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CONVERGENCE OF CONTRASTIVE DIVERGENCE ALGORITHM
IN EXPONENTIAL FAMILY1

BY BAI JIANG, TUNG-YU WU, YIFAN JIN AND WING H. WONG2

Stanford University

The Contrastive Divergence (CD) algorithm has achieved notable suc-
cess in training energy-based models including Restricted Boltzmann Ma-
chines and played a key role in the emergence of deep learning. The idea
of this algorithm is to approximate the intractable term in the exact gradi-
ent of the log-likelihood function by using short Markov chain Monte Carlo
(MCMC) runs. The approximate gradient is computationally-cheap but bi-
ased. Whether and why the CD algorithm provides an asymptotically con-
sistent estimate are still open questions. This paper studies the asymptotic
properties of the CD algorithm in canonical exponential families, which are
special cases of the energy-based model. Suppose the CD algorithm runs m

MCMC transition steps at each iteration t and iteratively generates a sequence
of parameter estimates {θt }t≥0 given an i.i.d. data sample {Xi}ni=1 ∼ pθ�

.
Under conditions which are commonly obeyed by the CD algorithm in prac-
tice, we prove the existence of some bounded m such that any limit point of
the time average

∑t−1
s=0 θs/t as t → ∞ is a consistent estimate for the true

parameter θ�. Our proof is based on the fact that {θt }t≥0 is a homogenous
Markov chain conditional on the data sample {Xi}ni=1. This chain meets the
Foster–Lyapunov drift criterion and converges to a random walk around the
maximum likelihood estimate. The range of the random walk shrinks to zero
at rate O(1/ 3√n) as the sample size n → ∞.

1. Introduction.

1.1. Exponential family and maximum likelihood learning. Consider a canon-
ical exponential family over the sample space X ⊆ R

p with the parameter θ ∈ � ⊆
R

d

(1.1) pθ(x) = c(x)eθT φ(x)−�(θ),

where c(x) is the carrier measure, φ : X → R
d is the sufficient statistic and �(θ)

is the cumulant generating function

�(θ) := log
∫
X

c(x)eθT φ(x) dx.
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�(θ) is convex and differentiable at any interior point of the natural parameter
domain. Denote by ∇�(θ) and ∇2�(θ) the gradient vector and the Hessian matrix
of �(θ), respectively. They are the expectation and the covariance of the sufficient
statistic φ(X) under pθ . That is,

∇�(θ) = Eθφ(X) =
∫
X

φ(x)pθ (x) dx,(1.2)

∇2�(θ) = Covθ φ(X)

(1.3)

=
∫
X

[
φ(x) − ∇�(θ)

][
φ(x) − ∇�(θ)

]T
pθ (x) dx.

Given an i.i.d. sample X = {Xi}ni=1 following a certain underlying distribution
pθ� , the log-likelihood function is given by

l(θ) := 1

n

n∑
i=1

logpθ(Xi) = 1

n

n∑
i=1

log c(Xi) + θT

[
1

n

n∑
i=1

φ(Xi)

]
− �(θ).

Denote by g(θ) the gradient of l(θ):

g(θ) := ∇l(θ) = 1

n

n∑
i=1

φ(Xi) − ∇�(θ).

The concavity of l(θ) follows from the convexity of �(θ). Successively iterat-
ing the update equation (1.4) of the gradient ascent algorithm will generate a se-
quence {θt }t≥0 indexed by the iteration number t . This sequence converges to the
Maximum Likelihood Estimate (MLE) θ̂n := arg maxθ l(θ) if the learning rate η is
suitably chosen:

(1.4) θ+ = θ + ηg(θ) = θ + η

[
1

n

n∑
i=1

φ(Xi) − ∇�(θ)

]
.

In many cases, the term ∇�(θ), essentially an integral as the expectation of the
sufficient statistic in light of (1.2), is neither available in a simple closed form nor
computationally tractable due to the complexity of the sample space X and/or the
sufficient statistic φ. An example is the fully visible Boltzmann Machine (FVBM)
model [1]. Its probability mass function is given by

(1.5) pW,b(x) ∝ exp
(

1

2
xT Wx + bT x

)
,

where x is a p-dimensional vector of binary variables being either −1 or +1, W

is a p × p symmetric matrix with zero diagonal entries called “weight matrix”
and b is a p-dimensional vector called “bias vector.” This model (1.5) is indeed an
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exponential family (1.1) with

X = {−1,+1}p,

φ(x) = (xixj ,1 ≤ i < j ≤ p;xi,1 ≤ i ≤ p) ∈ R
p(p+1)/2,

θ = (Wij ,1 ≤ i < j ≤ p;bi,1 ≤ i ≤ p) ∈R
p(p+1)/2,

�(θ) = log
∑
x∈X

eθT φ(x),

and c(x) being the counting measure on the sample space X . The gradient of the
cumulant generating function

∇�(θ) =
∑

x∈{−1,+1}p φ(x)eθT φ(x)∑
x∈{−1,+1}p eθT φ(x)

= ∑
x∈{−1,+1}p

φ(x)pθ (x)

involves sums of exponentially many terms, which are computationally prohibitive
even for a moderately high-dimensional x.

Markov Chain Monte Carlo (MCMC) is the standard approach to approximate
∇�(θ). An MCMC run takes a large number of transition steps to reach the equi-
librium, and gradient ascent algorithms iterate the update equation (1.4) hundreds
or thousands of times. Thus, it is computationally costly to implement a long
MCMC run at each iteration of the gradient ascent algorithm (1.4).

1.2. Contrastive divergence. In an influential paper [15], Hinton attempted
to alleviate the long MCMC run time by first doing just a small number (say
m = 1,2 or 3) of transitions from the data sample {Xi}ni=1 as the initial values

of the MCMC chains and then using the m-step MCMC sample {X(m)
i }ni=1 to ap-

proximate ∇�(θ). This is known as Hinton’s Contrastive Divergence algorithm,
hereafter abbreviated as CD, or CD-m to also specify the fixed number m of transi-
tions. Formally, denote by kθ (x, y) the MCMC transition kernel for the equilibrium
distribution pθ . The CD-m algorithm first runs n Markov chains from {Xi}ni=1 in-
dependently for m steps

X1
kθ−→ X

(1)
1

kθ−→ X
(2)
1 · · · kθ−→ X

(m)
1 ,

X2
kθ−→ X

(1)
2

kθ−→ X
(2)
2 · · · kθ−→ X

(m)
2 ,

...

Xn
kθ−→ X(1)

n

kθ−→ X(2)
n · · · kθ−→ X(m)

n

and then uses {X(m)
i }ni=1 to approximate ∇�(θ) in the update equation (1.4) with

∇�(θ) ≈ 1

n

n∑
i=1

φ
(
X

(m)
i

)
.



3070 JIANG, WU, JIN AND WONG

To sum up, the CD-m algorithm replaces g(θ) in the update equation (1.4) of the
gradient ascent algorithm with the CD gradient approximation

gcd(θ) := 1

n

n∑
i=1

φ(Xi) − 1

n

n∑
i=1

φ
(
X

(m)
i

)
and iterates the following update equation:

(1.6) θ+ = θ + ηgcd(θ) = θ + η

[
1

n

n∑
i=1

φ(Xi) − 1

n

n∑
i=1

φ
(
X

(m)
i

)]
.

The CD algorithm has been widely used by machine learners to train energy-
based models of the form pθ(x) = e−E(x,θ)−�(θ), where E(x, θ) is called “energy
function” and �(θ) is called “log-partition function.” A notable example of these
energy-based models is the Restricted Boltzmann Machines (RBM), which is the
building block on each layer of deep belief network. The CD algorithm has per-
formed well in layer-wise RBM pre-training stage of deep belief network and in
this way played an key role in the emergence of deep learning [8, 16, 17, 30]. Ap-
plications of CD and RBM also include collaborative filtering [39], classification
[24], topic modeling [18] and feature learning [10]. Apart from RBM, the CD algo-
rithm has found practical applications in training energy-based models for acous-
tic modeling [41], image modeling [14, 37] and coarse-grained protein forcefield
learning [42]. Exponential families (1.1) are special cases of energy-based mod-
els with E(x, θ) = −θT φ(x) − log c(x). The CD algorithm has also been used to
approximate MLEs for exponential-family random graph models (ERGM) [3, 19].

1.3. Theoretical studies on contrastive divergence. There are a few open ques-
tions concerning the theoretical properties of the CD algorithm. First is whether or
under what conditions the sequence {θt }t≥0 generated by the CD algorithm given a
data sample X = {Xi}ni=1 converges to some limit points as t → ∞. If the answer
is yes, we can regard these limit points as the CD estimates. Next, questions of
interest are how close these CD estimates are to the MLE, and whether they are
asymptotically consistent for the true parameter θ� as n → ∞.

Many eminent scholars in machine learning have attempted to answer these
questions. MacKay [26] provided examples in which the CD-1 algorithm does not
converge to the MLE as the iteration number t → ∞. The reason is arguably the
bias of the CD gradient approximation. The CD gradient has been proven biased in
many models like the Gaussian Boltzmann Machine and RBM, and the bias tends
to decrease as m increases in simulation studies [7, 9, 40, 43]. Yuille [44] stated
formal conditions for the CD algorithm to converge to the true parameter (rather
than the MLE) as t → ∞. But he did not clearly distinguish the behavior of {θt }t≥0
in the limits of the iteration number t → ∞ from that of the sample size n → ∞;
thus, his conditions are not satisfied in even the simplest examples such as a bi-
variate Gaussian model (see more discussion in Section 5). For the FVBM model
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(1.5), Hyvärinen [20] showed that a specific CD-1 algorithm with the random-scan
Gibbs sampler as the MCMC transition kernel is a stochastic version of an max-
imum pseudo-likelihood learning process, as the conditional expectation of the
CD-1 gradient approximation given the data sample {Xi}ni=1 and the current pa-
rameter estimate θ is in the direction of the gradient of a certain pseudo-likelihood
function. In this way, the author gave a heuristic argument for the consistency of
the CD-1 algorithm in the specific setting. However, as the conditional expecta-
tion is not actually used in his CD-1 algorithm, this connection to the maximum
pseudo-likelihood estimate cannot directly establish the consistency of the CD-1
algorithm.

This paper is devoted to answer the open question whether and why the CD al-
gorithm with some bounded m can yield an asymptotically consistent estimate. We
restrict our focus to exponential families rather than general energy-based models
for two reasons. First, the convexity of the cumulant generating function �(θ) in
an exponential family guarantees the uniqueness of the MLE, enabling a transpar-
ent comparison of the CD algorithm to the maximum likelihood learning. The bias
of the CD gradient approximation and the comparison of the CD estimates and
MLE are of primary interest, because the idea of the CD algorithm is to replace
the exact gradient with a computationally-cheap but biased CD gradient approx-
imation when doing maximum (log-)likelihood learning. Second, the exponential
family itself is a central statistical model. Yet except in the special case when
the cumulant generating function is analytically tractable, there is no estimation
method known to be asymptotically consistent and computationally efficient. As
the CD algorithm appears to be a solution to these cases [3, 19, 23], its consistency
for exponential families is of importance.

1.4. Organization of paper. In practice, the CD algorithm iterates the update
equation (1.6) many times (t → ∞) to obtain an estimate given a particular data
sample of size n. Thus, we first study the behavior of {θt }t≥0 in the limit of t → ∞
given a data sample of fixed size n, and then let the sample size n → ∞. The
details of our approach can be stated as follows.

Conditional on a data sample of size n, the sequence {θt }t≥0 is a homogenous
Markov chain. This chain has two phases: “quick move” and “random walk.”
When the chain moves from θ which is far away from the MLE θ̂n, the exact
gradient g(θ) is relatively large compared to the approximation error resulting
from the m-step MCMC sampling. The update equation (1.6) keeps pushing θ to
quickly move toward θ̂n. When θ is so close to θ̂n that g(θ) fails to suppress the
MCMC approximation error, the “quick move” phase ends and the chain starts a
“random walk” in the neighborhood around θ̂n. This intuition is mathematically
formalized as a Foster–Lyapunov drift criterion with V (θ) = ‖θ − θ̂n‖2/2 as a
Foster–Lyapunov function (see Definition 3.2), where ‖z‖ denotes the l2-norm of
vector z. This idea of a quick move to a random walk neighborhood and differ-
ent types of Lyapunov drift conditions have been intensively explored in Markov



3072 JIANG, WU, JIN AND WONG

chain theory [13, 28, 29]. Finally, we show that the random walk neighborhood
centering at θ̂n shrinks to the true parameter θ� as the sample size n → ∞.

Section 2 states our main result: under six conditions (A1), (A2), (A3), (A4),
(A5) and (A6), there exists a bounded m for which the limiting time average
1
t

∑t−1
s=0 θt converges to the true parameter θ� in probability

lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ�

∥∥∥∥∥ p→ 0

as the sample size n → ∞ at a rate of 1/ 3
√

n. Section 3 presents our proof in several
stages. First, we show that {θt }t≥0 is a homogenous Markov chain under Px, the
conditional probability measure given any realization of the data sample X = x,
and impose three constraints on x (and its sample size n). These constraints are
proven to hold with probability approaching 1 as n → ∞. Hereafter, we study the
chain {θt }t≥0 under P

x in the framework of the Markov chain and supermartin-
gale theories and demonstrate that a neighborhood around the MLE θ̂n is posi-
tively recurrent. The key is to establish the Foster–Lyapunov drift criterion with
V (θ) = ‖θ − θ̂n‖2/2 as a Foster–Lyapunov function. From the Foster–Lyapunov
drift criterion, it follows that

lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ̂n

∥∥∥∥∥= O
(
1/ 3

√
n
)

P
x-a.s.

Putting this P
x-a.s. convergence result and the fact that θ̂n is Op(1/

√
n)-close to

θ� together yields

lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ�

∥∥∥∥∥≤ lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ̂n

∥∥∥∥∥+ ‖θ̂n − θ�‖

= Op

(
1/ 3

√
n
)
.

Section 4 uses a bivariate Gaussian model, a FVBM model (1.5) and a exponential-
family random graph model (ERGM) as examples to illustrate the theories. Sec-
tion 5 briefly discusses related works, novelties of our paper in theoretical aspects
and guidance to practitioners of the CD algorithm.

2. Main result. We base the asymptotic properties of the CD algorithm in
canonical exponential families3 on the assumptions (A1), (A2), (A3), (A4), (A5)
and (A6). These assumptions can be directly verified in many applications of the
CD algorithm in canonical exponential families. See three examples in Section 4.

3An exponential family is canonical if the d-dimensional sufficient statistic φ(X) does not satisfy

any linear constraint. If so, ∇2�(θ) = Covθ φ(X) is positive definite.
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(A1) The parameter space of interest � is a convex and compact subset of the
natural parameter domain D = {θ ∈ R

d : �(θ) < ∞}, and the true parameter
θ� is an interior point of �.

The successive iterations of the update equation (1.6) may lead θ+ to leave
compact �. If it happens, we project θ+ onto �. The remainder of this paper
studies the modified update equation (2.1),

(2.1) θ+ = ��

(
θ + η

[
1

n

n∑
i=1

φ(Xi) − 1

n

n∑
i=1

φ
(
X

(m)
i

)])
,

where �� denotes the projection mapping onto � and is the proximal mapping
associated to the convex function h(θ) = 0 if θ ∈ � or ∞ otherwise. This proxi-
mal mapping trick has been well studied by researchers focusing on the proximal
gradient algorithm (see, e.g., [6, 31]).

Let λmin(θ), λmax(θ) be the smallest and largest eigenvalues of ∇2�(θ), and
let λsum(θ) be the trace (sum of eigenvalues) of ∇2�(θ). The compactness of
� in (A1) together with the positive definiteness and continuity of ∇2�(θ) in a
canonical exponential family imply the existence of the following constants:

λmin := inf
θ∈�

λmin(θ) ∈ (0,∞),(2.2)

λmax := sup
θ∈�

λmax(θ) ∈ (0,∞),(2.3)

λsum := sup
θ∈�

λsum(θ) ∈ (0,∞).(2.4)

We next explain how to quantify the difference of two distributions pθ and pθ�

in an exponential family. We define χ2-contrast as follows. This χ2-contrast is
commonly seen in the studies on the MCMC approximation error [33, 38].

DEFINITION 2.1 (χ2-contrast). Let ν, π be two distributions on X . If there
exists a density of ν with respect to π , then denote it by dν

dπ
(x). The χ2-contrast of

ν and π is given by

χ2(ν,π) =
∫
X

[
dν

dπ
(x) − 1

]2
π(x)dx =

∫
X

[ν(x) − π(x)]2

π(x)
dx.

Let χ(ν,π) be the square root of χ2(ν,π).

(A2) There exists some positive constant L such that

χ(pθ�,pθ ) ≤ L‖θ − θ�‖ ∀θ ∈ �.

(A2) is not very restrictive. Indeed, the function f : θ ∈ � �→ χ(pθ�,pθ ) =√
e−2�(θ�)+�(θ)+�(2θ�−θ) − 1 is continuously differentiable, and thus Lipschitz
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continuous in θ ∈ compact � as long as �(2θ� − θ) < ∞ for any θ ∈ �. Denote
by L the Lipschitz constant then

χ(pθ�,pθ ) = f (θ) = f (θ) − 0 = f (θ) − f (θ�) ≤ L‖θ − θ�‖.
This condition holds in exponential families with �(θ) < ∞ for any θ ∈ R

d . These
exponential families include the FVBM model (1.5) and the Gaussian model with
unknown mean θ and known covariance.

We also need a regularity condition on the MCMC transition kernel. Denote by
kθ (x, y) the MCMC transition kernel for the equilibrium distribution pθ , and by
Kθ its associated Markov operator. That is, for any function h : X →R,

Kθh(x) =
∫
X

h(y)kθ (x, y) dy.

The Markov operator Kθ admits an L2-spectral gap, if

α(θ) := sup
h �=0

{ [∫X |Kθh(x)|2pθ(x) dx]1/2

[∫X |h(x)|2pθ(x) dx]1/2 :
∫
X

h(x)pθ (x) dx = 0
}

< 1,

where the L2-spectral gap is given by 1 −α(θ). A larger L2-spectral gap indicates
faster convergence rate of the MCMC chain [38]. (A3) requires that the Markov op-
erators {Kθ }θ∈� converge to their corresponding equilibrium {pθ }θ∈� uniformly
fast.

(A3) The Markov operator Kθ admits an L2-spectral gap 1 − α(θ) and

α := sup
θ∈�

α(θ) < 1.

Here, we call 1 − α the “uniform L2-spectral gap” of the Markov operators
{Kθ }θ∈�. The spectrum theory for Markov operators has been elegantly estab-
lished and studied [2, 11, 12]. This assumption is generally obeyed by popular
MCMC transition kernels like Metropolis–Hastings algorithms and random-scan
Gibbs samplers. These kernels usually generate reversible, ϕ-irreducible and ape-
riodic chains in practice [34], and admit L2-spectral gaps if and only if they are
geometrically ergodic (Proposition 1.2 in [22]). See [27, 35, 38] for more detailed
discussions on L2-spectral gap and geometric ergodicity for MCMC algorithms.
This “uniform L2-spectral gap” condition is equivalent to the “uniform geomet-
ric ergodicity” condition (H5) assumed in [4], which studies other MCMC-based
estimation scheme.

Denote by km
θ (x, y) the m-step transition kernel

km
θ (x, y) =

∫
X

· · ·
∫
X

kθ

(
x, x(1))kθ

(
x(1), x(2)) · · ·kθ

(
x(m−1), y

)
dx(1) · · ·dx(m−1),

and by km
θ ν the m-step transition of a (signed) measure ν on X

km
θ ν(y) =

∫
X

ν(x)km
θ (x, y) dx.
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Then km
θ pθ� is the m-step transition of pθ� . In the CD algorithm, the m-step MCMC

sample {X(m)
i }ni=1 can in fact be regarded as i.i.d. draws from km

θ pθ� . (A4) assumes

that φ(X
(m)
i ) is sub-exponential.

DEFINITION 2.2 (Sub-exponential random variable). A d-dimensional ran-
dom variable Y is sub-exponential with parameters (σ, ζ ) if

EezT (Y−EY ) ≤ eσ 2‖z‖2/2 ∀z ∈ R
d s.t. ‖z‖ ≤ ζ.

When d = 1, the one-dimensional random variable Y is said to be sub-exponential
with parameters (σ, ζ ) if

Eez(Y−EY ) ≤ eσ 2z2/2 ∀z ∈ R s.t. |z| ≤ ζ.

Apparently, each component of a d-dimensional sub-exponential random variable
is a one-dimensional sub-exponential random variable.

(A4) For any θ ∈ �, if X(m) ∼ km
θ pθ� then φ(X(m)) is sub-exponential with some

constants (σm, ζm).

Sub-exponentiality is a commonly-seen condition in many statistics problems
nowadays [32]. While many previous theoretical studies [20, 44] on the CD al-
gorithm focused on cases with bounded φ(X(m)), this assumption covers the un-
bounded cases as long as the tail probability of φ(X(m)) is not heavy. Intuitively,
(A4) is expected to holds as φ(X) is sub-exponential under both pθ and pθ� in reg-
ular exponential families (see Lemma 3.1 in the [21]), and km

θ pθ� lies between the
initial distribution pθ� and the equilibrium distribution pθ . We also directly verify
(A4) for the Gaussian, FVBM and ERGM examples in Section 4.

Let km
θ (x, ·) denote the m-step distribution of the chain starting from x. Then

X(m)|x, θ ∼ km
θ (x, ·). We assume that φ(X(m)) is conditionally square integrable

given any x ∈ X and any θ ∈ �, and satisfies (A5) and (A6).

(A5) For any θ ∈ �, fθ : x �→ E[φ(X(m))|x; θ ] = ∫
X φ(y)km

θ (x, y) dy is a func-
tion of x. We assume that the mapping θ �→ fθ is Lipschitz continuous in the
sense that there exists some positive constant C1,m (depending on m) such
that

sup
x∈X

∥∥fθ1(x) − fθ2(x)
∥∥≤ C1,m‖θ1 − θ2‖ ∀θ1, θ2 ∈ �.

(A6) There exists some positive constant C2,m (depending on m) such that

Cov
[
φ
(
X(m))|x, θ

]� C2,mId ∀θ ∈ �,

where Id denotes the d × d identity matrix, and A � B means B − A is
positive semi-definite for two symmetric matrices A and B .
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The intuition behind (A5) is that for two MCMC kernels using similar θ1 and θ2,
the m-step transitions of the sufficient statistic φ(x) are similar. (A6) assumes the
square integrability of φ(X(m)) under the m-step distribution X(m)|x; θ ∼ km

θ (x, ·).
They are commonly obeyed by the CD algorithm in practice. See examples in
Section 4.

Now Theorem 2.1 states our main result.

THEOREM 2.1. Assume (A1), (A2), (A3), (A4), (A5) and (A6). If the CD-
m algorithm (2.1) generates a sequence {θt }t≥0 given an i.i.d. data sample
X1, . . . ,Xn ∼ pθ� , then for any m and learning rate η satisfying

(2.5) λmin −√λsumLαm − η

2

(
λmax +√λsumLαm)2 > 0,

one has

lim
n→∞P

(
lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ�

∥∥∥∥∥> Amn−γ /3

)
= 0

for any γ ∈ (0,1) and some constant Am depending on m. Here, λmin, λmax, λsum
are defined by (2.2), (2.3) and (2.4), d is the dimension of θ and φ(x), L is the
Lipschitz constant introduced by (A2), 1−α is the uniform L2-spectral gap defined
in (A3) and η is the learning rate of the update equation (2.1).

The left-hand side of (2.5) goes to λmin > 0 as m ↑ ∞ and η ↓ 0. There exist
bounded m and η to satisfy (2.5). For such m and η, the CD algorithm will give a
consistent estimate for θ�.

3. Proof. This section presents our proof in several stages. Section 3.1 shows
that {θt }t≥0 is a homogenous Markov chain under Px, the conditional probability
measure given any realization of the data sample X = x, and imposes three con-
straints on x (and its sample size n). These constraints are proven to hold with prob-
ability approaching 1 as n → ∞. The following subsections analyze the behaviors
of the chain {θt }t≥0 under Px in the framework of Markov chain and supermartin-
gale theories. Section 3.2 bounds the bias and the variance of the CD gradient ap-
proximation. With these bounds, we establish in Section 3.3 the Foster–Lyapunov
drift criterion for the chain {θt }t≥0 with V (θ) = ‖θ − θ̂n‖2/2 as a Foster–Lyapunov
function. Section 3.4 follows to show that a neighborhood around the MLE θ̂n is
positively recurrent, and further that

lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ̂n

∥∥∥∥∥= O
(
1/ 3

√
n
)

P
x-a.s.

Putting this P
x-a.s. convergence result and the fact that θ̂n is Op(1/

√
n)-close to

θ� together, Section 3.5 yields

lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ�

∥∥∥∥∥≤ lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ̂n

∥∥∥∥∥+ ‖θ̂n − θ�‖ = Op

(
1/ 3

√
n
)
.
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3.1. Conditioning on the data sample. We claim that the CD algorithm (2.1)
generates a homogenous Markov chain {θt }t≥0 in the state space � conditional on
any realization of the data sample X = x.

Indeed, denote by X(m)
t = {X(m)

t,i }1≤i≤n the m-step MCMC sample generated at
iteration t of the CD algorithm. The filtration

Ft := σ -algebra
(
X, θ0,X(m)

1 , θ1,X(m)
2 , . . . , θt−1,X(m)

t , θt

)
contains all historical information until iteration t . At each iteration t , the CD
update

θt = ��

(
θt−1 + η

[
1

n

n∑
i=1

φ(xi) − 1

n

n∑
i=1

φ
(
X

(m)
t,i

)])

is merely a function of the data sample X = x, the current parameter estimate θt−1

and the m-step MCMC sample X(m)
t . Given the data sample X = x and the current

parameter estimate, θt−1, X(m)
t is conditionally independent to the past history of

CD updates. Thus, {θt }t≥0 is a homogeneous Ft -adapted Markov chain under Px,
the conditional probability measure given X = x.

Next, we impose three constraints (3.1), (3.2) and (3.3) on the data sample X =
x. Lemma 3.1 proves that they hold with probability approaching 1 as n → ∞. In
the following sections, we study the chain {θt }t≥0 under Px with x satisfying these
constraints.

LEMMA 3.1. Assume (A1), (A4), (A5) and X1, . . . ,Xn
i.i.d.∼ pθ� . Denote by

∂� the boundary of compact �, by θ̂n the MLE, and by fθ : x �→ E[φ(X(m))|x, θ ]
the function defined in (A5). For any γ ∈ (0,1),

inf
θ∈∂�

‖θ − θ�‖ > n−γ /2,(3.1)

‖θ̂n − θ�‖ < n−γ /2,(3.2)

sup
θ∈�

∥∥∥∥∥1

n

n∑
i=1

fθ (Xi) −Efθ(X1)

∥∥∥∥∥< n−γ /2(3.3)

hold with probability approaching 1 as n → ∞.

PROOF. (3.1) holds for sufficiently large n since the true parameter θ� is an
interior point of compact � as assumed in (A1). The standard theorem for the
MLE [25] asserts that (3.2) holds with probability approaching 1 as n → ∞. Only
left is to show (3.3) holds with probability approaching 1 as n → ∞.

To this end, consider N =O(ε−d) ε-balls to cover �, which center at {θl}1≤l≤N .
Any θ ∈ � is ε-close to at least one θl . (A5) implies

sup
x∈X

∥∥fθ (x) − fθl
(x)
∥∥≤ C1,mε
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and further∥∥∥∥∥1

n

n∑
i=1

fθ(Xi) −Efθ (X1)

∥∥∥∥∥≤
∥∥∥∥∥1

n

n∑
i=1

fθ(Xi) − 1

n

n∑
i=1

fθl
(Xi)

∥∥∥∥∥
+
∥∥∥∥∥1

n

n∑
i=1

fθl
(Xi) −Efθl

(X1)

∥∥∥∥∥
+ ∥∥Efθl

(X1) −Efθ (X1)
∥∥

≤
∥∥∥∥∥1

n

n∑
i=1

fθl
(Xi) −Efθl

(X1)

∥∥∥∥∥+ 2C1,mε.

It follows that

P

(
sup
θ∈�

∥∥∥∥∥1

n

n∑
i=1

fθ (Xi) −Efθ (X1)

∥∥∥∥∥≥ 3C1,mε

)

≤ P

(
N

max
l=1

∥∥∥∥∥1

n

n∑
i=1

fθl
(Xi) −Efθl

(X1)

∥∥∥∥∥≥ C1,mε

)

≤
N∑

l=1

P

(∥∥∥∥∥1

n

n∑
i=1

fθl
(Xi) −Efθl

(X1)

∥∥∥∥∥≥ C1,mε

)

≤
N∑

l=1

d∑
j=1

P

(∣∣∣∣∣1n
n∑

i=1

fθl,j (Xi) −Efθl,j (X1)

∣∣∣∣∣≥ C1,mε√
d

)
.

φ(X
(m)
i ) is sub-exponential with (σm, ζm) as assumed in (A4), so is its conditional

expectation fθ (Xi) = E[φ(X
(m)
i )|Xi, θ ] by Lemma 3.2 in the [21]. Let fθ,j be the

j th component of fθ then one-dimensional random variables {fθ,j (Xi)}ni=1 are
i.i.d. and sub-exponential with (σm, ζm). By Lemma 3.3 in the [21],

P

(∣∣∣∣∣1n
n∑

i=1

fθl,j (Xi) −Efθl,j (X1)

∣∣∣∣∣≥ C1,mε√
d

)
≤ 2 exp

(
−nC2

1,mε2/d

2σ 2
m

)

if C1,mε/
√

d < σ 2
mζm. Putting together with the fact that N = O(ε−d) yields

P

(
sup
θ∈�

∥∥∥∥∥1

n

n∑
i=1

fθ (Xi) −Efθ (X1)

∥∥∥∥∥≥ 3C1,mε

)
≤ 2Nd exp

(
−nC2

1,mε2/d

2σ 2
m

)

= O
(
ε−d) exp

(
−nC2

1,mε2/d

2σ 2
m

)
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if C1,mε/
√

d < σ 2
mζm. Let ε = n−γ /2/3C1,m then C1,mε/

√
d < σ 2

mζm if n is suffi-
ciently large. Thus,

P

(
sup
θ∈�

∥∥∥∥∥1

n

n∑
i=1

fθ (Xi) −Efθ(X1)

∥∥∥∥∥≥ n−γ /2

)
≤ O

(
nγd/2) exp

(
− n1−γ

18dσ 2
m

)

→ 0

as n → ∞, completing the proof. �

3.2. Gradient approximation error. Denote by P
x
θ the conditional probability

measure given the data sample x and the current state θt = θ of the chain. And E
x
θ

and Covx
θ denote the expectation and covariance under Px

θ . Lemma 3.2 bounds the
approximation error of the CD gradient gcd(θ) under Px

θ . Specifically, the bias of
gcd(θ) is O(n−γ /2) +O(αm‖θ − θ̂n‖), which depends on the uniform L2-spectral
gap 1 − α of the MCMC kernels, the number m of transition steps in MCMC,
the sample size n and the distance between θ and the MLE θ̂n. This result agrees
with Bengio and Delalleau’s [7] finding that the CD gradient approximation error
decreases at a rate depending on the mixing rate of the MCMC kernels.

LEMMA 3.2. Assume (A1), (A2), (A3), (A6) and that the data sample x =
{xi}ni=1 satisfies (3.2) and (3.3). Let �g = gcd(θ) − g(θ) be the gradient approxi-
mation error. Then∥∥Ex

θ�g
∥∥≤ (1 +√λsumLαm)n−γ /2 +√λsumLαm‖θ − θ̂n‖,

where λsum is defined in (2.4), L denotes the Lipschitz constant introduced by (A2),
1 − α is the uniform L2-spectral gap defined in (A3), and γ ∈ (0,1) is introduced
by constraints (3.2) and (3.3). Also,

Covx
θ �g � C2,m

n
Id,

where C2,m is defined in (A6).

PROOF. From the fact that

�g = gcd(θ) − g(θ) = ∇�(θ) − 1

n

n∑
i=1

φ
(
X

(m)
i

)
,

it follows that

−E
x�g = E

x
θ

⎡
⎣1

n

n∑
i=1

φ
(
X

(m)
i

)⎤⎦− ∇�(θ)

= 1

n

n∑
i=1

∫
X

φ(y)km
θ (xi, y) dy − ∇�(θ) [X(m)

i |xi, θ ∼ km
θ (xi, ·)]
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= 1

n

n∑
i=1

fθ (xi) − ∇�(θ) [Definition of fθ in (A5)]

=
[

1

n

n∑
i=1

fθ (xi) −Efθ(X1)

]

+ [Efθ (X1) − ∇�(θ)
]
.

Constraint (3.3) bounds the length of the first term (vector) by n−γ /2. Proceed to
consider the second term Efθ (X1) − ∇�(θ). Write

Efθ (X1) =
∫
X

fθ (x)pθ�(x) dx [X1 ∼ pθ�]

=
∫
X

(∫
X

φ(y)km
θ (x, y) dy

)
pθ�(x) dx [Definition of fθ in (A5)]

=
∫
X

φ(y)

(∫
X

km
θ (x, y)pθ�(x) dx

)
dy [Fubini’s theorem]

=
∫
X

φ(y)km
θ pθ�(y) dy. [Definition of km

θ pθ�]

The fact that

∇�(θ) =
∫
X

∇�(θ)km
θ pθ�(x) dx =

∫
X

∇�(θ)pθ(x) dx

and (1.2) imply

Efθ(X1) − ∇�(θ) =
∫
X

φ(x)km
θ pθ�(x) dx −

∫
X

φ(x)pθ (x) dx

−
∫
X

∇�(θ)km
θ pθ�(x) dx +

∫
X

∇�(θ)pθ(x) dx

=
∫
X

[
φ(x) − ∇�(θ)

][
km
θ pθ�(x) − pθ(x)

]
dx.

For each j = 1, . . . , d , let fθ,j (x),φj (x) and ∇j�(θ) = ∂�(θ)/∂θj be the j th
component of fθ (x),φ(x) and ∇�(θ), respectively. Let ∇2

jj�(θ) = ∂2�(θ)/∂θ2
j

be the j th diagonal entry of ∇2�(θ):∣∣Efθ,j (X1) − ∇j�(θ)
∣∣

=
∣∣∣∣
∫
X

[
φj (x) − ∇j�(θ)

][
km
θ pθ�(x) − pθ(x)

]
dx

∣∣∣∣
=
∣∣∣∣
∫
X

[
φj (x) − ∇j�(θ)

][km
θ pθ�(x)

pθ (x)
− 1

]
pθ(x) dx

∣∣∣∣
≤
√∫

X

[
φj (x) − ∇j�(θ)

]2
pθ(x) dx
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×
√∫

X

[
km
θ pθ�(x)

pθ (x)
− 1

]2
pθ(x) dx [Cauchy–Schwarz]

=
√

∇2
jj�(θ) × χ

(
km
θ pθ�,pθ

)
. [(1.3), Definition 2.1]

Noting that λsum(θ) = trace[∇2�(θ)] and that χ(km
θ pθ�,pθ ) ≤ α(θ)mχ(pθ�,pθ )

due to Lemma 3.4 in the Supplementary Material [21] (also part of Theorem 2.1
in [33] and Proposition 3.12 in [38]), we further have

(3.4)
∥∥Efθ(X1) − ∇�(θ)

∥∥≤√λsum(θ) × α(θ)mχ(pθ�,pθ ).

Hence

∥∥Ex
θ�g

∥∥≤
∥∥∥∥∥1

n

n∑
i=1

fθ (xi) −Efθ (X1)

∥∥∥∥∥
+ ∥∥Efθ(X1) − ∇�(θ)

∥∥
≤ n−γ /2 +√λsum(θ) × α(θ)mχ(pθ�,pθ ) [(3.3), (3.4)]

≤ n−γ /2 +√λsumLαm‖θ� − θ‖ [(2.4), (A2), (A3)]

≤ n−γ /2 +√λsumLαm‖θ̂n − θ�‖
+√λsumLαm‖θ − θ̂n‖

≤ (1 +√λsumLαm)n−γ /2 +√λsumLαm‖θ − θ̂n‖ [(3.2)].

X
(m)
i |x, θ ∼ km

θ (xi, ·) are conditionally independent (but not identically dis-
tributed) since n chains independently starts from different xi . By (A6),

Covx
θ�g = 1

n2

n∑
i=1

Cov
[
φ
(
X

(m)
i

)|xi, θ
]� C2,m

n
Id.

�

3.3. Foster–Lyapunov drift criterion. This subsection uses the error bounds of
CD gradient approximation in Lemma 3.2 to establish the Foster–Lyapunov drift
criterion with

V (θ) := ‖θ − θ̂n‖2/2

as a Foster–Lyapunov function. See Definitions 3.1 and 3.2 for drift, Foster–
Lyapunov drift criterion and the Foster–Lyapunov function.

DEFINITION 3.1 (drift). Let V : � → R+ be some nonnegative function on
the state space of a Markov chain {θt }t≥0. The one-step drift of V is defined as
EθV (θ+)−V (θ), which is the expected value change of V when the chain moves
from θ to θ+.
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DEFINITION 3.2 (Foster–Lyapunov drift criterion). A Markov chain {θt }t≤0
satisfies the Foster–Lyapunov drift criterion if

EθV
(
θ+)− V (θ) ≤ −δ1I(θ /∈ B) + δ2I(θ ∈ B)

with some δ1, δ2 > 0 and some subset B of the state space �. V is called a Foster–
Lyapunov function.

Lemma 3.3 shows that the chain {θt }t≥0 satisfies the Foster–Lyapunov drift cri-
terion.

LEMMA 3.3. Assume (A1), (A2), (A3), (A6) and that the data sample x sat-
isfies (3.1), (3.2) and (3.3) for some γ ∈ (0,1). Then for any m and learning rate
η satisfying

a := λmin −√λsumLαm − η

2

(
λmax +√λsumLαm)2 > 0,

the chain {θt }t≥0 satisfies Foster–Lyapunov drift criterion

E
x
θV
(
θ+)− V (θ) ≤ −δ1I(θ /∈ B) + δ2I(θ ∈ B),

with the Foster–Lyapunov function

V (θ) = ‖θ − θ̂n‖2/2

and

B = {
θ ∈ � : ‖θ − θ̂n‖ ≤ βrn

}
,

δ1 = η
(
β2 − 1

)
cn,

δ2 = η
(
cn + b2

n/4a
)
.

Here, β > 1 is arbitrary and bn, cn, rn are defined in the following way:

bn := (
1 +√λsumLαm)(1 + ηλmax + η

√
λsumLαm)n−γ /2,

cn := η

2

[
dC2,mn−1+γ + (1 +√λsumLαm)2]n−γ ,

rn := bn +
√

b2
n + 4acn

2a
� n−γ /2.

PROOF. Let �� denote the projection mapping onto �. From (3.1) and (3.2),
it follows that θ̂n ∈ �, further implying that

θ̂n = ��(θ̂n).
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Let �g = gcd(θ)−g(θ) be the approximation error of the CD gradient. We analyze
the one-step drift of the update equation (2.1). Write

V
(
θ+)= 1

2

∥∥θ+ − θ̂n

∥∥2

= 1

2

∥∥��

(
θ + ηgcd(θ)

)− ��(θ̂n)
∥∥2

≤ 1

2

∥∥θ + ηgcd(θ) − θ̂n

∥∥2

= V (θ) + η(θ − θ̂n)
T gcd(θ) + η2

2

∥∥gcd(θ)
∥∥2

= V (θ) + η(θ − θ̂n)
T g(θ) + η(θ − θ̂n)

T �g + η2

2

∥∥gcd(θ)
∥∥2

,

implying the one-step drift

E
x
θV
(
θ+)− V (θ)

≤ η(θ − θ̂n)
T g(θ) + η(θ − θ̂n)

T
E

x
θ�g + η2

2
E

x
θ

[∥∥gcd(θ)
∥∥2]

≤ η(θ − θ̂n)
T g(θ) + η(θ − θ̂n)

T
E

x
θ�g

+ η2

2

∥∥Ex
θgcd(θ)

∥∥2 + η2

2
trace

[
Covx

θ �g
]

≤ η(θ − θ̂n)
T g(θ) + η‖θ − θ̂n‖

∥∥Ex
θ�g

∥∥(3.5)

+ η2

2

(∥∥g(θ)
∥∥+ ∥∥Ex

θ�g
∥∥)2 + η2

2
trace

[
Covx

θ �g
]
.

From the facts that g(θ̂n) = 0 and that ∇g(θ) = −∇2�(θ), it follows that

g(θ) = g(θ) − g(θ̂n) = −∇2�
(
θ ′)(θ − θ̂n)

for some θ ′ between θ and θ̂n. In the first term of the right-hand side of (3.5),

(θ − θ̂n)
T g(θ) = −(θ − θ̂n)

T ∇2�
(
θ ′)(θ − θ̂n)

≤ −λmin‖θ − θ̂n‖2.

In the third term of the right-hand side of (3.5),∥∥g(θ)
∥∥= ∥∥∇2�

(
θ ′)(θ − θ̂n)

∥∥
=
√

(θ − θ̂n)T
[∇2�

(
θ ′)]2(θ − θ̂n)

≤
√

λ2
max‖θ − θ̂n‖2

= λmax‖θ − θ̂n‖.
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Plugging them and results in Lemma 3.2 together into (3.5) yields

E
x
θV
(
θ+)− V (θ)

≤ −ηλmin‖θ − θ̂n‖2

+ η
[(

1 +√λsumLαm)n−γ /2

+√λsumLαm‖θ − θ̂n‖]‖θ − θ̂n‖

+ η2

2

[
λmax‖θ − θ̂n‖ + (1 +√λsumLαm)n−γ /2

+√λsumLαm‖θ − θ̂n‖]2 + η2

2
× dC2,m

n

= −η
(
a‖θ − θ̂n‖2 − bn‖θ − θ̂n‖ − cn

)
,(3.6)

whose right-hand side is quadratic in ‖θ − θ̂n‖. If a > 0, then large ‖θ − θ̂n‖
guarantees a negative drift. Specifically,

‖θ − θ̂n‖ ≥ rn := bn +
√

b2
n + 4acn

2a
=⇒ E

x
θV
(
θ+)− V (θ) ≤ 0.

For any β > 1, let

B := {
θ ∈ � : ‖θ − θ̂n‖ ≤ βrn

}
.

If θ /∈ B , that is, ‖θ − θ̂n‖ ≥ βrn then

E
x
θV
(
θ+)− V (θ) ≤ −η

(
aβ2r2

n − bnβrn − cn

)
= −η

[
a
(
β2 − 1

)
r2
n − bn(β − 1)rn

]
≤ −η

(
β2 − 1

)(
ar2

n − brn
)

= −η
(
β2 − 1

)
cn

= −δ1.

On the other hand, if θ ∈ B ,

E
x
θV
(
θ+)− V (θ) ≤ max

θ∈�
−η
(
a‖θ − θ̂n‖2 − bn‖θ − θ̂n‖ − cn

)
= η

(
cn + b2

n/4a
)

= δ2,

completing the proof. �

Figure 1 illustrates the intuition of Lemma 3.3 that the drift of V (θ) = ‖θ −
θ̂n‖2/2 is upper bounded by a quadratic function of ‖θ − θ̂n‖. This bound later
implies the drift criterion that V decreases at least δ1 after a move from Bc, and
increases at most δ2 after a move from B .
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FIG. 1. Equation (3.6) asserts that the drift of V (θ) = ‖θ − θ̂n‖2/2 is upper bounded by a quadratic
function of ‖θ − θ̂n‖. It implies the drift criterion that V decreases at least δ1 after a move from Bc ,
and increases at most δ2 after a move from B .

3.4. Positive recurrence around the MLE under the chain. Lemma 3.4 follows
to show that B is positive recurrent under the chain {θt }t≥0 in the sense that the
proportion of time that the chain stays inside of B in the long term is at least
δ1/(δ1 + δ2). The proof of Lemma 3.4 uses the Azuma–Hoeffding inequality [5]
for supermartingales with bounded differences.

LEMMA 3.4. Following Lemma 3.3, B = {θ ∈ � : ‖θ − θ̂n‖ ≤ βrn} is positive
recurrent under the chain {θt }t≥0 in the sense that

lim inf
t→∞

1

t

t−1∑
s=0

I(θs ∈ B) ≥ δ1

δ1 + δ2
= β2 − 1

β2 + b2
n/4acn

,

lim sup
t→∞

1

t

t−1∑
s=0

I(θs /∈ B) ≤ δ2

δ1 + δ2
= 1 + b2

n/4acn

β2 + b2
n/4acn

.

PROOF. First, construct two supermartingales with bounded differences. Let

Yt = V (θt+1) − V (θt ) + δ1,

Zt = V (θt+1) − V (θt ) − δ2.

By the Foster–Lyapunov drift criterion established in Lemma 3.3 and the Markov
property of {θt }t≥0,

t−1∑
s=0

YsI(θs /∈ B),

t−1∑
s=0

ZsI(θs ∈ B)
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are supermartingales under Px. They have bounded differences |Yt | < D, |Zt | <

D for some D since V (θ) is bounded on compact �. By the Azuma–Hoeffding
inequality (Lemma 3.5 in the [21]), for any ε > 0,

P
x

⎛
⎝1

t

t−1∑
s=0

YsI(θs /∈ B) ≥ ε

⎞
⎠= P

x

⎛
⎝t−1∑

s=0

YsI(θs /∈ B) ≥ tε

⎞
⎠

≤ exp
(
− tε2

2D2

)
.

By Borel–Cantelli lemma,
∑∞

t=0 exp(− tε2

2D2 ) < ∞ implies

P
x

⎛
⎝1

t

t−1∑
s=0

YsI(θs /∈ B) ≥ ε finitely often

⎞
⎠= 0.

That is,

lim sup
t→∞

1

t

t−1∑
s=0

YsI(θs /∈ B) ≤ ε P
x-a.s.

ε > 0 can be arbitrarily small. It follows that

lim sup
t→∞

1

t

t−1∑
s=0

YsI(θs /∈ B) ≤ 0 P
x-a.s.

Similarly,

lim sup
t→∞

1

t

t−1∑
s=0

ZsI(θs ∈ B) ≤ 0 P
x-a.s.

Combining them with the fact that

1

t

t−1∑
s=0

(δ1 + δ2)I(θs ∈ B)

= 1

t

t−1∑
s=0

(Ys − Zs)I(θs ∈ B)

= 1

t

t−1∑
s=0

Ys − 1

t

t−1∑
s=0

YsI(θs /∈ B) − 1

t

t−1∑
s=0

ZsI(θs ∈ B)

yields

lim inf
t→∞

1

t

t−1∑
s=0

I(θs ∈ B) ≥ lim inf
t→∞

1

(δ1 + δ2)t

t−1∑
s=0

Ys
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= lim inf
t→∞

V (θt ) − V (θ0) + δ1t

(δ1 + δ2)t

= δ1

δ1 + δ2
= β2 − 1

β2 + b2
n/4acn

P
x-a.s.

It is equivalent to say

lim sup
t→∞

1

t

t−1∑
s=0

I(θs /∈ B) ≤ δ2

δ1 + δ2
= 1 + b2

n/4acn

β2 + b2
n/4acn

P
x-a.s.,

completing the proof. �

This lemma shows that the proportion of time that the chain stays inside of B in
the long term is at least

lim inf
t→∞

1

t

t−1∑
s=0

I(θs ∈ B) ≥ δ1

δ1 + δ2
= β2 − 1

β2 + b2
n/4acn

= β2 − 1

β2 +O(1)
.

Note that the radius of the closed ball is βrn. Letting β � nγ ′/2 for any γ ′ ∈ (0, γ ),
we have

lim inf
t→∞

1

t

t−1∑
s=0

I
(‖θs − θ̂n‖ ≤ n−(γ−γ ′)/2)≥ 1 −O

(
n−γ ′)

for sufficiently large n. As n → ∞, the chain will gradually concentrate at the
MLE. Choosing an appropriate γ ′, Lemma 3.5 shows that every limit point of the
time average 1

t

∑t−1
s=0 θs is O(1/ 3

√
n)-close to the MLE θ̂n.

LEMMA 3.5. Following Lemma 3.4,

lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ̂n

∥∥∥∥∥= O
(
n−γ /3)

P
x-a.s.

PROOF. Write∥∥∥∥∥1

t

t−1∑
s=0

θs − θ̂n

∥∥∥∥∥≤ 1

t

t−1∑
s=0

‖θs − θ̂n‖

= 1

t

t−1∑
s=0

‖θs − θ̂n‖I(θs ∈ B) + 1

t

t−1∑
s=0

‖θs − θ̂n‖I(θs /∈ B)

≤ βrn + max
θ,θ ′∈�

∥∥θ − θ ′∥∥× 1

t

t−1∑
s=0

I(θs /∈ B),
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where the first step is due to the convexity of l2-norm. Putting it together with the
result

lim sup
t→∞

1

t

t−1∑
s=0

I(θs /∈ B) ≤ δ2

δ1 + δ2
= 1 + b2

n/4acn

β2 + b2
n/4acn

in Lemma 3.4 yields

lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ̂n

∥∥∥∥∥≤ βrn + max
θ,θ ′∈�

∥∥θ − θ ′∥∥
︸ ︷︷ ︸

not depend on n

× 1 + b2
n/4acn

β2 + b2
n/4acn

.

Recall that rn � n−γ /2, b2
n/4acn � 1. If β � nγ ′/2 increases with n, then

lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ̂n

∥∥∥∥∥= O
(
max

{
n−(γ−γ ′)/2, n−γ ′})

.

The bound is minimized when γ ′ = γ /3 such that(
γ − γ ′)/2 = γ ′.

That is,

lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ̂n

∥∥∥∥∥=O
(
n−γ /3).

The coefficient constant depends on m, since maxθ,θ ′∈� ‖θ − θ ′‖ depends on the
size of parameter space � only, and the ratio of b2

n/4acn in the limit of n is deter-
mined by m. �

3.5. Proof of the main theorem. Now we can complete the proof of the main
result in Theorem 2.1.

PROOF OF THEOREM 2.1. In the light of Lemma 3.1, it suffices to show

lim
n→∞P

x

⎛
⎝lim sup

t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ�

∥∥∥∥∥> Amn−γ /3

⎞
⎠= 0

for any data sample x satisfying (3.1), (3.2) and (3.3). To this end, Lemma 3.5
asserts that

lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ̂n

∥∥∥∥∥= O
(
n−γ /3)

P
x-a.s.
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and constraint (3.2) ensures ‖θ̂n − θ�‖ < n−γ /2. Combining them yields

lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ�

∥∥∥∥∥≤ lim sup
t→∞

∥∥∥∥∥1

t

t−1∑
s=0

θs − θ̂n

∥∥∥∥∥+ ‖θ̂n − θ�‖

=O
(
n−γ /3)

P
x-a.s.

as desired; and the coefficient constant does not depend on x. �

4. Examples. We provide three examples: a bivariate Gaussian model, a 2×2
Fully visible Boltzmann Machine (FVBM) and an exponential family random
graph model to illustrate our theories. For each example, we first verify the as-
sumptions (A1)–(A6) one by one, and then show two phases, namely “quick move”
and “random walk,” of the CD learning process by plotting the sequence {θt }t≥0.

4.1. Bivariate Gaussian. We take a bivariate Gaussian model with unknown
mean θ ∈ R

2 but known covariance matrix

� =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
=
[
1.0 0.5
0.5 1.0

]

as our first example. We abuse the notation X(1) and X(2) to denote the components
of the Gaussian variable X ∼N (θ,�), and θ(1) and θ(2) to denote the components
of the parameter θ . This Gaussian model is a canonical exponential family with

φ(X) = �−1X, �(θ) = θT �−1θ/2.

We run the CD algorithm with a random-scan Gibbs sampler

X(1)|X(2) ∼N
(
θ(1) + ρ

σ1

σ2

(
X(2) − θ(2)), (1 − ρ2)σ 2

1

)
,

X(2)|X(1) ∼N
(
θ(2) + ρ

σ2

σ1

(
X(1) − θ(1)), (1 − ρ2)σ 2

2

)

on three data samples of size n = 102,103,104 for evaluation purposes. The
data samples are generated with the true mean parameter θ� = (0,0)T ∈ � =
[−0.5,+0.5] × [−0.5,+0.5]. For each data sample, CD starts from θ0 = (0.5,

0.5)T , and iterates T = 2000 times with learning rate η = 0.01.
Let us first verify (A1)–(A6). (A1) trivially holds since θ� = (0,0)T is a interior

point of � = [−0.5,+0.5] × [−0.5,+0.5], and for any θ ∈ �, ∇2�(θ) = �−1:

λmin(θ) = λmin = 0.67,

λmax(θ) = λmax = 2.00,

λsum(θ) = λsum = 2.67.
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For (A2), solving an optimization problem yields

L = max
θ∈�

χ(pθ�,pθ )

‖θ − θ�‖ = max
θ∈�

√
eθT �−1θ − 1

‖θ‖ ≈ 1.84.

For (A3), using the explicit expression of α(θ) in [2] we have

1 − α(θ) = 1 − α = smallest eigenvalue of �−1/d = 0.33.

The m-step distribution km
θ (x, ·) of the chain starting from any x ∈ R

2 is essentially
Gaussian, and

fθ(x) =
∫
X

φ(y)km
θ (x, y) dy = A(m,�)θ + B(m,�)x

is linear in θ and x with coefficient matrices A and B depending on m and �. Thus,
(A4), (A5), (A6) hold. When m ≥ 4 and η = 0.01, condition (2.5) is satisfied.

By our theories, the CD-4 algorithm will generate a sequence {θt }t≥0, which
quickly moves to θ̂n and then randomly walks around θ̂n. The range of the random
walk decreases as n increases. Figure 2 illustrates this phenomenon by plotting
{θt }2000

t=0 . Figure 3 plots ‖θt − θ̂n‖ versus iteration t and clearly shows two phases:
“quick move” and “random walk” of the CD learning process. The random walk
phase starts at t ≈ 500,750,1000 for n = 102,103,104, respectively. Larger sam-
ples result in smaller random walk neighborhoods.

FIG. 2. {θt }0≤t≤2000 generated by CD-4 using Gaussian samples of size n = 102 (left), 103 (mid-

dle), 104 (right). Red dots are the MLE θ̂n, and yellow dots are the true parameter θ�.
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FIG. 3. ‖θt − θ̂n‖ versus iteration t for CD-4 using Gaussian samples.

4.2. Fully visible Boltzmann machine. We analyze CD-1 in a 2 × 2 FVBM
(i.e., x is bivariate) as another example to illustrate our theories. Let θ =
(b1, b2,W12) ∈ R

3, and write 2 × 2 FVBM in the canonical form of exponential
family

pθ

(
x(1), x(2))∝ exp

(
θ(1)x(1) + θ(2)x(2) + θ(3)x(1)x(2)).

Here, we abuse the notation X(1) and X(2) to denote the components of the
FVBM variable X, and θ(1), θ (2), θ (3) to denote the components of the parame-
ter θ . The data samples are generated with the true parameter θ� = (0,0,0.5)T ∈
� = [−1,+1]×[−1,+1]×[−0.5,+1.5]. For each data sample, CD-1 starts from
θ0 = (1,1,1)T , and iterates T = 2000 times with learning rate η = 0.01. Each it-
eration uses a random-scan Gibbs sampler:

X(1)|X(2) ∼ 2 × Bernoulli
(
pθ

(
X(1) = +1|X(2)))− 1,

X(2)|X(1) ∼ 2 × Bernoulli
(
pθ

(
X(2) = +1|X(1)))− 1.

We can verify (A1)–(A6) one by one. (A1) holds since θ� is an interior point
of �. (A2) holds since �(θ) < ∞ for any θ ∈ R

3. For (A3), α(θ) is the sec-
ond largest absolute eigenvalue of the transition probability matrix, which is less
than 1 and continuous in θ ∈ compact �, and thus has an upper bound α < 1.
(A4) and (A6) hold because components of φ(X(m)) are bounded random vari-
ables. km

θ (x, y) can be represented as a transition probability matrix whose entries
are continuously differentiable functions of θ . Then for any x ∈ X = {−1,+1}p ,
fθ (x) is continuously differentiable, and thus Lipschitz continuous in θ ∈ compact
�. In addition, X is a finite set, thus (A5) holds.

Figure 4 plots the sequence {θt }2000
t=0 generated by CD-1 on FVBM samples. At

the beginning, θt moves quickly toward the MLE and then randomly walks around
it. The range of the random walk decreases as n increases.



3092 JIANG, WU, JIN AND WONG

FIG. 4. For each FVBM sample of size n = 102 (upper-left), 103 (upper-right), 104 (low-
er-left), 105 (lower-right), CD-1 generates {θt }0≤t≤2000. The yellow dots are the true parameter
θ� = (0,0,0.5)T .

4.3. Exponential-family random graph model. We analyze CD-5 in the expo-
nential family random graph model (ERGM) with 10 nodes as the third example.
ERGM is widely used in social network analysis [36]. The CD algorithm has per-
formed well in these models [3, 19, 23].

Assume we have a undirected graph x with xij = 1 indicating the existence of an
edge between ith node and j th node, and xij = 0 otherwise. The probability mass
function is given by pθ(x) ∝ exp [θT φ(x)], where φ(x) = [φ1(x), . . . , φd(x)]
are the global features of the network. Like [3], our experiment sets φ(x) to be
three network statistics, namely, the number of edges, the number of stars and
the number of triangles. The data samples are generated with the true parameter
θ� = (−2,0,0)T ∈ � = [−5,+5] × [−5,+5] × [−5,+5]. For each data sample,
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FIG. 5. For each ERGM sample of size n = 101 (left), 102 (middle) and 103 (right), CD-5 generates
{θt }500

t=0. The yellow dots are the true parameter θ� = (−2,0,0)T .

CD-5 starts from θ0 = (5,5,5)T , and iterates T = 500 times with learning rate
η = 0.05. Each iteration uses a Metropolis–Hastings sampler.

We can verify (A1)–(A6) one by one. (A1) holds since θ� is an interior point
of �. (A2) holds since �(θ) < ∞ for any θ ∈ R

3. For (A3), α(θ) is the second
largest absolute eigenvalue of the transition probability matrix, Each entry of the
transition probability matrix is a continuous function in θ ∈ compact �. It follows
that α(θ) is less than 1 and continuous in θ ∈ compact �. Thus, it has an upper
bound α < 1. (A4) and (A6) hold because components of φ(X(m)) are bounded.
Then for any x ∈ X = {0,1}10, fθ (x) is continuously differentiable, and thus Lip-
schitz continuous in θ ∈ compact �. In addition, the sample space X is a finite set,
thus (A5) holds.

Figure 5 plots the sequence {θt }500
t=0 generated by CD-5 on ERGM samples. At

the beginning, θt moves quickly toward the MLE and then randomly walks around
it. The range of the random walk decreases as n increases.

5. Discussion. The CD algorithm was proposed to train energy-based models
(e.g., Restricted Boltzmann Machine) and later used in the layer-wise pre-training
step of deep belief network. It has played a key role in the emergence of deep
learning. The algorithm approximates the gradient of the log-likelihood function
by running short MCMC chains to save computational cost. Although using bi-
ased gradient approximations in the iteration of the gradient ascent update, the CD
algorithm gives satisfactory parameter estimates in many practical applications.
On the other hand, Mackay [26] provides Gaussian examples in which the CD-
1 algorithm does not converge to the MLE. Many eminent scholars in machine
learning including Yuille [44], Carreira-Perpinan [9], Bengio and Delalleau [7]
and sutskever and Tieleman [40] had attempted to theoretically analyze the CD
algorithm. But whether and why this algorithm is asymptotically consistent is still
an open question.

In order to fill in the gap, this paper is devoted to a theoretical analysis of the
CD algorithm in exponential families. Exponential families are special cases of the
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energy-based models with convex log-partition functions. We narrow the scope of
analyses down to these special cases, because (1) the convexity ensures the unique-
ness of the MLE so that we could compare the CD estimates to the unique MLE,
and (2) the CD algorithm has been used to fit exponential families with unavailable
gradient of log-partition function, for example, exponential-family random graph
models. For nonconvex energy-based models like Restricted Boltzmann Machines,
we conjecture that the CD algorithm converges to a random walk around one or
more local maximum points of the likelihood function. Intuitively, the gradient
ascent algorithm using exact gradients usually does not converge to the MLEs of
nonconvex models. We do not expect that the CD algorithm using approximate
gradients does better than the gradient ascent algorithm.

We find that {θt }t≥0 is a homogenous Markov chain conditional on the data
sample. And the chain quickly moves toward the MLE θ̂n and then randomly walk
around it. This phase transition can be explained as follows. When the chain moves
from θ , which is far away from the MLE θ̂n, the exact gradient g(θ) is relatively
large compared to the approximation error resulting from the m-step MCMC sam-
pling. The CD update equation keeps pushing θ to quickly move toward θ̂n. When
θ enters a small neighbor around θ̂n, g(θ) fails to suppress the MCMC approxima-
tion error. The “quick move” phase ends and the chain starts a “random walk” in
this neighborhood. In addition to the plots of the sequence {θt }t≥0 in Section 4, we
plot the gradient fields of the bivariate Gaussian and the FVBM examples and put
them in the [21].

Our theories can explain Mackay’s [26] Gaussian examples in which the CD-1
algorithm does not converge to the MLE. MacKay found that the CD-1 algorithm
with different kernels has one or multiple fixed points but these fixed points may
not be the MLEs. However, the author reported that “in the special case of an
infinite amount of data that come from an axis-aligned Gaussian, the noisy swirl
operator’s one-step algorithm (CD-1) does converge to the maximum-likelihood
parameters.” According to our theories, the fixed points or the limit points of the
sequence {θt }t≥0 are not exactly the MLEs. But they are O(1/ 3

√
n)-close to MLEs

with high probability and the gap shrinks to 0 as the amount of data goes to infinity.
In this way, our theories give an explanation for MacKay’s Gaussian examples.
We think the phenomenon that CD does not converge to the MLE should not be
considered as a failure of CD. We note that the Op(1/ 3

√
n) rate is probably not

the best rate. We believe that a rate closer to or equals to Op(1/
√

n) should be
obtainable with a more refined analysis.

We would like to highlight three other novelties of the theoretical analyses in
this paper. First, we let the iteration number t → ∞ and then let n → ∞ when ana-
lyzing the CD algorithm, while many previous works had not clearly distinguished
the two limits and led to unreasonable convergence conditions. For example, two
convergence conditions given in the remarks of Result 4 in [44] (translated to the
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form using our notation) are

1

n

n∑
i=1

φ(Xi) = ∇�(θ�),

1

n

n∑
i=1

∫
X

φ(y)km
θ�

(Xi, y) dy = ∇�(θ�).

These conditions are satisfied with probability zero in most models of continuous
distributions. It is because their left-hand sides are functions of {Xi}ni=1, and thus
random, while their right-hand sides are nonrandom. Second, conditioning on a fi-
nite data sample, we can see the sequence {θt }t≥0 as a Markov chain. Hence, many
nice results in the Markov chain, martingale and stability analysis theories like
Foster–Lyapunov drift criterion can be used. We believe Lyapunov drift conditions
might be used to analyze other stochastic gradient descent schemes with approx-
imate gradients. Third, the sub-exponentiality assumption (A4) allows to analyze
models with unbounded sufficient statistics. It is an improvement over existing
theoretical analyses, which are restricted to bounded cases.

Our theoretical results also provide some guidance for the practitioners of the
CD algorithm. First, since the CD algorithm converges to a random walk around
the MLE, a single estimate θt is not as reliable as the average 1

t

∑t−1
s=0 θs . Thus,

an averaging scheme should be taken. Second, the CD learning process typically
has two phases: “quick move” and “random walk.” This phase division suggests
practitioners to stop the iterations of the algorithm when θt starts the random walk.
Third, the success of the CD algorithm highly relies on the speed of MCMC ker-
nels in use. One may design and test a few candidate MCMC kernels, and use the
fastest kernel in the CD algorithm. Last but not the least, one could do mini-batch
sampling at each iteration of the CD algorithm, as a smaller sample size like n/10
would change neither the bias of the CD gradient approximation nor the order of
its variance. Thus, the asymptotical consistency of the CD algorithm still holds if
the mini-batch sampling scheme is in use.
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SUPPLEMENTARY MATERIAL

Appendix: Other simulation results and lemmas (DOI: 10.1214/17-AOS164
9SUPP; .pdf). This supplementary material contains other simulation results and
five lemmas.
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