operator might pop out as the dominant term, if the regularization chosen
is too small. The numerical results support the theoretical findings. In addition, we
also discuss the relationship between LLE and two statistical topics—LLR and the
measurement error problem, and point out potential future work.

There are more important topics we do not explore in this paper. First, note
that the pointwise convergence result established in this paper comes from a care-
ful analysis of the “fit locally” part of LLE. However, it is not sufficient to fully
understand the “think globally” part of LLE. Recall that we evaluate the eigen-
decomposition of the LLE matrix for the embedding in the last step of LLE.
The theoretical and numerical results suggest that the eigenstructure of the LLE
matrix provides an approximation of the eigenstructure of the Laplace–Beltrami
operator. The embedding in the last step could therefore be understood from the
point of view of the spectral embedding theory [4, 5]. The eigenstructure of the
LLE matrix integrates the local information. As a result, we catch the “think
globally” part. However, pointwise convergence is not strong enough to guaran-
tee spectral convergence. In other words, we need to show that asymptotically,
the eigen-decomposition provides a proper approximation of the eigenstructure
of the Laplace–Beltrami operator. While a proof similar to that in [26] could be
slightly modified to achieve the spectral convergence of LLE, however, more may
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be needed, such as the spectral convergence rate, from the statistical viewpoint. Re-
cently, there have been some relevant works for the GL under the manifold model
in this direction [17, 32]. Based on the special structure of LLE, like the regu-
larization, the optimal convergence rate of LLE could be different and additional
exploration is needed. The result will be reported in our future work.

Another important topic is the appearance of a fourth-order differential oper-
ator in LLE, when the manifold has a special structure and the regularization is
improperly chosen. Although it would be a by-product, it would be interesting to
ask if it is possible to take this fourth-order differential operator into account in the
data analysis and which kind of information could be extracted from the dataset.
It would also be interesting to ask if it is possible to directly obtain a fourth-order
differential operator for more general manifolds with a slight modification of LLE.
A direct benefit of this possibility is linked back to the regression problem, such
as LLR. If we could directly eliminate the second-order term, the regression result
could be more accurate. We leave this study direction to our future work.

Acknowledgment. The authors acknowledge anonymous reviewers’ valuable
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SUPPLEMENTARY MATERIAL

Supplement to “Think globally, fit locally under the manifold setup:
Asymptotic analysis of locally linear embedding” (DOI: 10.1214/17-
AOS1676SUPP; .pdf). Proof of main theorems and technical details.

REFERENCES

[1] BELKIN, M. and NIYOGI, P. (2003). Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Comput. 15 1373–1396.

[2] BELKIN, M. and NIYOGI, P. (2005). Towards a theoretical foundation for Laplacian-based
manifold methods. In Learning Theory. Lecture Notes in Computer Science 3559 486–
500. Springer, Berlin. MR2203282

[3] BELKIN, M. and NIYOGI, P. (2007). Convergence of Laplacian eigenmaps. In Advances in
Neural Information Processing Systems 19 (NIPS 2006) 129–136. MIT Press, Cambridge,
MA.

[4] BÉRARD, P., BESSON, G. and GALLOT, S. (1994). Embedding Riemannian manifolds by their
heat kernel. Geom. Funct. Anal. 4 373–398.

[5] BÉRARD, P. H. (1986). Spectral Geometry: Direct and Inverse Problems. Lecture Notes in
Math. 1207. Springer, Berlin. MR0861271

[6] CHEEGER, J., GROMOV, M. and TAYLOR, M. (1982). Finite propagation speed, kernel esti-
mates for functions of the Laplace operator, and the geometry of complete Riemannian
manifolds. J. Differential Geom. 17 15–53.

[7] CHENG, M.-Y. and WU, H.-T. (2013). Local linear regression on manifolds and its geometric
interpretation. J. Amer. Statist. Assoc. 108 1421–1434.

[8] COIFMAN, R. R. and LAFON, S. (2006). Diffusion maps. Appl. Comput. Harmon. Anal. 21
5–30. MR2238665

https://doi.org/10.1214/17-AOS1676SUPP
http://www.ams.org/mathscinet-getitem?mr=2203282
http://www.ams.org/mathscinet-getitem?mr=0861271
http://www.ams.org/mathscinet-getitem?mr=2238665
https://doi.org/10.1214/17-AOS1676SUPP


3836 H.-T. WU AND N. WU

[9] DEVROYE, L. P. and WAGNER, T. J. (1977). The strong uniform consistency of nearest neigh-
bor density estimates. Ann. Statist. 5 536–540. MR436442

[10] DO CARMO, M. P. and FLAHERTY, F. (1992). Riemannian Geometry. Birkhäuser, Boston,
MA.

[11] DONOHO, D. L., GAVISH, M. and JOHNSTONE, I. M. (2013). Optimal shrinkage of eigenval-
ues in the spiked covariance model. Available at arXiv:1311.0851.

[12] DONOHO, D. L. and GRIMES, C. (2003). Hessian eigenmaps: Locally linear embedding tech-
niques for high-dimensional data. Proc. Natl. Acad. Sci. USA 100 5591–5596.

[13] EL KAROUI, N. (2010). On information plus noise kernel random matrices. Ann. Statist. 38
3191–3216. MR2722468

[14] EL KAROUI, N. and WU, H.-T. (2016). Graph connection Laplacian methods can be made
robust to noise. Ann. Statist. 44 346–372. MR3449771

[15] FAN, J. and GIJBELS, I. (1996). Local Polynomial Modelling and Its Applications. Chapman
& Hall/CRC, Boca Raton, FL.

[16] GAO, T. (2016). The diffusion geometry of fibre bundles. Available at arXiv:1602.02330.
[17] GARCIA TRILLOS, N. and SLEPCEV, D. (2018). A variational approach to the consistency of

spectral clustering. Appl. Comput. Harmon. Anal. To appear.
[18] GINÉ, E. and KOLTCHINSKII, V. (2006). Empirical graph Laplacian approximation of

Laplace–Beltrami operators: Large sample results. In High Dimensional Probability. In-
stitute of Mathematical Statistics Lecture Notes—Monograph Series 51 238–259. IMS,
Beachwood, OH. MR2387773

[19] HEIN, M., AUDIBERT, J.-Y. and VON LUXBURG, U. (2005). From graphs to manifolds—
Weak and strong pointwise consistency of graph Laplacians. In Learning Theory. Lecture
Notes in Computer Science 3559 470–485. Springer, Berlin. MR2203281

[20] JOHNSTONE, I. M. (2006). High dimensional statistical inference and random matrices. Avail-
able at arXiv:math/0611589v1.

[21] MOORE, D. S. and YACKEL, J. W. (1977). Consistency properties of nearest neighbor density
function estimators. Ann. Statist. 5 143–154. MR426275

[22] ROWEIS, S. T. and SAUL, L. K. (2000). Nonlinear dimensionality reduction by locally linear
embedding. Science 290 2323–2326.

[23] SINGER, A. (2006). From graph to manifold Laplacian: The convergence rate. Appl. Comput.
Harmon. Anal. 21 128–134.

[24] SINGER, A. and WU, H.-T. (2012). Vector diffusion maps and the connection Laplacian.
Comm. Pure Appl. Math. 65 1067–1144.

[25] SINGER, A. and WU, H.-T. (2013). 2-D tomography from noisy projections taken at unknown
random directions. SIAM J. Imaging Sci. 6 136–175.

[26] SINGER, A. and WU, H.-T. (2017). Spectral convergence of the connection Laplacian from
random samples. Inf. Inference 6 58–123. MR3636868

[27] SMOLYANOV, O., WEIZSACKER, H. V. and WITTICH, O. (2007). Chernoff’s theorem and
discrete time approximations of Brownian motion on manifolds. Potential Anal. 26 1–29.

[28] STEIN, E. M. and WEISS, G. (2016). Introduction to Fourier Analysis on Euclidean Spaces.
PMS 32. Princeton Univ. Press, Princeton, NJ.

[29] TENENBAUM, J. B., DE SILVA, V. and LANGFORD, J. C. (2000). A global geometric frame-
work for nonlinear dimensionality reduction. Science 290 2319–2323.

[30] VAN DER MAATEN, L. and HINTON, G. (2008). Visualizing data using t-SNE. J. Mach. Learn.
Res. 9 2579–2605.

[31] VON LUXBURG, U., BELKIN, M. and BOUSQUET, O. (2008). Consistency of spectral cluster-
ing. Ann. Statist. 36 555–586. MR2396807

[32] WANG, X. (2015). Spectral convergence rate of graph Laplacian. Available at arXiv:
1510.08110.

http://www.ams.org/mathscinet-getitem?mr=436442
http://arxiv.org/abs/arXiv:1311.0851
http://www.ams.org/mathscinet-getitem?mr=2722468
http://www.ams.org/mathscinet-getitem?mr=3449771
http://arxiv.org/abs/arXiv:1602.02330
http://www.ams.org/mathscinet-getitem?mr=2387773
http://www.ams.org/mathscinet-getitem?mr=2203281
http://arxiv.org/abs/arXiv:math/0611589v1
http://www.ams.org/mathscinet-getitem?mr=426275
http://www.ams.org/mathscinet-getitem?mr=3636868
http://www.ams.org/mathscinet-getitem?mr=2396807
http://arxiv.org/abs/arXiv:1510.08110
http://arxiv.org/abs/arXiv:1510.08110


ASYMPTOTIC ANALYSIS OF LLE 3837

[33] WEINBERGER, K. Q. and SAUL, L. K. (2006). An introduction to nonlinear dimensionality
reduction by maximum variance unfolding. In AAAI 1683–1686.

[34] WU, H.-T. and WU, N. (2018). Supplement to “Think globally, fit locally under the
manifold setup: Asymptotic analysis of locally linear embedding.” DOI:10.1214/17-
AOS1676SUPP.

[35] ZHANG, Z. and WANG, J. (2006). MLLE: Modified locally linear embedding using multiple
weights. In Advances in Neural Information Processing Systems 19 (NIPS 2006) 1593–
1600. MIT Press, Cambridge, MA.

[36] ZHANG, Z. and ZHA, H. (2004). Principal manifolds and nonlinear dimensionality reduction
via tangent space alignment. SIAM J. Sci. Comput. 26 313–338.

DEPARTMENT OF MATHEMATICS

AND DEPARTMENT OF STATISTICAL SCIENCE

DUKE UNIVERSITY

DURHAM, NORTH CAROLINA 27708
USA
AND

MATHEMATICS DIVISION

NATIONAL CENTER FOR THEORETICAL SCIENCES

TAIPEI

TAIWAN

E-MAIL: hauwu@math.duke.edu

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF TORONTO

TORONTO, ONTARIO M5S 2E4
CANADA

E-MAIL: n.wu@mail.utoronto.ca

https://doi.org/10.1214/17-AOS1676SUPP
mailto:hauwu@math.duke.edu
mailto:n.wu@mail.utoronto.ca
https://doi.org/10.1214/17-AOS1676SUPP

	Introduction
	Review of locally linear embedding
	Asymptotic behavior of LLE
	Manifold setup
	Local covariance structure and local PCA
	Variance analysis of LLE
	The kernel function corresponding to LLE
	Bias analysis
	Convergence of LLE

	Numerical examples
	Sphere
	Examining the kernel
	Two-dimensional random tomography example

	epsilon-radius neighborhood v.s. K nearest neighborhood
	Relationship with two statistical topics
	Locally linear regression
	Measurement errors

	Conclusions and discussion
	Acknowledgment
	Supplementary Material
	References
	Author's Addresses

