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ROBUST LOW-RANK MATRIX ESTIMATION

BY ANDREAS ELSENER AND SARA VAN DE GEER

ETH Zürich

Many results have been proved for various nuclear norm penalized esti-
mators of the uniform sampling matrix completion problem. However, most
of these estimators are not robust: in most of the cases the quadratic loss
function and its modifications are used. We consider robust nuclear norm pe-
nalized estimators using two well-known robust loss functions: the absolute
value loss and the Huber loss. Under several conditions on the sparsity of the
problem (i.e., the rank of the parameter matrix) and on the regularity of the
risk function sharp and nonsharp oracle inequalities for these estimators are
shown to hold with high probability. As a consequence, the asymptotic be-
havior of the estimators is derived. Similar error bounds are obtained under
the assumption of weak sparsity, that is, the case where the matrix is assumed
to be only approximately low-rank. In all of our results, we consider a high-
dimensional setting. In this case, this means that we assume n ≤ pq. Finally,
various simulations confirm our theoretical results.

1. Introduction.

1.1. Background and motivation. Netflix, Spotify, Apple Music, Amazon and
many other on-line services offer an almost infinite amount of songs or films to
their users. Clearly, a single person will never be able to watch every film or to
listen to every available song. For this reason, an elaborate recommendation sys-
tem is necessary in order to allow the users to choose content that already match
his or her preferences. Many models and estimation methods have been proposed
to address this question. Matrices provide an appropriate way of modelling this
problem. Imagine that the plethora of films/songs is identified with the rows of a
matrix, call it B∗, and the users with its columns. One entry of the matrix corre-
sponds to the rating given to film “i” (row) by user “j” (column). This matrix will
have many missing entries. These entries are bounded and we can expect the rows
of B∗ to be very similar to each other. It is therefore sensible to assume that B∗ has
a low rank. The challenge is now to predict the missing ratings/fill in the empty
entries of B∗. Define for this purpose the set of observed (possibly noisy) entries

A := {
(i, j) ∈ {1, . . . , p} × {1, . . . , q} : the (noisy) entry

(1.1)
Aij of B∗ is observed

}
,
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where p is the number of films/songs and q the number of users. Our estimation
problem can therefore be stated in the following way: for B ∈ B ⊂ R

p×q we

minimize Rn(B), subject to rank(B) = s.

In this special case, we have that

(1.2) B = {
B ∈ R

p×q |‖B‖∞ ≤ η
}
,

where η is for instance the mean highest rating, and Rn is some convex empirical
error measure that is defined by the data, for example,

(1.3) Rn(B) = 1

|A|
∑

(i,j)∈A
(Aij − Bij )

2.

Since the rank of a matrix is not convex, we use the nuclear norm as its convex
surrogate. This leads us to a relaxed convex optimization problem. For B ∈ B, we

minimize Rn(B), subject to ‖B‖nuclear ≤ τ,

for some τ > 0. The model described above can be considered as a special case of
the trace regression model.

In the trace regression model [see, e.g., Rohde and Tsybakov (2011)], one con-
siders the observations (Xi, Yi) satisfying

(1.4) Yi = trace
(
XiB

∗) + εi, i = 1, . . . , n,

where εi are i.i.d. random errors. The matrices Xi are so-called masks. They are
assumed to lie in

(1.5) χ = {
ek(q)el(p)T : 1 ≤ k ≤ q,1 ≤ l ≤ p

}
,

where ek(q) is the q-dimensional kth unit vector and el(p) is the p-dimensional
lth unit vector. We will assume that the Xi are i.i.d. with

P(Xikj = 1) = 1 − P(Xikj = 0) = 1

pq

for all i ∈ {1, . . . , n}, k ∈ {1, . . . , q}, and j ∈ {1, . . . , p}. However, we point out that
it is not necessary for our estimators to know this distribution. This knowledge will
only be used in the proofs of the theoretical results. In Klopp (2014) the case of
more general sampling distributions under quadratic loss is treated.

The trace regression model together with the space χ and the distribution on
χ is equivalent to the matrix completion case. The entries of the vector Y can be
identified with the observed entries as those in the matrix A.

From this, it can be seen that we are in a high-dimensional setting since the
number of observations n must be smaller than or equal to the total number of en-
tries of A. The setup described above is then called uniform sampling matrix com-
pletion. A very similar setup was first considered in Srebro, Rennie and Jaakkola
(2004) and Srebro and Shraibman (2005).
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As in the standard regression setting, parameter estimation in the trace regres-
sion model is also done via empirical risk minimization. Using the Lagrangian
form for B ∈ B, we

minimize Rn(B) + λ‖B‖nuclear,

where Rn(B) = 1/n
∑n

i=1 ρ(Yi − trace(XiB)), ρ is a convex loss function and
λ > 0 is the tuning parameter. The loss function is often chosen to be the quadratic
loss (or one of its modifications) as in Koltchinskii, Lounici and Tsybakov (2011),
Negahban and Wainwright (2011, 2012), Rohde and Tsybakov (2011) and many
others. In Lafond (2015), the case of an error distribution belonging to an expo-
nential family is considered. As long as the errors are assumed to be light tailed as
it is the case for i.i.d. Gaussian errors the least squares estimator will perform very
well. However, the ratings are heavily subject to frauds (e.g., by the producer of a
film). It is necessary to take this fact into account also in the estimation procedure.
One might also be interested in estimating the median or another quantile of the
ratings. For this purpose, M-estimators based on different losses than the quadratic
loss are usually chosen.

1.2. Proposed estimators. In this paper, we consider the absolute value loss
and the Huber loss. The first robust estimator is then given by

(1.6) B̂ := arg min
B∈B

1

n

n∑
i=1

∣∣Yi − trace(XiB)
∣∣ + λ‖B‖nuclear.

Using the Huber loss, we can define

(1.7) B̂H := arg min
B∈B

1

n

n∑
i=1

ρH

(
Yi − trace(XiB)

) + λ‖B‖nuclear,

where the function

ρH (x) :=
{
x2 if |x| ≤ κ,

2κ|x| − κ2 if |x| > κ,

defines the Huber loss function. The tuning parameter κ > 0 is assumed to be
given for our estimation problem. The possible values for the Huber parameter
κ depend on the distribution of the errors as shown in Lemma 2.1. In practice,
one usually estimates κ and λ with methods such as cross-validation. Notice that it
could happen that the estimators defined in equations (1.6) and (1.7) are not unique
since the objective functions are not strictly convex. As will be shown, the rates
depend on the Lipschitz constants of the loss functions and on η. Typically, the
Lipschitz constants of the absolute value loss as well as of the Huber loss induce
smaller constants in the rates compared to the Lipschitz constant of the truncated
quadratic loss.
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The “target” is defined as

B0 := arg min
B∈B

R(B),

where R(B) = ERn(B) is the theoretical risk. It has to be noticed that the matrix
B0 is not necessarily equal to the matrix B∗. Our main interest lies in the theo-
retical analysis of the above estimators. The estimators should mimic the sparsity
behavior of an oracle B . In the case of the absolute value loss, we will prove a non-
sharp oracle inequality. Whereas for the Huber loss, thanks to its differentiability,
we are able to derive a sharp oracle inequality.

Assuming B = B0 in Corollary 3.1, the upper bound is typically of the form

(1.8) R(B̂H ) − R
(
B0)

� λ2pqs0,

where � means that some multiplicative constants (depending on the tuning pa-
rameter κ) are omitted.

The assumptions for this kind of results are mainly based on the regularity of the
absolute value and the Huber loss. Moreover, the properties of the nuclear norm,
which are very similar to those of the 	1-norm for vectors, will be exploited. In
addition, we use the sparsity behavior induced by the nuclear norm to infer the
behavior of weakly sparse estimators. This takes into account that a matrix could
have few very large singular values and many small, but not exactly zero singular
values:

B ∈
{
B ′ ∈ B :

q∑
j=1


r
j ≤ ρr

r ,
1, . . . ,
q the singular values of B ′
}
,

where 0 < r < 1 and ρr
r is some reasonably small constant.

1.3. Related literature. A first study with robust matrix estimation was made
in Chandrasekaran et al. (2011) in a setting with no missing entries. In order to
avoid identifiability issues, the authors introduce “incoherence” conditions on the
low-rank component. These conditions make sure that the low-rank component
itself is not too sparse. The locations of the corruptions are assumed to be fixed.
In the context of Principal Component Analysis (PCA) which is a special case of
the matrix regression model, robustness was investigated in Candès et al. (2011).
The authors assume that the matrix to be estimated is decomposed in a low-rank
matrix and a sparse matrix. In contrast to Chandrasekaran et al. (2011), the nonzero
entries of the sparse matrix are assumed to be drawn randomly following a uniform
distribution. Following this line of research, Li (2013) apply these conditions to the
matrix completion problem with randomly observed entries. In a parallel work,
Chen et al. (2013) consider the case where the indices of the observed entries may
be simultaneously both random and deterministic. In these papers, only noiseless
robust matrix completion is considered.
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Cambier and Absil (2016) study computational aspects of robust matrix com-
pletion (in the previously mentioned setting). A method relying on Riemannian
optimization is proposed. The authors assume the rank of the matrix to be esti-
mated to be known.

The robust matrix completion problem in a low-rank plus sparse framework is
considered from a computational point of view also in Cherapanamjeri, Gupta and
Jain (2016). The authors propose an algorithm based on projected gradient descent
and apply it directly to the nonconvex optimization problem. Also in this work, the
corruptions are assumed to be limited to the sparse component.

In Foygel et al. (2011) weighted nuclear norm penalized estimators with (pos-
sibly nonconvex) Lipschitz continuous loss functions are studied from a learning
point of view. The partially observed entries are assumed to follow a possibly
nonuniform distribution on the set χ . In contrast, our derivations rely among other
properties on the convexity of the risk (i.e., the margin conditions).

Noisy robust matrix completion was first investigated in Klopp, Lounici and
Tsybakov (2016). The authors assume that the truth A∗ is decomposed in a low-
rank matrix and a sparse matrix where the low-rank matrix contains the “pa-
rameters of interest” and the sparse matrix contains the corruptions. In addi-
tion, every observation is corrupted by independent and centered sub-Gaussian
noise. The largest entries of both the low-rank and sparse matrices are assumed
to be bounded (e.g., by the maximal possible rating). Their model is as follows:
(Xi, Ỹi), i = 1, . . . ,N satisfy

(1.9) Ỹi = trace
(
XiA

∗) + ξi, i = 1, . . . ,N,

where A∗ = L∗ + S∗ with L∗ a low-rank matrix and S∗ a matrix with entrywise
sparsity. Columnwise sparsity is also considered but in view of a comparison of
this and our approach we prefer to restrict to entrywise sparsity. The masks Xi are
assumed to lie in the set χ (1.5) and to be independent of the noise ξi for all i. The
set of observed indices is assumed to be the union of two disjoint components �

and �̃. The set � corresponds to the noncorrupted noisy observations (i.e., only
entries of L∗ plus ξi ). The entries corresponding to these observations of S∗ are
zero. The set �̃ contains the indices of the observations that are corrupted by a
(nonzero) entry of S∗. It is not known if an observation comes from � or �̃. The
estimator given in Klopp, Lounici and Tsybakov (2016) is

(L̂, Ŝ) ∈ arg min
‖L‖∞≤η
‖S‖∞≤η

{
1

N

N∑
i=1

(
Ỹi − trace

(
Xi(L + S)

))2

+ λ1‖L‖nuclear + λ2‖S‖1

}
,

(1.10)

where λ1 > 0 and λ2 > 0 are tuning parameters.
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In contrast to the previously mentioned papers on robust matrix completion, we
consider (possibly heavy-tailed) random errors that affect the observations but not
the truth.

1.4. Organization of the paper. The paper is organized in the following way.
We state the main assumptions that are used throughout the paper in Section 2.
Then the nuclear norm, its properties and its similarities to the 	1-norm are dis-
cussed. To bound the empirical process part resulting from the matrix comple-
tion setting, we make use of the results in Section 3 of the Supplementary Mate-
rial [Elsener and van de Geer (2018)]. In Section 3, the main theorems are pre-
sented: the (deterministic) sharp and nonsharp oracle inequalities. In Section 3.3,
we present the applications of these results to the case of Huber loss and absolute
value loss. The asymptotics and the applications to weak sparsity are presented in
Section 4. Finally, to verify the theoretical findings, Section 5 presents some sim-
ulations. The Student t distribution with three degrees of freedom is considered as
an error distribution.

2. Preliminaries. In this section, the assumptions on the loss functions, the
risk and the distribution of the errors are presented. In particular, Assumptions 2
and 3 below are on the curvature of the (theoretical) risk. They are used to derive
the deterministic sharp and nonsharp oracle inequalities. It is important to notice
that the curvature of the risk mainly depends on the properties of the distribution
of the errors. Assumptions 4 and 5 below will be shown to be sufficient for As-
sumptions 2 and 3 to hold, respectively.

Furthermore, we also discuss the properties of the nuclear norm. Thanks to the
penalization term in the objective functions the optimization problems become
computationally tractable. We also highlight the commonalities of the vector 	1-
norm and the nuclear norm for matrices.

2.1. Assumptions on the risk and the distribution of the errors. The first as-
sumption is about the loss function.

ASSUMPTION 1. Let ρ be the loss function. We assume that it is Lipschitz
continuous with constant L, that is, that for all x, y ∈R,

(2.1)
∣∣ρ(x) − ρ(y)

∣∣ ≤ L|x − y|.
The next two assumptions ensure the identifiability of the parameters by requir-

ing a sufficient convexity of the risk around the target.

ASSUMPTION 2. One-point-margin condition. There is an increasing strictly
convex function G with G(0) = 0 such that for all B ∈ B

R(B) − R
(
B0) ≥ G

(∥∥B − B0∥∥
F

)
,

where R is the theoretical risk function.
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ASSUMPTION 3. Two-point-margin condition. There is an increasing strictly
convex function G with G(0) = 0, such that for all B,B ′ ∈ B, we have

R(B) − R
(
B ′) ≥ trace

(
Ṙ

(
B ′)T (

B − B ′)) + G
(∥∥B − B ′∥∥

F

)
,

where R is the theoretical risk function and [Ṙ(B ′)]kl = ∂
∂Bkl

R(B)|B=B ′ .

Assumption 1 is crucial when it comes to the application of the contraction
theorem which in turn allows us to apply the dual norm inequality to find a bound
for the random part of the oracle bounds. Assumptions 2 and 3 are essential in the
proofs of the (deterministic) results. In particular, in addition to the differentiability
of the empirical risk Rn, Assumption 3 is responsible for the sharpness of the first
oracle bound that will be proved. The margin conditions are strongly related to the
shape of the distribution function and the corresponding density of the errors.

For the specific application to the Huber loss and absolute value loss estimators,
we show that mild conditions on the distribution of the errors ensure a sufficient
curvature of the risk for both loss functions under study.

Assumption 3 holds under a weak condition on the distribution function of the
errors.

ASSUMPTION 4. Assume that there exists a constant C1 > 0 such that the
distribution function F with density with respect to Lebesgue measure f of the
errors fulfills

(2.2) F(u + κ) − F(u − κ) ≥ 1/C2
1 , for all |u| ≤ 2η and κ ≤ 2η.

LEMMA 2.1. Assumption 4 implies Assumption 3 with G(u) = u2/(2C2
1pq).

The following assumption guarantees that Assumption 2 holds.

ASSUMPTION 5. Suppose ε1, . . . , εn are i.i.d. with median zero and density
f with respect to Lebesgue measure. Assume that for C2 > 0

(2.3) f (u) ≥ 1

C2
2

, for all |u| ≤ 2η.

LEMMA 2.2. Assumption 5 implies Assumption 2 with G(u) = u2/(2C2
2pq).

Another important fact is that when the distribution of the errors is assumed to
be symmetric around zero B∗ = B0. This phenomenon is discussed in Section 4
of the Supplementary Material [Elsener and van de Geer (2018)].
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2.2. Properties of the nuclear norm. The regularization by the nuclear norm
plays a similar role as the 	1-norm in the Lasso [Tibshirani (1996)]. We illustrate
the similarities and differences of these types of regularizations. In view of the
oracle inequalities and in order to keep the notation as simple as possible, we
discuss the properties of the nuclear norm of the oracle. The oracle is typically
a value B that takes an up-to-constants optimal trade-off between approximation
error and estimation error. In what follows, B is called “the oracle” although its
choice is flexible.

Consider the singular value decomposition of the oracle B with rank s� given
by

(2.4) B = P
QT ,

where P is a p × q matrix, Q a q × p matrix and 
 a q × q diagonal matrix
containing the ordered singular values 
1 ≥ · · · ≥ 
q . Then the nuclear norm is
given by

(2.5) ‖B‖nuclear =
q∑

i=1


i(B) = ∥∥
(B)
∥∥

1,

by interpreting 
(B) ∈ R
q as the vector of singular values. The penalization with

the nuclear norm induces sparsity in the singular values, whereas the penalization
with the vector 	1-norm of the parameters in linear regression induces sparsity
directly in the parameters. On the other hand, the rank plays the role of the number
of nonzero coefficients in the Lasso setting, namely

(2.6) s� = ∥∥
(B)
∥∥

0.

One main ingredient of the proofs of the oracle inequalities is the so-called tri-
angle property as introduced in van de Geer (2001). This property was used in, for
example, Bühlmann and van de Geer (2011) to prove nonsharp oracle inequalities.
For the 	1-norm, the triangle property follows from its decomposability. For the
nuclear norm, the triangle property as it is used in this work depends on the fea-
tures of the oracle B . For this reason, we notice that for any positive integer s ≤ q

the oracle can be decomposed in

B = B+ + B−, B+ =
s∑

k=1


kPkQ
T
k , B− =

q∑
k=s+1


kPkQ
T
k .

The matrix B+ is called “active” part of the oracle B , whereas the matrix B− is
called the “nonactive” part. The singular value decomposition of B+ is given by

B+ = P +
Q+T

.

We observe that the integer s is not necessarily the rank of the oracle B . The
choice of s is free. One may choose a value that trades off the roles of the “active”
part B+ and “nonactive” part B−; see Lemma 4.1. The following lemma is adapted
from Lemma 7.2 and Lemma 12.5 in van de Geer (2016).
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LEMMA 2.3. Let B+ ∈R
p×q be the active part of the oracle B . Then we have

for all B ′ ∈ R
p×q with

�+
B+

(
B ′) := √

s
(∥∥P +P +T

B ′∥∥
F + ∥∥B ′Q+Q+T ∥∥

F + ∥∥P +P +T

B ′Q+Q+T ∥∥
F

)
and

�−
B+

(
B ′) := ∥∥(

I − P +P +T )
B ′(I − Q+Q+T )∥∥

nuclear

that

(2.7)
∥∥B+∥∥

nuclear − ∥∥B ′∥∥
nuclear ≤ �+

B+
(
B ′ − B+) − �−

B+
(
B ′).

We then say that the triangle property holds at B+.
In particular, since �+

B+(B−) = 0, we have for any B ′ ∈ R
p×q

(2.8) ‖B‖nuclear − ∥∥B ′∥∥
nuclear ≤ �+

B+
(
B ′ − B

) − �−
B+

(
B ′ − B

) + 2
∥∥B−∥∥

nuclear.

Moreover, we have

(2.9) ‖ · ‖nuclear ≤ �+
B+ + �−

B+ .

From now on, we write �+ = �+
B+ and �− = �−

B+ . Equation (2.8) is proved in
Appendix A.

Hence, the property that our estimators should mimic is not the rank of the
oracle but rather the fact that the “nonactive” part is zero under the semi-norm
induced by the active part.

Moreover, we define the norm � as

� := �+ + �−.

REMARK 1. Notice that the semi-norms �+ and �− form a complete pair,
meaning that � := �+ + �− is a norm.

The estimation error in several different norms can thus be “computed” in gen-
eral (semi-)norms.

A tail bound for the maximal singular value of a finite sum of matrices lying
in the set χ defined in equation (1.5) is given in the following theorem. For this
purpose, we first need to define the Orlicz norm of a random variable. Let Z ∈ R

be a random variable and α ≥ 1 a constant. Then the �α-Orlicz norm is defined as

(2.10) ‖Z‖�α := inf
{
c > 0 : E exp

[|Z|α/cα] ≤ 2
}
.

THEOREM 2.1 [Proposition 2 in Koltchinskii, Lounici and Tsybakov (2011)].
Let X1, . . . ,Xn be i.i.d. q × p matrices that satisfy for some α ≥ 1 (and all i)

EXi = 0,
∥∥
max(Xi)

∥∥
�α

=: K < ∞.
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Define

S2 := max

{

max

(
n∑

i=1

EXiX
T
i

)/
n,
max

(
n∑

i=1

EXT
i Xi

)/
n

}
.

Then for a constant C and for all t > 0,

P

(

max

(
n∑

i=1

Xi

)/
n ≥ CS

√
t + log(p + q)

n

+ C log1/α

(
K

S

)(
t + log(p + q)

n

))
≤ exp(−t).

This theorem is used with the tail summation property of the expectation in the
derivations of the tail bounds in Section 3 of the Supplementary Material [Elsener
and van de Geer (2018)].

3. Oracle inequalities. We first give two deterministic sharp and nonsharp
oracle inequalities. The connection to the empirical process parts and to the spe-
cific loss functions follow in Section 3.3. Let B0 = arg min

B ′∈B
R(B ′) be the target. It

is assumed that q ≤ p.

3.1. Sharp oracle inequality. Here, we assume that the loss function is differ-
entiable and Lipschitz continuous. The next lemma gives a connection between the
empirical risk and the penalization term.

LEMMA 3.1 [Adapted from Lemma 7.1 in van de Geer (2016)]. Suppose that
Rn is differentiable. Then for all B ∈ B

− trace
(
Ṙn(B̂)T (B − B̂)

) ≤ λ‖B‖nuclear − λ‖B̂‖nuclear.

The following theorem is inspired by Theorem 7.1 in van de Geer (2016). In
contrast to this theorem, we need to bound the empirical process part differently.
In view of the application to the matrix completion problem, we assume a specific
bound on the empirical process.

THEOREM 3.1. Suppose that Assumptions 1 and 3 hold, that the loss function
is differentiable and let H be the convex conjugate of G. Assume further for all
B ′ ∈ B that for λε > 0 and λ∗ > 0∣∣trace

((
Ṙn

(
B ′) − Ṙ

(
B ′))T (

B − B ′))∣∣ ≤ λε�
(
B ′ − B

) + λ∗.

Take λ > λε . Let 0 ≤ δ < 1 be arbitrary, and define

λ := λ − λε, λ := λε + λ + δλ.
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Then

δλ�+(B̂ − B) + δλ�−(B̂ − B) + R(B̂) − R(B)

≤ H(λ3
√

s) + 2λ
∥∥B−∥∥

nuclear + λ∗.

In the proof of this theorem, the differentiability of the loss function and As-
sumption 3 are crucial. Without this property, an additional term arising from the
one-point-margin condition would appear in the upper bound. This term would
then lead to a nonsharp bound.

3.2. Nonsharp oracle inequality. Instead of bounding an empirical process
term depending on the derivative of the empirical and theoretical risks, we need
to consider differences of these functions.

THEOREM 3.2. Suppose that Assumptions 1 and 2 hold. Let H be the convex
conjugate of G. Suppose further that for λε > 0, λ∗ > 0, and all B ′ ∈ B

(3.1)
∣∣[Rn

(
B ′) − R

(
B ′)] − [

Rn(B) − R(B)
]∣∣ ≤ λε�

(
B ′ − B

) + λ∗.

Let 0 < δ < 1, take λ > λε and define

(3.2) λ = λ + λε, λ = λ − λε.

Then

δλ�(B̂ − B) ≤ 2H
(
λ(1 + δ)3

√
s
)

+ 2
(
λ∗ + (

R(B) − R
(
B0))) + 4λ

∥∥B−∥∥
nuclear

and

R(B̂) − R(B) ≤ 1

δ

[
2H

(
λ(1 + δ)3

√
s
) + λ∗ + 2

(
R(B) − R

(
B0))

+ 2λ
∥∥B−∥∥

nuclear

] + λ∗ + 2λ
∥∥B−∥∥

nuclear.

It has to be noticed that the above bound is “good” only if R(B) − R(B0) is
already small. The main cause for the nonsharpness is Assumption 2 that leads to
an additional term in the upper bound of the inequality.

3.3. Applications to specific loss functions. We now apply the deterministic
sharp and nonsharp oracle inequalities to the case of the Huber loss and absolute
value loss, respectively. We assume in both cases that the distribution of the errors
is symmetric around 0 so that B0 = B∗. This is discussed in detail in Section 4 of
the Supplementary Material [Elsener and van de Geer (2018)].
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Huber loss-sharp oracle inequality. We first consider the case that arises by
choosing the Huber loss. Theorem 3.1 together with Lemma 2.1 and the first claim
of Lemma 3.2 in the Supplementary Material imply the following corollary. It is
useful to notice that the Lipschitz constant of the Huber loss is 2κ .

COROLLARY 3.1. Let B = B+ + B− where B+ and B− are defined in equa-
tion (2.4). Let Assumption 4 be satisfied.

For a constant C0 > 0, let

λε = 2(4η + 2κ)

(
(8C0 + √

2)

√
log(p + q)

nq
+ 8C0

√
log(1 + q)

log(p + q)

n

)

and λ∗ = 8η(4η + 2κ)p log(p + q)/(3n) + λε

√
log(p + q)/n.

Assume that λ > λε . Take 0 ≤ δ < 1,

(3.3) λ := λ − λε and λ := λε + λ + δλ

Choose j0 := �log2(7q
√

pqη
√

n/ log(p + q))� and define

α = (j0 + 2) exp
(−p log(p + q)

)
.

Then we have with probability at least 1 − α that

δλ�+(B̂H − B) + δλ�−(B̂H − B) + R(B̂H ) − R(B)

≤ pqC2
1 λ̄29s

2
+ 2λ

∥∥B−∥∥
nuclear + λ∗.

Assumption 4 guarantees that the risk function is sufficiently convex. From this
assumption, we also obtain a bound for the possible values of the tuning param-
eter κ . We can also see that the results hold for errors with a heavier tail than
the Gaussian. The choice of the noise level λε and consequently of the tuning pa-
rameter λ results from the the probability inequalities for the empirical process in
Section 3 of the Supplementary Material [Elsener and van de Geer (2018)]. The
quantity λ∗ is also a consequence of the bound on the empirical process part. How-
ever, it does not affect the asymptotic rates.

Absolute value loss—nonsharp oracle inequality. The next corollary is an
application to the case of the absolute value loss. Theorem 3.2 combined with
Lemma 2.2 and the second claim of Lemma 3.2 in the Supplementary Material
lead to the following corollary. The Lipschitz constant in this case is 1.

COROLLARY 3.2. Let the oracle B be as in 2.4. Suppose that Assumption 5
is satisfied. For a constant C0 > 0, let

λε = 2
(
(8C0 + √

2)

√
log(p + q)

nq
+ 8C0

√
log(1 + q)

log(p + q)

n

)
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and λ∗ = 8ηp log(p + q)/(3n) + λε

√
log(p + q)/n. Take 0 < δ < 1 and λ > λε .

Choose j0 := �log2(7q
√

pqη
√

n/ log(p + q))� and define

α = (j0 + 2) exp
(−p log(p + q)

)
.

Then we have with probability at least 1 − α that

δλ�(B̂ − B)

≤ 6C2λ
2
(1 + δ)2pqs + 2λ∗ + 2

(
R(B) − R

(
B0)) + 4λ

∥∥B−∥∥
nuclear

and

R(B̂) − R(B) ≤ 1

δ

[
6C2

2λ
2
(1 + δ)2pqs + λ∗ + 2

(
R(B) − R

(
B0))

+ 2λ
∥∥B−∥∥

nuclear

] + λ∗ + 2λ
∥∥B−∥∥

nuclear.

Also in this case, the choices of λε and λ∗ are a consequence of the probability
bounds.

4. Asymptotics and weak sparsity. The results in Section 3 are valid for
finite values of the dimension of the matrix p, q , the rank and the number of
observed entries n. A question that is answered in this section is how the esti-
mation errors of the proposed estimators behave when n, p and q are allowed to
grow.

As mentioned in Negahban and Wainwright (2012), practical reasons motivate
the assumption that the matrix B0 is not exactly low-rank but only approximately.
In relation to the matrix completion problem, one observes that the ratings given
by the users are unlikely to be exactly equal but rather very similar. This trans-
lates to a matrix that is not low-rank. However, it is sensible to assume that the
matrix is almost low-rank. The notion of weak sparsity quantifies this assumption
by assuming that for some 0 < r < 1 and ρ > 0,

(4.1)
q∑

k=1

(

0

k

)r =: ρr
r ,

where 
0
1, . . . ,


0
q are the singular values of B0. For r = 0, we have under the

convention that 00 = 0 that
q∑

k=1

(

0

k

)0 =
q∑

k=1

1{
0
k>0} = s0,

where s0 is the rank of B0. The following lemma gives a bound of the nonactive
part of the matrix B that appears in the oracle bounds.
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LEMMA 4.1. For σ > 0, we may take

(4.2)
∥∥B−∥∥

nuclear ≤ σ 1−rρr
r ,

and

s ≤ σ−rρr
r .

We first consider the asymptotic behavior of our estimators in the case of an
exactly low-rank matrix and deduce from this the asymptotics for the case of an
approximately low-rank matrix.

4.1. Asymptotics.

4.1.1. Sharp. By Corollary 3.1, assuming that q log(1+q) = o( n
log(p+q)

) and,
therefore, using the choice for the noise level

λε 
√

log(p + q)

nq

we obtain

R(B̂H ) − R
(
B0)

≤ R(B) − R
(
B0)

+OP

(
ps log(p + q)

n

+
√

log(p + q)

nq

(√
log(p + q)

n
+ ∥∥B−∥∥

nuclear

))
.

(4.3)

We choose for simplicity the oracle to be the matrix B0 itself with s0 = rank(B0).
Then we make use of the two point margin condition that is shown to hold in
Lemma 2.1. The resulting rate is then given by

(4.4)
∥∥B̂H − B0∥∥2

F = OP

(
(4η + 2κ)2C4

1
p2qs0 log(p + q)

n

)
,

where κ is the Huber parameter and C1 is the constant from Lemma 2.1.

REMARK 2. The rate (4.4) depends on η as in Koltchinskii, Lounici and Tsy-
bakov (2011) and on the Lipschitz constant of the loss function which is typically
smaller than η. If C2

1 = O(η), the constant in front of the rate is of order O(η4).
This is a “worst-case” scenario that shows the cost that is paid when allowing for
very general error distributions as in our case. We emphasize that in this case the
distribution of the errors is not required to have a density.
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In addition to the rate obtained for the Frobenius norm, we are also able to
derive rates for the estimation error measured in nuclear norm. From Corollary 3.1
and equation (2.9) under the previous conditions, it follows that

(4.5)
∥∥B̂H − B0∥∥

nuclear =OP

(
C2

1pqs0

√
log(p + q)

nq

)
.

4.1.2. Nonsharp. By Corollary 3.2, it is known that the assumption q log(1 +
q) = o( n

log(p+q)
) leads to the choice λε  √

log(p + q)/nq . Therefore, we

R(B̂) − R
(
B0)

= OP

(
ps log(p + q)

n
+ R(B) − R

(
B0)

+
√

log(p + q)

nq

(√
log(p + q)

n
+ ∥∥B−∥∥

nuclear

))
.

(4.6)

What can be observed comparing the rates in equations (4.3) and (4.6) is the pres-
ence of the additional term R(B) − R(B0) in the nonsharp case in contrast to the
sharp case. We choose again the oracle to be the matrix B0 itself. By the one point
margin condition derived in Lemma 2.2, we see that the rate of convergence in this
case is given by

(4.7)
∥∥B̂ − B0∥∥2

F = OP

(
C4

2
p2qs0 log(p + q)

n

)
,

where the constant C2 comes from Lemma 2.2.

REMARK 3. If C2
2 = O(η), a comparison with the rates obtained in

Koltchinskii, Lounici and Tsybakov (2011) shows that the rates agree. In con-
trast to the rate obtained for the Huber loss [equation (4.4)] the distribution of the
errors is assumed to have a density. This leads to a constant of order O(η2) in
a “worst-case” scenario. It is a natural consequence of the stronger assumption
on the distribution of the errors. This is comparable to the constant obtained in
Koltchinskii, Lounici and Tsybakov (2011).

In an analogy to the previous case, we are able to derive a rate for the estimation
error measured in nuclear norm:

(4.8)
∥∥B̂ − B0∥∥

nuclear = OP

(
C2

2pqs0

√
log(p + q)

nq

)
.

The rates are indeed very slow but this is not surprising given that per entry the
number of observations is about n/(pq). The price to pay for the estimation of the
reduced number of parameters ps0 is given by the term log(p + q).
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4.2. Weak sparsity. In what follows, the asymptotic behavior of the proposed
estimators is discussed when applied to an estimation problem where one aims at
estimating a matrix that is not exactly low-rank. With Lemma 4.1 and the rates
given in the previous section, we are able to derive an explicit rate also for the
approximately low-rank case. For this purpose, we assume that equation (4.1)
holds.

4.2.1. Huber estimator. The following corollary gives rates for the estimation
error of the Huber estimator when used for estimation of a not exactly low-rank
matrix.

COROLLARY 4.1. With q log(1 + q) = o( n
log(p+q)

), we choose

λε 
√

log(p + q)

nq
.

We then have

∥∥B̂H − B0∥∥2
F = OP

(
(η + κ)2C4

1
p2q log(p + q)

n

)1−r

ρr
r .

4.2.2. Absolute value estimator. Using the oracle inequality under the weak
sparsity assumption, we obtain the following result.

COROLLARY 4.2. With q log(1 + q) = o( n
log(p+q)

), we choose

λε 
√

log(p + q)

nq
.

Then we have for the Frobenius norm of the estimation error

(4.9)
∥∥B̂ − B0∥∥2

F = OP

(
p2q log(p + q)

n

)1−r

ρr
r .

5. Simulations. In this section, the robustness of the Huber estimator 1.7 is
empirically demonstrated. In Section 5.3, the Huber estimator is compared with
the estimator proposed in Klopp, Lounici and Tsybakov (2016) under models
1.4 and 1.9 with each Student t and standard Gaussian noise. The sample size
ranges in all simulations for all dimensions considered here from 3p log(p)s0 to
pq . Between minimal and maximal sample size, there are in each case 10 points.
To illustrate the rate derived in Section 4, we compute the error ‖B̂H − B0‖2

F

for different dimensions of the problem under increasing number of observa-
tions.

To compute the solution of the optimization problem 1.7, functions from the
Matlab library cvx [CVX Research (2012)] were used.
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Throughout this section, the error is assumed to have the following shape:

(5.1) Error = 1

pq

∥∥B̂H − B0∥∥2
F = 1

pq

p∑
i=1

q∑
j=1

(
B̂Hij

− B0
ij

)2
.

To verify the robustness of the estimator 1.7 and the rate of convergence that was
derived in Section 4, we use the Student t distribution with 3 degrees of freedom.
Every point in the plots corresponds to an average of 25 simulations. The value of
the tuning parameter is set to

λ = 2

√
log(p + q)

nq
.

A comparison with λε from Corollary 3.1 indicates that λ is rather small. For
the settings we consider in this section, we found that this value for λ is more
appropriate. As done in Candès and Plan (2010), for a better comparison between
the error curves of our estimator and the oracle rate in equation (4.4), this rate was
multiplied with 1.68 in the case of Student t distributed errors and with 1.1 in the
case of Gaussian errors.

5.1. t-distributed and Gaussian errors. The variance of the Student t distribu-
tion with ν > 2 degrees of freedom is given by

(5.2) Var(εi) = ν

ν − 2
, for εi ∼ tν .

Figure 1(a) shows a comparison between the Huber estimator 1.7 with the estima-
tor that uses the quadratic loss in the case of Student t with 3 degrees of freedom
distributed errors. As expected, the estimator that uses the quadratic loss is not
robust against the corrupted entries. On the other hand, we can see in Figure 1(b)
that the Huber estimator performs almost as well as the quadratic loss estimator in
the case of Gaussian errors with variance 1. In agreement with the theory, the rate
of the estimator is very close to the oracle rate for sufficiently large sample sizes.
The value of κ that we used in the simulations is 1.345. The maximal rating η is
chosen to be η = 10.

5.2. Changing the problem size. In order to confirm/verify the theoretical re-
sults, we proceed similar to what was done in Negahban and Wainwright (2011)
and Negahban and Wainwright (2012) in the corresponding cases. Here, we con-
sider three different problem sizes: p,q ∈ {30,50,80}. In Figure 2(a), we observe
that as the problem gets harder, that is, as the dimension of the matrix increases,
also the sample size needs to be larger. Figure 2(b) shows that by rescaling the
sample size by n/(3ps0 log(p)) the rate of convergence agrees very well with the
theoretical one. It is assumed that the rank of the matrices is s0 = 2 for all cases.
Every point corresponds to an average of 25 simulations. The maximal rating η

and the tuning parameter κ are chosen as before.
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FIG. 1. Comparison of the Huber and quadratic loss in the case of Student t distributed (a) and
Gaussian errors (b). We choose p = q = 80 and s0 = 2. The dot-dashed red line corresponds to 1.68
multiplied with the oracle bound derived in equation (4.4) for the exact low-rank case.

5.3. Comparison with a low-rank + sparse estimator. In this subsection, we
compare the performance of the Huber estimator 1.7 with the performance of the
low-rank matrix estimator proposed by Klopp, Lounici and Tsybakov (2016) 1.10.
We first compare the estimators B̂H and L̂ with the observations Yi generated
according to the model 1.4 with standard Gaussian and Student t with 3 degrees of
freedom distributed errors. Equation (21) in Klopp, Lounici and Tsybakov (2016)

FIG. 2. Three different problem sizes are considered: p = q ∈ {30,50,80}. The rank is fixed to
s0 = 2 in both cases. In Panel (b), it can be seen that the rate of convergence corresponds approx-
imately to the theoretical one derived in equation (4.4). The dot-dashed line is the oracle. It was
multiplied by 1.68 in order to fit our curves.
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FIG. 3. The left panel shows the Huber estimator 1.7 and the low-rank plus sparse estimator 1.10
under the model 1.4 with Student t noise with 3 degrees of freedom. The right panel shows the same
estimators under the same model with standard Gaussian noise.

suggests that the tuning parameters are chosen as follows:

λ1 = 2

√
log(p + q)

nq
, λ2 = 2

log(p + q)

n
,

where λ1 and λ2 are the tuning parameters of the estimator 1.10. Also in this case it
has to be noticed that the tuning parameters are smaller than the theoretical values
given in their paper.

In Figure 3(a), the Huber estimator 1.7 is compared with the low-rank plus
sparse estimator 1.10 under the model 1.4 with i.i.d. Student t noise with 3 de-
grees of freedom. As expected, these estimators perform comparably well under
the trace regression model 1.4. In Figure 3(b), the same estimators are compared
under the model 1.4 with i.i.d. standard Gaussian noise. Also in this case, we see
that both estimators achieve approximately the same error. These observations are
not surprising since the theoretical analysis of Section 3 could be carried over by
adapting the (semi-)norms to the different penalization.

We now consider the model proposed in Klopp, Lounici and Tsybakov (2016)
where around 5% of the observed entries are taken to be only one rating. This is
the case of malicious users who systematically rate only one particular movie with
the same rating. We refer to Section 2.3 of Klopp, Lounici and Tsybakov (2016)
for more details on this setting. In Figure 4(a), we see that the Huber estimator
outperforms the low-rank plus sparse estimator with Student t noise with 3 degrees
of freedom. This might be due to the quadratic loss function and to the choice of the
tuning parameters. In Figure 4(b) where Gaussian noise is considered, we observe
that both estimators perform almost equally well.
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FIG. 4. The left panel shows the Huber estimator 1.7 and the low-rank plus sparse estimator 1.10
under the model 1.9 with Student t noise with 3 degrees of freedom. The right panel shows the same
estimators under the same model as on the left panel but with standard Gaussian noise.

6. Discussion. In this paper, we have derived sharp and nonsharp oracle in-
equalities for two robust nuclear norm penalized estimators of the noisy matrix
completion problem. The robust estimators were defined using the well-known
Huber loss for which the sharp oracle inequality has been derived and the absolute
value loss for which we have shown a nonsharp oracle inequality. For both types
of oracle inequalities, we proved a general deterministic result first and added then
the part arising from the empirical process. We have also shown how to apply the
oracle inequalities to the case where we only assume weak sparsity, that is, ap-
proximately low-rank matrices. It is worth pointing out that our estimators do not
require the distribution on the set of matrices (1.5) to be known in contrast to, for
example, Koltchinskii, Lounici and Tsybakov (2011). In our case, the distribution
on the set of matrices (1.5) is only needed in the theoretical analysis. The proofs
of the oracle inequalities rely on the properties of the nuclear norm, and for the
empirical process part on the concentration, symmetrization and contraction theo-
rems. A main tool in this context was also the bound on the largest singular value
of a matrix with finite Orlicz norm. Our simulations, in the case of the Huber loss,
showed a very good agreement with the convergence rates obtained by our theo-
retical analysis. We saw that the oracle rate is attained up to constants in presence
of non-Gaussian noise and that the robust estimation procedure outperforms the
quadratic loss function.

It is left to future research to establish a sharp oracle inequality also for the
case of a nondifferentiable robust loss function. The contraction inequality used in
this paper for the Huber loss requires that also the derivative of the loss is Lipschitz
continuous. This is not the case for the absolute value loss. Thanks to the convexity
of the loss function it might be possible to derive a sharp result also for this case.



ROBUST LOW-RANK MATRIX ESTIMATION 3501

APPENDIX A: PROOFS OF MAIN RESULTS

PROOF OF INEQUALITY 2.8. Using the triangle property at B+ with B ′ = B+,
we obtain

0 = ∥∥B+∥∥
nuclear − ∥∥B+∥∥

nuclear

≤ �+(
B+ − B+)︸ ︷︷ ︸

=0

−�−(
B+)

⇒ �−(
B+) = 0.

By the triangle property at B+ with B ′ = B = B+ + B−, we have that∥∥B+∥∥
nuclear − ‖B‖nuclear

= ∥∥B+∥∥
nuclear − ∥∥B+ + B−∥∥

nuclear

≤ �+(
B−) − �−(

B+ + B−)
= −�−(

B+ + B−)
.

By the triangle inequality, it follows using �−(B+) = 0 that

�−(
B+ + B−) ≥ �−(

B−) − �−(
B+) = �−(

B−)
.

Therefore, we have∥∥B+∥∥
nuclear − ∥∥B+ + B−∥∥

nuclear ≤ −�−(
B−)

,

and by the triangle inequality∥∥B+∥∥
nuclear − ∥∥B+ + B−∥∥

nuclear ≥ −∥∥B−∥∥
nuclear,

which gives

�−(
B−) ≤ ∥∥B−∥∥

nuclear.

For an arbitrary B , we have again by the triangle inequality,

‖B‖nuclear − ∥∥B ′∥∥
nuclear ≤ ∥∥B+∥∥

nuclear + ∥∥B−∥∥
nuclear − ∥∥B ′∥∥

nuclear.

Applying the triangle property at B+, we find that

‖B‖nuclear − ∥∥B ′∥∥
nuclear ≤ �+(

B+ − B ′) − �−(
B ′) + ∥∥B−∥∥

nuclear.

Apply now twice the triangle inequality (first inequality) to find that

‖B‖nuclear − ∥∥B ′∥∥
nuclear ≤ �+(

B − B ′) + �+(
B−) − �−(

B − B ′)
+ �−(B) + ∥∥B−∥∥

nuclear

≤ �+(
B − B ′) − �−(

B − B ′) + 2
∥∥B−∥∥

nuclear,

where it was used that �(B−) = 0 and that �−(B) ≤ �−(B−) ≤ ‖B−‖nuclear. �
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PROOF OF LEMMA 3.1. Let B ∈ B. Define for 0 < t < 1

B̃t := (1 − t)B̂ + tB.

Since B is convex, we have that B̃t ∈ B for all 0 < t < 1. Since B̂ is the minimizer
of the objective function and by the convexity of the objective function, we have

Rn(B̂) + λ‖B̂‖nuclear ≤ Rn(B̃t ) + λ‖B̃t‖nuclear

≤ Rn(B̃t ) + (1 − t)λ‖B̂‖nuclear + tλ‖B‖nuclear.

Finally, we can conclude that

Rn(B̂) − Rn(B̃)

t
≤ λ‖B‖nuclear − λ‖B̂‖nuclear.

Letting t → 0 the claim follows. �

PROOF OF THEOREM 3.1. The first-order Taylor expansion of R at B̂ is given
by

(A.1) R(B) = R(B̂) + trace
(
Ṙ(B̂)T (B − B̂)

) + Rem(B̂,B).

Then it follows that

(A.2) R(B̂) − R(B) + Rem(B̂,B) = − trace
(
Ṙ(B̂)T (B − B̂)

)
.

Case 1. If

trace
(
Ṙ(B̂)T (B − B̂)

)
≥ δλ�+(B̂ − B) + δλ�−(B̂ − B) − 2λ

∥∥B−∥∥
nuclear − λ∗,

(A.3)

then by the two-point-margin condition 3 we find that

(A.4) R(B) − R(B̂) ≥ trace
(
Ṙ(B̂)T (B − B̂)

) + G
(‖B − B̂‖F

)
,

which implies that

R(B) − R(B̂) ≥ δλ�+(B̂ − B) + δλ�−(B̂ − B) − 2λ
∥∥B−∥∥

nuclear

− λ∗ + G
(‖B − B̂‖F

)︸ ︷︷ ︸
≥0

≥ δλ�+(B̂ − B) + δλ�−(B̂ − B) − 2λ
∥∥B−∥∥

nuclear − λ∗.

Case 2. Assume in the following that

trace
(
Ṙ(B̂)T (B − B̂)

)
≤ δλ�+(B̂ − B) + δλ�−(B̂ − B) − 2λ

∥∥B−∥∥
nuclear − λ∗.

(A.5)



ROBUST LOW-RANK MATRIX ESTIMATION 3503

By the two-point inequality (Lemma 3.1), we have that

(A.6) − trace
(
Ṙn(B̂)T (B − B̂)

) ≤ λ‖B‖nuclear − λ‖B̂‖nuclear,

which implies that

(A.7) 0 ≤ trace
(
Ṙn(B̂)T (B − B̂)

) + λ‖B‖nuclear − λ‖B̂‖nuclear.

Hence,

− trace
(
Ṙ(B̂)T (B − B̂)

) + δλ�+(B̂ − B) + δλ�−(B̂ − B)

≤ trace
((

Ṙn(B̂) − Ṙ(B̂)
)T

(B − B̂)
) + δλ�+(B̂ − B) + δλ�−(B̂ − B)

+ λ‖B‖nuclear − λ‖B̂‖nuclear

≤ λε�(B̂ − B) + λ∗ + δλ�+(B̂ − B) + δλ�−(B̂ − B)

+ λ‖B‖nuclear − λ‖B̂‖nuclear

≤ λε�
+(B̂ − B) + λε�

−(B̂ − B) + λ∗ + δλ�+(B̂ − B)

+ δλ�−(B̂ − B) + λ�+(B̂ − B) − λ�−(B̂ − B) + 2λ
∥∥B−∥∥

nuclear

= λ�+(B̂ − B) − (1 − δ)λ�−(B̂ − B) + 2λ
∥∥B−∥∥

nuclear + λ∗.

Therefore, by equation (A.5),

�−(B̂ − B) ≤ λ

(1 − δ)λ
�+(B̂ − B).

We then have by the convex conjugate inequality,

�+(B̂ − B) ≤ ‖B̂ − B‖F 3
√

s

≤ H(3
√

s) + G
(‖B̂ − B‖F

)
,

which implies that

− trace
(
Ṙ(B̂)T (B − B̂)

) + λ�−(B̂ − B) + δλ�+(B̂ − B)

= R(B̂) − R(B) + Rem(B̂,B) + λ�−(B̂ − B) + δλ�+(B̂ − B)

≤ H(λ3
√

s) + G
(‖B̂ − B‖F

) + 2λ
∥∥B−∥∥

nuclear + λ∗

≤ H(λ3
√

s) + Rem(B̂,B) + 2λ
∥∥B−∥∥

nuclear + λ∗. �

PROOF OF THEOREM 3.2. We start the proof with the following inequality
using the fact that B̂ is the minimizer of the objective function:

(A.8) Rn(B̂) + λ‖B̂‖nuclear ≤ Rn(B) + λ‖B‖nuclear.
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Then, by adding and subtracting R(B̂) on the left-hand side and R(B) on the right-
hand side, we obtain

R(B̂) − R(B) ≤ −[
(Rn(B̂) − R(B̂) − (

Rn(B) − R(B)
)]

+ λ‖B‖nuclear − λ‖B̂‖nuclear.

Applying Assumption 3.1, the definition of � and Lemma 2.8, we obtain

R(B̂) − R(B) ≤ λε�(B̂ − B) + λ∗ + λ‖B‖nuclear − λ‖B̂‖nuclear

≤ λε�
+(B̂ − B) + λε�

−(B̂ − B) + λ∗

+ λ�+(B̂ − B) − λ�−(B̂ − B) + 2λ
∥∥B−∥∥

nuclear

= (λε + λ)�+(B̂ − B) − (λ − λε)�
−(B̂ − B) + λ∗ + 2λ

∥∥B−∥∥
nuclear.

Since later on we apply Assumption 2, we subtract on both sides of the above
inequality R(B0):

R(B̂) − R
(
B0) + λ�−(B̂ − B)

≤ R(B) − R
(
B0) + λ�+(B̂ − B) + λ∗ + 2λ

∥∥B−∥∥
nuclear.

(A.9)

It is then useful to make the following case distinction that allows us to obtain an
upper bound for the estimation error.

Case 1. If λ�+(B̂ − B) ≤ (1−δ)
δ

(λ∗ + R(B) − R(B0) + 2λ‖B−‖nuclear), then

δλ�+(B̂ − B) ≤ (1 − δ)
(
λ∗ + R(B) − R

(
B0) + 2λ

∥∥B−∥∥
nuclear

)
≤ λ∗ + R(B) − R

(
B0) + 2λ

∥∥B−∥∥
nuclear.

By multiplying equation (A.9) on both sides with δ, we arrive at

δλ�−(B̂ − B) ≤ λ∗ + R(B) − R
(
B0) + 2λ

∥∥B−∥∥
nuclear.

Therefore,

δ
(
λ�+(B̂ − B) + λ�−(B̂ − B)

)
≤ 2λ∗ + 2

(
R(B) − R

(
B0)) + 4λ

∥∥B−∥∥
nuclear.

(A.10)

And since

λ < λ,

we conclude that

δλ
(
�+ + �−)

(B̂ − B) ≤ 2λ∗ + 2
(
R(B) − R

(
B0)) + 4λ

∥∥B−∥∥
nuclear.

Case 2. If λ�+(B̂ − B) ≥ (1−δ)
δ

(λ∗ + R(B) − R(B0) + 2λ‖B−‖nuclear), then

R(B̂) − R
(
B0) + λ�−(B̂ − B) ≤ λ�+(B̂ − B) + λ�+(B̂ − B)

δ

(1 − δ)
.
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This implies

(1 − δ)
[
R(B̂) − R

(
B0)] + (1 − δ)λ�−(B̂ − B) ≤ λ�+(B̂ − B).

And finally we conclude that

�−(B̂ − B) ≤ λ

(1 − δ)λ
�+(B̂ − B).

We then obtain using the definition of �+ in Lemma 2.3

�+(B̂ − B) ≤ ‖B̂ − B‖F 3
√

s

≤ (∥∥B̂ − B0∥∥
F + ∥∥B − B0∥∥

F

)
3
√

s

≤ G
(∥∥B̂ − B0∥∥

F

) + G
(∥∥B − B0∥∥

F

) + 2H(3
√

s).

Invoking the convex conjugate inequality and Assumption 2, we get

δλ�+(B̂ − B) + δλ�−(B̂ − B)

≤ 2H
(
λ(1 + δ)3

√
s
) + R(B) − R

(
B0) + (

R(B) − R
(
B0))

+ λ∗ + 2λ
∥∥B−∥∥

nuclear

≤ 2H
(
λ(1 + δ)3

√
s
) + 2

(
R(B) − R

(
B0))

+ λ∗ + 2λ
∥∥B−∥∥

nuclear.

Combining the two cases, we have for the estimation error

δλ
(
�+ + �−)

(B̂ − B)

≤ 2H
(
λ(1 + δ)3

√
s
) + 2λ∗

+ 2
(
R(B) − R

(
B0)) + 4λ

∥∥B−∥∥
nuclear

and for the second claim we conclude that

R(B̂) − R(B) ≤ λ�+(B̂ − B) + λ∗ + 2λ
∥∥B−∥∥

nuclear

≤ 1

δ

[
2H

(
λ(1 + δ)3

√
s
) + λ∗ + 2

(
R(B) − R

(
B0))

+ 2λ
∥∥B−∥∥

nuclear

] + λ∗ + 2λ
∥∥B−∥∥

nuclear. �

PROOF OF LEMMA 2.1. The theoretical risk function arising from the Huber
loss is given by

(A.11) R(B) = 1

n

n∑
i=1

EXi

[
E

[
ρH

(
Yi − trace(XiB)

)|Xi

]]
.
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Suppose that Xi has its only 1 at entry (k, j). Then XB = (B)jk . Define

r(x,B) := E
[
ρH

(
Yi − trace(XiB)

)|Xi = x
]

= E
[
ρH (Yi − Bjk)

]
.

We notice that ṙ(x,B) = dr(x,B)
dBjk

= E[dρH (Yi−Bjk)

dBjk
]. The derivative with respect to

Bjk of ρH (Yi − Bjk) is given by

ρ̇H (Yi − Bjk) :=

⎧⎪⎪⎨
⎪⎪⎩

−2(Yi − Bjk) if |Yi − Bjk| ≤ κ,

−2κ if Yi − Bjk > κ,

2κ if Yi − Bjk < −κ.

Then

ṙ(x,B) = −2
∫ Bjk+κ

Bjk−κ
(y − Bjk) dF (y) − 2κ

∫ ∞
Bjk+κ

dF (y) + 2κ

∫ Bjk−κ

−∞
dF(y)

= −2
∫ Bjk+κ

Bjk−κ
y dF (y) + 2Bjk

∫ Bjk+κ

Bjk−κ
dF (y) − 2κ

[
1 − F(κ + Bjk)

]
+ 2κF(Bjk − κ)

= −2(Bjk + κ)F (Bjk + κ) + 2(Bjk − κ)F (Bjk − κ)

+ 2
∫ Bjk+κ

Bjk−κ
F (y) dy + 2Bjk

[
F(Bjk + κ) − F(Bjk − κ)

] − 2κ

+ 2κF(κ + Bjk) + 2κF(Bjk − κ).

= 2
∫ Bjk+κ

Bjk−κ
F (y) dy − 2κ.

The second derivative of r(x,B) with respect to Bjk is then given by

r̈(x,B) = 2
[
F(Bjk + κ) − F(Bjk − κ)

]
.

Therefore, the Taylor expansion around B ′ is given by

r(x,B) = r
(
x,B ′) + ṙ

(
x,B ′)(Bjk − B ′

jk

) + r̈(x, B̃)

2

(
Bjk − B ′

jk

)2
,

where B̃ ∈ B is an intermediate point.
We can see that Assumption 3 holds with G(u) = u2/(2C2

1pq). �

PROOF OF LEMMA 2.2. For the (theoretical) risk function R arising from the
absolute value loss, we have

R(B) = E
[
Rn(B)

]
(A.12)

= 1

n

n∑
i=1

E
[∣∣Yi − trace(XiB)

∣∣].(A.13)
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Using the tower property of the conditional expectation, we obtain

(A.14) R(B) = 1

n

n∑
i=1

EXi

[
E

[∣∣Yi − trace(XiB)
∣∣|Xi

]]
.

Suppose that Xi has its only 1 at entry (k, j). Then XB = (B)jk . Define

r(x,B) := E
[∣∣Yi − trace(XiB)

∣∣|Xi = x
]

= E
[|Yi − Bjk|]

=
∫
y≥Bjk

(y − Bjk) dF (y) +
∫
y<Bjk

(Bjk − y)dF (y)

=
∫
y≥Bjk

(y − Bjk) dF (y) +
∫ ∞
−∞

(Bjk − y)dF (y)

−
∫ ∞
Bjk

(Bjk − y)dF (y)

= 2
∫ ∞
Bjk

(y − Bjk) dF (y) +
∫ ∞
−∞

(Bjk − y)dF (y)

= 2
∫ ∞
Bjk

(y − Bjk) dF (y) + Bjk

∫ ∞
−∞

dF(y)︸ ︷︷ ︸
=1

−
∫ ∞
−∞

y dF(y)

= 2
∫ ∞
Bjk

(
1 − F(y)

)
dy + Bjk −

∫ ∞
−∞

y dF(y).

The Taylor expansion of r(x,B) around B0, assuming that B0 minimizes r , is
given by

r(x,B) = r
(
x,B0) + ṙ

(
x,B0)(

Bjk − B0
jk

) + r̈(x, B̃)

2

(
Bjk − B0

jk

)2

= r
(
x,B0) + f (B̃jk)

(
Bjk − B0

jk

)2
,

where B̃ ∈ B is an intermediate point;

r(x,B) − r
(
x,B0) ≥ 1

C2
2

(
Bjk − B0

jk

)2

which means that the one point margin Condition 2 is satisfied with G(u) =
u2/(2C2

2pq). �
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SUPPLEMENTARY MATERIAL

Supplement to “Robust low-rank matrix estimation” (DOI: 10.1214/17-
AOS1666SUPP; .pdf). The supplemental material contains an application to real
data sets, the proofs of the lemmas in Section 2 and a section on the bound of the
empirical process part of the estimation problem.
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