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SIEVE BOOTSTRAP FOR FUNCTIONAL TIME SERIES

BY EFSTATHIOS PAPARODITIS1

University of Cyprus

A bootstrap procedure for functional time series is proposed which ex-
ploits a general vector autoregressive representation of the time series of
Fourier coefficients appearing in the Karhunen–Loève expansion of the func-
tional process. A double sieve-type bootstrap method is developed, which
avoids the estimation of process operators and generates functional pseudo-
time series that appropriately mimics the dependence structure of the func-
tional time series at hand. The method uses a finite set of functional principal
components to capture the essential driving parts of the infinite dimensional
process and a finite order vector autoregressive process to imitate the tempo-
ral dependence structure of the corresponding vector time series of Fourier
coefficients. By allowing the number of functional principal components as
well as the autoregressive order used to increase to infinity (at some appropri-
ate rate) as the sample size increases, consistency of the functional sieve boot-
strap can be established. We demonstrate this by proving a basic bootstrap
central limit theorem for functional finite Fourier transforms and by estab-
lishing bootstrap validity in the context of a fully functional testing problem.
A novel procedure to select the number of functional principal components
is introduced while simulations illustrate the good finite sample performance
of the new bootstrap method proposed.

1. Introduction. Statistical inference for time series stemming from station-
ary functional processes has attracted considerable interest during the last decades
and progress has been made in several directions. Estimation and testing pro-
cedures have been developed for a wide range of inference problems and for
large classes of stationary functional processes; see Bosq (2000), Hörmann and
Kokoszka (2012) and Horváth and Kokoszka (2012). However, the asymptotic
results derived, typically depend in a complicated way on difficult to estimate,
infinite dimensional characteristics of the underlying functional process. This re-
stricts considerably the implementability of asymptotic approximations when used
in practice to judge the uncertainty of estimation procedures or to calculate critical
values of tests. In such situations, bootstrap methods can provide useful alterna-
tives.

Bootstrap procedures for Hilbert space-valued time series proposed so far in the
literature, are mainly attempts to adapt, to the infinite dimensional functional setup,
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of bootstrap methods that have been developed for the finite dimensional (i.e.,
mostly univariate) time series case; cf. Lahiri (2003). Politis and Romano (1994)
considered applications of the stationary bootstrap to functional, Hilbert-valued
time series and showed its validity for the sample mean for functional processes
satisfying certain mixing and boundedness conditions. Dehling, Sharipov and
Wendler (2015) considered applications of the nonoverlapping block bootstrap to
U-statistics for so-called near epoch dependent functional processes and Sharipov,
Tewes and Wendler (2016) to change point analysis. Franke and Nyarigue (2016)
and Zhou and Politis (2016) developed some theory for different residual-based
bootstrap procedures applied to a first-order functional autoregressive process. No-
tice that the transmission of other bootstrap methods for real-valued time series to
the functional setup, like for instance of the autoregressive-sieve bootstrap [Kreiss
(1988) and Kreiss, Paparoditis and Politis (2011)] seems to be difficult mainly
due to problems associated with the estimation (of an with sample size increasing
number) of infinite dimensional autoregressive operators.

Applications of bootstrap procedures to certain inference problems in func-
tional time series analysis have been also considered in the literature. For in-
stance, for the construction of prediction intervals, Fernández De Castro, Guillas
and González Manteiga (2005) used an approach based on resampling pairs of
functional observations by means of kernel-driven resampling probabilities. The
same authors also apply a parametric, residual-based bootstrap approach using an
estimated first-order functional autoregression with i.i.d. resampling of appropri-
ately defined functional residuals. For the same prediction problem, Hyndman and
Shang (2009) applied different bootstrap approaches including bootstrapping the
functional curves by randomly disturbing the forecasted scores using residuals ob-
tained from univariate autoregressive fits. Aneiros-Pérez, Cao and Vilar-Fernández
(2011) considered the nonparametric functional autoregressive models, while Min-
gotti, Lillo and Romo (2015) the case of the integrated functional autoregressive
model. Apart from the lack of theoretical justification, the aforementioned boot-
strap applications do not provide a general bootstrap methodology for functional
time series as they are designed for and their applicability is restricted to the par-
ticular inference problem considered; see also McMurry and Politis (2011) and
Shang (2016) for an overview.

In this paper, a general and easy to implement bootstrap procedure for functional
time series is proposed which generates bootstrap replicates X∗

1 , X∗
2, . . . ,X∗

n of a
functional time series X1,X2, . . . ,Xn and is applicable to a large class of station-
ary functional processes. The procedure avoids the explicit estimation of process
operators and exploits some basic properties of the stochastic process of Fourier
coefficients (scores) appearing in the well-known Karhunen–Loève expansion of
the functional random variables. It is in particular shown, that under quite general
assumptions, the stochastic process of Fourier coefficients obeys a so-called vector
autoregressive representation and this representation plays a key role in developing
a bootstrap procedure for the functional time series at hand. More specifically, to
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capture the essential driving functional parts of the underlying infinite dimensional
process, the first m functional principal components are used and the correspond-
ing m-dimensional time series of Fourier coefficients is bootstrapped using a pth
order vector autoregression fitted to the vector time series of sample Fourier coef-
ficients. In this way, a m-dimensional pseudo-time series of Fourier coefficients is
generated which imitates the temporal dependence structure of the vector time se-
ries of sample Fourier coefficients. Using the (truncated) Karhunen–Loève expan-
sion, these pseudo-Fourier coefficients are then transformed to functional bootstrap
replicates of the main driving, principal components, of the observed functional
time series. Adding to these replicates an appropriately resampled functional noise,
leads finally to the bootstrapped functional pseudo-time series X∗

1,X∗
2, . . . ,X∗

n.
In a certain sense, our bootstrap procedure works by using a finite rank (i.e., m-

dimensional) approximation of the infinite dimensional structure of the underlying
functional process and a pth order vector autoregressive approximation of its in-
finite order temporal dependence structure. To achieve consistency and to capture
appropriately the entire infinite dimensional structure of the functional process, the
number m of functional principal components used as well as the order p of the
vector autoregression applied, are allowed to increase to infinity (at some appro-
priate rate) as the sample size n increases to infinity. This double sieve property
justifies the use of the term “sieve bootstrap” for the bootstrap procedure proposed.

We show that under quite general conditions, this bootstrap procedure succeeds
in imitating correctly the entire infinite dimensional autocovariance structure of the
underlying functional process. Notice that apart from the problem that instead of
the unknown true scores, the time series of estimated scores is used, the asymptotic
analysis of our bootstrap procedure faces additional challenges, which are caused
by the fact that vector autoregressions of increasing order and of increasing dimen-
sion are considered and that the lower bound of the corresponding spectral density
matrix approaches zero as the dimension of the vector time series of scores used,
increases to infinity. We demonstrate how the new bootstrap procedure proposed
can be successfully applied to different inference problems in functional time se-
ries analysis. In particular, we apply the proposed sieve bootstrap procedure to the
problem of estimating the distribution of the functional Fourier transform which is
fundamental in a multitude of applications and has attracted interest in the func-
tional time series literature; see Cerovecki and Hörmann (2017) for some recent
developments. In this context, a basic bootstrap central limit theorem is established
which shows validity of the functional sieve bootstrap for this important class of
statistics. Furthermore, we consider applications of the functional sieve bootstrap
in the context of fully functional testing and to the two sample mean problem
and show how this bootstrap procedure can be applied to consistently estimate the
complicated distribution of the test statistic of interest under the null.

Using the time series of Fourier coefficients in the context of functional time
series analysis has been considered by many authors in a variety of applications.
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Among others, we mention Hyndman and Shang (2009) who, for functional au-
toregressive models and for the sake of prediction, used univariate autoregressions
fitted to the scalar time series of scores. In the same context and more related to
the approach proposed in this paper, a multivariate approach of prediction has been
proposed by Aue, Norinho and Hörmann (2015), which works by fitting a vector
autoregressive model to the multivariate time series of scores.

The paper is organized as follows. Section 2 derives some basic properties and
discuss the autoregressive representations of the vector process of Fourier coef-
ficients appearing in the Karhunen–Loève expansion of the functional process.
Apart from being useful for bootstrap purposes, these properties are of interest
on their own. The functional sieve bootstrap procedure proposed is described in
Section 3 where some properties of the bootstrap functional pseudo-time series
are also discussed. Asymptotic validity of the new bootstrap procedure applied
to finite Fourier transforms and to fully functional testing is established in Sec-
tion 4. Section 5 proposes some novel practical, data driven rules to choose the
bootstrap parameters and presents some numerical simulations which investigate
the finite sample performance of the functional sieve bootstrap. Comparisons with
three variants of block bootstrap methods are also given. Technical proofs and
auxiliary lemmas are deferred to Section 6.

2. The process of Fourier coefficients.

2.1. The functional setup. We consider a (functional) stochastic process X =
{Xt, t ∈ Z} where for each t (interpreted as time), Xt is a random element of the
separable Hilbert space H := L2([0,1],R) with parametrization τ → Xt(τ ) ∈ R

for τ ∈ [0,1]. As usual, we denote by 〈·, ·〉 the inner product in H and by ‖ · ‖ the
induced norm defined for x, y ∈ H as 〈x, y〉 = (

∫
[0,1] x(t)y(t) dt)1/2 and ‖x‖ =

(〈x, x〉)1/2, respectively. Furthermore, for matrices A and B we denote by ‖A‖F

the Frobenius norm, we write A ≥ B or B ≤ A if A − B is nonnegative Hermitian
while for an operator T , ‖T ‖ denotes its operator norm and ‖T ‖HS its Hilbert–
Schmidt norm, if T is a Hilbert–Schmidt operator.

For the underlying functional process X, it is assumed that its dependence struc-
ture satisfies the following assumption.

ASSUMPTION 1. X is a purely nondeterministic, L4−M approximable pro-
cess.

The general notion of Lp−M approximability refers to stochastic process
X = {Xt, t ∈ Z} with Xt taking values in H, E‖Xt‖p < ∞, and where the
random element Xt admits the representation Xt = f (εt , εt−1, . . .). Here, the
εt ’s are i.i.d. random elements in H and f some measurable function f :
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H∞ → H. If for {̃εt , t ∈ Z} an independent copy of {εt , t ∈ Z} and X
(M)
t =

f (εt , εt−1, . . . , εt−M+1, ε̃t−M, ε̃t−M−1, . . .), the condition

∞∑
k=1

(
E

∥∥Xk − X
(k)
k

∥∥p)1/p
< ∞,

is satisfied, then X is called Lp−M approximable. Lp−M approximability is
a notion of weak dependence, which applies to many commonly used functional
time series models, like linear functional processes, functional ARCH processes,
etc.; see Hörmann and Kokoszka (2010) for more details.

Let μ := EX0 ∈ H be the mean of X which by stationary is independent of t and
for which we assume μ = 0 for simplicity. We denote by Ch the autocovariance
operator Ch : H → H at lag h ∈ Z defined by Ch(·) = E〈Xt − μ, ·〉(Xt+h − μ).
Associated with the autocovariance operator is the autocovariance function ch :
[0,1] × [0,1] → R with ch(τ, ν) = E(Xt(τ ) − μ(τ))(Xt+h(ν) − μ(ν)), τ, ν ∈
[0,1], that is, Ch is an integral operator with kernel function ch.

Assumption 1 implies that
∑

h ‖Ch‖HS < ∞ and that for every ω ∈ R the spec-
tral density operator

Fω(x) = (2π)−1
∑
h∈Z

Ch(x)e−ihω, x ∈H

is well defined, continuous in ω, self-adjoint and trace class [Hörmann, Kidziński
and Hallin (2015)]; see also Panaretos and Tavakoli (2013) for similar properties
under different weak dependence conditions. In what follows, we will strengthen
somehow the assumption on the norm summability of the autocovariance operator
to the following requirement.

ASSUMPTION 2.
∑

h(1 + |h|)r‖Ch‖HS < ∞ for some r ≥ 0.

Furthermore, we will assume that the spectral density operator Fω satisfies the
following condition.

ASSUMPTION 3. For all ω ∈ [0, π], the operator Fω is of full rank, that is,
ker(Fω) = 0.

For real-valued univariate processes, ker(Fω) = 0 is equivalent to the condition
that the spectral density is everywhere in [0, π] strictly positive while for multivari-
ate process to the nonsingularity of the spectral density matrix for every frequency
ω ∈ [0, π]. Notice that all eigenvalues νj (ω), j = 1,2, . . . of Fω are positive and
that

∑∞
j=1 νj (ω) < ∞ by the trace class property of Fω.
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2.2. Vector autoregressive representation. Since C0 = ∫ π
−π Fω dω, the posi-

tivity of Fω implies that the covariance operator C0 has full rank, that is, its eigen-
values λj satisfy λj > 0 for all j ≥ 1. By the symmetry and compacteness of C0,
the random element Xt admits the well-known Karhunen–Loève representation

(2.1) Xt =
∞∑

j=1

〈Xt, vj 〉vj , t ∈ Z,

where vj , j = 1,2, . . . , are the orthonormalized eigenfunctions that correspond to
the eigenvalues λj , j = 1,2, . . . , of C0. For t ∈ Z, let ξj,t := 〈Xt, vj 〉, j ≥ 1, and
consider any subset of indices M = {j1, j2, . . . , jm} ⊂ N with j1 < j2 < · · · < jm,
m < ∞. Later on, we will concentrate on the specific set M = {1,2, . . . ,m}, which
will be the set of the m largest eigenvalues of the covariance operator C0.

Consider now the m-dimensional process ξ (M) = {ξ (M)
t = (ξ

(M)
js,t

, s = 1,2, . . . ,

m)�, t ∈ Z}. Observe that ξ (M) is strictly stationary, purely nondeterministic
and has mean zero, that is, E(ξ

(M)
t ) = (〈EXt, vjs 〉, s ∈ M) = 0. Furthermore,

its autocovariance matrix function 	ξ(M)(h) = E(ξ
(M)
t ξ

(M)T

t+h ), h ∈ Z, is given by
	ξ(M)(h) = (〈Ch(vjs ), vlr 〉)s,r=1,2,...,m and satisfies by Assumption 2,

∞∑
h=−∞

(
1 + |h|)r∥∥	ξ(M)(h)

∥∥
F =

∞∑
h=−∞

(
1 + |h|)r( m∑

s,r=1

〈
Ch(vjs ), vlr

〉2)1/2

≤
∞∑

h=−∞

(
1 + |h|)r‖Ch‖HS < ∞.

(2.2)

Note that the bound on the right-hand side above is independent of the set M and
that although by construction it holds true that Cov(ξ

(M)
r1,t

, ξ
(M)
r2,t

) = 0 for r1 = r2,
the random variables ξr1,t and ξr2,s may be correlated for t = s. The summabil-
ity property (2.2) implies that the m-dimensional vector process ξ (M) possesses a
continuous spectral density matrix fξ (M)(·), which is given by

fξ (M)(ω) = (2π)−1
∞∑

h=−∞
	ξ(M)(h)e−iωh, ω ∈ R.

Moreover, fξ (M) satisfies the following boundedness conditions.

LEMMA 2.1. Under Assumptions 1 and 3 and Assumption 2 with r = 0, the
spectral density fξ (M) satisfies

(2.3) δMIm ≤ fξ (M)(ω) ≤ cIm for all ω ∈ [0, π],
where δM and c are real numbers (δM depends on the set M), such that 0 < δM ≤
c < ∞ and Im is the m × m unity matrix.
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The continuity and the boundeness properties of the spectral density matrix
fξ(M)(·) stated in Lemma 2.1, imply that the process ξ (M) obeys a so-called vec-
tor autoregressive representation; Cheng and Pourahmadi (1993), see also Wiener
and Masani (1958). That is, there exist an infinite sequence of m × m-matrices
{A(M)

j , j ∈ N} and a full rank m-dimensional white noise process {e(M)
t , t ∈ Z},

such that ξ
(M)
t can be expressed as

(2.4) ξ
(M)
t =

∞∑
j=1

A
(M)
j ξ

(M)
t−j + e

(M)
t , t ∈ Z,

where the coefficients matrices satisfy
∑

j∈N(1+ j)r‖A(M)
j ‖F < ∞ and {e(M)

t , t ∈
Z} is a zero mean white noise innovation process, that is, E(e

(M)
t ) = 0 and

E(e
(M)
t e

(M)�
s ) = δt,s�

(M)
e , with δt,s = 1 if t = s, δt,s = 0 otherwise and �

(M)
e

a full rank m × m covariance matrix. We stress here the fact that (2.4) does not
describe a model for the process of Fourier coefficients ξ

(M)
t and should not be

confused with the so-called linear, infinite order vector autoregressive [VAR(∞)]
process driven by independent, identically distributed (i.i.d.) innovations. In fact,
representation (2.4) is the autoregressive analogue of the well-known (moving av-
erage) Wold representation of ξ

(M)
t with respect to the same white noise innovation

process {e(M)
t , t ∈ Z}. This autoregressive representation is valid for any station-

ary and purely nondeterministic process the spectral density matrix of which is
continuous and satisfies the boundedness conditions (2.3); see also Cheng and
Pourahmadi (1993) and Pourahmadi (2001) for details. In contrast to the Wold
representation, the autoregressive representation (2.4) seems to be more appeal-
ing for statistical purposes, since it express the vector time series of Fourier co-
efficients ξ

(M)
t as a function of its (in principle) observable past values ξ

(M)
t−j ,

j = 1,2, . . . .
In what follows, we assume that the eigenvalues are in descending order, that

is, λ1 > λ2 > · · · > λm > 0 and we consider the set M = {1,2, . . . ,m} of the m

largest eigenvalues of C0. The corresponding normalized eigenfunctions (princi-
pal components) are denoted by vj , j = 1,2, . . . ,m and are (up to a sign) uniquely
identified. Furthermore, by Parseval’s identity, the quantity

∑m
j=1 λj describes the

variance of Xt captured by the first m functional principal components. To sim-
plify notation, we surpass in the following the upper index (M) and write simple
ξt for ξ

(M)
t , respectively, fξ for fξ(M), keeping in mind that the j th component

ξj,t = 〈Xt, vj 〉 of ξt = (ξ1.t , ξ2,t , . . . , ξm,t )
� is obtained using the orthonormal-

ized eigenfunction vj which corresponds to the j th largest eigenvalue λj of C0,

j = 1,2, . . . ,m. Furthermore, we write Aj(m), et (m), δm and �e(m) for A
(M)
j ,

e
(M)
t , δM and �

(M)
e , respectively.
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3. The functional sieve bootstrap procedure.

3.1. The bootstrap procedure. The basic idea of our procedure is to gener-
ate pseudo-replicates X∗

1,X∗
2, . . . ,X∗

n of the functional time series at hand by
first bootstrapping the m-dimensional time series of Fourier coefficients ξt =
(ξ1,t , ξ2,t , . . . , ξm,t )

�, t = 1,2, . . . , n, corresponding to the first m principal com-
ponents. This m-dimensional time series of Fourier coefficients is bootstrapped
using the autoregressive representation of ξt discussed in Section 2.2. The gener-
ated m-dimensional pseudo-time series of Fourier coefficients is then transformed
to functional principal pseudo-components by means of the truncated Karhunen–
Loève expansion

∑m
j=1 ξj,t vj . Adding to this, an appropriately resampled func-

tional noise leads to the functional pseudo-time series X∗
1,X∗

2, . . . ,X∗
n. However,

since the ξt ’s are not observed, we work with the time series of estimates scores.
This idea is precisely described in the following functional sieve bootstrap algo-
rithm:

Step 1: Select a number m = m(n) of functional principal components and an
autoregressive order p = p(n), both finite and depending on n.

Step 2: Let

ξ̂ t = (̂
ξj,t = 〈Xt, v̂j 〉, j = 1,2, . . . ,m

)�
, t = 1,2, . . . , n,

be the m-dimensional time series of estimated Fourier coefficients, where v̂j ,
j = 1,2, . . . ,m are the estimated eigenfunctions corresponding to the esti-
mated eigenvalues λ̂1 > λ̂2 > · · · > λ̂m of the sample covariance operator Ĉ0 =
n−1 ∑n

t=1(Xt − Xn) ⊗ (Xt − Xn), Xn = n−1 ∑n
t=1 Xt .

Step 3: Let X̂t,m = ∑m
j=1 ξ̂j,t v̂j and define the functional residuals Ût,m = Xt −

X̂t,m, t = 1,2, . . . , n.
Step 4: Fit a pth order vector autoregressive process to the m-dimensional time

series ξ̂t , t = 1,2, . . . , n, denote by Âj,p(m), j = 1,2, . . . , p, the estimates of the
autoregressive matrices and by êt,p the residuals,

êt,p = ξ̂t −
p∑

j=1

Âj,p(m)̂ξt−j , t = p + 1,p + 2, . . . , n.

Different estimators Âj,p(m), j = 1,2, . . . , p can be used, but we focus in the
following on Yule–Walker estimators; cf. Brockwell and Davis (1991).

Step 5: Generate a m-dimensional pseudo time series of scores ξ∗
t = (ξ∗

1,t , ξ
∗
2,t ,

. . . , ξ∗
m,t ), t = 1,2, . . . , n, using

ξ∗
t =

p∑
j=1

Âj,p(m)ξ∗
t−j + e∗

t ,

where e∗
t , t = 1,2, . . . , n are i.i.d. random vectors having as distribution the em-

pirical distribution of the centered residual vectors ẽt,p = êt,p − ên, t = p + 1,p +
2, . . . , n and ên = (n − p)−1 ∑n

t=p+1 êt,p .
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Step 6: Generate a pseudo-functional time series X∗
1,X∗

2, . . . ,X∗
n, where

(3.1) X∗
t =

m∑
j=1

ξ∗
j,t v̂j + U∗

t , t = 1,2, . . . , n,

and U∗
1 ,U∗

2 , . . . ,U∗
n are i.i.d. random functions obtained by choosing with replace-

ment from the set of centered functional residuals Ût,m − Ûn, t = 1,2, . . . , n and

Ûn = n−1 ∑n
t=1 Ût,m.

Some comments regarding the above algorithm are in order. Notice first that
X∗

1,X∗
2, . . . ,X∗

n are functional pseudo-random variables and that the autoregres-
sive representation of the vector time series of Fourier coefficients is solely used
as a tool to bootstrap the m main functional principal components of the functional
time series at hand. In fact, it is this autoregressive representation, which allows the
generation of the pseudo-time series of Fourier coefficients ξ∗

1 , ξ∗
2 , . . . , ξ∗

n in Step 4
and Step 5 in a way that imitates the dependence structure of the sample Fourier
coefficients ξ1, ξ2, . . . , ξn. These pseudo-Fourier coefficients are transformed to
bootstrapped main principal components by means of the truncated and estimated
Karhunen–Loève expansion which together with the additive functional noise U∗

t ,
lead to the new functional pseudo-observations X∗

1,X∗
2, . . . ,X∗

n.
The estimated eigenfunctions v̂j used in Step 2 may point in an opposite di-

rection than the eigenfunctions vj . In asymptotic derivations, this is commonly
taken care of by considering the sign corrected estimator ŝj v̂j , where the (unob-
served) random variable ŝj is given by ŝj = sign(〈v̂j , vj 〉). However, since in our
setting adding this sign correction will not affect the asymptotic results derived,
we assume for simplicity throughout this paper, that ŝj = 1, for j = 1,2, . . . ,m.

REMARK 3.1. To simplify notation, we have assumed that the mean of X
is zero. If EXt = μ = 0, then the sieve bootstrap algorithm can be appropri-
ately modified by defining the pseudo-random element X∗

t in Step 6 as X∗
t =

Xn + ∑m
j=1 ξ∗

j,t v̂j + U∗
t , t = 1,2, . . . , n. Notice that since under Assumption 1,

‖Xn − μ‖ = OP (n−1/2) [see Hörmann and Kokoszka (2012)], the asymptotic re-
sults derived in this paper are not affected, that is, EXt = 0 is not a stringent
assumption.

REMARK 3.2. Modifications of the above basic bootstrap algorithm are pos-
sible which concern the resampling schemes used to generate the vector of pseudo-
innovations e∗

t and/or the bootstrap functional noise U∗
t . To elaborate, and as we

will see in the sequel, for general stationary processes satisfying Assumption 1,
the applied i.i.d. resampling used to generate the pseudo-innovations e∗

t in Step 5,
suffices in order to capture the entire, infinite dimensional second-order structure
of the underlying functional process X. However, a modification of this i.i.d. re-
sampling scheme may be needed if higher order dependence characteristics of the
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underlying functional process beyond those of order two, should also be correctly
mimicked by the functional pseudo-time series X∗

1,X∗
2, . . . ,X∗

n. In such a case,
the i.i.d. resampling used to generate the e∗

t ’s in Step 5 can be replaced by other
resampling schemes (i.e., block bootstrap schemes) that are able to capture higher
order dependence characteristics of the white noise process {et , t ∈ Z} appearing
in (2.4).

3.2. Some properties of the bootstrap functional process. As usual, all con-
siderations made regarding the bootstrap procedure are made conditionally on
the observed functional time series X1,X2, . . . ,Xn. The generation mechanism of
the pseudo-time series X∗

1,X∗
2, . . . ,X∗

n, enables us to consider the bootstrap func-
tional process X∗ = {X∗

t , t ∈ Z}, where for t ∈ Z, X∗
t = ∑m

j=1 1�
j ξ∗

t v̂j + U∗
t , with

{ξ∗
t = (ξ∗

1,t , . . . , ξ
∗
m,t )

�, t ∈ Z} generated as ξ∗
t = ∑p

j=1 Âj,p(m)ξ∗
t−j + e∗

t and the

U∗
t ’s are i.i.d. functional random variable taking values in the set {Ût,m − Ûn, t =

1,2, . . . , n} with probability 1/n. In the above notation, 1j is the m-dimensional
vector 1j = (0, . . . ,0,1,0, . . . ,0)�, where the unity appears in the j th position.

It is easy to see that X∗ is a strictly stationary functional process with mean
function E∗X∗

t = 0 and autocovariance operator C∗
h : H → H given, for h ∈ Z, by

C∗
h(·) =

m∑
j1=1

m∑
j2=1

1′
j1

�∗
h1j2〈v̂j1, ·〉v̂j2 + I (h = 0)E∗〈

U∗
t , ·〉U∗

t ,

where 	∗
h = E∗(ξ∗

t ξ∗T

t+h) is the m×m autocovariance matrix at lag h of {ξ∗
t , t ∈ Z}.

C∗
h is a Hilbert–Schmidt operator since it is, for h = 0, a finite rank opera-

tor while for h = 0 it is the sum of a finite rank operator and of the (Hilbert–
Schmidt) empirical covariance operator of the functional pseudo-innovations
C∗

U = E∗〈U∗
t , ·〉U∗

t = n−1 ∑n
t=1〈Ût,m − Ûn, ·〉(Ût,m − Ûn).

If the (estimated) vector autoregressive process used to generate the time se-
ries of pseudo-scores ξ∗

t is stable, then the dependence structure of the bootstrap
process X∗ can be precisely described. This is stated in the following proposi-
tion. Notice that the required stability condition of the estimated autoregressive
polynomial is fulfilled, if for instance, Âj,p , j = 1,2, . . . , p, are the Yule–Walker
estimators; cf. Brockwell and Davis (1991), Chapter 11.4.

PROPOSITION 3.1. If p,m ∈ N is such that the estimator Âj,p , j = 1,2,

. . . , p, used in Step 4 of the functional sieve bootstrap algorithm is well defined and
satisfies det(Âp,m(z)) = 0 for all |z| ≤ 1, where Âp,m(z) = Im −∑p

j=1 Âj,p(m)zj ,

z ∈ C, then, conditionally on X1,X2, . . . ,Xn, the bootstrap process X∗ is L2−M
approximable.
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The L2−M approximability of X∗ implies that
∑

h ‖C∗
h‖HS < ∞ [see Hör-

mann, Kidziński and Hallin (2015)], which can be also easily verified since∑
h∈Z

∥∥C∗
h

∥∥
HS ≤ ∑

h∈Z

∥∥	∗
h

∥∥
F + I (h = 0)

∥∥C∗
U

∥∥
HS = OP (1).

Furthermore, and because of the L2−M approximability property, the bootstrap
process X∗ possesses for every ω ∈R a spectral density operator F∗

ω,m defined by

(3.2) F∗
ω,m(x) = (2π)−1

∑
h∈Z

C∗
h(x)e−ihω, x ∈H.

C∗
h and F∗

ω,m are essentially finite rank approximations of the corresponding pop-
ulation operators Ch and Fω, respectively. Thus and in order for the bootstrap
process X∗ to capture the infinite dimensional structure of the underlying func-
tional process and the infinite order dependence structure of the vector time se-
ries generating the scores, the dimension m as well as the autoregressive order p,
used in the functional sieve bootstrap algorithm, have to increase to infinity (at
some appropriate rate) as the sample size n increases to infinity. This rate should
take into account the fact that the true scores and eigenfunctions appearing in the
Karhunen–Loève expansion are not observed and, therefore, sample estimates are
used instead. Furthermore, the lower bound δm of the spectral density matrix of the
scores fξ , approaches zero as the sample size n increases to infinity. This is due
to the fact that the eigenvalues νj (ω) of the spectral density operator Fω converge
to zero as j → ∞. These facts make the asymptotic analysis quite involved and
impose several restrictions regarding the behavior of m and p with respect to the
sample size n which are summarized in the following assumption.

ASSUMPTION 4. The sequences m = m(n) and p = p(n) satisfy m → ∞ and
p → ∞ as n → ∞ such that:

(i) m3/2 = O(p1/2).

(ii) p7

n1/2λ2
m

√∑m
j=1

1
α2

j

→ 0, where α1 = λ1 −λ2 and αj = min{λj−1 −λj , λj −
λj+1} for j = 2,3, . . . ,m.

(iii) δ−1
m

∑∞
j=p+1 j r‖Aj(m)‖F → 0 for some r ≥ 0, where δm is the lower

bound of the spectral density matrix fξ given in (2.3).
(iv) m4p2‖Ãp,m −Ap,m‖F = OP (1), where Ãp,m = (Ã1,p(m), . . . , Ãp,p(m)),

and Ap,m = (A1,p(m), . . . ,Ap,p(m)). Here, Ãj,p , j = 1,2, . . . , p denotes the
same estimator as Âj,p , j = 1,2, . . . , p, based on the true vector time series of
scores ξ1, ξ2, . . . , ξn instead of their estimates ξ̂1, ξ̂2, . . . , ξ̂n and Aj,p(m), j =
1,2, . . . ,m are the coefficient matrices of the best (in the mean square sense) linear
predictor of ξt based on ξt−j , j = 1,2, . . . , p.
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Assumption 4(i) restricts the rate with which the dimension m is allowed to in-
crease to infinity compared with that of p. Assumption 4(ii) is imposed in order
to control the error made by the fact that the bootstrap procedure is based on es-
timated scores and eigenfunctions instead on the unobserved true quantities in a
context where the dimension m and the autoregressive order p, both, increase to
infinity and the lower bound of the spectral density matrix of the m-dimensional
vector of scores approaches zero as m increases to infinity. Part (iii) relates the
rate of increase of the autoregressive order p to the lower bound of the spec-
tral density matrix fξ and the decay of the norm of the autoregressive matrices
to zero. Part (iv) is essentially a requirement on the rate at which m and p are
allowed to increase to infinity taking into account the convergence rate of the es-
timator Ãj,p , j = 1,2, . . . , p based on the true scores. For instance, calculations
similar to that in the proof of Lemma 6.3 yield for the Yule–Walker estimator
that ‖Ãp,m − Ap,m‖F = OP (mpn−1/2(

√
mλ−1

m + p)2) which, taking into account
Assumption 4(i), implies that Assumption 4(iv) is satisfied if m,p → ∞ slowly
enough with n such that mp6 = O(

√
nλ2

m) and pλ2
m = O(m2). Notice that, for

real valued-random variables, such assumptions relating the rate of increase of the
autoregressive parameters to the convergence rate of the estimators used, are com-
mon in the autoregressive-sieve bootstrap literature; see Kreiss, Paparoditis and
Politis (2011) and Meyer and Kreiss (2015). However, the situation here is much
more involved since in our context, not only the order p but also the dimension
m of the vector autoregression has to increase to infinite with the sample size by
taking into account the fact that λm converges to zero as m increases to infinity.

The following lemma illustrates the rate conditions imposed in Assumption 4 by
considering two particular examples of the behavior of the difference λj − λj+1
which is related to the rate of decrease of the eigenvalues λj . According to this
lemma, p may increase to infinity as na for some a > 0 while the rate of increase
of m depends on the rate of decrease of λj −λj+1, respectively, of the eigenvalues
λj , j = 1,2, . . . . If these differences decrease with a geometric rate, then m may
increase at most logarithmically in the sample size n, while if the same differences
decrease with a polynomial rate, then m may increase to infinity faster, like nζ for
some appropriate ζ > 0.

LEMMA 3.1. Assume that Ãp,m are the Yule–Walker estimators of Ap,m:

(i) If λj −λj+1 ≥ Cλρ
j for j = 1,2, . . . , ρ ∈ (0,1) and Cλ > 0, then Assump-

tion 4(i), (ii) and (iv) is satisfied if

p = O
(
na)

and m ≤
(

1

6 log(ρ−1)
(1 − 14a) − δ

)
log(n),

for a ∈ (0,1/14) and some δ > 0.
(ii) If λj − λj+1 ≥ Cλj

−θ for j = 1,2, . . . and for some θ > 1 and Cλ > 0,
then Assumption 4(i), (ii) and (iv) is satisfied if

p = O
(
na)

and m = O
(
nζ )

,
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for a ∈ (0,1/14) and ζ ∈ [ζmin, ζmax], where ζmin = a/(2 + 2θ) and ζmax =
min{(1 − 14a)/(1 + 6θ) − δ, a/3} for some δ > 0.

Under the condition that m and p increase to infinity at an appropriate rate with
n such that Assumption 4 is satisfied, the following proposition can be established
which shows that the spectral density operator F∗

ω,m of the bootstrap process X∗
converges, in Hilbert–Schmidt norm, to the spectral density operator Fω of the
underlying functional process X.

PROPOSITION 3.2. Under Assumptions 1 and 3 and Assumptions 2 and 4 with
r = 2, we have that as n → ∞,

sup
ω∈[0,π ]

∥∥F∗
ω,m −Fω

∥∥
HS → 0,

in probability.

From the above proposition and the inversion formulae of Fourier transforms,
we immediately get for the covariance operators C∗

h and Ch of the bootstrap pro-
cess X∗ and of the underlying process X, that suph∈Z ‖C∗

h − Ch‖HS → 0, in prob-
ability, as n → ∞. Thus the bootstrap process X∗ imitates asymptotically cor-
rect the entire infinite dimensional autocovariance structure of the functional pro-
cess X. This allows for the use of the bootstrap functional time X∗

1,X∗
2, . . . ,X∗

n

to approximate the distribution of statistics based on the functional time series
X1,X2, . . . ,Xn. Some examples of such statistics are discussed in the next sec-
tion.

So far we have assumed that the covariance operator C0 has full rank, that is,
that its eigenvalues λj are distinct which implies that, for consistency and in order
to capture the entire infinite dimensional dependence structure of the underlying
functional process X, the number m of principal components included, has to in-
crease to infinity with the sample size n. The situation is much simpler if we as-
sume that m0 ∈ N exists such that λm0 > 0 and λj = 0 for all j > m0. In this case,
only the finite number of m0 score time series are needed to describe the entire
dependence structure of X. We are then essentially in the finite dimensional case
with the m0-dimensional score process {ξt = (〈Xt, vj 〉, j = 1, . . . ,m0)

�, t ∈ Z},
possessing a spectral density matrix which is bounded from bellow by a posi-
tive constant independent of the sample size n. Furthermore, as in the proof of
Lemma 6.3 and, because in this case

∑m0
j=1 ‖v̂j − vj‖2 = OP (n−1/2), we get that

‖Âp,m0 − Ãp,m0‖F = OP (p4/
√

n). Standard arguments applied in the case of the
(finite dimensional) vector autoregressive-sieve bootstrap can then be used [see, for
instance, Meyer and Kreiss (2015)], to show that under less restrictive conditions

that those stated in Assumption 4, supω∈[0,π ] ‖F∗
ω,m0

−Fω‖HS
P→ 0, in probability.
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4. Bootstrap validity. In this section, we investigate the validity of the func-
tional sieve bootstrap applied in order to approximate the distribution of some
statistic Tn = T (X1,X2, . . . ,Xn) of interest, when the bootstrap analogue T ∗

n =
T (X∗

1,X∗
2, . . . ,X∗

n) is used. Notice that establishing validity of a bootstrap proce-
dure for time series heavily depends on two issues; see also Kreiss and Paparoditis
(2011). On the dependence structure of the underlying process which affects the
distribution of the statistic of interest and on the capability of the bootstrap pro-
cedure used to mimic appropriately this dependence structure. Furthermore, since
proving bootstrap validity is a case by case matter, we demonstrate in the following
applications of the functional sieve bootstrap procedure proposed to some statis-
tics that have recently attracted considerable interest in the functional time series
literature.

4.1. Functional finite Fourier transform. Consider the distribution of the func-
tional Fourier transform:

(4.1) Sn(ω) =
n∑

t=1

Xte
−itω, ω ∈ [−π,π ].

Notice that the sample mean Xn = n−1Sn(0) is just a special case of (4.1). In order
to elaborate on the limiting distribution of Sn(ω), we first fix some notation. We
say that a random element Z ∈ HC := H + iH, follows a circularly-symmetric
complex Gaussian distribution with mean zero and covariance G. We write Z ∼
CN(0,G), if (

Re(Z)

Im(Z)

)
∼ NH×H

((
0
0

)
,

1

2

(
Re(G) − Im(G)

Im(G) Re(G)

))
;

see also Cerovecki and Hörmann (2017) for a general discussion of the complex
Gaussian distribution.

Under a range of different weak dependence assumptions on the functional pro-
cess X, it has been shown that

(4.2) n−1/2Sn(ω) ⇒ CN(0,2πFω)

as n → ∞, where ⇒ denotes weak convergence on HC. For ω = 0, such a lim-
iting behavior has been established for linear functional processes by Merlevède,
Peligrad and Utev (1997) and for Lp−M approximable processes by Horváth,
Kokoszka and Reeder (2013). Panaretos and Tavakoli (2013) derived the above
limiting distribution of n−1/2Sn(ω) for ω ∈ [0, π], under a summability condition
of the functional cumulants, while more general results for the same statistic and
under weaker conditions, have been recently obtained by Cerovecki and Hörmann
(2017).

We propose to use the bootstrap statistic n−1/2S∗
n(ω) = n−1/2 ∑n

t=1 X∗
t e

−itω in
order to approximate the distribution of the statistic n−1/2Sn(ω). The following
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theorem establishes asymptotic validity of this functional sieve bootstrap proposal
for the class of functional Fourier transforms considered. In this theorem, d is any
metric metrizing weak convergence on HC.

THEOREM 4.1. Suppose that for ω ∈ [0, π], the sequence {n−1/2Sn(ω), n ∈
N} in HC satisfies (4.2). Suppose further that Assumptions 1 and 3 and Assump-
tions 2 and 4 with r = 2 are satisfied. Then, as n → ∞:

(i) d(L(n−1/2Sn(ω)),L(n−1/2S∗
n(ω)|X1,X2, . . . ,Xn)) → 0, and

(ii) ‖n−1E∗S∗
n(ω) ⊗ S∗

n(ω) − n−1ESn(ω) ⊗ Sn(ω)‖HS
P→ 0,

in probability.

REMARK 4.1. Notice that as a special case of the above theorem we get that,
under the assumptions made, and as n → ∞,

√
nX

∗
n ⇒ N(0,

∑
h∈Z Ch), in prob-

ability and nE∗X∗
n ⊗ X

∗
n

P→ 2πF0, which provides one of the first instances of a
central limit theorem for the bootstrap for functional time series under the weak
dependence conditions stated in Assumption 1.

4.2. Fully functional testing. In a variety of functional testing situations, one
is faced with the problem that the limiting distribution under the null of a fully
functional test statistic, depends in a complicated way, on difficult to estimate
characteristics of the underlying functional process. This makes the practical im-
plementation of asymptotic results derived in order to calculate critical values of
tests a difficult task. To overcome this problem, a common approach in the liter-
ature is to consider tests based on finite dimensional projections. However, such
tests have nondegenerated power only for alternatives, which are not orthogonal to
the space captured by the particular projections considered; see Horváth, Kokoszka
and Reeder (2013) and Horváth, Kokoszka and Rice (2014) for examples. Using as
an example the two sample mean problem, we demonstrate in the following how
the sieve bootstrap procedure proposed in this paper, can be successfully applied
to approximate the null distribution of a fully functional test.

Let X = {Xt, t ∈ Z} and Y = {Yt , t ∈ Z} be two independent, strictly stationary
functional processes with mean functions μX = EXt and μY = EYt , respectively,
and consider the testing problem H0 : μX = μY against the alternative H1 : μX =
μY . Given two time series X1,X2, . . . ,Xn1 and Y1, Y2, . . . , Yn2 stemming from X
and Y, respectively, a natural test statistic for these hypotheses is given by

Un1,n2 = n1n2

n1 + n2
‖Xn1 − Yn2‖2,

where Xn1 = n−1
1

∑n1
t=1 Xt and Yn2 = n−1

2
∑n2

t=1 Yt . If both processes satisfy As-
sumption 1 and n1, n2 → ∞ such that n1/(n1 + n2) → θ ∈ (0,1), it has been

shown in Horváth, Kokoszka and Reeder (2013), that Un1,n2

d→ ∫ 1
0 	2(τ ) dτ ,
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where {	(τ), τ ∈ [0,1]} is a mean zero Gaussian process with covariance function
E(	(τ1)	(τ2)) = (1 − θ)cX(τ1, τ2) + θcY (τ1, τ2) for τ1, τ2 ∈ [0,1] and cX(τ1,

τ2) = Cov(X0(τ1),X0(τ2)) + ∑
h≥1 Cov(X0(τ1),Xh(τ2)) + ∑

h≥1 Cov(X0(τ2),

Xh(τ1)) and cY (τ1, τ2) = Cov(Y0(τ1), Y0(τ2)) + ∑
h≥1 Cov(Y0(τ1), Yh(τ2)) +∑

h≥1 Cov(Y0(τ2), Yh(τ1)). Notice that the kernel functions cX and cY are un-
known, which makes the calculation of critical values of the test Un1,n2 a difficult
task.

Since the functional sieve bootstrap procedure proposed satisfactory imitates
the autocovariance structure of the underlying processes, it can be successfully
applied to estimate the critical values of the test Un1,n2 . To elaborate, the goal is
to generate two independent functional pseudo-time series X∗

1,X∗
2, . . . ,X∗

n1
and

Y ∗
1 , Y ∗

2 , . . . , Y ∗
n2

, that mimic the autocovariance structure of the processes X and
Y, respectively, and satisfy, at the same time, the null hypothesis of interest.
For this, let X∗

t and Y ∗
t be generated by means of equation (3.1) of the func-

tional sieve bootstrap algorithm, where for the generation of the X∗
t ’s the sam-

ple scores ξ̂
(X)
t = (̂ξ

(X)
j,t = 〈Xt, v̂

(X)
j 〉, j = 1,2, . . . ,m1)

�, t = 1,2, . . . , n1 and
for the generation of the Y ∗

t ’s, the sample scores ξ̂
(Y )
t = (̂ξ

(Y )
j,t = 〈Yt , v̂

(Y )
j 〉, j =

1,2, . . . ,m2)
�, t = 1,2, . . . , n2 are used in Step 1 of this algorithm. Here, v̂

(X)
j ,

j = 1, . . . ,m1 and v̂
(Y )
j , j = 1, . . . ,m2, denote the orthonormalized eigenfunctions

of the m1 respectively m2 largest eigenvalues of the sample covariance operators
Ĉ

(X)
0 = n−1

1
∑n1

t=1(Xt − Xn1) ⊗ (Xt − Xn1) and Ĉ
(Y )
0 = n−1

2
∑n2

t=1(Yt − Yn2) ⊗
(Yt − Yn2), respectively. Notice that generation of X∗

t and Y ∗
t by using (3.1) en-

sures that E∗X∗
t = E∗Y ∗

t = 0, that is, the generated functional pseudo-time se-
ries X∗

1,X∗
2, . . . ,X∗

n1
and Y ∗

1 , Y ∗
2 , . . . , Y ∗

n2
satisfy the null hypothesis H0. Now, let

X
∗
n1

= n−1
1

∑n1
t=1 X∗

t and Y
∗
n2

= n−1
2

∑n2
t=1 Y ∗

t and define the bootstrap analogue of
Un1,n2 as

U∗
n1,n2

= n1n2

n1 + n2

∥∥X∗
n1

− Y
∗
n2

∥∥2
.

The following theorem establishes validity of the sieve bootstrap applied to the
functional testing problem considered.

THEOREM 4.2. Let the conditions of Theorem 4.1 be satisfied and assume
that n1, n2 → ∞ such that n1/(n1 + n2) → θ ∈ (0,1). Then

sup
x∈R

∣∣P(Un1,n2 ≤ x) − P
(
U∗

n1,n2
≤ x|Xn1,Yn2

)∣∣ → 0,

in probability, where P(U∗
n1,n2

≤ ·|Xn1,Yn2) denotes the distribution function of
U∗

n1,n2
conditional on Xn1 = (X1,X2, . . . ,Xn1) and Yn2 = (Y1, Y2, . . . , Yn2).

5. Choice of parameters and numerical results.

5.1. Choice of the sieve bootstrap parameters. Implementation of the func-
tional sieve bootstrap requires the choice of two tuning parameters: the order p
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and the dimension m. By choosing these parameters, the problem of overfitting
caused by selecting a large dimension and/or a high order vector autoregressive
model, should be seriously taken into account.

Several approaches for selecting the number of principal components in func-
tional data analysis have been proposed in the literature; see among others, Yao,
Müller and Wang (2005) and Li, Wang and Carorol (2013) for the use of infor-
mation type criteria. For our purpose, one useful and simple criterion for selecting
the dimension m is based on the ratio of the total variance explained by the num-
ber m of principal components included, to the variance of Xt . According to this
rule, m is selected as the smallest positive integer for which the empirical variance
ratio (VRn) satisfies VRn(m) = ∑m

j=1 λ̂j /
∑n

j=1 λ̂j ≥ Q, with Q a predetermined
value and Q = 0.80 or Q = 0.85 two common choices; cf. Horváth and Kokoszka
(2012). One drawback of the VR-rule applied to functional time series is that this
criterion does not take into account dependence.

To overcome this drawback, we introduce in the following a generalized vari-
ance ratio criterion. Measuring the total variability of the underlying functional
process × by the quantity

∫
(−π,π ] ‖Fω‖2

HS dω, yields by straightforward calcu-
lations and evaluating the Hilbert–Schmidt norm using the orthonormal basis
{vj , j = 1,2, . . .}, the expression∫

(−π,π ]
‖Fω‖2

HS dω =
∞∑
l=1

∞∑
r=1

∫
(−π,π ]

∣∣fξl,ξr (ω)
∣∣2 dω,

where fξl,ξr denotes the cross spectral density of the score processes {ξl,t } and
{ξr,t }. Define next a functional process X+

m = {X+
t ,∈ Z}, where X+

t = X+
t,m+U+

t,m,
X+

t,m = ∑m
j=1 ξj,t vj , U+

t,m = ∑∞
j=m+1 ζj,t vj and {ζj,t , t ∈ Z}, j = m + 1,m +

2, . . . , are independent, i.i.d. processes which are independent from X+
t,m and have

mean zero and Var(ζj,t ) = λj . Observe that for any m fixed and ignoring estima-
tion errors, it is the dependence structure of X+

m which is essentially mimicked by
the functional sieve bootstrap process X∗. This is so since in the bootstrap world,
Ut,m = Xt − ∑m

j=1 ξj,t vj is treated as an i.i.d. process and the (possible) correla-
tion between the processes {Xt,m = ∑m

j=1 ξj,t vj } and {Ut,m} is ignored. Let F+
ω,m

be the spectral density operator of X+
m. Using the same measure of total variability

as for the process X, we get∫
(−π,π ]

∥∥F+
ω,m

∥∥2
HS dω =

m∑
l=1

m∑
r=1

∫
(−π,π ]

∣∣fξl,ξr (ω)
∣∣2 dω + (2π)−1

∞∑
l=m+1

λ2
l .

Notice that the term (2π)−1 ∑∞
l=m+1 λ2

l is due to integrating the squared Hilbert–
Schmidt norm of the spectral density operator of the process {U+

t,m}. This process
is included in the definition of X+

m because of the functional i.i.d. innovations U∗
t

used in Step 6 of the sieve bootstrap algorithm to generate the X∗
t ’s.
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The ratio

GVR(m) =
∫
(−π,π ]

∥∥F+
ω,m

∥∥2
HS dω/

∫
(−π,π ]

‖Fω‖2
HS dω,

can then be considered as the proportion of total variability of the process X cap-
tured by that of the process X+

m. Recall that |fξl,ξr (ω)|2 = κ2
l,r (ω)fξl,ξl

(ω)fξr ,ξr (ω)

with κl,r the squared coherency between the score processes {ξl,t } and {ξr,t }. That
is, GVR explicitly takes into account the entire autocovariance structure of the
processes X and X+

m. GVR(m) can then be interpreted as a measure of the los on
information on the dependence structure of X caused by the functional sieve boot-
strap procedure based on m principal components. Note that if X is a white noise
process, then GVR(m) = 1 for every value of m. In this case, we set m = 0 as the
most parsimonious choice, that is, no vector autoregression is fitted, which implies
that the functional sieve bootstrap (correctly) reduces to an i.i.d. bootstrap.

Now, observe that λj ,
∫
(−π,π ] |fξl,ξr (ω)|2 dω and

∫
(−π,π ] ‖Fω‖2

HS dω can
be consistently estimated by λ̂j , 2πn−1 ∑

j∈Fn
|Iξl,ξr (ωj )|2 and 2πn−1 ×∑

j∈Fn
‖In,ωj

‖2
HS, respectively, where Iξl,ξr (ω) = Jξl

(ω)Jξr (−ω) and Jξs (ω) =
(2πn)−1/2 ∑n

t=1 ξs,t e
−iωt for any s ≥ 1. Furthermore, In,ω is the periodogram

operator with kernel In,ω(τ1, τ2) = Jn,ω(τ1)J n,ω(τ2), Jn,ω(τ ) = (2πn)−1/2 ×∑n
t=1 Xt(τ)e−iωt , ωj = 2πj/n, Fn = {−N, . . . ,−1,1, . . . ,N} and N = [n/2].

This suggests to select the dimension m as the smallest positive integer for which
the empirical generalized variance ratio (GVRn) satisfies

GVRn(m) =
∑m

l=1
∑m

r=1
2π
n

∑
j∈Fn

|Îξl ,ξr (ωj )|2 + 1
2π

∑n
l=m+1 λ̂2

l

2π
n

∑
j∈Fn

‖In,ωj
‖2

HS

≥ Q.

Here, Îξl ,ξr (ω) = Ĵξl
(ω)Ĵξr (−ω) with Ĵξs (ω) = (2πn)−1/2 ∑n

t=1 ξ̂s,t e
−iωt the fi-

nite Fourier transform of the time series of estimated scores.

REMARK 5.1. GVRn has been developed for the functional sieve bootstrap
situation considered in this paper. However, a simple modification of this criterion
leads to an alternative to the VRn rule which is appropriate for dependent func-
tional data and which is of interest on its own. In particular, ignoring the second
term of the nominator of GVRn, the following dependent variance ratio (DVRn)
criterion is obtained:

DVRn(m) =
m∑

l=1

m∑
r=1

∑
j∈Fn

∣∣Îξl ,ξr (ωj )
∣∣2/ ∑

j∈Fn

‖In,ωj
‖2

HS.

DVRn delivers an empirical measure of the lost on information on the dependence
structure of X associated with the use of the m-dimensional space and can be
therefore used as a simple criterion to select the number m of principal com-
ponents in a functional time series setting. Notice that if the Hilbert–Schmidt
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norm in GVR is replaced by the trace norm of the spectral density operators
involved and the additional term (2π)−1 ∑∞

l=m+1 λ2
l is ignored, then the cor-

responding DVR(m) ratio given by DVR(m) = ∑m
l=1

∑m
r=1

∫ π
−π |fξl,ξr (ω)|2 dω/∑∞

l=1
∑∞

r=1
∫ π
−π |fξl,ξr (ω)|2 dω, reduces to the VR(m) = ∑m

l=1 λl/
∑∞

l=1 λl ratio.

Notice that both, the VR and the GVR criterion, refer to a fixed sample size n

and the purpose is to select the number of principal components in a way which
ensures that a desired fraction Q of the variance of the process is captured by the
number of principal components included in the analysis. This is important for our
bootstrap proposal where the objective is to appropriately mimic the dependence
structure of the functional time series at hand. However, consistency requires that
m increases to infinity with n which is not the case if Q remains fixed with n. At
the same time and as we have seen, the rate at which m has to increase to infinity
should take into account the rate of decrease of the eigenvalues λj respectively
of the differences λj − λj+1 to zero. One way to accommodate such aspects in
our practical selection of m, is to combine the discussed VR respectively GVR
criterion with an approach for selecting m proposed by Hörmann and Kidziński
(2015), and which explicitly takes into account the behavior of the eigenvalues λ̂j .
To elaborate, denote by mn,E the number of principal components selected by the
rule

mn,E = argmax
{
j ≥ 1 : λ̂1

λ̂j

≤ √
n/ log(n)

}
.

Notice that mn,E allows for the j th principal component to be included in the
analysis if the corresponding estimated eigenvalue λ̂j is big enough, that is, if the
ratio 1/̂λj does not exceed the threshold

√
n/ log(n). The nominator λ̂1 acts solely

as a normalization to adapt for scaling; for this and for the choice of the particular
threshold, see Hörmann and Kidziński (2015). Denote now by mn,Q the number
of principal components selected using the VR or the GVR criterion for some
given Q. For the practical selection of m, we then propose to set this parameter
equal to

m̂n = max{mn,Q,mn,E}.
According to this proposal, only those principal directions are included in the anal-
ysis of the eigenvalues of which can be estimated with a reasonable accuracy, en-
suring at the same time that the number of principal components selected explains
at least a desired portion of the variability of the time series at hand. We remark
that although for functional time series the GVR criterion is theoretically more
appealing, for short time series of n ≤ 100 observations, we still recommend the
use of the VR-criterion since it leads to selections of m with a smaller variability
avoiding, therefore, the potential fit of vector autoregressions of large dimensions
and/or of high orders which is an important issue for small samples sizes; see also
Section 5.2 for details.
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Once the dimension m has been selected, the order p of the vector autoregres-
sion fitted can be chosen using the AICC criterion; see Hurvich and Tsai (1993).
This criterion is preferred because it is based on an approximate unbiased es-
timator of the expected Kullback–Leibler information of the fitted model and,
more importantly, avoids overfitting. The order p is then selected by minimiz-
ing AICC(p) = n log |�̂e,p| + n(nm + pm2)/(n − m(p + 1) − 1), over a range
of possible values of p, where �̂e,p = n−1 ∑n

t=p+1 êt,pêT
t,p and êt,p is defined in

Step 4 of the functional sieve bootstrap algorithm.

5.2. Simulations. To investigate the finite sample behavior of the functional
sieve bootstrap (FSP), we have performed simulations using time series stemming
from a first-order functional moving average process given by

(5.1) Xt = εt + �(εt−1),

as in Aue, Norinho and Hörmann (2015). To elaborate, � is specified as � = 0.8� ,
where � is a linear operator, � : HD → HD , HD = sp{f1, f2, . . . , fD}, D = 21
and fj , j = 1,2, . . . ,D are Fourier basis functions on the interval [0,1]. No-
tice that for x ∈ HD , x = ∑D

j=1 cjfj with cj = 〈x,fj 〉, the operator � acts

as �(x) = ∑D
j=1

∑D
l=1 cj 〈�(fj ), fl〉fl = (B�c)′v, where c = (c1, . . . , cD)′ and

v = (f1, . . . , fD)′ and the matrix B� has element in the j th column and lth row
given by 〈�(fj ), fl〉. Following Aue, Norinho and Hörmann (2015), the operator
� was chosen at random. For this, a D × D matrix of independent, normal ran-
dom variables with mean zero was first generated where its (j1, j2)th element has
standard deviation σj1,j2 = j−1

1 j−1
2 . This matrix was then scaled so that the result-

ing matrix B� has induced norm equal to 1 and in every iteration of the simulation
runs B� was newly generated. The corresponding i.i.d. innovations εt in (5.1) were
generated as εt = ∑D

j=1 Zt,jfj , where Zt,j are i.i.d. Gaussian with mean zero and

standard deviation equal to j−1.
We first consider the performance of the VR and GVR criteria in selecting the

number m of principal components, when Q = 0.85. Table 1 shows the frequencies
of selected dimensions m over R = 1000 replications of the considered FMA(1)
model for different sample sizes. As it is seen from this table, the VR criterion
is quite stable over the different sample sizes leading to the selections m = 3 or
m = 4 in almost all situations. The GVR criterion exhibits a greater variability for
small sample sizes (n ≤ 100) and becomes more concentrated around the dimen-
sions m = 4 and m = 5 as n increases. Observe that because the GVR criterion
explicitly takes into account the dependence structure of the processes involved,
it selects more frequently the larger dimension m = 4 compared to the dimension
m = 3, which is more frequently selected by the VR criterion. Notice further that
the smaller variability of the VR rule for small sample sizes, prohibits the selec-
tion of vector autoregressions of large dimension, which is particularly important
in our setup. Thus for n ≤ 100 observations, we recommend to apply the m̂n rule
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TABLE 1
Frequency of selected values of m by the VR and the GVR criterion (R = 1000 replications)

m

n 1 2 3 4 5 6 7

100 VRn 0 0.3 67.1 32.6 0 0 0
GVRn 0 0.9 19.6 55.2 22.8 1.5 0

200 VRn 0 0 62.7 37.3 0 0 0
GVRn 0 0.1 10.4 68.7 20.6 0.2 0

300 VRn 0 0 66.2 33.8 0 0 0
GVRn 0 0 4.3 75.4 20.3 0 0

500 VRn 0 0 64.7 35.3 0 0 0
GVRn 0 0 0.9 83.0 16.1 0 0

1000 VRn 0 0 64.1 35.9 0 0 0
GVRn 0 0 0.2 89.3 10.5 0 0

using the VR criterion to calculate mn,Q and the AICC criterion in order to select
the values of m and p.

To investigate the behavior of m̂n for the FMA(1) model considered, we use
a range of sample sizes with mn,Q chosen according to the VR (n ≤ 100) re-
spectively GVR criterion with Q = 0.85. Table 1 of the Supplementary Material
[Paparoditis (2018)] shows the results obtained over R = 1000 repetitions for each
of the sample sizes considered. As it is seen from this table, the behavior of m̂n

is dominated for small to moderate sample sizes by mn,Q ensuring, therefore, the
desired description of the variability of the functional time series by the number m

of principal components selected. However, as n increases the behavior of m̂n and
becomes dominated by mn,E , this allows for the number of principal components
selected as well as for the part of the variance explained, to increase with n.

We next consider the behavior of the FSB procedure in estimating the standard
deviation of the sample mean

√
nXn(τj ) = n−1/2 ∑n

t=1 Xt(τj ), calculated for time
series of length n = 100 observations and for τj , j = 1,2, . . . , T , T = 21, equidis-
tant time points in the interval [0,1]. The exact standard deviation of the sample
mean is estimated using 20,000 replications of the moving average model (5.1). All
estimates presented are based on R = 1000 replications and B = 1000 bootstrap
repetitions. Table 2 of the Supplementary Material [Paparoditis (2018)] shows the
FSB estimates obtained using some different values of the bootstrap parameters m

and p as well as for the values of these parameters chosen by means of the m̂n and
AICC rule and which are denoted by (m̂, p̂). Note that (m,p) = (3,3) is the most
frequently chosen pair using this data driven selection rule. As this table shows, the
FSB estimates are quite good even for the short functional time series of n = 100
observations. These estimates also seem not to be very sensitive with respect to
the different choices of the parameter m used to truncate the Karhunen–Loéve
expansion.
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TABLE 2
Averaged absolute bias (ABias), Averaged relative bias (RBias) and Averaged standard deviation
(AStd) of the moving block bootstrap (MBB), the tapered block bootstrap (TBB), the stationary

bootstrap (SB) and the functional sieve bootstrap (FSB) estimates of the standard deviation of the
sample mean Xn

MBB TBB SB FSB

b1 = 5 b2 = 9 b1 = 7 b2 = 6 b1 = 5 b2 = 6 (2,3) (3,3) (m̂, p̂)

ABias 0.206 0.208 0.139 0.153 0.255 0.256 0.037 0.054 0.121
RBias 0.091 0.092 0.061 0.068 0.112 0.113 0.016 0.024 0.053
AStd 0.321 0.406 0.350 0.312 0.341 0.371 0.445 0.462 0.484

Table 2 compares the results using the FSB procedure with those of three
different block bootstrap methods, the moving block bootstrap (MBB), the ta-
pered block bootstrap (TBB) and the stationary bootstrap (SB). To assess the
overall behavior of the different bootstrap estimates, we use the averaged abso-
lute bias (ABias), T −1 ∑T

j=1 |σ ∗(τj ) − σ(τj )|, the averaged relative bias (RBias),

T −1 ∑T
j=1 |σ ∗(τj )/σ (τj ) − 1| and the averaged standard deviation of the boot-

strap estimates (AStd), calculated as T −1 ∑T
j=1

√
V̂ar(σ ∗(τj )), where σ(τj ) is

the estimated exact standard deviation, V̂ar(σ ∗(τj )) = (R − 1)−1 ∑R
r=1(σ

∗
r (τj ) −

σ ∗(τj ))
2, with σ ∗

r (τj ) denoting the bootstrap estimate of σ(τj ) obtained in the r th
replication, r = 1,2, . . . ,R, and σ ∗(τj ) = R−1 ∑R

r=1 σ ∗
r (τj ). For the three block

bootstrap methods considered, we report the results for two block sizes denoted
by b1 and b2, for which the corresponding methods achieve the two lowest ABias
respectively RBias values. Thus the results presented for the three block bootstrap
methods in Table 2 are those having the overall lowest bias. Finally, for the FSB
procedure we report the results for the values (m,p) = (2,3), (m,p) = (3,3) and
for the values of these parameters chosen by the m̂n and AICC rule denoted by
(m̂, p̂).

As it is seen from Table 2, between the three block bootstrap estimators con-
sidered, the MBB estimator seems to behave better than that of the SB estimator,
while both estimators are outperformed by the TBB estimator. However, compared
to the FSB estimates, all block bootstrap estimates are quite biased and they are
clearly outperformed by the FSB estimates. This is true even for the case where
the parameters of the FSB procedure are chosen data dependent, where the bias of
the FSB estimates is smaller that the lowest bias achieved by the block bootstrap
methods. The FSB estimates have a larger standard deviation which, however, is
not surprising taking into account the fact that this bootstrap method requires the
estimation of m2p autoregressive coefficients. It is worth investigating whether the
standard deviation of the FSB estimates can be reduced by using sparse methods
to fit the vector autoregression involved in the bootstrap procedure.
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The results of a small simulation study investigating the finite sample size and
power behavior of the bootstrap based, fully functional test for the two-sample
mean problem considered in Section 4.2, are presented in the Supplementary Ma-
terial [Paparoditis (2018)].

6. Auxiliary results and proofs.

LEMMA 6.1. Let Assumptions 1, 2 and 3 be satisfied. Denote by �j(m), j =
1,2, . . . , the coefficients matrices of the power series A−1

m (z), where Am(z) = Im−∑∞
j=1 Aj(m)zj , |z| ≤ 1, and let �e(m) = E(et (m)e�

t (m)). Then:

(i)
∑∞

j=1(1 + j)r‖Aj(m)‖F = O(1),
(ii)

∑∞
j=1(1 + j)r‖�j(m)‖F = O(1), and

(iii) 0 < ce ≤ ‖�e(m)‖F = O(1),

where all bounds on the right-hand side are valid uniformly in m.

The following version of Baxter’s inequality is very useful in our setting be-
cause it relates the approximation error of the coefficient matrices of the finite
predictor and of the autoregressive representation of the m-dimensional process
of scores to the lower bound of the spectral density matrix fξ (·). It is an immedi-
ate consequence of Lemma 2.1 and of Theorem 3.2 in Meyer, Jentsch and Kreiss
(2017).

LEMMA 6.2. Let Assumptions 1, 2 and 3 be satisfied. Then there exists a
constant C > 0 which does not depend on m, such that for all 0 ≤ s ≤ r − 1,

p∑
j=1

(1 + j)s
∥∥Aj,p(m) − Aj(m)

∥∥
F ≤ Cδ−1

m

∞∑
j=p+1

(1 + j)s+1∥∥Aj(m)
∥∥
F ,

where δm is given in Lemma 2.1.

The following lemma provides a useful bound between the estimated matrices
of the autoregressive parameters based on the vector of scores ξt and on the vector
of their estimates ξ̂t , t = 1,2, . . . , n. It deals with the case of the Yule–Walker
estimators but similar bounds can be established along the same lines for other
estimators, like for instance, for least squares estimators.

LEMMA 6.3. Let Assumption 1 be satisfied, let Âp,m = (Âj,p(m), j =
1,2, . . . , p) and let Ãp,m = (Ãj,p(m), j = 1,2, . . . , p) be the Yule–Walker es-
timators of Aj,p(m), j = 1,2, . . . , p, based on the time series of true scores
ξ1, ξ2, . . . , ξn. Then

‖Âp,m − Ãp,m‖F = OP

((
p
√

m

λm

+ p2
)2

{
1

n

m∑
j=1

1

α2
j

}1/2)
.
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LEMMA 6.4. Let Assumptions 1 and 2 (with r = 0) be satisfied and Ap,m(z) =
I −∑p

j=1 Aj,p(m)zj , z ∈ C. There exists pm ∈ N and a positive constant C, which
does not depend on m such that for m ∈ N and all p > pm,

inf|z|≤1+1/p

∣∣det
(
Ap,m(z)

)∣∣ ≥ Cm−1/2.

To state the next lemma, we first fix the following notation. �j(m), �j,p(m),
�̃j,p(m) and �̂j,p(m), j = 1,2, . . . denote the coefficient matrices in the power
series expansions of A−1

m (z), A−1
p,m(z), Ã−1

p,m(z) and Â−1
p,m(z), respectively, |z| ≤ 1.

We set �0(m) = �0,p(m) = �̃0,p(m) = �̂0,p(m) = Im. Furthermore, et (m) =
ξt − ∑∞

j=1 Aj(m)ξt−j , et,p(m) = ξt − ∑p
j=1 Aj,p(m)ξt−j , ẽt,p(m) = ξt

− ∑p
j=1 Ãj,p(m)ξt−j and êt,p(m) = ξ̂t − ∑p

j=1 Âj,p(m)̂ξt−j , while �̃e,p(m) =
E+(̃et,p(m) − ẽn,p(m))(̃et,p(m) − ẽn,p(m))� and �̂e,p(m) = E∗(̂et,p(m) −
ên,p(m))(̂et,p(m) − ên,p(m))� with ẽn,p(m) = (n − p)−1 ∑n

t=p+1 ẽt,p(m) and

ên,p(m) = (n − p)−1 ∑n
t=p+1 êt,p(m), where E+ denotes expectation with re-

spect to the measure assigning probability (n − p)−1 to each ẽt,p(m), t =
p + 1,p + 2, . . . , n.

LEMMA 6.5. Let Assumptions 1 and 3 and Assumptions 2 and 4 (r = 2) be
satisfied. Then, as n → ∞:

(i)
∑∞

j=1 ‖�̃j,p(m) − �j,p(m)‖F
P→ 0,

(ii) ‖�̃e,p(m) − �e,p(m)‖F
P→ 0,

(iii)
∑∞

j=1 ‖�̂j,p(m) − �j,p(m)‖F
P→ 0,

(iv) ‖�̂e,p(m) − �e,p(m)‖F
P→ 0,

(v)
∑∞

j=1 ‖�j,p(m) − �j(m)‖F → 0,
(vi) ‖�e,p(m) − �e(m)‖F → 0.

PROOF OF LEMMA 2.1. Expression (2.2) immediately leads, for all ω ∈
[0, π], to an upper bound of fξ (M)(ω). To derive a lower bound, recall that
	ξ(M)(h) = (〈Ch(vjr ), vjs 〉)r,s=1,2,...,m and observe that

fξ (M)(ω) = (〈
Fω(vjr ), vjs

〉)
r,s=1,2,...,m.

Let μj(ω), j = 1,2, . . . ,m, be the eigenvalues of fξ (M)(ω) (including multi-
plicity). It suffices to show that min1≤j≤m μj(ω) ≥ δM > 0 for all frequen-
cies ω ∈ [0, π]. For this, let cj (ω) = (cj,1(ω), cj,2(ω), . . . , cj,m(ω))� ∈ C

m,
j = 1,2, . . . ,m, be the corresponding normalized eigenvectors. Then for every
j ∈ {1,2, . . . ,m}, we have

μj(ω) = c�
j (ω)

(〈
Fω(vjr ), vjs

〉)
r,s=1,2,...,mcj (ω)

= 〈
Fω

(
yj (ω)

)
, yj (ω)

〉
> 0,



3534 E. PAPARODITIS

by the positivity of Fω, where yj (ω) = ∑m
r=1 cj,r (ω)vjr ∈ V M = sp{vj1, vj2, . . . ,

vjm} and ‖yj‖ = 1. Because of the norm summability of the autocovariance ma-
trix function 	ξM (h), the spectral density fξ(M)(ω), and consequently the eigen-
values μj(ω), j = 1,2, . . . ,m, are continuous functions of ω. Let δM(ω) =
min1≤j≤m μj(ω) and notice that δM(ω) is continuous in ω and δM(ω) > 0 for
all ω ∈ [0, π]. Define δM = minω∈[0,π ] δM(ω) which is positive by the continuity
of δM(·) in the compact interval [0, π]. Hence min1≤j≤m μj(ω) ≥ δM > 0 for all
ω ∈ [0, π]. �

PROOF OF PROPOSITION 3.1. Recall the definition of X∗
t = ∑m

j=1 1�
j ξ∗

t v̂j +
U∗

t and observe that ξ∗
t = ∑∞

l=0 �̂l,p(m)e∗
t−l , where �̂0,p(m) = Im and the power

series �̂m,p(z) = Im + ∑∞
l=1 �̂l,p(m)zl = (Im − ∑p

j=1 Âj,p(m)zj )−1 converges

for |z| ≤ 1. Write X∗
t = ∑∞

l=0
∑m

j=1 1�
j �̂l,p(m)e∗

t−l v̂j + U∗
t and define X∗

t,M =∑M−1
l=0

∑m
j=1 1�

j �̂l,p(m)e∗
t−l v̂j +∑∞

l=M

∑m
j=1 1�

j �̂l,p(m)e∗
t−l,t v̂j +U∗

t , where for
each t ∈ Z, {e∗

s,t , s ∈ Z} is an independent copy of {e∗
s , s ∈ Z}. Notice that X∗

M −
X∗

M,M = ∑∞
l=M

∑m
j=1 1�

j �̂l,p(m)(e∗
M−l −e∗

M−l,M)v̂j . By Minkowski’s inequality,
we have √

E
∥∥X∗

M − X∗
M,M

∥∥2 ≤
√√√√√E

∥∥∥∥∥
∞∑

l=M

m∑
j=1

1�
j �̂l,p(m)e∗

M−l v̂j

∥∥∥∥∥
2

+
√√√√√E

∥∥∥∥∥
∞∑

l=M

m∑
j=1

1�
j �̂l,p(m)e∗

M−l,M v̂j

∥∥∥∥∥
2

.

(6.1)

Evaluating the first expectation term, we get using ‖A‖2
F = tr(AA�) and the sub-

multiplicative property of the Frobenius matrix norm, that

E

∥∥∥∥∥
∞∑

l=M

m∑
j=1

1�
j �̂l,p(m)e∗

M−l v̂j

∥∥∥∥∥
2

=
∞∑

l=M

tr
(
�̂l,p(m)�∗(m)�̂�

l,p(m)
)

≤ ∥∥�̂1/2
e,p (m)

∥∥2
F

∞∑
l=M

∥∥�̂l,p(m)
∥∥2
F ,

where �̂e,p(m) = �̂
1/2
e,p (m)�̂

1/2
e,p (m). An identical expression appears for the sec-

ond expectation term on the right-hand side of (6.1). Applying Minkowski’s in-
equality again, we get by the exponential decay of ‖�̂l,p(m)‖F , that

∞∑
M=1

√
E

∥∥X∗
M − X∗

M,M

∥∥2 ≤ 2
∥∥�̂1/2

e,p (m)
∥∥
F

∞∑
M=1

∞∑
l=M

∥∥�̂l,p(m)
∥∥
F

= 2
∥∥�̂1/2

e,p (m)
∥∥
F

∞∑
l=1

l
∥∥�̂l,p(m)

∥∥
F = OP (1).

�
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PROOF OF THEOREM 4.1. Let

L+
n,m = 1√

n

n∑
t=1

m∑
j=1

ξ+
j,t vj e

−itω,

where ξ+
t = (ξ+

1,t , ξ
+
2,t , . . . , ξ

+
m,t )

�, t = 1,2, . . . , n with ξ+
t = ∑p

j=1 Ãj,p(m)ξ+
t−j +

e+
t , where Ãj,p(m), j = 1,2, . . . , p are the estimators of the autoregressive pa-

rameter matrices based on the vector time series of true scores ξt , t = 1,2, . . . , n

and e+
t are obtained by i.i.d. resampling from the centered residuals êt = ξt −∑p

j=1 Ãj,p(m)ξt−j , t = p + 1,p + 2, . . . , n. That is, the pseudo-variable L+
n,m is

obtained using the true eingefunctions vj and the true scores ξj,t instead of their
estimates v̂j and ξ̂j,t , respectively. Decompose n−1/2S∗

n(ω) as

n−1/2S∗
n(ω) = 1√

n

n∑
t=1

m∑
j=1

ξ+
j,t vj e

−itω + 1√
n

n∑
t=1

m∑
j=1

ξ∗
j,t (v̂j − vj )e

−itω

+ 1√
n

n∑
t=1

m∑
j=1

(
ξ∗
j,t − ξ+

j,t

)
vj e

−itω + 1√
n

n∑
t=1

U∗
t,me−itω

= L+
n,m + V ∗

n,m + D∗
n,m + R∗

n,m

with an obvious notation for L+
n,m, V ∗

n,m, D∗
n,m and R∗

n,m. Notice that the terms
V ∗

n,m and D∗
n,m are due to the fact that, in the bootstrap procedure, the unknown

scores and eigenfunctions are replaced by their sample estimates, while R∗
n,m is

due to the m-dimensional approximation of the infinite dimensional structure of
the underlying process. Assertion (i) of the theorem follows then from Lemmas
6.6, 6.7, 6.8 and 6.9 and Slutsky’s theorem.

Consider assertion (ii). Since

n−1∥∥E∗S∗
n(ω) ⊗ S∗

n(ω) − ESn(ω) ⊗ S(ω)
∥∥

HS

≤ ∥∥n−1E∗S∗
n(ω) ⊗ S∗

n(ω) − 2πF∗
ω,m

∥∥
HS

+ 2π
∥∥F∗

ω,m −Fω

∥∥
HS + ∥∥n−1ESn(ω) ⊗ Sn − 2πFω

∥∥
HS,

it suffices in view of Proposition 3.2 and Theorem 2 of Cerovecki and Hörmann
(2017), to show that the first term on the right-hand side of the above inequality
converges to zero in probability. For this, we have using n−1E∗S∗

n(ω) ⊗ S∗
n(ω) =

n−1 ∑n−1
−n+1(1 − |h|/n)C∗

h , that this term is bounded by

∑
|h|≥n

∥∥C∗
h

∥∥
HS + n−1

n−1∑
h=−n+1

|h|∥∥C∗
h

∥∥
HS.

Now, since
∑

h∈Z ‖C∗
h‖HS = OP (1) uniformly in p and m, we get that∑

|h|≥n ‖C∗
h‖HS = oP (1) and by Kronecker’s lemma that n−1 ∑n−1

h=−n+1 |h| ×
‖C∗

h‖HS = oP (1). To verify the uniform boundedness of
∑

h∈Z ‖C∗
h‖HS, no-

tice first that from the expression of C∗
h given in Section 3.2 we get that



3536 E. PAPARODITIS∑
h∈Z ‖C∗

h‖HS ≤ ∑
h∈Z ‖	∗

h‖F + ‖C∗
U‖HS. The square of the second term on the

right-hand side of the last inequality equals ‖E∗U∗
t ⊗ U∗

t ‖2
HS which converges to

zero in probability; see the proof of Proposition 3.2. For the first term, we have
that

∑
h∈Z ‖	∗

h‖F ≤ (
∑∞

j=0 ‖�̂j,p(m)‖F )2‖�̂e,p(m)‖F = OP (1) uniformly in p

and m by Lemma 6.1 and Lemma 6.5. �

LEMMA 6.6. Under the assumptions of Theorem 4.1, it holds true that,
R∗

n,m

P→ 0, as n → ∞.

LEMMA 6.7. Under the assumptions of Theorem 4.1, it holds true that,
D∗

n,m

P→ 0, as n → ∞.

LEMMA 6.8. Under the assumptions of Theorem 4.1, it holds true that,
V ∗

n,m

P→ 0, as n → ∞.

LEMMA 6.9. Under the assumptions of Theorem 4.1, it holds true that, for all
ω ∈ [−π,π ] and as n → ∞,

L+
n,m(ω) ⇒ NC(0,2πFω),

in probability.
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SUPPLEMENTARY MATERIAL

Supplement to “Sieve bootstrap for functional time series” (DOI: 10.1214/
17-AOS1667SUPP; .pdf). The online supplement contains the proofs that were
omitted in this paper and additional numerical results.
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