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LIMITING BEHAVIOR OF EIGENVALUES IN
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and Hiroshima University‡

In this paper, we derive the asymptotic joint distributions of the eigen-
values under the null case and the local alternative cases in the MANOVA
model and multiple discriminant analysis when both the dimension and the
sample size are large. Our results are obtained by random matrix theory
(RMT) without assuming normality in the populations. It is worth pointing
out that the null and nonnull distributions of the eigenvalues and invariant
test statistics are asymptotically robust against departure from normality in
high-dimensional situations. Similar properties are pointed out for the null
distributions of the invariant tests in multivariate regression model. Some new
formulas in RMT are also presented.

1. Introduction. It is both basic and important to study the distributions of the
eigenvalues in a one-way multivariate analysis of variance (MANOVA) model and
multiple discriminant analysis. Suppose there are q + 1 groups, and {xi1, . . . ,xini

}
represents a random sample of p-vectors from the ith group, which has mean
vector μi and common covariance matrix �. Various inferential procedures are
based on the matrices

Sb = 1

n

q+1∑
i=1

ni(x̄i − x̄)(x̄i − x̄)′, Se = 1

n

q+1∑
i=1

ni∑
j=1

(xij − x̄i )(xij − x̄i )
′,

where

x̄i = 1

ni

ni∑
j=1

xij , x̄ = 1

n

q+1∑
i=1

ni x̄i , n =
q+1∑
i=1

ni.

The matrices nSb and nSe are called the matrices of sums of squares and products
due to between-groups and within-groups, respectively. Let St = Sb +Se, then nSt
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is called the matrix of sums of squares and products due to total variation. These
matrices are also used in canonical discriminant analysis, which is a statistical
procedure designed to discriminate between several different groups in terms of a
few discriminant functions.

The large-sample asymptotic distributions of the eigenvalues of SbS−1
e or SbS−1

t

were derived under normality by Hsu (1941) and Anderson (1951). A gap in the
proof of the main theorem in Hsu (1941) was corrected by Bai (1985). Amemiya
(1990) characterized the limiting distributions of the roots of a general determinan-
tal equation. Hsu’s results were extended to asymptotic expansions by a number
of authors; see Sugiura (1976), Fujikoshi (1977), Muirhead (1978, 1982), Glynn
and Muirhead (1978), etc. For extension to elliptical case with different covariance
matrices, see Seo, Kanda and Fujikoshi (1994).

As the data dimension, p, increases, it is well known that the accuracy of large
sample approximations deteriorates [see, for instance, Bai and Saranadasa (1996)].
As an alternative approach to overcome this shortcoming, it has been considered
to derive asymptotic distributions of the eigenvalues in a high-dimensional situa-
tion where the dimension p, the sample size n and the number of groups q + 1 are
large. The high-dimensional asymptotic results when p/n → c ∈ (0,1) were ob-
tained in Fujikoshi, Himeno and Wakaki (2008) by assuming that the population
eigenvalues are simple. Johnstone (2008) derived the limiting distribution of the
largest eigenvalue when q/n → c̃ ∈ (0,1) in addition to p/n → c ∈ (0,1) under
the assumption that all the population eigenvalues are zero, that is, the null case.
All these results were obtained under normality assumption of the populations.

In this paper, we derive asymptotic joint distributions of the eigenvalues under
the null case and the local alternatives in MANOVA model and multiple discrim-
inant analysis when both the dimension and the sample size are large. Our results
are obtained without assuming normality using techniques from random matrix
theory (RMT). There are several asymptotic results based on RMT; see, for in-
stances, Bai et al. (2009), Bai, Liu and Wong (2011), Zheng (2012), etc. In this
paper, we show that by applying RMT, it is possible to derive the asymptotic distri-
butions of the eigenvalues without assuming normality. In the course of derivation,
we obtain some new limit theorems which may be of independent interests.

The high-dimensional asymptotic results can be applied to some MANOVA
tests based on the likelihood ratio criterion, Lawley–Hotelling criterion or Bartlett–
Nanda–Pillai criterion. It is worth pointing out that our asymptotic results coincide
with those under normality assumption. Therefore, these MANOVA tests are ro-
bust against departure from normality when the dimension and the sample size are
large. Similar results are shown for test statistics in multivariate regression model.

We extend our results to a nonnull case, the local alternatives. The high-
dimensional asymptotic distributions of the eigenvalues are shown to be the eigen-
values of a Gaussian orthogonal ensemble and a fixed positive definite matrix.
Based on these results, we derive the asymptotic powers of the above multivariate
tests in closed form, from which various properties of these tests in high-dimension
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are delineated. We have conducted simulation studies to examine the accuracy of
the asymptotic approximations of the test statistics. Results of some of these stud-
ies are reported in Section 6.

Fuelled by myriad of applications such as pattern recognition, genomic stud-
ies, earth observation data, biomedical studies, which are of high data dimension,
many tests have been proposed in a high-dimensional framework in which both
p,n are large including the possibility that p > n in the past decade. When p > n,
Se is singular and so the classical invariant tests can no longer be applied. It is cur-
rently under intense research how to handle the effects of high dimension. We will
mention some related work below. For examples, Srivastava and Fujikoshi (2006)
modified the classical tests using generalized Moore–Penrose inverse; Srivastava
and Kubokawa (2013) introduced a test that is invariant under change of mea-
surement units; Ullah and Jones (2015) compared different regularized MANOVA
tests; and Wang, Peng and Li (2015) proposed a novel high-dimensional nonpara-
metric multivariate test. A timely review of the development of tests of signifi-
cance for high-dimensional mean vectors over the past two decades can now be
found in Hu and Bai (2016). Dempster (1958, 1960) introduced two nonexact tests
for equality of two population mean vectors to circumvent the singularity prob-
lem of Se in Hotelling’s T 2. Bai and Saranadasa (1996) studied the effects of
high-dimension on statistical inference. Hu and Bai (2016) reviewed the ideas and
technicalities of some new approaches: the approach of Chen and Qin (2010) in
which they modified the Bai–Saranadasa test to an unbiased test; the approach of
Srivastava and Du (2008) for an invariant test; and the approach in Cai and Xia
(2014) test.

It is interesting to compare these three tests (i.e., the likelihood ratio criterion,
Lawley–Hotelling criterion and Bartlett–Nada–Pillai criterion) with the tests pro-
posed in a high-dimensional situation: p,n → ∞ with p/n → c ∈ (0,1). We com-
pare these three tests with two modified Dempster tests based on the asymptotic
powers under local alternatives. However, a careful study of this important prob-
lem will be left as future work.

The organization of the paper is as follows. In Section 2, we state our main
results (Theorem 2.4 and Corollary 2.6) on the limiting joint distributions of the
nonzero eigenvalues of SbS−1

t and SbS−1
e , based on which we establish the null

robustness of some multivariate tests in Corollary 2.1. In the same section, we
state some limit theorems, Theorems 2.1 to 2.3, which are of independent inter-
ests. The proofs of Theorem 2.4 and Corollaries 2.6 and 2.1 are given in Section 3.
In Section 4, we apply our basic results to derive the high-dimensional asymp-
totic distributions of some tests in multivariate regression model. In Section 5, we
extend the results in the null case to local alternatives. In Section 6, our asymp-
totic results are numerically examined. Proof of Theorem 2.1 via CLT martingale
decomposition along the rows for the computation of the covariance structure of
the Gaussian orthogonal ensemble is given in Section 7. Theorem 2.2 is proved in
Section 8.
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2. Statements of main results. Throughout this article, {yjk : 1 ≤ j ≤ p,

1 ≤ k ≤ n} denotes a double array of independent and identically distributed
(i.i.d.) random variables with mean 0, variance 1 and finite fourth moment. Let
yk = (y1k, . . . , ypk)

′ and Y = [y1, . . . ,yn]. Write ȳ = 1
n

∑n
k=1 yk , and S = 1

n
YY′.

For 1 ≤ j ≤ p, let Zj denote the (p − 1) × n matrix obtained by removing the
j th row, denoted by z′

j , from Y. Similarly, for 1 ≤ k ≤ n, we let Yk denote the
p × (n − 1) matrix obtained by removing the kth column, yk , from Y. We define
Sk = 1

n
YkY′

k for 1 ≤ k ≤ n. Similarly, for 1 ≤ k �= � ≤ n, Yk� denotes the matrix
after removing the kth and the �th columns from Y, and Sk� = 1

n
Yk�Y′

k�. Let the
minimum and the maximum eigenvalues of S be denoted by λmin(S) and λmax(S),
respectively.

We use Xn
P−→ X and Xn

D−→ X to denote Xn converges to X in probabil-
ity and in distribution, respectively. Let In denote the n × n identity matrix, and
1n the n-vector of all components 1. Let 0 and O respectively represent a zero
vector and a zero matrix of appropriate order, often clear in the context of their
appearances. Throughout this article, vectors are column vectors equipped with
the Euclidean norm. The norm of a matrix B is taken to be the spectral norm,
‖B‖ = {λmax(BB′)}1/2.

For q ≥ 1, we let W = [wij ]1≤i,j≤q denote a Gaussian orthogonal ensemble
(GOE): W is a q × q symmetric matrix with wii ∼ N(0,1),wij ∼ N(0,1/2), and
wij = wji are jointly independent for 1 ≤ i ≤ j ≤ q . We suppress the dependence
of W on q as the order of the Gaussian orthogonal ensemble is often explicitly
spelled out or clear from the context.

We consider an n × q matrix A = [aij ]1≤i≤n,1≤j≤q satisfying the following
properties:

A′A = Iq,(2.1)

A′1n = 0,(2.2)

max
1≤i≤n,1≤j≤q

|aij | = O
(
n−1/2).(2.3)

We first state the following theorems, Theorems 2.1 to 2.3, which are of inde-
pendent interest. Theorem 2.3 is then applied to deduce the limiting behavior of
the eigenvalues in the MANOVA setting under the null case.

THEOREM 2.1. Let p × n random matrix Y be as described at the beginning
of Section 2. Suppose n × q matrix A satisfies (2.1) and (2.3). Suppose q is fixed,
p,n → ∞ satisfying p/n → c ∈ (0,1), then we have

√
n

{
A′Y′(YY′)−1YA − p

n
Iq

}
D−→ √

2c(1 − c)W,

where W is a q × q Gaussian orthogonal ensemble.
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THEOREM 2.2. Let p × n random matrix Y and p-vector ȳ be as described
at the beginning of this section. Let n × q matrix A satisfy (2.1)–(2.3). Suppose q

is fixed, p,n → ∞ satisfying p/n → c ∈ (0,1), then we have

√
n
{
A′Y′(YY′ − nȳȳ′)−1YA − A′Y′(YY′)−1YA

} P−→ O.

Theorem 2.3 below follows immediately from Theorems 2.1 and 2.2. The proof
of Theorem 2.1 will be given in Section 7 and that of Theorem 2.2 in Section 8.

THEOREM 2.3. Under the conditions stated in Theorem 2.2, we have

√
n

{
A′Y′(YY′ − nȳȳ′)−1YA − p

n
Iq

}
D−→ √

2c(1 − c)W,

where W is a q × q Gaussian orthogonal ensemble.

Let � be a p×p positive definite matrix and μi a p-vector for i = 1, . . . , q +1.
We assume our data vectors xk’s are generated as

(2.4) xk = �1/2yk + μi for Ni−1 < k ≤ Ni,

where N0 = 0,Nq+1 = n,Ni = n1 +· · ·+ni, i = 1, . . . , q +1. [See the discussion
and extension of (2.4) at the end of Section 2.] We regard the observations of the
random sample from the ith group are of the form xk,Ni−1 < k ≤ Ni , which has
mean vector μi and covariance matrix �. Further, the matrices Se and Sb defined in
the Introduction section can be expressed in terms of yk, k = 1,2, . . . , n as follows:

Se = �1/2

{
1

n

q+1∑
i=1

Ni∑
k=Ni−1+1

(yk − ȳi )(yk − ȳi )
′
}
�1/2

= �1/2(S − αn1ȳ1ȳ′
1 − · · · − αn,q+1ȳq+1ȳ′

q+1
)
�1/2,

Sb = �1/2

{
1

n

q+1∑
i=1

ni(ȳi − ȳ + ξ i )(ȳi − ȳ + ξ i )
′
}
�1/2,(2.5)

where αni := ni

n
, ȳi = 1

ni

∑Ni

k=Ni−1+1 yk, ȳ = 1
n

∑n
k=1 yk = 1

n

∑q+1
i=1 ni ȳi , ξ i =

�−1/2(μi − μ̄), μ̄ = 1
n

∑q+1
i=1 niμi . Note that

∑q+1
i=1 niξ i = 0. Let St = Sb + Se.

Matrices nSb and nSe are commonly referred to as the matrices of sums of squares
and products due to between-groups, and within-groups respectively. We impose a
natural assumption:

(2.6) αni = ni

n
→ αi > 0, i = 1,2, . . . , q + 1.
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THEOREM 2.4. Suppose n − q − 1 ≥ p ≥ q ≥ 1. Let nSb and nSt be the
matrices of sums of squares and products due to between-groups and total varia-
tion based on the xk’s observations, respectively. Let d1 > · · · > dq be the nonzero
eigenvalues of SbS−1

t . Suppose that μ1 = · · · = μq+1. Put

(2.7) d̃i =
√

n√
2c(1 − c)

(di − p/n), i = 1, . . . , q.

Suppose q is fixed, p,n → ∞ satisfying p/n → c ∈ (0,1) and condition (2.6)
holds, then the limiting joint density function, with support in yq < · · · < y1, of the
normalized eigenvalues (d̃1, d̃2, . . . , d̃q) is given by f (y1, . . . , yq;q) where

(2.8) f (y1, . . . , yq;q) =
[

2q/2
q∏

i=1

�

(
i

2

)]−1

exp

(
−1

2

q∑
i=1

y2
i

) ∏
1≤i<j≤q

(yi −yj ).

THEOREM 2.5. Under the conditions stated in Theorem 2.3, we have
√

n

{
A′Y′S−1

e YA − p

(n − p)
Iq

}
D−→

√
2c/(1 − c)3W,

where W is a q × q Gaussian orthogonal ensemble.

Theorems 2.4 and 2.5 imply the following Theorem 2.6. The proofs of Theo-
rems 2.4 and 2.5 will be given in the next section.

THEOREM 2.6. Let �1 > · · · > �q be the nonzero eigenvalues of SbS−1
e , and

put

(2.9) �̃i =
√

n(1 − c)3/(2c)
{
�i − p/(n − p)

}
, i = 1, . . . , q.

Then under the same conditions as in Theorem 2.4, the limiting density function of
the normalized eigenvalues (�̃1, . . . , �̃q) is given by f (y1, . . . , yq;q) in (2.8).

When q + 1 = 2, �1 is reduced to the Hotelling’s T 2-statistic which is given by

T 2 = n1n2

n
(x̄1 − x̄2)

′(nSe)
−1(x̄1 − x̄2).

Pan and Zhou (2011) derived the asymptotic distribution of the one-sample
Hotelling’s T 2

0 statistic. Note that these two asymptotic results are the same.
A significant consequence of our results is the support of null robustness for

nonnormality of some multivariate tests even when the dimension and the sample
size are large. For example, in testing the hypothesis H0 : μ1 = · · · = μq+1 in the
MANOVA model, we have the following three test statistics:

T̃1 = − log
|Se|
|St | = − log

q∏
i=1

(1 + �i)
−1 = −

q∑
i=1

log(1 − di),
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T̃2 = tr SbS−1
e =

q∑
i=1

�i =
q∑

i=1

di

1 − di

,

T̃3 = tr SbS−1
t =

q∑
i=1

�i

1 + �i

=
q∑

i=1

di.

The test statistic T̃1 is based on the likelihood ratio test. The test statistics T̃2 and T̃3
are based on the Lawley–Hotelling criterion and Bartlett–Nanda–Pillai criterion,
respectively [see, e.g., Anderson (2003)].

Here, we consider the high-dimensional asymptotic null distributions of T̃1, T̃2
and T̃3 under an asymptotic framework in which p,n → ∞ satisfying p/n → c ∈
(0,1). Assuming normality in the populations, Wakaki, Fujikoshi and Ulyanov
(2014) showed the following asymptotic results:

(2.10) Ti
D−→ N

(
0,

2q

1 − c

)
, i = 1,2,3,

where

T1 = √
p

(
1 + m

p

){
T̃1 − q log

(
1 + p

m

)}
,

T2 = √
p

(
m

p
T̃2 − q

)
,(2.11)

T3 = √
p

(
1 + p

m

){(
1 + m

p

)
T̃3 − q

}
.

Here, the asymptotic variance is the limit of 2q(1 + p/m) where m = n − p + q .
This result is generalized as stated in the following corollary.

COROLLARY 2.1. Assume the same conditions as stated in Theorem 2.4. With
the Ti’s as defined in (2.11),

(2.12) Ti
D−→ N

(
0,

2q

1 − c

)
, i = 1,2,3.

Corollary 2.1 shows that the results of Wakaki, Fujikoshi and Ulyanov (2014)
continue to hold without assuming normality, but under a rather natural additional
assumption (2.6). Note also that these three tests have diverging variance as c → 1.
The proof is given in Section 3.

Discussion and extension of model (2.4). The assumption that the components
of yk are i.i.d. in (2.4) can be relaxed to the components of yk = (y1k, . . . , ypk)

′
are independent, means 0, variances 1 and that {y4

ik} is uniformly integrable. The
model used in Bai and Saranadasa (1996) assumes the components are indepen-
dent, mean 0, variance 1 and E(y4

ik) = 3 + � < ∞. Since the work of Bai and
Saranadasa (1996) in studying the effects of high-dimension, to the best of our
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knowledge, almost all papers on high-dimensional statistical analysis do assume
the independent component structure. See, for examples, Chen and Qin (2010) and
Li and Chen (2012) used the same model of Bai and Saranadasa (1996); and Pan
and Zhou (2011) assumed the components to be i.i.d. The model (2.4) or the gener-
alization above admits a rather wide class of distributions that includes multivariate
normal distributions.

We remark that the independent component assumption seems to us “essen-
tial” in the following sense. Bai and Zhou (2008) dropped the independent com-
ponent assumption, but they have to impose a rather weak assumption, namely,
E(y′By − tr B)2 = o(n2) for any nonrandom p × p matrix B with bounded
norm [Theorem 1.1 in Bai and Zhou (2008)]. This condition is weak because
E(y′By − tr B)2 = O(n2) is always true. However, even for φ-mixing y compo-
nents, it is not known if this assumption holds. On the other hand, Silverstein
(1995) assumed independent components and he did not need this additional as-
sumption.

3. Proofs of Theorems 2.4–2.6. Note that the eigenvalues of the matrix
SbS−1

t are independent of � provided that μi ’s are changed to ξ i ’s. Hence, without
loss of generality, we shall assume that � = Ip .

PROOF OF THEOREM 2.4. Our proof is to apply Theorem 2.3 for an appro-
priately chosen A which satisfies (2.1) to (2.3). Let yi ’s be the random vectors
generating the observations xi ’s as depicted in (2.4). Write

Yb = [√
αn1(ȳ1 − ȳ), . . . ,

√
αn,q+1(ȳq+1 − ȳ)

]
,

�b = [√αn1ξ1, . . . ,
√

αn,q+1ξq+1],
thus Sb = (Yb + �b)(Yb + �b)

′. Rewrite

Yb = Y
(

1√
n

G − 1

n
1ng′

)
,

where g = (
√

αn1, . . . ,
√

αn,q+1)
′, G = [ e1√

n1
, . . . ,

eq+1√
nq+1

], and for 1 ≤ i ≤ q + 1,

e′
i = (0′

Ni−1
,1′

ni
,0′

n−Ni
).

Let F be a (q + 1) × q matrix such that [F,g] is a (q + 1) × (q + 1) orthogonal
matrix. It follows that

F′g = 0, F′F = Iq and FF′ + gg′ = Iq+1.

As (Yb + �b)g = 0, we can rewrite Sb as

Sb = (Yb + �b)[F,g]{(Yb + �b)[F,g]}′
= 1

n
(YA + √

n�bF)(YA + √
n�bF)′,
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where

(3.1) A = (
G − n−1/21ng′)F = GF.

Under the assumption of Theorem 2.4 (the null case), �b = O together with
� = Ip ,

St = 1

n

n∑
k=1

(yk − ȳ)(yk − ȳ)′ = 1

n

(
YY′ − nȳȳ′)

and

Sb = YbY′
b = 1

n
(YA)(YA)′.

Recalling the fact that B1B2 and B2B1 have the same nonzero eigenvalues leads to
the lemma below.

LEMMA 3.1. The nonzero eigenvalues, d1 > · · · > dq , of SbS−1
t are the same

as that of A′Y′(YY′ − nȳȳ′)−1YA.

To complete our proof of Theorem 2.4, it remains to:

(i) verify that A satisfies (2.1)–(2.3); and
(ii) deduce Theorem 2.4 from the Gaussian orthogonal ensemble.

To verify (i), first observe that A′A = (F′G′)GF = F′Iq+1F = Iq and A′1n =√
nF′g = 0, so conditions (2.1) and (2.2) hold. Writing A = [aij ] and F = [fij ],

then we have for Nk−1 < i ≤ Nk, k = 1, . . . , q + 1,

|aij | = |fkj /
√

nk| ≤ 1/
√

nk

which implies (2.3). Part (ii) follows from Theorem 13.3.1 in Anderson (2003).
�

PROOFS OF THEOREMS 2.5 AND 2.6. Under the null case, St and Sb can be
written, respectively, as

St = 1

n
Y(In − P0)Y′ and Sb = 1

n
YA(YA)′,

where P0 = 1
n

1n1′
n. The nonzero eigenvalues d1 > · · · > dq > 0 of SbS−1

t are the

same as that of D = 1
n
(YA)′S−1

t YA. Theorem 2.3 implies that

(3.2) D = p

n
Iq + 1√

n

√
2c(1 − c)W + oP

(
n−1/2).

The nonzero eigenvalues �1 > · · · > �q > 0 of SbS−1
e are the same as that of L =

1
n
(YA)′S−1

e YA. Since St = Sb + Se, these eigenvalues are related as follows:

(3.3) �i = di

1 − di

, di = �i

1 + �i

, i = 1, . . . , q.
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Rewriting Se as

Se = S1/2
t

{
Ip − 1

n
S−1/2

t YA
(
S−1/2

t YA
)′}S1/2

t ,

and applying the following inverse matrix formula:

(3.4) (Ip + UV)−1 = Ip − U(Iq + VU)−1V

for any p × q matrix U and q × p matrix V, we have

(3.5) L = D + D(Iq − D)−1D = (Iq − D)−1D.

Substituting (3.2) to (3.5), we have

(3.6) L = p

n − p
Iq + 1√

n

(
n

n − p

)2√
2c(1 − c)W + oP

(
n−1/2).

This implies Theorems 2.5 and 2.6. �

Alternatively, Theorem 2.6 can be obtained by using Theorem 2.4 and rela-
tion (3.3).

PROOF OF COROLLARY 2.1. Note that T̃1 = − log |Iq − D|. Using (3.2), we
have

T̃1 = − log
(

n − p

n

)q ∣∣∣∣Iq − n

(n − p)
√

n

√
2c(1 − c)W

∣∣∣∣+ oP

(
n−1/2)

= −q log
(

n − p

n

)
+ n

(n − p)
√

n

√
2c(1 − c)W + oP

(
n−1/2).

This implies that

T1 =
√

2/(1 − c) tr W + oP (1)

and hence T1 converges in distribution to N(0,2q/(1 − c)). Similarly, the asymp-
totic results of T2 and T3 are obtained by noting that T̃2 = tr(D(Iq − D)−1),
T̃3 = tr D and by using (3.2). �

4. Extension to eigenvalues in multivariate regression model. Suppose that
Y is a p ×n observation matrix whose columns are independently distributed with
the same covariance matrix � and

E
(
Y′) = 1nθ

′ + A1�1 + A2�2,

where θ is an unknown p × 1 vector, �i are unknown qi × p matrices and Ai are
given n × qi matrices. Let A = [A1 A2]. We assume that rank([1n A]) = 1 + q1 +
q2, and entries of A satisfies (2.3).
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For testing the hypothesis �2 = O, we may assume by reparametrization if
necessary (see Section 2 in the Supplementary Material [Bai et al. (2018)] for
details) that

(4.1) A′
iAi = Iqi

, A′
i1n = 0, A′

1A2 = O, i = 1,2.

Then the matrices of sums of squares and products due to the error (Se) and due
to the hypothesis (Sh) are expressed as

(4.2) Se = 1

n
Y
(
In − P0 − A1A′

1 − A2A′
2
)
Y′ and Sh = 1

n
YA2A′

2Y′,

where P0 = (1/n)1n1′
n. The matrix of sums of squares and products due to the

total is

(4.3) St = Sh + Se = 1

n
Y
(
In − P0 − A1A′

1
)
Y′.

We consider the distribution of the eigenvalues of ShS−1
t or ShS−1

e under the null
hypothesis, that is, E(Y′) = 1nθ

′ +A1�1. Moreover, without loss of generality, we
may assume that E(Y) = 0 since Sh,Se and St remain unchanged if Y is replaced
by Y − θ1′

n − �′
1A′

1.
We may consider the case Y = [y1, . . . ,yn] = [yij ] where yij are i.i.d. random

variables with mean 0, variance 1 and finite fourth moments. From our assump-
tions in (4.1), it is easy to verify that matrix A = [A1 A2] satisfies conditions (2.1)
and (2.2); and condition (2.3) by our setup. Let S0 = (1/n)Y(In − P0)Y′. By the
same way as in (3.2), we have

(4.4) D̃ = 1

n
(YA)′S−1

0 YA = p

n
Iq +

√
2c(1 − c)√

n
W + oP

(
n−1/2),

where q = q1 + q2, Wij is of order qi × qj for i, j = 1,2, and

W =
[

W11 W12
W21 W22

]
.

Here, W = [wij ] is a q ×q symmetric Gaussian orthogonal ensemble. Our purpose
is to derive the limiting distribution of the eigenvalues of D = 1

n
(YA2)

′S−1
t YA2,

and that of L = 1
n
(YA2)

′S−1
e YA2. Noting that St = S0 − 1

n
YA1A′

1Y′ and using
(3.4), we have

D = 1

n
A′

2Y′S−1
0 YA2

+ 1

n
A′

2Y′S−1
0 YA1

(
Iq1 − 1

n
A′

1Y′S−1
0 YA1

)−1 1

n
A′

1Y′S−1
0 YA2.
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Therefore, it follows that

D = 1

n
A′

2Y′S−1
0 YA2 + oP

(
n−1/2)

= p

n
Iq2 +

√
2/nW22 + oP

(
n−1/2).(4.5)

Furthermore, using L = (Iq2 − D)−1D, we have

(4.6) L = p

n − p
Iq2 +

√
2/n

(
n

n − p

)2
W22 + op

(
n−1/2).

This implies that the eigenvalues of D (resp., L) are asymptotically distributed as
in Theorem 2.4 (resp., Theorem 2.6) replacing q by q2 in (4.5) above.

We have shown that the results in MANOVA can be applied to some tests in
multivariate regression model. However, in order to test the significance of the
intercept of the linear model, we need to generalize our results in this section which
will be left as future work.

5. Eigenvalues in MANOVA under local alternatives. Recall, in Section 3,
the matrix of sums of squares and products due to between-groups is represented
as

nSb = (YA + √
n�bF)(YA + √

n�bF)′,
where �b and F are defined there. In this section, we derive the limiting distribu-
tions of the nonzero eigenvalues �1 > · · · > �q of SbS−1

e and the nonzero eigenval-
ues d1 > · · · > dq of SbS−1

t under a local alternative case. Specifically, instead of
assuming �b = O, we assume that as p,n → ∞ satisfying p/n → c ∈ (0,1),

(5.1)
√

n(�bF)′�bF → Q,

where Q is a fixed positive definite matrix.

THEOREM 5.1. Using the same notation and following the same assumptions
as in Theorem 2.4, instead of the null case, we assume the local alternative given in
(5.1). Then the limiting distribution of

√
n(di − p/n), i = 1, . . . , q is the same as

that of the eigenvalues of
√

2c(1 − c)W + (1 − c)Q, where W is a q × q Gaussian
orthogonal ensemble.

Similarly, the limiting distribution of
√

n(�i − p/(n − p)), i = 1, . . . , q is the

same as that of the eigenvalues of
√

2c/(1 − c)3W + (1 − c)−1Q.

By a similar reasoning as in the proof of Theorem 2.4, the limiting distribution
of the nonzero eigenvalues �1 > · · · > �q of SbS−1

e , is the same as the limiting
distribution of the eigenvalues of

(5.2) U := (YA + √
n�bF)′

{
Y
(
In − GG′)Y′)

}−1
(YA + √

n�bF).
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In order to show the result on the eigenvalues �i, i = 1, . . . , q in Theorem 5.1, it
suffices to show that the limiting distribution of the nonzero eigenvalues of SbS−1

e

normalized by the location p(n − p)−1Iq and the scale
√

n is that of the eigenval-

ues of the sum of
√

2c/(1 − c)3W and Q/(1 − c). More precisely,

(5.3)
√

n

(
U − p

n − p
Iq

)
D−→ W̃ =

√
2c

(1 − c)3/2 W + 1

1 − c
Q,

which will be proved later. The result of the di ’s is obtained by using (5.3) and
the fact that di ’s are also the eigenvalues of U(Iq + U)−1. In fact, using U =
p(n − p)−1Iq + n−1/2W̃ + oP (n−1/2), we have

(Iq + U)−1 = n − p

n

(
Iq + n − p

n3/2 W̃ + oP

(
n−1/2))−1

= n − p

n

(
Iq − n − p

n3/2 W̃ + oP

(
n−1/2)),

which implies

U(Iq + U)−1 = p

n

(
Iq + n − p

p
√

n
W̃

)(
Iq − n − p

n3/2 W̃
)

+ oP

(
n−1/2)

= p

n
Iq + 1√

n
(1 − p/n)2W̃ + oP

(
n−1/2)

= p

n
Iq + 1√

n

[√
2c(1 − c)W + (1 − c)Q

]+ oP

(
n−1/2).

This proves the assertion on
√

n(di − p/n), 1 ≤ i ≤ q in Theorem 5.1.
Note that the test statistics, T̃i , i = 1,2,3 can be expressed in terms of U as

T̃1 = log |Iq + U|, T̃2 = tr U, T̃3 = tr
[
U(Iq + U)−1].

From (5.3), we have

Ti
D→ N

(
c−1/2 tr Q, 2q/(1 − c)

)
.

Therefore, these three test statistics have the same asymptotic power under
the local alternative. Under the null hypothesis, from (2.12), it follows that
Ti/(2q/(1 − c))1/2 ∼ N(0,1). Therefore, the rejection region is given by Ti >

(2q/(1 − c))1/2zα . So the asymptotic powers are given by

(5.4) 	
(
(2cq)−1/2

√
1 − c tr Q − zα

)
,

where 	 is the distribution function of a standard normal, and zα is the upper
α quantile of a standard normal distribution. Consequently, this shows that the
asymptotic power is a decreasing function of c and tends to α as c tends to one.
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It is known that accuracy of approximation by the large-sample asymptotic dis-
tributions of the invariant test statistics including Ti, i = 1,2,3 becomes worse as
p gets larger and larger. This problem can be solved by using the high-dimensional
approximations. Further, from (5.4) we can see that the powers are consistent as
p/n tends to one. When p is large but p/n is small, it is expected that the invari-
ant tests Ti , i = 1,2,3 are useful in comparison with some high-dimensional tests.
Among the high-dimensional tests, there are two types of Dempster tests given
as generalizations of Dempster (1960) and Bai and Saranadasa (1996). These are
seen in Fujikoshi, Himeno and Wakaki (2004), Srivastava and Fujikoshi (2006),
Schott (2007), Srivastava and Kubokawa (2013), etc. Here, we consider two test
statistics given by

(5.5) TD = √
p

(
n

tr Sb

tr Se

− q

)
and TB =

√
q

p

(
n

q
tr Sb − tr Se

)
.

Assuming the condition,

p−1 tr�k = O(1) and p−1n tr
[
(�bF)′�k(�bF)

] = O(1), k = 1,2.

Furthermore, in the local alternatives satisfying (5.4), assume that

Q = M′�−1M,

where M is a p × q constant matrix. Then, under normality, we have from
Fujikoshi, Himeno and Wakaki (2004) that the asymptotic power of TD under the
local alternatives can be expressed as

(5.6) 	

(
tr MM′√

(2cq/p) tr�2
− zα

)
.

Similarly, we can show that TB has the same asymptotic local as that of TD . From
(5.4) and (5.6), we can conclude that T̃i’s are asymptotically more powerful than
TB and TD if √

1 − c√
2cq

tr
(
�−1MM′) >

tr MM′√
(2cq/p) tr�2

,

which is equivalent to

R := p−1/2
√

tr�2 tr(�−1MM′)
tr MM′ > (1 − c)−1/2.

Let λ1 ≥ · · · ≥ λp > 0 be the eigenvalues of �. Then λp ≤ p−1 tr�2 ≤ λ1. Let
vec(M) be the pq × 1 column vector obtained by stacking the columns of M on
top of one another. Then, noting that

tr(�−1MM′)
tr(MM′)

= vec(M)′�−1 ⊗ Iq vec(M)

vec(M)′ vec(M)
,
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we have

λ−1
1 = min

M

tr(�−1MM′)
tr(MM′)

≤ max
M

tr(�−1MM′)
tr(MM′)

= λ−1
p .

Therefore,

(5.7)
λp

λ1
≤ R ≤ λ1

λp

.

In general, if λ1
λp

is large, we can expect that R is large, and the invariant tests T̃i’s
shall be asymptotically more powerful than TD and TB under the condition that c

is small.

PROOF OF (5.3). We expand U in (5.2) to obtain

(5.8) U = U1 + U2 + U′
2 + U3,

where

U1 = A′Y′(Y(
I − GG′)Y′)−1YA,

U2 = √
nA′Y′(Y(

I − GG′)Y′)−1
�bF,

U3 = nF′�′
b

(
Y
(
I − GG′)Y′)−1

�bF.

It is easy to see that U1 is the same statistic as in the null hypothesis. An easy
adaptation of Theorem 2.3 which treats SbS−1

t to SbS−1
e leads to

√
n

(
U1 − p

n − p
Iq

)
D−→

√
2c

(1 − c)3/2 W.

To complete the proof of (5.3), it suffices to derive the limits below

√
nU3

P→ 1

1 − c
Q,(5.9)

√
nU2

P→ 0.(5.10)

Proofs of (5.9) and (5.10) are given in the Supplementary Material. �

Discussion on Roy’s test. Though this paper focuses on the three classical
MANOVA tests, Theorems 2.4, 2.6 and 5.1 have important connection with the
Roy’s test, another classical MANOVA test. Recall Roy’s test [see Anderson
(2003)] is based on the largest eigenvalue, d1, of SbS−1

t (or the largest eigenvalue,
�1, of SbS−1

t ). Under normal populations assumption, computing the exact null
distribution of d1, for given p,q and n, has been studied by many authors; see, for
example, Krishnaiah and Chang (1971) and Chiani (2016) and references therein.
Dropping normal populations assumption, Theorem 2.4 shows that the asymptotic
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null distribution of
√

n/{2c(1 − c)}(d1 − p/n) as p/n → c ∈ (0,1) corresponds
to that of the largest eigenvalue of the GOE, W. Hence, theoretically speaking, the
limiting null distribution of the normalized Roy’s test can be found in an integral
form, but this integral may not be computationally easy to use. On the other hand,
Chiani (2016) has devised an efficient algorithm to compute the distribution of the
largest eigenvalue of W numerically. His method is to compute the determinant of
a skew-symmetric matrix whose elements can be recursively computed. It will be
an interesting future project to examine the approximation accuracy of the approx-
imation approach based on our limiting result and the approach of Chiani (2016)
for finite sample in the nonnormal case.

According to Theorem 5.1, the asymptotic local alternative distribution of√
n/{2c(1 − c)}(d1 − p/n), corresponds to that of the largest eigenvalue of

W + √
(1 − c)/(2c)Q. So the limiting local alternative distribution of the normal-

ized Roy’s test can also be found in theory. To the best of our knowledge, there
is no known computational method to compute it except for Q is of the form aIq .
For a given local alternative Q, since in real application, the value of q is not large,
we suggest to use the Monte Carlo method to calculate the asymptotic power of
Roy’s test. Moreover, as the distribution of W is invariant under the transforma-
tion, U′WU, for any orthogonal matrix U, thus we may assume that Q is diagonal
with decreasing diagonal entries in the Monte Carlo simulation.

6. Some simulation studies. Corollary 2.1 shows that the suitably normal-
ized versions of the likelihood ratio statistic, Lawley–Hotelling test statistic and
Barlett–Nanda–Pillai test statistic, T1, T2 and T3, converge in distribution to
N(0,

2q
1−c

). Motivated by relevance with testing problems, our interest is to investi-
gate how well the limiting distribution approximates those of the Ti’s especially in
the upper tail. We conduct simulation studies to estimate the actual sizes of these
tests given a nominal size, α.

We set α = 0.05. Seven population distributions will be considered. They are
(i) N(0,1), (ii) t3, (iii) t4, (iv) t5, (v) χ2

3 , (vi) exponential with mean 1 and
(vii) Poisson with mean 1. Distributions (i), (vi) and (vii) were considered in
Pan and Zhou (2011) where they proved the central limit theorem of normalized
Hotelling’s T 2 statistic. Distributions (i) to (iv) are symmetric, whereas (v)–(vii)
are skewed. Moreover, distributions (ii) and (iii) violate the finite fourth moment
assumption, an assumption we made throughout this paper due to the methods of
proof.

The parameters n,q and c are chosen as follows: n ∈ {40,80,160,320,480,

640,800,960}; q = 1,3 and 7; and c ∈ {0.1,0.2,0.3,0.5,0.8,0.9,0.95}. We let
p = nc, the data dimension. Here, n is the total sample size, and the sub-population
sizes are taken to be equal, that is, ni = n/(q + 1) for 1 ≤ i ≤ q + 1. In total, 1176
cases will be considered.

We describe the simulation procedure for one such case in some details. Given
a distribution F (which will be standardized to have mean 0 and variance 1) from
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one of the seven distributions, and parameters n,q and c from above, we generate
np i.i.d. samples from the standardized F to form a p×n matrix Y = [y1, . . . ,yn].
From Y, we compute St = 1

n

∑n
i=1(yi − ȳ)(yi − ȳ)′. Note that Sb = XX′ with

X =
[√

n1

n
(ȳ1 − ȳ),

√
n2

n
(ȳ2 − ȳ), . . . ,

√
nq+1

n
(ȳq+1 − ȳ)

]
.

We observe that SbS−1
t and X′S−1

t X have the same set of q positive eigenvalues.
However, computationally it is much easier to deal with the latter as it is of order
(q + 1) × (q + 1) whereas the former is of order p × p (note that p is much
greater than q and is increasing with n). With these q positive sample eigenvalues,
and for each i = 1,2,3, we compute the value of the test statistic Ti . We repeat
this procedure 1000 times generating 1000 test values of these three test statistics.
We call the estimate of the actual size of a test empirical size: the proportion of
test values exceeding z0.95

√
2q/(1 − c). If the approximation at the tail is good,

we expect the empirical size is close to the nominal size, 0.05.
Figure 1 shows the plots of the empirical sizes of these three tests for various

choices of n, c and q . Due to space consideration, we only show the plots for nor-
mal distribution and standardized χ2

3 distribution. These two plots look remarkably
similar. See the Supplementary Material for the plots and their numerical values.
We summarize some of our observations and comments from the simulation stud-
ies.

Surprisingly, the plots for the seven distributions under consideration are almost
the same, suggesting that the empirical sizes of the test statistic Ti , i = 1,2,3, are
robust against the underlying distribution of the population. This robustness is also
evident in the simulation results of Pan and Zhou (2011) for test T2, distributions
(i), (vi) and (vii) for c = 1/2 and n = 200,400 and 800.

Size distortions (i.e., empirical size minus nominal size) are consistently (1155
cases out of 1176) positive. Not unexpectedly, size distortion decreases as n in-
creases (across the rows in Figure 1); and increases as q (across the columns) or c

(along the x-axis in each plot) increases.
The normalized Barlett–Nanda–Pillai test statistic T3 has the smallest size dis-

tortion, and the normalized Lawley–Hotelling’s T2 the largest size distortion an
among the three tests considered in our simulation studies.

If q = 7, almost all the empirical sizes of all three statistics exceed 0.08 even
when the total sample size reaches 960 (or sub-sample size 120). A few exceptions
are only observed for T3 at c = 0.1 and large n such as 800. It will be interesting
to investigate if Bartlett-type transforms will improve the approximations.

If one considers the empirical size of a test lying within 0.03 and 0.08 accept-
able, and if one would like to use one of these three invariant tests for nominal size
0.05, we recommend the normalized Barlett–Nanda–Pillai test statistic and (a) for
q = 1, total sample size n ≥ 80 with c ≤ 0.95; and (b) for q = 2,3, total sample
n ≥ 80 and c ≤ 0.5.
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FIG. 1. Plots of the empirical sizes of the normalized versions of the three invariant tests considered
in this article. The dotted lines denote the 5% nominal level. The underlying distribution of the
population is normal for the top panel; standardized χ2

3 for the bottom.
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7. Proof of Theorem 2.1. By Bai and Silverstein (2004), for any positive
constant μ < a = (1 − √

c)2 and any given � > 0, after truncation, we have

(7.1) P
(
λmin(S) < μ

) = o
(
n−�).

Define B = 1{λmin(S)≥μ} which converges to 1 a.s. as n → ∞. Throughout this
paper, all functions under the expectation sign are assumed having the variable
B inserted though not explicitly indicated, for otherwise, the expectation may not
exist.

By the same reasoning, the estimation (7.1) holds when S is replaced by Sk or
Sjk . In the paper, we shall replace B by Bk or Bjk as and when needed. Most of
the time, we do this implicitly.

We shall present the proofs under the condition that the components of yk are
i.i.d. The proofs for independent components, mean 0, variance 1 and uniformly
integrable {y4

ik} setting is basically the same except for the truncation and central-
ization step. For the rest of this paper, we shall assume that there exists a sequence
ηn ↓ 0 such that the basic random variables, yij ’s, are truncated at ηn

√
n and then

renormalized. See Section 1 of the Supplementary Material for details.
Before proceeding to the proof of Theorem 2.1, we shall introduce further nota-

tion and collect some useful preliminary results in the following Section 7.1. The
proofs of these preliminary results are given in the Supplementary Material.

7.1. Preliminary lemmas. For 1 ≤ k ≤ n and 1 ≤ j ≤ p, recall yk and z′
j de-

note the kth column and j th row of Y, respectively; and Yk and Zj are the matrices
after removing the kth column and the j th row of Y.

Define, for 1 ≤ j ≤ p,

Bj = {
z′
j zj − z′

j Z′
j

(
Zj Z′

j

)−1Zj zj

}−1
,

αj = n − tr
{
Z′

j

(
Zj Z′

j

)−1Zj

} = n − p + 1,

Wj = z′
j

{
In − Z′

j

(
Zj Z′

j

)−1Zj

}
zj − αj

βj = 1/αj = 1/(n − p + 1);
and for 1 ≤ k ≤ n,

Ck = {
1 + y′

k

(
YkY′

k

)−1yk

}−1
,

Mk = tr
(
YkY′

k

)−1
,

Vk = y′
k

(
YkY′

k

)−1yk − Mk,

C̄k = 1/(1 + Mk).

With these notation, we have

Bj = βj − βjBjWj = βj − β2
j Wj + β2

j BjW
2
j , 1 ≤ j ≤ p;(7.2)

Ck = C̄k − C̄kCkVk = C̄k − C̄2
kVk + C̄2

kCkV
2
k , 1 ≤ k ≤ n.(7.3)
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LEMMA 7.1. For any n×n positive definite matrix B and n-vector r, we have

(
B + rr′)−1 = B−1 − B−1rr′B−1

1 + r′B−1r
,

(
B + rr′)−1r = B−1r

1 + r′B−1r
.

LEMMA 7.2. Let r ≥ 1 be an integer.

(a) We have

lim
n→∞ sup

1≤k≤n

∣∣∣∣1ny′
kS−r

k yk − 1

n
tr S−r

k

∣∣∣∣ = 0 a.s.

(b) Moreover, uniformly over 1 ≤ k ≤ n on the set
⋃n

k=1{λmin(Sk) ≥ μ} where
0 < μ < a = (1 − √

c)2,

lim
n→∞

1

n
tr S−r

k

a.s.= c

∫ b

a
x−r

√
(b − x)(x − a)

2πcx
dx := cr .

Here, a = (1 − √
c)2 and b = (1 + √

c)2. In particular, c1 = c/(1 − c) and c2 =
c/(1 − c)3.

LEMMA 7.3. Let B and C be n × n matrices. Let y = (y1, . . . , yn)
′ be a ran-

dom n-vector with yi ’s being independent, mean 0, variance 1 and finite fourth
moments. Let κ := max1≤i≤n E(y4

i ) − 3.

(a) If, in addition, yi ’s are assumed to be identically distributed, then

(7.4) E
{(

y′By − tr B
)(

y′Cy − tr C
)} = tr(BC) + tr

(
BC′)+ κ

n∑
i=1

biicii .

(b) Suppose B is symmetric with bounded norm, and that |yi | ≤ ηn

√
n for some

sequence ηn ↓ 0 in (7.6), then

E
{(

y′By − tr B
)2} ≤ (κ + 2) tr

(
B2),(7.5)

E
{(

y′By − tr B
)4} = o

(
n3).(7.6)

LEMMA 7.4. As p,n → ∞ such that cn,p := p/n → c ∈ (0,1), we have

√
n max

1≤i≤n

[
E
{
y′
i

(
YY′)−1yi

}− cn,p

] = O
(
n−1/2),(7.7)

max
1≤i<j≤n

E
{
y′
i

(
YY′)−1yj

} = O
(
n−1).(7.8)
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7.2. Main argument for Theorem 2.1. Our proof of Theorem 2.1 consists of
three steps. In step 1, we compute the mean, M = E{A′Y′(YY′)−1YA}, and prove
that

√
n(M − p

n
Iq) → O. Note that M is asymptotically diagonal. In step 2, we

prove the convergence of V := √
n{A′Y′(YY′)−1YA − M} to a symmetric random

matrix with entries normally distributed using martingale decomposition. Finally,
in step 3, we compute the covariance of any two entries in this limiting random
matrix, thus identify the limit as

√
2c(1 − c)W.

Step 1. We shall first compute mij , the (i, j)th entry of M and then deduce that

(7.9)
√

n

(
M − p

n
A′A

)
= √

n(M − cn,pIq) → O,

where cn,p = p/n. Recall ak denotes the kth column of A, we have

mij = a′
iE
{
Y′(YY′)−1Y

}
aj = ∑

1≤r,s≤n

ariasj E
{
y′
r

(
YY′)−1ys

}
= a′

iaj E
{
y′

1
(
YY′)−1y1

}+ {(
1′
nai

)(
1′
naj

)− a′
iaj

}
E
{
y′

1
(
YY′)−1y2

}
= a′

iaj E
{
y′

1
(
YY′)−1y1

}+ O
(
n−1)

by using (7.8). Applying (7.7) and (7.8) in Lemma 7.4, we have
√

n(mii − cn,p) = √
n
[
E
{
y′

1
(
YY′)−1y1

}− cn,p + O
(
n−1)] → 0.

This proves (7.9), and completes step 1.

Step 2. We shall prove that V
D−→ Wc via martingale decomposition. Here, Wc

is a symmetric random matrix with normally distributed entries. With Ek,Dk and
D̃k defined below, we outline our approach as follows: Rewrite V as

V = √
n

p∑
k=1

(Ek − Ek−1)(Dk)

= √
n

p∑
k=1

Ek(D̃k) + oP (1),

(7.10)

and then apply martingale central limit theorem to show that
√

n
∑n

k=1 Ek(D̃k)

converges to a random matrix with entries which are normally distributed.
First, recall Zk is the (p − 1) × n matrix obtained from removing the kth row

z′
k from Y. Let Ek denote the conditional expectation given {z1, . . . , zk}, and E0 is

the usual expectation. We apply (Ek − Ek−1){A′Z′
k(ZkZ′

k)
−1ZkA} = 0 to obtain

V = √
n

p∑
k=1

(Ek − Ek−1)
{
A′Y′(YY′)−1YA − A′Z′

k

(
ZkZ′

k

)−1ZkA
}

= √
n

p∑
k=1

(Ek − Ek−1)(Dk),
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where

(7.11) Dk = Bk

(
A′Pkzkz′

kPkA
)

and Pk = In − Z′
k(ZkZ′

k)
−1Zk . In the last equality, we used the following result:

Y′(YY′)−1Y = Z′
k

(
ZkZ′

k

)−1Zk + BkPkzkz′
kPk.

We introduce

Qk = A′Pk

(
zkz′

k − In

)
PkA.

Note that Qk’s are not to be confused with Q in (5.1).
With Bk,Wk and βk defined at the beginning of Section 7.1, we define

D̃k = βkQk.

Note that Dk = Bk(Qk + A′PkA). Applying (7.2), we have

Dk − D̃k = −βkBkWkQk + BkA′PkA

= −βkBkWkQk + βkA′PkA − βkBkWkA′PkA.

Note also (Ek − Ek−1)(βkA′PkA) = 0. Since βk = 1
n−p+1 ≈ 1

(1−c)n
, we have

E
{∥∥(Ek − Ek−1)(Dk − D̃k)

∥∥2}
≤ 2E

(
β2

kB2
kW 2

k ‖Qk‖2)+ 2E
(
β2

kB2
kW 2

k

∥∥A′PkA
∥∥2)

≤ Kn−4{E(W 2
k ‖Qk‖2)+ E

(
W 2

k

)}+ o
(
n−t ) = o

(
n−2).

In the second inequality, we used the fact that ‖A′PkA‖ ≤ 1 and considered two
complementary events: |Bk| ≤ 1/n and |Bk| > 1/n with the latter event giving
rise to o(n−t ). In the last equality, we applied Lemma 7.3 to bound E(W 2

k ) ≤
KE(tr(P2

k)) = KE(tr(Pk)) ≤ Kn; and Lemma 7.5 below to obtain E(W 2
k ‖Qk‖2) =

o(n2). So

E

{∥∥∥∥∥√n

p∑
k=1

(Ek − Ek−1)(Dk − D̃k)

∥∥∥∥∥
2}

= o(1),

proving (7.10).
Let E(k) denote the expectation with respect to zk . Lemma 7.6 below shows that

E(k)(‖Qk‖4) = o(n). Consequently,

p∑
k=1

E
(‖√nD̃k‖4) = n2

p∑
k=1

β4
k E

(‖Qk‖4) = o(1).

In other words, the sequence of martingale differences {√nEk(D̃k)} satisfies the

Lyapunov condition, and thus V
D→ Wc. The matrix norm used for the above proof
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is, for convenience purposes, the Euclidean norm which differs from the spectral
norm by a fixed factor since the order of the matrix under consideration is fixed.

Step 3. This step concerns the computation of the covariance of a pair of en-
tries in Wc. Let unit n-vectors a,b, c,d denote 4 columns of A, either identical or
orthogonal. We need to compute

1

n(1 − c)2

p∑
k=1

Ek−1
[
Ek

{
a′Pk

(
zkz′

k − In

)
Pkb

}
Ek

{
c′Pk

(
zkz′

k − In

)
Pkd

}]

= 1

n(1 − c)2

p∑
k=1

Ek−1
[{

z′
kEk

(
Pkba′Pk

)
zk − tr Ek

(
Pkba′Pk

)}
× {

z′
kEk

(
Pkdc′Pk

)
zk − tr

(
EkPkdc′Pk

)}]
= 1

n(1 − c)2

p∑
k=1

Ek−1
[
tr
{
Ek

(
Pkba′Pk

)
Ek

(
Pkdc′Pk

)}
+ tr

{
Ek

(
Pkba′Pk

)
Ek

(
Pkcd′Pk

)}]+ Rn

= 1

n(1 − c)2

p∑
k=1

Ek

{
tr
(
Pkba′PkP̆kdc′P̆k

)+ tr
(
Pkba′PkP̆kcd′P̆k

)}+ Rn

= 1

n(1 − c)2

p∑
k=1

Ek

{(
a′PkP̆kd

)(
b′PkP̆kc

)+ (
a′PkP̆kc

)(
b′PkP̆kd

)}+ Rn

= 1

(1 − c)2

{
I (a,b, c,d) + I (a,b,d, c)

}+ Rn,

where we applied Lemma 7.3(a) in the second equality. Here,

I (a,b, c,d) = 1

n

p∑
k=1

Ek

{(
a′PkP̆kd

)(
b′PkP̆kc

)}
,(7.12)

Rn = E(y4
11)

n(1 − c)2

p∑
k=1

Ek−1

(
n∑

i=1

a′Pkeib′Pkeic′P̆keid′P̆kei

)
,

and P̆k is the projection matrix onto the space spanned by the vectors z1, . . . , zk−1,

z̆k+1, . . . , z̆p . Here, z̆j ’s are i.i.d. copies of zj ’s.
By Lemma 7.7 below, we have Rn = OP (n−1). Therefore, we only need to

compute the limit for I (a,b, c,d). We proceed to remove successively row by
row starting from the last row until we reach the kth row. We may assume k < p.
For k < j ≤ p, let Zkj denote the (j − 2) × n matrix consisting of the rows
z′

1, . . . , z′
k−1, z′

k+1, . . . , z′
j−1 and Pkj = In − Z′

kj (Zkj Z′
kj )

−1Zkj . Define

Bkj = 1/
(
z′
j Pkj zj

)
,
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βkj = 1/ tr Pkj = 1/(n − j + 2),

Wkj = z′
j Pkj zj − tr Pkj .

Note that Pk is a projection matrix onto the orthogonal complement of the space
spanned by the rows of Zk , we have

Pk = Pkp − BkpPkpzpz′
pPkp

= (1 − βkp)Pkp − βkpRk1 + βkpRk2,

where

Rk1 = Pkp

(
zpz′

p − In

)
Pkp,

Rk2 = BkpWkpPkpzpz′
pPkp.

Substituting this into (7.12) and noting that zp is independent of P̆k , we obtain

I (a,b, c,d)

= 1

n

p∑
k=1

(
n − p + 1

n − p + 2

)2
Eka′PkpP̆kdb′PkpP̆kc + 1

n

p∑
k=1

6∑
j=1

�kj ,
(7.13)

where

�k1 = (n − p + 2)−2Ek

(
a′Rk1P̆kdb′Rk1P̆kc

)
,

�k2 = (n − p + 1)/(n − p + 2)2Ek

(
a′Rk2P̆kdb′PkpP̆kc

)
,

�k3 = (n − p + 1)/(n − p + 2)2Ek

(
a′PkpP̆kdb′Rk2P̆kc

)
,

�k4 = −(n − p + 2)−2Ek

(
a′Rk2P̆kdb′Rk1P̆kc

)
,

�k5 = −(n − p + 2)−2Ek

(
a′Rk1P̆kdb′Rk2P̆kc

)
,

�k6 = (n − p + 2)−2Ek

(
a′Rk2P̆kdb′Rk2P̆kc

)
.

By Lemma 7.7, we have �kj = OP (n−2), for j = 1,2,3,4,5,6. Expanding P̆k in
a similar way, we obtain

I (a,b, c,d)

= 1

n

p∑
k=1

(
n − p + 1

n − p + 2

)4
Ek

(
a′PkpP̆kpdb′PkpP̆kpc

)+ OP

(
n−2).(7.14)

Repeating this step successively for j = p − 1, . . . , k + 1, we obtain

I (a,b, c,d)

= 1

n

p∑
k=1

(
n − p + 1

n − j + 2

)4
Ek

(
a′Pkj P̆kj db′Pkj P̆kj c

)
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+ OP

(
p − j + 1

n2

)
(7.15)

= 1

n

p∑
k=1

(
n − p + 1

n − k + 2

)4
Ek

(
a′PkkP̆kkdb′PkkP̆kkc

)+ OP

(
n−1)

= 1

n

p∑
k=1

(
n − p + 1

n − k + 2

)4
a′Pkkdb′Pkkc + OP

(
n−1),

where Pkk = In − Z′
kk(ZkkZ′

kk)
−1Zkk and Zkk is (k − 1) × n consisting of rows

z′
1, . . . , z′

k−1. The last step in (7.15) follows from the fact that P̆kk = Pk,k that is a
projection matrix.

By Lemma 7.8, we have

I (a,b, c,d) = a′db′c
n

p∑
k=1

(n − k + 1)2

n2

(
n − p + 1

n − k + 2

)4
+ op(1)

→ a′db′c
∫ c

0

(1 − c)4

(1 − t)2 dt = c(1 − c)3a′db′c.

(7.16)

So the limiting variance of a diagonal element of V is 2I (a,a,a,a)/(1 − c)2 =
2c(1 − c); and that of an off-diagonal element is {I (a,b,a,b) + I (a,b,b,a)]}/
(1−c)2 = c(1−c) as a ⊥ b. Similarly, the limiting covariance of any two diagonal
elements corresponds to 2I (a,a, c, c)/(1−c)2 = 0 as a ⊥ c; and that of a diagonal
and an off-diagonal elements is {I (a,a, c,d) + I (a,a,d, c)}/(1 − c)2 = 0 as a, c
and d are mutually orthogonal. Similarly, the limiting covariance of any two off-
diagonal elements is also 0. This completes the proof of Theorem 2.1. �

7.3. Lemmas 7.5–7.8. We shall state Lemmas 7.5–7.8 which were used in the
proof of Theorem 2.1 in Section 7.2. The proofs of these lemmas will be given in
the Supplementary Material.

LEMMA 7.5. We have E(W 2
k ‖Qk‖2) = o(n2).

LEMMA 7.6. We have

(7.17)
n∑

i=1

E
(∥∥A′Pkei

∥∥4) = O
(
n−1)

and

(7.18) E(k)(‖Qk‖4) ≤ K

{∥∥A′PkA
∥∥+

n∑
i=1

∥∥A′Pkei

∥∥8E
(
y8

11
)} = o(n).

LEMMA 7.7. We have Rn = OP (n−1) and �kj = OP (n−2) for 1 ≤ k ≤ p,
1 ≤ j ≤ 6.
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LEMMA 7.8. Recall a and d are any two columns of A, either identical
or orthogonal. Recall also that Pkk = In − Z′

kk(ZkkZ′
kk)

−1Zkk where Zkk is the
(k − 1) × n matrix consisting of the rows z′

1, . . . , z′
k−1. Then

a′Pkkd = n − k + 1

n
a′d + oP (1).

REMARK. Pan and Zhou (2011) deduced the central limit theorem of the one-
sample Hotelling’s T 2

0 statistic from a more general result (Theorem 2 in their
paper). They used Stieltjes’ transform approach in RMT whereas we used the CLT
of martingale decomposition. Pan and Zhou (2011) basically considered the CLT
of the renormalized T2, which is an F statistic, whereas we consider the CLT of
the normalized F matrix. In fact, what is considered by Pan and Zhou (2011) is
equivalent to the normalized diagonal entry. Consequently, they do not need to con-
sider the off-diagonal elements and the correlations between them. Our martingale
decomposition is made along the rows of the data matrix.

8. Proof of Theorem 2.2. We outline the proof of Theorem 2.2 here leaving
the technical details to Lemmas 8.1 and 8.2 with their proofs given in the Supple-
mentary Material. By Lemma 7.1,

√
n
{
A′Y′(YY′ − nȳȳ′)−1YA − A′Y′(YY′)−1YA

}
= √

nA′Y′{(YY′ − nȳȳ′)−1 − (
YY′)−1}YA

= n3/2 A′Y′(YY′)−1ȳȳ′(YY′)−1YA
1 − nȳ′(YY′)−1ȳ

.

Theorem 2.2 follows immediately from (8.1) and (8.2) below

nȳ′(YY′)−1ȳ = ȳ′S−1ȳ
P→ c < 1,(8.1)

n3/4ȳ′(YY′)−1YA = n−1/4ȳ′S−1YA
P→ 0.(8.2)

Since

ȳ′S−1ȳ = 1

n2

n∑
k=1

y′
kS−1yk + 2

n2

∑
1≤j<k≤n

y′
j S−1yk,

we apply Lemmas 7.1 and 7.2 to obtain

1

n2

n∑
k=1

y′
kS−1yk = 1

n

n∑
k=1

1
n

y′
kS−1

k yk

1 + 1
n

y′
kS−1

k yk

a.s.→ c/(1 − c)

1 + c/(1 − c)
= c;

and Lemma 8.1 to show that 2
n2

∑
1≤j<k≤n y′

j S−1yk
P→ 0. This proves (8.1).

Since q is fixed, and each of the q columns of A is orthogonal to 1n, therefore,
(8.2) follows from Lemma 8.2 below.
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LEMMA 8.1. Let a and d denote any two columns of A, either identical or
orthogonal. Let ak and dk denote their kth entries, respectively. We have

n∑
k=1

akdk

(
1

n
y′
kS−1yk − cn,p

)
= oP (1),(8.3)

∑
1≤j<k≤n

ajdk

(
1

n
y′
j S−1yk

)
= OP

(
n−1/2).(8.4)

LEMMA 8.2. Let a be a unit n-vector satisfying 1′
na = 0. Then

n−1/4ȳ′S−1Ya
P→ 0.

Proofs of Lemmas 8.1 and 8.2 are given in the Supplementary Material.
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SUPPLEMENTARY MATERIAL

Supplement to “Limiting behavior of eigenvalues in high-dimensional
MANOVA via RMT” (DOI: 10.1214/17-AOS1646SUPP; .pdf). In the supple-
mentary material, we presented (i) the truncation and normalization techniques as
mentioned at the beginning of Section 7 of this paper; (ii) details of reparametriza-
tion for assumptions in (4.1) hold; (iii) proofs of (5.9) and (5.10); (iv) more plots
of the empirical sizes of the three invariant tests considered in this paper; (v) the
proofs of Lemmas 7.1 to 7.8; and (vi) the proofs of Lemmas 8.1 and 8.2.
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