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PRINCIPAL COMPONENT ANALYSIS FOR FUNCTIONAL DATA
ON RIEMANNIAN MANIFOLDS AND SPHERES1
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Functional data analysis on nonlinear manifolds has drawn recent in-
terest. Sphere-valued functional data, which are encountered, for example,
as movement trajectories on the surface of the earth are an important spe-
cial case. We consider an intrinsic principal component analysis for smooth
Riemannian manifold-valued functional data and study its asymptotic proper-
ties. Riemannian functional principal component analysis (RFPCA) is carried
out by first mapping the manifold-valued data through Riemannian logarithm
maps to tangent spaces around the Fréchet mean function, and then perform-
ing a classical functional principal component analysis (FPCA) on the lin-
ear tangent spaces. Representations of the Riemannian manifold-valued func-
tions and the eigenfunctions on the original manifold are then obtained with
exponential maps. The tangent-space approximation yields upper bounds to
residual variances if the Riemannian manifold has nonnegative curvature. We
derive a central limit theorem for the mean function, as well as root-n uni-
form convergence rates for other model components. Our applications in-
clude a novel framework for the analysis of longitudinal compositional data,
achieved by mapping longitudinal compositional data to trajectories on the
sphere, illustrated with longitudinal fruit fly behavior patterns. RFPCA is
shown to outperform an unrestricted FPCA in terms of trajectory recovery
and prediction in applications and simulations.

1. Introduction. Methods for functional data analysis in a linear function
space [Wang, Chiou and Müller (2016)] or on a nonlinear submanifold [Lin and
Yao (2017)] have been much studied in recent years. Growth curve data [Ramsay
and Silverman (2005)] are examples of functions in a linear space, while densi-
ties [Kneip and Utikal (2001)] and longitudinal shape profiles [Kent et al. (2001)]
lie on nonlinear manifolds. Since random functions usually lie in an intrinsically
infinite dimensional linear or nonlinear space, dimension reduction techniques,
in particular functional principal component analysis, play a central role in rep-
resenting the random functions [Petersen and Müller (2016)] and in other su-
pervised/unsupervised learning tasks. Methods for analyzing nonfunctional data
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on manifolds have also been well developed over the years, such as data on
spheres [Fisher, Lewis and Embleton (1987)], Kendall’s shape spaces [Kendall
et al. (2009), Huckemann, Hotz and Munk (2010)] and data on other classical Rie-
mannian manifolds [Cornea et al. (2017)]; for a comprehensive overview of non-
parametric methods for data on manifolds, see Patrangenaru and Ellingson (2015).
Specifically, versions of principal component analysis methods that adapt to the
Riemannian or spherical geometry, such as principal geodesic analysis [Fletcher et
al. (2004)] or nested spheres [Huckemann and Eltzner (2018)], have substantially
advanced the study of data on manifolds.

However, there is much less known about functional data, that is, samples of
random trajectories that assume values on manifolds, even though such data are
quite common. An example is Telschow, Huckemann and Pierrynowski (2016),
who considered the extrinsic mean function and warping for functional data lying
on SO(3). Examples of data lying on a Euclidean sphere include geographical data
[Zheng (2015), Su et al. (2014)] on S2, directional data on S1 [Mardia and Jupp
(2009)], and square-root compositional data [Huckemann and Eltzner (2018)], for
which we will study longitudinal/functional versions in Section 4. Sphere-valued
functional data naturally arise when data on a sphere have a time component, such
as in recordings of airplane flight paths or animal migration trajectories. Our main
goal is to extend and study the dimension reduction that is afforded by the popular
functional principal component analysis (FPCA) in Euclidean spaces to the case of
samples of smooth curves that lie on a smooth Riemannian manifold, taking into
account the underlying geometry.

Specifically, Riemannian Functional Principal Component Analysis (RFPCA)
is shown to serve as an intrinsic principal component analysis of Riemannian
manifold-valued functional data. Our approach provides a theoretical framework
and differs from existing methods for functional data analysis that involve mani-
folds, for example, a proposed smooth principal component analysis for functions
whose domain is on a two-dimensional manifold, motivated by signals on the cere-
bral cortex [Lila, Aston and Sangalli (2016)], nonlinear manifold representation of
L2 random functions themselves lying on a low-dimensional but unknown man-
ifold [Chen and Müller (2012)] or functional predictors lying on a smooth low-
dimensional manifold [Lin and Yao (2017)]. While there have been closely re-
lated computing and application oriented proposals, including functional principal
components on manifolds in discrete time, a systematic approach and theoretical
analysis within a statistical modeling framework does not exist yet to the knowl-
edge of the authors. Specifically, in the engineering literature, dimension reduction
for Riemannian manifold-valued motion data has been considered [Rahman et al.
(2005), Tournier et al. (2009), Anirudh et al. (2015)] where, for example, in the
latter paper the time axis is discretized, followed by multivariate dimension re-
duction techniques such as principal component analysis on the logarithm mapped
data; these works emphasize specific applications and do not provide theoretical
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justifications. The basic challenge is to adapt inherently linear methods such as
functional principal component analysis (FPCA) to curved spaces.

RFPCA is an approach intrinsic to a given smooth Riemannian manifold and
proceeds through time-varying geodesic submanifolds on the given manifold by
minimizing total residual variation as measured by geodesic distance on the given
manifold. Since the mean of manifold-valued functions in the L2 sense is usually
extrinsic, that is, does not lie itself on the manifold in general, for an intrinsic
analysis the mean function needs to be carefully defined, for which we adopt the
intrinsic Fréchet mean, assuming that it is uniquely determined. RFPCA is imple-
mented by first mapping the manifold valued trajectories that constitute the func-
tional data onto the linear tangent spaces using logarithm maps around the mean
curve at a current time t and then carrying out a regular FPCA on the linear tangent
space of log-mapped data. Riemannian functional principal component (RFPC)
scores, eigenfunctions, and finite-truncated representations of the log-mapped data
are defined on the tangent spaces and finite-truncated representations of the data
on the original manifold are then obtained by applying exponential maps to the
log-mapped finite-truncated data. We develop implementation and theory for RF-
PCA and provide additional discussion for the important special case where the
manifold is the Euclidean sphere, leading to Spherical Principal Component Anal-
ysis (SFPCA), in Section 2 below, where also estimation methods are introduced.
SFPCA differs from principal component analysis on spheres [e.g., Jung, Dryden
and Marron (2012), Huckemann and Eltzner (2018)], as these are not targeting
functional data that consist of a sample of time-dependent trajectories.

Theoretical properties of the proposed RFPCA are discussed in Section 3.
Proposition 1 states that the residual variance for a certain finite-dimensional time-
varying geodesic manifold representation under the geodesic distance is upper
bounded by the L2 residual variance of the log-mapped data. The classical L2

residual variance can be easily calculated and provides a convenient upper bound
of the residual variance under the geodesic distance. A uniform central limit the-
orem for Riemannian manifold-valued functional data is presented in Theorem 1.
Corollary 1 and Theorem 2 provide asymptotic supremum convergence rates of the
sample-based estimates of the mean function, covariance function and eigenfunc-
tions to their population targets under proper metrics, and the convergence rate for
the sample FPC scores to their population targets is in Theorem 3. We also provide
a consistency result for selecting the number of components used according to a
criterion that is analogous to the fraction of variance explained (FVE) criterion in
Corollary 3. Proofs are in the Appendix and the Supplementary Materials.

An important application for SFPCA is the principal component analysis for
longitudinal compositional data, which we will introduce in Section 4, where we
show that longitudinal compositional data can be mapped to functional trajectories
that lie on a Euclidean sphere. We demonstrate a specific application for longi-
tudinal compositional data in Section 5 for behavioral patterns for fruit flies that
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are mapped to S4, where we show that the proposed SFPCA outperforms conven-
tional FPCA. A second example concerns a sample of flight trajectories from Hong
Kong to London, which are functional data on S2. In this second example, SFPCA
also outperforms more conventional approaches and illustrates the interpretability
of the proposed RFPCA. For the flight trajectory example, we demonstrate that
the FPC scores produced by the RFPCA encode more information for classifi-
cation purposes than those obtained by the classical FPCA in an L2 functional
space. These data examples are complemented by simulation studies reported in
Section 6.

2. Functional principal component analysis for random trajectories on a
Riemannian manifold.

2.1. Preliminaries. We briefly review the basics of Riemannian geometry es-
sential for the study of Riemannian manifold-valued functions; for further details
see, for example, Chavel (2006). For a smooth manifold M with dimension d and
tangent spaces TpM at p ∈ M, a Riemannian metric on M is a family of inner
products gp : TpM×TpM →R that varies smoothly over p ∈ M. Endowed with
this Riemannian metric, (M, g) is a Riemannian manifold. The geodesic distance
dM is the metric on M induced by g. A geodesic is a locally length minimiz-
ing curve. The exponential map at p ∈ M is defined as expp(v) = γv(1) where
v ∈ TpM is a tangent vector at p, and γv is a unique geodesic with initial location
γv(0) = p and velocity γ ′

v(0) = v. If (M, dM) is a complete metric space, then
expp is defined on the entire tangent space TpM. The exponential map expp is
a diffeomorphism in a neighborhood of the origin of the tangent space; the log-
arithm map logp is the inverse of expp . The radius of injectivity injp at p ∈ M
is the radius of the largest ball about the origin of TpM, on which expp is a dif-
feomorphism (Figure 1, left panel). If N is a submanifold of M with Riemannian
metric hp : TpN × TpN → R, (u, v) �→ gp(u, v) for u, v ∈ TpN induced by g,
then (N , h) is a Riemannian submanifold of (M, g).

We consider a d-dimensional complete Riemannian submanifold M of a Eu-
clidean space R

d0 for d ≤ d0, with a geodesic distance dM on M induced by the
Euclidean metric in R

d0 , and a probability space (�,A,P ) with sample space �,
σ -algebra A, and probability measure P . With X = {x : T → M | x ∈ C(T )}
denoting the sample space of all M-valued continuous functions on a com-
pact interval T ⊂ R and B(V) the Borel σ -algebra of a space V , the M-valued
random functions X(t,ω) are X : T × � → M, such that X(·,ω) ∈ X . Here,
ω �→ X(·,ω) and X(t, ·) are measurable with respect to B(X ) and B(M), re-
spectively, with B(X ) generated by the supremum metric dX : X × X → R,
dX (x, y) = supt∈T dM(x(t), y(t)), for investigating the rates of uniform conver-
gence. In the following, all vectors v are column vectors and we write X(t), t ∈ T ,
for M-valued random functions, ‖ · ‖E for the Euclidean norm, and H= {v : T →
R

d0,
∫
T v(t)T v(t) dt < ∞} for the ambient L2 Hilbert space of Rd0 valued square
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FIG. 1. Left panel: Two tangent vectors v (red and blue arrows) in the tangent ball (yellow) centered
at p (black dot) with radius injp , and their geodesics {expp(tv) | t ∈ [0,1]} (red and blue lines).
Right panel: Two trajectories X(t) (red and blue solid curves), corresponding tangent vectors V (t)

at t = 0,1 (arrows), and the first two eigenfunctions (red dotted, φ1, and blue dotted, φ2) mapped
onto M by the exponential maps. The red trajectory has a large score on φ1, while the blue one has
a large score on φ2. The mean function is the black curve.

integrable functions, equipped with the inner product 〈v,u〉 = ∫
T v(t)T u(t) dt and

norm ‖v‖ = 〈v, v〉1/2 for u, v ∈ H.

2.2. Riemannian functional principal component analysis. As intrinsic pop-
ulation mean function for the M-valued random function X(t), we consider the
intrinsic Fréchet mean μM(t) at each time point t ∈ T , where

(1) M(p, t) = E
[
dM

(
X(t),p

)2]
, μM(t) = arg min

p∈M
M(p, t),

and we assume the existence and the uniqueness of the Fréchet means μM(t). The
mean function μM is continuous due to the continuity of the sample paths of X,
as per Proposition 2 below. One could consider an alternative definition for the
mean function, μG = arg minμ F(μ), where F(μ) = E[∫T dM(X(t),μ(t))2 dt],
which coincides with μM under a continuity assumption; we work with μM in
(1), as it matches the approach in functional PCA and allows us to investigate uni-
form convergence. The goal of RFPCA is to represent the variation of the infinite
dimensional object X around the mean function μM in a lower dimensional sub-
manifold, in terms of a few principal modes of variation, an approach that has been
successful to represent random trajectories in the Hilbert space L2 [Castro, Law-
ton and Sylvestre (1986), Ramsay and Silverman (2005), Wang, Chiou and Müller
(2016)].

Given an arbitrary system of K orthonormal basis functions, �K = {ψk ∈ H |
ψk(t) ∈ TμM(t), 〈ψk,ψl〉 = δkl, k, l = 1, . . . ,K}, δkl = 1 if k = l and 0 other-
wise, with values at each time t ∈ T restricted to the d-dimensional tangent space
TμM(t), which we identify with R

d0 for convenience, we define the K-dimensional
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time-varying geodesic submanifold:

(2) MK(�K) :=
{
x ∈ X , x(t) = expμM(t)

(
K∑

k=1

akψk(t)

)
for t ∈ T

∣∣∣ ak ∈ R

}
.

Here, MK(�K) plays an analogous role to the linear span of a set of basis func-
tions in Hilbert space, with expansion coefficients or coordinates ak .

In the following, we suppress the dependency of MK on the basis functions.
With projections 
(x,MK) of a M-valued function x ∈ X onto time-varying
geodesic submanifolds MK ,


(x,MK) := arg min
y∈MK

∫
T

dM
(
y(t), x(t)

)2
dt,

the best K-dimensional approximation to X minimizing the geodesic projection
distance is the geodesic submanifold that minimizes

(3) FS(MK) = E

∫
T

dM
(
X(t),
(X,MK)(t)

)2
dt

over all time-varying geodesic submanifolds generated by K basis functions.
As the minimization of (3) is over a family of submanifolds (or basis functions),

this target is difficult to implement in practice, except for simple situations and,
therefore, it is expedient to target a modified version of (3) by invoking tangent
space approximations. This approximation requires that the log-mapped random
functions

V (t) = logμM(t)

(
X(t)

)
are almost surely well defined for all t ∈ T , which will be the case if trajectories
X(t) are confined to stay within the radius of injectivity at μM(t) for all t ∈ T . We
require this constraint to be satisfied, which will be the case for many manifold-
valued trajectory data, including the data we present in Section 5. Then V is a
well-defined random function that assumes its values on the linear tangent space
TμM(t) at time t . Identifying TμM(t) with R

d0 , we may regard V as a random
element of H, the L2 Hilbert space of R

d0 valued square integrable functions,
and thus our analysis is independent of the choice of the coordinate systems on
the tangent spaces. A practically tractable optimality criterion to obtain manifold
principal components is then to minimize

(4) FV (VK) = E
(∥∥V − 
(V,VK)

∥∥2)
over all K-dimensional linear subspaces VK(ψ1, . . . ,ψK) = {∑K

k=1 akψk | ak ∈
R} for ψk ∈ H, ψk(t) ∈ TμM(t), and k = 1, . . . ,K . Minimizing (4) is immediately
seen to be equivalent to a multivariate functional principal component analysis
(FPCA) in R

d0 [Chiou, Chen and Yang (2014)].
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Under mild assumptions, the L2 mean function for the log-mapped data V (t) =
logμM(t)(X(t)) at the Fréchet means is zero by Theorem 2.1 of Bhattacharya and
Patrangenaru (2003). Consider the covariance function G of V in the L2 sense,
G : T ×T →R

d2
0 , G(t, s) = cov(V (t),V (s)) = E(V (t)V (s)T ), and its associated

spectral decomposition, G(t, s) = ∑∞
k=1 λkφk(t)φk(s)

T , where the φk ∈ H : T →
R

d0 are the orthonormal vector-valued eigenfunctions and λk ≥ 0 the correspond-
ing eigenvalues, for k = 1,2, . . . . One obtains the Karhunen–Loève decomposition
[see, e.g., Hsing and Eubank (2015)],

(5) V (t) =
∞∑

k=1

ξkφk(t),

where ξk = ∫
T V (t)φk(t) dt is the kth Riemannian functional principal component

(RFPC) score, k = 1,2, . . . . A graphical demonstration of X(t), V (t) and φk(t)

is in the right panel of Figure 1. In practice, one can use only a finite number
of components and target truncated representations of the tangent space process.
Employing K ∈ {0,1,2, . . . } components, set

(6) VK(t) =
K∑

k=1

ξkφk(t), XK(t) = expμM(t)

(
K∑

k=1

ξkφk(t)

)
,

where for K = 0 the values of the sums are set to 0, so that V0(t) = 0 and X0(t) =
μM(t). By classical FPCA theory, VK is the best K-dimensional approximation to
V in the sense of being the minimizing projection 
(V,VK) for (4). The truncated
representation XK(t), t ∈ T of the original M-valued random function is well
defined for K = 0,1, . . . if M is complete, by the Hopf–Rinow theorem [see, e.g.,
Chavel (2006)]. We note that these definitions are independent of the choice of
coordinate system on TμM(t).

To quantify how well XK approximates X, in analogy to Petersen and Müller
(2016), we define for K = 0,1, . . . the residual variance as

(7) UK = E

∫
T

dM
(
X(t),XK(t)

)2
dt,

and the fraction of variance explained (FVE) by the first K components as

(8) FVEK = U0 − UK

U0
.

A commonly used criterion for choosing the number of included components K∗
is to select the smallest K such that FVE exceeds a specified threshold 0 < γ < 1
of variance explained

(9) K∗ = min{K : FVEK ≥ γ }.
Common choices for the FVE threshold γ are 0.9 or 0.95 in finite sample situations
or γ increasing with sample size for asymptotic considerations.
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2.3. Spherical functional principal component analysis. An important special
case occurs when random trajectories lie on M = Sd , the Euclidean sphere in R

d0

for d0 = d + 1, with the Riemannian geometry induced by the Euclidean metric
of the ambient space. Then the proposed RFPCA specializes to spherical func-
tional principal component analysis (SFPCA). We briefly review the geometry of
Euclidean spheres. The geodesic distance dM on the sphere is the great-circle dis-
tance, that is, for p,q ∈ M = Sd ,

dM(p, q) = cos−1(
pT q

)
.

A geodesic is a segment of a great circle that connects two points on the sphere.
For any point p ∈ M, the tangent space TpM is identified by {v ∈ R

d0 | vT p =
0} ⊂ R

d0 , with the Euclidean inner product. Letting ‖ · ‖E be the Euclidean norm
in the ambient Euclidean space R

d0 , then for a tangent vector v on the tangent
space TpM, the exponential map is

expp(v) = cos
(‖v‖E

)
p + sin

(‖v‖E

) v

‖v‖E

.

The logarithm map logp : M \ {−p} → TpM is the inverse of the exponential
map,

logp(q) = u

‖u‖E

dM(p, q),

where u = q − (pT q)p, and logp is defined everywhere with the exception of
the antipodal point −p of p on M. The radius of injectivity is therefore π . The
sectional curvature of a Euclidean sphere is constant.

2.4. Estimation. Consider a Riemannian manifold M and n independent ob-
servations X1, . . . ,Xn, which are M-valued random functions that are distributed
as X, where we assume that these functions are fully observed for t ∈ T . Popu-
lation quantities for RFPCA are estimated by their empirical versions, as follows.
Sample Fréchet means μ̂M(t) are obtained by minimizing Mn(·, t) at each t ∈ T ,

(10) Mn(p, t) = 1

n

n∑
i=1

dM
(
Xi(t),p

)2
, μ̂M(t) = arg min

p∈M
Mn(p, t).

We estimate the log-mapped data Vi by V̂i(t) = logμ̂M(t)(Xi(t)), t ∈ T ; the

covariance function G(t, s) by the sample covariance function Ĝ(t, s) = n−1 ×∑n
i=1 V̂i(t)V̂i(s)

T based on V̂i , for t, s ∈ T ; the kth eigenvalue and eigenfunction
pair (λk,φk) of G by the eigenvalue and eigenfunction (λ̂k, φ̂k) of Ĝ; and the kth
RFPC score of the ith subject ξik = ∫

T Vi(t)φk(t) dt by ξ̂ik = ∫
T V̂i(t)φ̂k(t) dt .

The K-truncated processes ViK and XiK for the ith subject Xi are estimated by

(11) V̂iK(t) =
K∑

k=1

ξ̂ikφ̂k(t), X̂iK(t) = expμ̂M(t)

(
K∑

k=1

ξ̂ikφ̂k(t)

)
,
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where again for K = 0 we set the sums to 0. The residual variance UK as in (7),
the fraction of variance explained FVEK as in (8) and the optimal K∗ as in (9) are
respectively estimated by

ÛK = 1

n

n∑
i=1

∫
T

dM
(
Xi(t), X̂iK(t)

)2
dt,(12)

F̂VEK = Û0 − ÛK

Û0
,(13)

K̂∗ = min{K : F̂VEK ≥ γ }.(14)

Further details about the algorithms for implementing SFPCA can be found in
the Supplementary Materials [Dai and Müller (2018)]. Sometimes functional data
X(t) are observed only at densely spaced time points and observations might be
contaminated with measurement errors. In these situations, one can presmooth the
observations using smoothers that are adapted to a Riemannian manifold [Jupp and
Kent (1987), Lin et al. (2017)], treating the presmoothed curves as fully observed
underlying curves.

3. Theoretical properties of Riemannian functional principal component
analysis. We need the following assumptions (A1)–(A2) for the Riemannian
manifold M, and (B1)–(B6) for the M-valued process X(t):

(A1) M is a closed Riemannian submanifold of a Euclidean space R
d0 , with

geodesic distance dM induced by the Euclidean metric.
(A2) The sectional curvature of M is nonnegative.

Assumption (A1) guarantees that the exponential map is defined on the entire tan-
gent plane, and thus that XK(t) as in (6) is well defined, while the curvature condi-
tion (A2) implies that geodesics starting from the same point tend to converge, so
that the geodesic distance between XK(t) and X(t) is bounded by the Euclidean
distance of their tangent vectors. These assumptions are satisfied, for example, by
Euclidean spheres Sd . For the following, recall M(p, t) and Mn(p, t) are defined
as in (1) and (10):

(B1) Trajectories X(t) are continuous for t ∈ T almost surely.
(B2) For all t ∈ T , μM(t) and μ̂M(t) exist and are unique, the latter almost

surely.
(B3) Almost surely, trajectories X(t) lie in a compact set St ⊂ BM(μM(t), r)

for t ∈ T , where BM(μM(t), r) ⊂ M is an open ball centered at μM(t) with
radius r < inft∈T injμM(t).

(B4) For any ε > 0,

inf
t∈T inf

p:dM(p,μM(t))>ε
M(p, t) − M

(
μM(t), t

)
> 0.



FPCA ON RIEMANNIAN MANIFOLDS 3343

(B5) For v ∈ TμM(t)M, define gt (v) = M(expμM(t)(v), t). Then

inf
t∈T λmin

(
∂2

∂v2 gt (0)

)
> 0,

where λmin(A) is the smallest eigenvalue of a square matrix A.
(B6) Let L(x) be the Lipschitz constant of a function x, that is, L(x) =

supt �=s dM(x(t), x(s))/|t − s|. Then E(L(X)2) < ∞ and L(μM) < ∞.

Smoothness assumptions (B1) and (B6) for the sample paths of the obser-
vations are needed for continuous representations, while existence and unique-
ness of Fréchet means (B2) are prerequisites for an intrinsic analysis that are
commonly assumed [Bhattacharya and Patrangenaru (2003), Petersen and Müller
(2018)] and depend in a complex way on the type of manifold and probability
measure considered. Assumptions (B4) and (B5) characterize the local behavior
of the criterion function M around the minima and are standard for M-estimators
[Bhattacharya and Lin (2017)]. Condition (B3) ensures that the geodesic between
X(t) and μM(t) is unique, ensuring that the tangent vectors do not switch di-
rections under small perturbations of the base point μM(t). It is satisfied, for
example, for the sphere M = Sd , if the values of the random functions are ei-
ther restricted to the positive quadrant of the sphere, as is the case for longi-
tudinal compositional data as in Section 4, or if the samples are generated by
expμM(t)(

∑∞
k=1 ξkφk(t)) with bounded eigenfunctions φk and small scores ξk such

that supt∈T |∑∞
k=1 ξkφk(t)| ≤ r . In real data applications, (B3) is justified when the

M-valued samples cluster around the intrinsic mean function, as exemplified by
the flight trajectory data that we study in Section 5.2.

The following result justifies the tangent space RFPCA approach, as the trun-
cated representation is found to be well defined, and the residual variance for
the optimal geodesic submanifold representation bounded by that for the tangent
FPCA. Recall FS(MK) is defined in (3).

PROPOSITION 1. Under (A1), XK(t) = expμM(t)(VK(t)) is well defined for
K = 1,2, . . . and t ∈ T . If further (A2) is satisfied, then

(15) min
MK

FS(MK) ≤ E

∫
T

dM
(
X(t),XK(t)

)2
dt ≤ E‖V − VK‖2.

The first statement is a straightforward consequence of the Hopf–Rinow the-
orem, while the inequalities imply that the residual variance using the best K-
dimensional time-varying geodesic manifold approximation under geodesic dis-
tance (the left-hand term) is bounded by that of the geodesic manifold produced
by the proposed RFPCA (the middle term), where the latter is again bounded by
the residual variance of a linear tangent space FPCA under the familiar Euclidean
distance (the right-hand term). The right-hand side inequality in (15) affirms that
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the tangent space FPCA serves as a gauge to control the preciseness of finite-
dimensional approximation to the processes under the geodesic distance. An im-
mediate consequence is that UK → 0 as K → ∞ for the residual variance UK in
(7), implying that the truncated representation XK(t) is consistent for X(t) when
the sectional curvature of M is nonnegative. The left-hand side inequality gets
tighter as the samples X(t) lie closer to the intrinsic mean μM(t), where such
closeness is not uncommon, as demonstrated in Section 5. The right-hand side in-
equality is a consequence of the Alexandrov–Toponogov theorem for comparing
geodesic triangles.

Asymptotic properties for the estimated model components for RFPCA are
studied below.

PROPOSITION 2. Under (A1) and (B1)–(B4), μM(t) is continuous, μ̂M(t) is
continuous with probability tending to 1 as n → ∞, and

(16) sup
t∈T

dM
(
μ̂M(t),μM(t)

) = op(1).

Under additional assumptions (B5) and (B6), the consistency in (16) of the sam-
ple intrinsic mean μ̂M(t) as an estimator for the true intrinsic mean μM(t) can
be strengthened through a central limit theorem on Cd(T ), where Cd(T ) is the
space of Rd -valued continuous functions on T . Let τ : U → R

d be a smooth or
infinitely differentiable chart of the form τ(q) = logp0

(q), with U = BM(p0, r0),
p0 ∈ M and r0 < injp0

, identifying tangent vectors in R
d . Define chart distance

dτ : τ(U)× τ(U) →R by dτ (u, v) = dM(τ−1(u), τ−1(v)), its gradient T (u, v) =
[Tj (u, v)]dj=1 = [∂dτ (u, v)/∂vj ]dj=1, Hessian matrix H(u, v) with (j, l)th element

Hjl(u, v) = ∂2d2
τ (u, v)/∂vj ∂vl , and �(t) = E[H(τ(X(t)), τ (μM(t)))].

THEOREM 1. Suppose that μM(t) and X(t) are contained in the domain of τ

for t ∈ T , the latter almost surely, and (A1) and (B1)–(B6) hold. Then

(17)
√

n
[
τ(μ̂M) − τ(μM)

] L−→ Z,

where Z is a Gaussian process with sample paths in Cd(T ), mean zero and
covariance Gμ(t, s) = �−1(t)GT (t, s)�−1(s), where GT (t, s) = E[T (τ(X(t)),
τ(μM(t)))T (τ (X(s)), τ (μM(s)))T ], and all quantities are well defined.

REMARK 1. The first condition in Theorem 1 is not restrictive, since it holds
at least piecewise on some finite partition of T . More precisely, due to the com-
pactness guaranteed by (A1), (B3) and Proposition 2, there exists a finite parti-
tion {Tj }Nj=1 of T such that μM(t) and X(t) are contained in BM(μM(tj ), rj ),
for t ∈ Tj , tj ∈ M and rj < injμM(tj ), j = 1, . . . ,N < ∞. One can then define
τ = τj := q �→ logμM(tj )(q) for t ∈ Tj and apply Theorem 1 on the j th piece, for
each j .
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COROLLARY 1. Under (A1) and (B1)–(B6),

(18) sup
t∈T

dM
(
μ̂M(t),μM(t)

) = Op

(
n−1/2)

.

REMARK 2. The intrinsic dimension d is only reflected in the rate constant
but not the speed of convergence. Our situation is analogous to that of estimating
the mean of Euclidean-valued random functions [Bosq (2000)], or more generally,
Fréchet regression with Euclidean responses [Petersen and Müller (2018)], where
the speed of convergence does not depend on the dimension of the Euclidean space,
in contrast to common nonparametric regression settings [Lin et al. (2017), Lin and
Yao (2017)]. The root-n rate is not improvable in general since it is the optimal rate
for mean estimates in the special Euclidean case.

An immediate consequence of Corollary 1 is the convergence of the log-mapped
data.

COROLLARY 2. Under (A1) and (B1)–(B6), for i = 1, . . . , n,

(19) sup
t∈T

∥∥V̂i(t) − Vi(t)
∥∥
E = Op

(
n−1/2)

.

In the following, we use the Frobenius norm ‖A‖F = tr(AT A)1/2 for any real
matrices A, and assume that the eigenspaces associated with positive eigenval-
ues λk > 0 have multiplicity one. We obtain convergence of covariance functions,
eigenvalues and eigenfunctions on the tangent spaces, that is, the consistency of
the spectral decomposition of the sample covariance function, as follows.

THEOREM 2. Assume (A1) and (B1)–(B6) hold. Then

sup
t,s∈T

∥∥Ĝ(t, s) − G(t, s)
∥∥
F = Op

(
n−1/2)

,(20)

sup
k∈N

|λ̂k − λk| = Op

(
n−1/2)

,(21)

and for each k = 1,2, . . . with λk > 0,

(22) sup
t∈T

∥∥φ̂k(t) − φk(t)
∥∥
E = Op

(
n−1/2)

.

Our next result provides the convergence rate of the RFPC scores and is a direct
consequence of Corollary 2 and Theorem 2.

THEOREM 3. Under (A1) and (B1)–(B6), if λK > 0 for some K ≥ 1, then for
each i = 1, . . . , n and k = 1, . . . ,K ,

|ξ̂ik − ξik| = Op

(
n−1/2)

,(23)

sup
t∈T

∥∥V̂iK(t) − ViK(t)
∥∥
E = Op

(
n−1/2)

.(24)
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To demonstrate asymptotic consistency for the number of components selected
according to the FVE criterion, we consider an increasing sequence of FVE thresh-
olds γ = γn ↑ 1 as sample size n increases, which leads to a corresponding increas-
ing sequence of K∗ = K∗

n , where K∗ is the smallest number of eigencomponents
that explains the fraction of variance γ = γn. One may show that the number of
components K̂∗ selected from the sample is consistent for the true target K∗ for a
sequence γn. This is formalized in the following Corollary 3, which is similar to
Theorem 2 in Petersen and Müller (2016), where also specific choices of γn and
the corresponding sequences K∗ were discussed. The proof is therefore omitted.
Quantities U0, UK , K∗, Û0, ÛK , K̂∗ that appear below were defined in (7)–(9) and
(12)–(14).

COROLLARY 3. Assume (A1)–(A2) and (B1)–(B6) hold. If the eigenvalues
λ1 > λ2 > · · · > 0 are all distinct, then there exists a sequence 0 < γn ↑ 1 such
that

(25) max
1≤K≤K∗

∣∣∣∣ Û0 − ÛK

Û0
− U0 − UK

U0

∣∣∣∣ = op(1),

and, therefore,

(26) P
(
K̂∗ �= K∗) = o(1).

4. Longitudinal compositional data analysis. Compositional data represent
proportions and are characterized by a vector y in the simplex

CJ−1 =
{

y = [y1, . . . , yJ ] ∈ R
J | yj ≥ 0, j = 1, . . . , J ;

J∑
j=1

yj = 1

}
,

requiring that the nonnegative proportions of all J categories sum up to one. Typ-
ical examples include the geochemical composition of rocks or other data that
consist of recorded percentages. Longitudinal compositional data arise when the
compositional data for the same subject are collected repeatedly at different time
points. If compositions are monitored continuously, each sample path of longitu-
dinal compositional data is a function y : T → CJ−1. Analyses of such data, for
example, from a prospective ophthalmology study [Qiu, Song and Tan (2008)] or
the surveillance of the composition of antimicrobial use over time [Adriaenssens
et al. (2011)], have drawn both methodological and practical interest, but as of yet
there exists no unifying methodology for longitudinal compositional data to the
knowledge of the authors.

A direct application of standard Euclidean space methods, viewing longitudi-
nal compositional data as unconstrained functional data vectors [Chiou, Chen and
Yang (2014)], would ignore the nonnegativity and unit sum constraints and, there-
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fore, the resulting multivariate FPCA representation moves outside of the space of
compositional data, diminishing the utility of such simplistic approaches. There
are various transformations that have been proposed over the years for the analysis
of compositional data to enforce the constraints, for example, log-ratio transforma-
tions such as log(yj /yJ ) for j = 1, . . . , J − 1, after which the data are treated as
Euclidean data [Aitchison (1986)], which induces the Aitchison geometry on the
interior of the simplex CJ−1. However, these transformations cannot be defined
when some of the elements in the composition are zeros, either due to the dis-
crete and noisy nature of the observations or when the true proportions do contain
actual zeros, as is the case in the fruit fly behavior pattern data that we study in
Section 5.1 below.

We propose to view longitudinal compositional data as a special case of multi-
variate functional data under constraints, specifically as realizations of a composi-
tional process over time,

(27) Y(t) ∈
{[

Y1(t), . . . , YJ (t)
] ∈R

J | Yj ∈ L2(T ), Yj (t) ≥ 0,

J∑
j=1

Yj (t) = 1

}
,

where the component functions will also be assumed to be continuous on their do-
main T . To include the entire simplex CJ−1 in our longitudinal compositional data
analysis, we apply square root transformations to the longitudinal compositional
data Y(t) = [Y1(t), . . . , YJ (t)], obtaining

(28) X(t) = [
X1(t), . . . ,XJ (t)

] = [
Y1(t)

1/2, . . . , YJ (t)1/2]
.

A key observation is that the values of X(t) lie on the positive quadrant of a hyper-
sphere SJ−1 for t ∈ T , as Xj(t) ≥ 0 and

∑J
j=1 Xj(t)

2 = 1. There is no problem
with zeros as with some other proposed transformations for compositional data.
It is then a natural approach to consider a spherical geometry for the transformed
data X(t). A square-root transformation and the spherical geometry for nonlongi-
tudinal compositional data were previously considered by Huckemann and Eltzner
(2018). Now, since X(t) assumes its values on a quadrant of the sphere SJ−1,
processes X(t) fall into the framework of the proposed SFPCA, as described in
Section 2.3.

Concerning the theoretical properties of SFPCA of longitudinal compositional
data, the conditions on the Riemannian manifold M needed for RFPCA are easily
seen to be satisfied, due to the geometry of the Euclidean sphere and the positive
quadrant constraint. We conclude the following.

COROLLARY 4. Under (B1) and (B4)–(B6), Propositions 1 and 2, The-
orems 1–3 and Corollaries 1–3 hold for the Spherical Functional Princi-
pal Component Analysis (SFPCA) of longitudinal compositional data X(t) in
(28).
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5. Data applications.

5.1. Fruit fly behaviors. To illustrate the proposed SFPCA based longitudi-
nal compositional data analysis, we consider the lifetime behavior pattern data
of D. melanogaster [common fruit fly, Carey et al. (2006)]. The behavioral pat-
terns of each fruit fly was observed instantaneously 12 times each day during
its entire lifetime, and for each observation one of the five behavioral patterns,
feeding, flying, resting, walking and preening, was recorded. We analyzed the be-
havioral patterns in the first 30 days since eclosion for n = 106 fruit flies with
uncensored observations, aiming to characterize and represent age-specific be-
havioral patterns of individual fruit flies. For each fruit fly, we observed the be-
havioral counts [Z1(t), . . . ,Z5(t)] for the five behaviors at time t ∈ T = [0,30],
where the time unit is day since eclosion, and

∑5
j=1 Zj(t) = 12 is the con-

strained total number of counts at each time t , with 0 ≤ Zj(t) ≤ 12 for each
j and t . Since the day-to-day behavioral data are noisy, we presmoothed the
counts Zj(t) of the j th behavior pattern over time for j = 1, . . . ,5, using a
Nadaraya–Watson kernel smoother [Nadaraya (1964), Watson (1964)] with an
Epanechnikov kernel and a bandwidth of five days. The smoothed data were sub-
sequently divided by the sum of the smoothed component values at each t , yield-
ing a functional vector Y(t) = [Y1(t), . . . , Y5(t)], with Yj (t) ≥ 0 for all j and t

and
∑5

j=1 Yj (t) = 1 for t ∈ T , thus corresponding to longitudinal compositional
data.

Following the approach described in Section 4, we model the square-root com-
position proportions X(t) = [Y1(t)

1/2, . . . , Y5(t)
1/2] with SFPCA. The trajectories

X(t) and the fitted trajectories for 12 randomly selected fruit flies by SFPCA with
K = 5 components are demonstrated in Figure 2, and the mean function and the

FIG. 2. The original data (solid lines) and SFPCA fitted trajectories (dashed lines) for six randomly
selected fruit flies, for K = 5 selected components.
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FIG. 3. The estimated mean functions μ̂ and the first five estimated spherical eigenfunctions φ̂1
to φ̂5 for the fly data, which together explain 81.7% of the total variation. The components explain,
respectively, 51.7%, 15.0%, 6.5%, 5.2% and 3.4%.

first five eigenfunctions of the corresponding SFPCA in Figure 3. While resting
and walking behaviors were often observed, flying and preening occurred more
rarely. SFPCA with K = 5 components explains 81.7% of total variation and is
seen to provide a reasonable fit to the data. The eigenfunctions obtained from
SFPCA have a natural interpretation: The first eigenfunction corresponds to the
overall contrast of resting and moving (mainly flying and walking) over all days
of observation; the second eigenfunction is a contrast of all behaviors in the early
(0–15 days) and the late (16–30 days) periods; and the third eigenfunction mainly
reflects the intensity of the feeding behavior in the first 25 days.

The fraction of variance explained by the first K components (FVE) as in (13)
for SFPCA and for L2 FPCA is in Table 1, where L2 FPCA is conventional mul-
tivariate FPCA [Ramsay and Silverman (2005)], which ignores the compositional
constraints. The proposed SPFCA has larger FVE given any number of included
components K . It is seen to be more parsimonious than L2 FPCA and it respects

TABLE 1
FVE (%) by the first K components for the fruit fly data

K 1 2 3 4 5 10 15 20 25

SFPCA 51.7 66.7 73.1 78.3 81.7 91.8 96.4 98.4 99.2
L2 FPCA 48.8 62.9 68.3 71.5 77.3 87.5 92.7 96.4 98.0



3350 X. DAI AND H.-G. MÜLLER

the compositional constraints, in contrast to conventional FPCA. To explain 95%
of total variation, 14 components are needed for SFPCA, but 18 for L2 FPCA.

5.2. Flight trajectories. A second data example concerns the trajectories of
969 commercial flights from Hong Kong to London from June 14, 2016, to Oc-
tober 13, 2016, of which 237 were operated by British Airways (BAW), 612 by
Cathay Pacific (CPA) and 119 by Virgin Atlantic (VIR). The data were collected
from the website of FlightAware (www.flightaware.com) and included longitude,
latitude, date and time, etc. for the whole flight, where the location was densely and
accurately tracked by ground based Automatic Dependent Surveillance–Broadcast
(ADS–B) receivers. For each flight, we set the takeoff time to be time 0 and the
landing time to be time 1, excluding taxi time. To obtain smooth curves from
the occasionally noisy data, we pre-smoothed the longitude–latitude data using
kernel local linear smoothing with a very small bandwidth and then mapped the
longitude–latitude trajectories onto a unit sphere S2. Trajectory data of this kind
on geographical spaces corresponding to the surface of the earth that may be ap-
proximated by the sphere S2 have drawn extensive interest in computer science
and machine learning communities [Zheng (2015), Anirudh et al. (2017)]. The
preprocessed flight trajectories are visualized in Figure 4, indicating that the flight
trajectories from the three airlines overlap and are thus not easy to discriminate. We
apply RFPCA in the SFPCA version to summarize and represent the flight trajec-
tories, and to predict the operating airline based on the RFPC scores as predictors.

The estimated mean function and the first three modes of variation obtained
by SFPCA are shown in Figure 5, where the kth mode of variation is defined as
expμM(t)(3

√
λkφk(t)) for k = 1,2,3. The first mode of variation (red) corresponds

to the overall direction of deviation from the mean function (northeast vs. south-

FIG. 4. Flight trajectories from Hong Kong to London, colored by airline (red, British Airways;
green, Cathay Pacific; blue, Virgin Atlantic), with the mean trajectory (bold black).

http://www.flightaware.com
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FIG. 5. The mean function (black) and the first three modes of variation defined as
expμM(t)(3

√
λkφk(t)), k = 1,2,3 (red, green and blue, resp.) produced by SFPCA. The second

and the third modes of variation were joined to the time-varying mean function at a regular grid of
time points to show the “speed” of the eigenfunctions. Both the second and the third eigenfunctions
represent a cross from the northeast to the southwest at approximately one-third of the trip, but they
incorporate different speed information as shown by the thin gray lines. The first three eigenfunc-
tions together explain in total 95% and each explain 72.9%, 13.2% and 8.9%, respectively, of total
variation.

west), and has roughly constant speed. We connect the second (green) and the third
(blue) modes of variation and the mean function using thin gray lines at a regular
grid of time in order to display speed information in the corresponding eigen-
functions. Both the second and the third eigenfunctions represent a cross from the
northeast to the southwest at approximately one third of the trip, but they incorpo-
rate different speed information. The second eigenfunction encodes an overall fast
trip starting to the north, while the third encodes a medium speed start to the south
and then a speed up after crossing to the north. The FVE for RFPCA using the first
K = 3 eigenfunctions is 95%, indicating a reasonably good approximation of the
true trajectories.

We next compared the FVE by SFPCA and L2 FPCA for K = 1, . . . ,10 under
the geodesic distance dM, as summarized in Table 2. Here, SFPCA was applied

TABLE 2
The FVE (%) by the first K components for the proposed SFPCA and the L2 FPCA for the flight

data

K 1 2 3 4 5 6 7 8 9 10

SFPCA 72.9 86.1 95.0 96.3 97.0 97.7 98.3 98.7 99.0 99.2
L2 FPCA 71.2 84.9 94.6 96.1 96.8 97.4 98.1 98.4 98.8 99.1
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on the spherical data on S2, while L2 FPCA was based on the latitude–longitude
data in R

2. Again SFPCA has higher FVE than the conventional L2 FPCA for all
choices of K , especially small K , where SFPCA shows somewhat better perfor-
mance in terms of trajectory recovery.

We also aimed to predict the airline (BAW, CPA and VIR) from an observed
flight path by feeding the FPC scores obtained from either the proposed SFPCA
or from the traditional L2 FPCA into different multivariate classifiers, including
linear discriminant analysis (LDA), logistic regression and support vector machine
(SVM) with radial basis kernel. For each of 200 Monte Carlo runs, we randomly
selected 500 flights as training set for training and tuning and used the rest as
test set to evaluate classification performance. The number of components K for
each classifier was either fixed at 10, 15, 20, 25, 30 or selected by five-fold cross-
validation (CV). The results for prediction accuracy are in Table 3. The SFPCA
based classifiers performed better or at least equally well as the L2 FPCA based
classifiers for nearly all choices of K and classifier, where among the classifiers
SVM performed best.

6. Simulations. To investigate the performance of trajectory recovery for the
proposed RFPCA, we considered two scenarios of Riemannian manifolds: the Eu-
clidean sphere M = S2 in R

3, and the special orthogonal group M = SO(3) of
3 × 3 rotation matrices, viewed as a Riemannian submanifold of R3×3. We com-
pared three approaches: the Direct (D) method, which directly optimizes (3) over
all time-varying geodesic submanifolds MK and, therefore, serves as a gold stan-
dard, implemented through discretization; the proposed RFPCA method (R) and
the classical L2 FPCA method (L), which ignores the Riemannian geometry. In
the direct method, the sample curves and time-varying geodesic submanifolds are
discretized onto a grid of 20 equally-spaced time points, and a quasi-Newton algo-
rithm is used to maximize the criterion function (3). We used FVE as our evaluation
criterion, where models were fitted using n = 50 or 100 independent samples.

TABLE 3
A comparison of airline classification accuracy (%) from observed flight trajectories, using the first

K components for SFPCA and L2 FPCA (columns), with K either fixed or chosen by CV, for
various classifiers (rows). All standard errors for the accuracies are below 0.12%. The numbers in
parenthesis are the number of components chosen by CV. S stands for SFPCA and L for L2 FPCA;

LDA, linear discriminant analysis; MN, multinomial logistic regression; SVM, support vector
machine

K = 10 K = 15 K = 20 K = 25 K = 30 K chosen by CV

S L S L S L S L S L S L

LDA 76.9 75.8 79.6 78.4 81.9 81.5 82.7 82.5 83.5 82.3 83.2 (28.0) 82.2 (26.2)
MN 78.5 76.0 81.8 79.4 83.8 82.7 84.6 84.0 85.2 83.6 84.8 (27.5) 83.7 (25.7)
SVM 82.3 80.9 84.3 82.5 86.3 85.2 86.1 86.2 86.3 85.7 86.2 (24.6) 85.8 (25.0)
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We briefly review the Riemannian geometry for the special orthogonal group
M = SO(N). The elements of M are N × N orthogonal matrices with determi-
nant 1, and the tangent space TpM is identified with the collection of N ×N skew-
symmetric matrices. For p,q ∈ M and skew-symmetric matrices u, v ∈ TpM,
the Riemannian metric is 〈u, v〉 = tr(uT v) where tr(·) is the matrix trace; the
Riemannian exponential map is expp(v) = Exp(v)p and the logarithm map is
logp(q) = Log(qp−1), where Exp and Log denote the matrix exponential and log-
arithm; the geodesic distance is dM(p, q) = ‖Log(qp−1)‖F . For N = 3, the tan-
gent space TpM is 3-dimensional and can be identified with R

3 through [Chavel
(2006)] ι :R3 → TpM, ι(a, b, c) = [0,−a,−b;a,0,−c;b, c,0].

The sample curves X were generated as X : T = [0,1] → M, X(t) =
expμM(t)(

∑20
k=1 ξkφk(t)), with mean function μM(t) = exp[0,0,1](2t,0.3π ×

sin(πt),0) for M = S2, and μM(t) = exp(ι(2t,0.3π sin(πt),0)) for M =
SO(3). For k = 1, . . . ,20, the RFPC scores ξk were generated by indepen-
dent Gaussian distributions with mean zero and variance 0.07k/2. The eigen-
functions were φk(t) = 2−1/2Rt [ζk(t/2), ζk((t + 1)/2),0]T for M = S2 and
φk(t) = 6−1/2ι(ζk(t/3), ζk((t + 1)/3), ζk((t + 2)/3)) for M = SO(3), t ∈ [0,1],
where Rt is the rotation matrix from [0,0,1] to μM(t), and {ζk}20

k=1 is the or-
thonormal Legendre polynomial basis on [0,1]. A demonstration of ten sample
curves, the mean function and the first three eigenfunctions for M = S2 is shown
in Figure 6.

We report the mean FVE by the first K = 1, . . . ,4 components for the investi-
gated FPCA methods in Table 4, as well as the running time, based on 200 Monte
Carlo repeats. The true FVEs for K = 1, . . . ,4 components were 73.5%, 93.0%,
98.1% and 99.5%, respectively. The proposed RFPCA method had higher FVE,
and thus outperformed the L2 FPCA in all scenarios and for all K , which is ex-
pected since RFPCA takes into account the curved geometry. This advantage leads
to a more parsimonious representation, for example, in the M = S2 and n = 100

FIG. 6. Left: Ten randomly generated samples (dark blue) for M= S2. Right: The first three eigen-
functions (red, green and blue, resp.) multiplied by 0.2 and then exponentially mapped from the mean
function (solid black). Light gray lines connect the mean function and the eigenfunctions at 10 equally
spaced time points. Small dots denote t = 0 and large dots t = 1.
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TABLE 4
A comparison of mean FVE (%) and running time in the simulation study. D, direct optimization of
(3) through discretization; R, RFPCA; L, L2 FPCA. The standard errors of the FVEs for all three

methods were below 0.32%

Time
K = 1 K = 2 K = 3 K = 4 (seconds)

M n D R L D R L D R L D R L D R L

S2 50 74.3 74.1 71.4 93.0 92.9 89.6 98.1 97.9 93.8 99.5 99.2 97.5 5e3 0.72 0.24
100 74.0 73.8 70.9 92.9 92.8 89.2 98.0 97.9 93.1 99.4 99.2 97.3 1e4 1.01 0.38

SO(3) 50 73.1 73.1 72.2 92.8 92.8 91.6 98.1 98.1 96.3 99.5 99.5 98.1 2e3 3.67 2.46
100 72.9 72.9 71.8 92.6 92.6 91.3 98.0 98.0 96.1 99.5 99.5 97.9 4e3 6.58 4.94

scenario, the average K required by RFPCA to achieve at least FVE> 0.95 is one
less than that for L2 FPCA. The performance advantage of RFPCA over L2 FPCA
is larger for M = S2 than for M = SO(3), since the former has larger sectional
curvature (1 vs. 1/8). The direct method was as expected better than RFPCA [also
for SO(3), which is not explicit in the table due to rounding], since the former op-
timizes the residual variation under the geodesic distance, the true target, while the
latter uses the more tractable surrogate residual variation target (4) for L2 distance
on the tangent spaces.

Each experiment was run using a single processor (Intel Xeon E5-2670 CPU
@ 2.60GHz) to facilitate comparisons. Both RFPCA and L2 FPCA are quite fast
in the absolute sense and take only a few seconds, though RFPCA is 1.5–3 times
slower, depending on the Riemannian manifold M. The Direct method, however,
was several magnitudes slower than RFPCA, due to the unstructured optimization
problem, while for RFPCA spectral decomposition provides an effective solution.
The slim performance gain for the Direct method as compared to RFPCA does not
justify the huge computational effort.

APPENDIX: PROOFS

PROOF OF PROPOSITION 1. Since M is a closed subset of Rd0 with the in-
duced Riemannian metric by the Euclidean metric, M is complete. By the Hopf–
Rinow theorem [see, e.g., Chavel (2006)], M is geodesically complete, that is, for
all p ∈ M, the exponential map expp is defined on the entire tangent space TpM.
Therefore, XK(t) = expμM(t)(VK(t)) is well defined.

The first inequality in (15) holds by the definition of projection 
. The sec-
ond inequality follows from the Alexandrov–Toponogov theorem [e.g., Theo-
rem IX.5.1 in Chavel (2006)], followed by taking expected values. The
Alexandrov–Toponogov theorem states if two geodesic triangles T1 and T2 on
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complete Riemannian manifolds M1 and M2, where M1 has uniformly higher
sectional curvature than M2, have in common the length of two sides and the angle
between the two sides, then T1 has a shorter third side than T2. This is applied to
triangles (X(t),μM(t),XK(t)) on M and (V (t),0,VK(t)) on TμM(t), identified
with a Euclidean space. �

For the following proofs, we consider the set:

(29) K = ⋃
t∈T

BM
(
μM(t),2r

) ⊂M,

where BM(p, l) is an open dM-geodesic ball of radius l > 0 centered at p ∈
M, and A denotes the closure of a set A. Under (B1) and (B3), K is closed
and bounded, and thus is compact, with diameter R = supp,q∈K dM(p, q). Then
μM(t), μ̂M(t),X(t) ∈ K for all t ∈ T . For the asymptotic results, we will con-
sider the compact set K.

PROOF OF PROPOSITION 2. To obtain the uniform consistency results of
μ̂M(t), we need to show

sup
t∈T

sup
p∈K

∣∣Mn(p, t) − M(p, t)
∣∣ = op(1),(30)

sup
t∈T

∣∣Mn

(
μ̂M(t), t

) − M
(
μM(t), t

)∣∣ = op(1),(31)

and for any ε > 0, there exist a = a(ε) > 0 such that

(32) inf
t∈T inf

p:dM(p,μM(t))>ε

[
Mn(p, t) − M

(
μM(t), t

)] ≥ a − op(1).

Then by (31) and (32), for any δ > 0, there exists N ∈ N such that n ≥ N implies
the event

E =
{
sup
t∈T

∣∣Mn

(
μ̂M(t), t

) − M
(
μM(t), t

)∣∣ ≤ a/3
}

∩
{

inf
t∈T inf

p:dM(p,μM(t))>ε

[
Mn(p, t) − M

(
μM(t), t

)] ≥ 2a/3
}

holds with probability greater than 1−δ. This implies that on E, supt∈T dM(μ̂M(t),

μM(t)) ≤ ε and, therefore, the consistency of μ̂M.
Proof of (30): We first obtain the auxiliary result

(33) lim
δ↓0

E
[

sup
|t−s|<δ

dM
(
X(t),X(s)

)] = 0

by dominated convergence, (B1) and the boundedness of K (29). Note that for any
p,q,w ∈ K,∣∣dM(p,w)2 − dM(q,w)2∣∣ = ∣∣dM(p,w) + dM(q,w)

∣∣ · ∣∣dM(p,w) − dM(q,w)
∣∣

≤ 2RdM(p, q)
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by the triangle inequality, where R is the diameter of K. Then

sup
|t−s|<δ
p,q∈K

dM(p,q)<δ

∣∣Mn(p, t) − Mn(q, s)
∣∣

≤ sup
|t−s|<δ
p,q∈K

dM(p,q)<δ

∣∣Mn(p, s) − Mn(q, s)
∣∣ + sup

|t−s|<δ
p,q∈K

dM(p,q)<δ

∣∣Mn(p, t) − Mn(p, s)
∣∣

≤ 2Rδ + 2R

n

n∑
i=1

sup
|t−s|<δ

dM
(
Xi(t),Xi(s)

)
= 2Rδ + 2RE

[
sup

|t−s|<δ

dM
(
X(t),X(s)

)] + op(1),

where the last equality is due to the weak law of large numbers (WLLN). Due
to (33), the quantity in the last display can be made arbitrarily close to zero (in
probability) by letting δ ↓ 0 and n → ∞. Therefore, for any ε > 0 and η > 0, there
exist δ > 0 such that

lim sup
n→∞

P
(

sup
|t−s|<δ
p,q∈K

dM(p,q)<δ

∣∣Mn(p, t) − Mn(q, s)
∣∣ > ε

)
< η,

proving the asymptotic equicontinuity of Mn on K × T . This and the pointwise
convergence of Mn(p, t) to M(p, t) by the WLLN imply (30) by Theorem 1.5.4
and Theorem 1.5.7 of van der Vaart and Wellner (1996).

Proof of (31): Since μ̂M(t) and μM(t) are the minimizers of Mn(·, t) and
M(·, t), respectively, |Mn(μ̂M(t), t) − M(μM(t), t)| ≤ max(Mn(μM(t), t) −
M(μM(t), t),M(μ̂M(t), t) − Mn(μ̂M(t), t)) ≤ supp∈K |Mn(p, t) − M(p, t)|.
Take suprema over t ∈ T and then apply (30) to obtain (31).

Proof of (32): Fix ε > 0 and let a = a(ε) = inft∈T infp:dM(p,μM(t))>ε[M(p, t)−
M(μM(t), t)] > 0. For small enough ε,

inf
t∈T inf

p:dM(p,μM(t))>ε

[
Mn(p, t) − M

(
μM(t), t

)]
= inf

t∈T inf
p∈K,

dM(p,μM(t))>ε

[
Mn(p, t) − M

(
μM(t), t

)]
= inf

t∈T inf
p∈K,

dM(p,μM(t))>ε

[
M(p, t) − M

(
μM(t), t

) + Mn(p, t) − M(p, t)
]

≥ a − sup
t∈T

sup
p∈K

dM(p,μM(t))>ε

∣∣Mn(p, t) − M(p, t)
∣∣ = a − op(1),
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where the first equality is due to μ̂M(t) ∈ K and the continuity of Mn, the inequal-
ity to (B4) and the last equality to (30). For the continuity of μM, note for any
t0, t1 ∈ T ,∣∣M(

μM(t1), t0
) − M

(
μM(t0), t0

)∣∣
≤ ∣∣M(

μM(t1), t1
) − M

(
μM(t0), t0

)∣∣
+ ∣∣M(

μM(t1), t0
) − M

(
μM(t1), t1

)∣∣
≤ sup

p∈K
∣∣M(p, t1) − M(p, t0)

∣∣ + 2RE
[
dM

(
X(t0),X(t1)

)]
≤ 4RE

[
dM

(
X(t0),X(t1)

)] → 0

as t1 → t0 by (B1), where the second inequality is due to the fact that μM(tl)

minimizes M(·, tl) for l = 0,1. Then by (B4), dM(μM(t1),μM(t0)) → 0 as t1 →
t0, proving the continuity of μM. The continuity for μ̂M is similarly proven by in
probability arguments. �

PROOF OF THEOREM 1. The proof idea is similar to that of Theorem 2.1 in
Bhattacharya and Patrangenaru (2005). To lighten notation, let Y(t) = τ(X(t)),
Yi(t) = τ(Xi(t)), ν(t) = τ(μM(t)) and ν̂(t) = τ(μ̂M(t)). The squared distance
dM(p, q)2 is smooth at (p, q) if dM(p, q) < injp , due to the smoothness of the
exponential map [Chavel (2006), Theorem I.3.2]. Then dτ (u, v)2 is smooth on
the compact set {(u, v) ∈ τ(U) × τ(U) ⊂ R

d × R
d | dM(τ−1(u), τ−1(v)) ≤ r},

and thus T (Y (t), ν(t)) and H(Y(t), ν(t)) are well defined, by (B3) and since the
domain U of τ is bounded. Define

ht (v) = E
[
dτ

(
Y (t), v

)2]
,(34)

hnt (v) = 1

n

n∑
i=1

dτ

(
Yi(t), v

)2
.(35)

Since ν(t) is the minimal point of (34),

(36) E
[
Tj

(
Y (t), ν(t)

)] = E

[
∂

∂vj

d2
τ

(
Y (t), v

)∣∣∣∣
v=ν(t)

]
= ∂

∂vj

ht

(
ν(t)

) = 0,

for j = 1, . . . , d . Similarly, differentiating (35) and applying Taylor’s theorem,

0 = 1√
n

n∑
i=1

Tj

(
Yi(t), ν̂(t)

)

= 1√
n

n∑
i=1

Tj

(
Yi(t), ν(t)

)
(37)

+
d∑

l=1

√
n
[
ν̂l(t) − νl(t)

]1

n

n∑
i=1

Hjl

(
Yi(t), ν(t)

) + Rnj (t),
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where ν̂l(t) and νl(t) are the lth component of ν̂(t) and ν(t), and

Rnj (t) =
d∑

l=1

√
n
[
ν̂l(t) − νl(t)

]

× 1

n

n∑
i=1

[
Hjl

(
Yi(t), ν̃j l(t)

) − Hjl

(
Yi(t), ν(t)

)]
,

(38)

for some ν̃j l(t) lying between ν̂l(t) and νl(t).
Due to the smoothness of d2

τ , (B3), and (B6), for j, l = 1, . . . , d ,

E sup
t∈T

Tj

(
Yi(t), ν(t)

)2
< ∞,

(39)
E sup

t∈T
Hjl

(
Yi(t), ν(t)

)2
< ∞,

lim
ε↓0

E sup
t∈T

sup
‖θ−ν(t)‖≤ε

∣∣Hjl

(
Y (t), θ

) − Hjl

(
Y (t), ν(t)

)∣∣ = 0.(40)

By (B6), we also have limε↓0 E sup|t−s|<ε |Hjl(Y (t), ν(t)) − Hjl(Y (s), ν(s))| →
0, which implies the asymptotic equicontinuity of n−1 ∑n

i=1 Hjl(Yi(t), ν(t)) on
t ∈ T , and thus

(41) sup
t∈T

∣∣∣∣∣1

n

n∑
i=1

Hjl

(
Yi(t), ν(t)

) − E
[
Hjl

(
Yi(t), ν(t)

)]∣∣∣∣∣ = op(1),

by Theorem 1.5.4 and Theorem 1.5.7 of van der Vaart and Wellner (1996). In view
of (39)–(41) and Proposition 2, we may write (37) into matrix form

(42)
[
�(t) + En(t)

]√
n
[
ν̂(t) − ν(t)

] = − 1√
n

n∑
i=1

T
(
Yi(t), ν(t)

)
,

where �(t) = E[H(Y(t), ν(t))] and En(t) is some random matrix with
supt∈T ‖En(t)‖F = op(1). By (B6), Tj (Yi(t), ν(t)) is Lipschitz in t with a square
integrable Lipschitz constant, so one can apply a Banach space central limit theo-
rem [Jain and Marcus (1975)]

(43)
1√
n

n∑
i=1

T (Yi, ν)
L−→ W,

where W is a Gaussian process with sample paths in Cd(T ), mean 0 and covariance
GT (t, s) = E[T (Y (t), ν(t))T (Y (s), ν(s))T ].

We conclude the proof by showing

(44) inf
t∈T λmin

(
�(t)

)
> 0.
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Let φt (v) = logμM(t)(v), ft = φt ◦τ−1, and gt (v) = E[dM(X(t), expμM(t)(v))2],
so ht (v) = gt (f (v)). Observe

∂2

∂vj ∂vl

ht (v) = ∂

∂vj

ft (v)T
∂2

∂v2 gt (v)
∂

∂vl

ft (v)

(45)

+ ∂

∂v
gt (v)T

∂2

∂vj∂vl

ft (v).

The second term vanishes at v = ν(t) by (36), so in matrix form

(46) �(t) = ∂2

∂v2 ht

(
ν(t)

) =
(

∂

∂v
ft

(
ν(t)

))T ∂2

∂v2 gt (0)

(
∂

∂v
ft

(
ν(t)

))
.

The gradient of ft is nonsingular at ν(t) since it is a local diffeomorphism. Then
�(t) is positive definite for all t ∈ T by (B5), and (44) follows by continuity. �

PROOF OF COROLLARY 1. Note dM(μ̂M(t),μM(t)) = dτ (ν̂(t), ν(t)). By
Taylor’s theorem around v = ν(t),

dτ

(
ν(t), ν̂(t)

)2 = [
ν̂(t) − ν(t)

]T [
∂

∂v2 d2
τ

(
ν(t), v

)∣∣∣∣
v=ν̃(t)

][
ν̂(t) − ν(t)

]
,

where ν̃(t) lies between ν̂(t) and ν(t), since d2
τ (u, v) and ∂d2

τ (u, v)/∂v both vanish
Remark 1 and Proposition 2. �
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SUPPLEMENTARY MATERIAL

Supplement to “Principal component analysis for functional data on Rie-
mannian manifolds and spheres” (DOI: 10.1214/17-AOS1660SUPP; .pdf). In
the Supplementary Materials, we provide proofs of Corollary 2, Theorem 2 and
Corollary 4; algorithms for RFPCA of compositional data; and additional simula-
tions.
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