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We study the rates of estimation of finite mixing distributions, that is, the
parameters of the mixture. We prove that under some regularity and strong
identifiability conditions, around a given mixing distribution with m0 compo-
nents, the optimal local minimax rate of estimation of a mixing distribution
with m components is n−1/(4(m−m0)+2). This corrects a previous paper by
Chen [Ann. Statist. 23 (1995) 221–233].

By contrast, it turns out that there are estimators with a (nonuniform)
pointwise rate of estimation of n−1/2 for all mixing distributions with a finite
number of components.

1. Introduction. Finite mixture models have been applied since Pearson
(1894) in various fields including astronomy, biology, genetics, economy, social
sciences and engineering [McLachlan and Peel (2000)].

Finite mixtures and their estimation naturally arise mostly in three cases. One is
model-based clustering. Here, the aim is to divide the data into k clusters and as-
sign (new) data to a cluster. A possible approach is to consider that data point from
each cluster is generated according to a probability distribution, so that the whole
data is generated by mixture with k components [McLachlan and Peel (2000), Teh
(2010)].

The second, more traditional case, is the statistical description of possibly het-
erogeneous data where the underlying mixing distribution has no particular mean-
ing. In that case, mixtures are a tool to describe efficiently the “true” probability
distribution and control the convergence rate of mixture estimators to it [van de
Geer (1996), Ghosal and van der Vaart (2001), Genovese and Wasserman (2000)].

In the third case, the goal is the mixing distribution itself: its support points and
proportions are the parameters we want to estimate. They typically correspond to
the phenomenon that is studied. This is the case we are interested in, on the basis
of observations drawn from the mixture.

Some works try to bridge the gap between the estimation of the mixture and
the one of the mixing distribution, usually at least through estimation of the num-
ber of components—the order—in the finite mixture. In particular, Rousseau and

Received July 2015; revised October 2017.
1Supported in part by the Labex CEMPI (ANR-11-LABX-0007-01).
MSC2010 subject classifications. Primary 62G05; secondary 62G20.
Key words and phrases. Local asymptotic normality, convergence of experiments, maximum like-

lihood estimate, Wasserstein metric, mixing distribution, mixture model, rate of convergence, strong
identifiability, pointwise rate, superefficiency.

2844

http://www.imstat.org/aos/
https://doi.org/10.1214/17-AOS1641
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


MINIMAX RATES FOR FINITE MIXTURE ESTIMATION 2845

Mengersen (2011) have proved that their Bayesian estimator of an overfitted mix-
ture tends to empty the extra components, and Gassiat and van Handel (2013) have
given the minimal penalty on the maximum likelihood estimator of the order that
yields strong consistency.

One could expect that a good estimator for the mixture would be a good estima-
tor for the mixing model. However, this is not so clear. The situation is reminiscent
of the difference between estimation and identification in model selection, where
Yang (2005) has proved that no procedure can be optimal for both. Moreover, rates
of convergence can be very different, as illustrated in an infinite-dimensional case
by Bontemps and Gadat (2014).

Optimal rates are a key information in estimating the mixture parameters. These
were unknown [see, e.g., Titterington, Smith and Makov (1985)] until the work
of Chen (1995), who established a n−1/4 local minimax rate, under reasonable
identifiability conditions, for one-dimensional-parameter mixtures. This result is
somewhat surprising since the rate does not depend on the number of components.
It turns out to be erroneous, because of its Lemma 2.

Our article aims at giving correct statements and proofs and its consequences.
The main part consists in finding the correct exponent in the local minimax rate;

that are Theorem 3.2 and Theorem 3.3. The rate gets worse with more components,
which is consistent with the behaviour when there are infinitely many components,
such as deconvolution: Fan (1991) had proved that the L2-convergence rate was
polylogarithmic in general, and Caillerie et al. (2013) and Dedecker and Michel
(2013) have generalized this kind of rates to the more relevant (for us) Wasserstein
metrics. The most original technical tool we shall use is a coarse-graining tree on
the parameter indices.

In addition, the optimal local minimax rate and the optimal pointwise rate of
estimation everywhere are not the same. This discrepancy is unusual in statistics,
and probably the reason why the n−1/4 rate went unchallenged for twenty years.
Specifically, if instead of comparing all pairs of mixtures in a ball, we allow only
one mixture in it, we get (21) which corrects Lemma 2 of Chen. As a consequence,
Theorem 2 of Chen is valid by dropping uniformity: for any fixed mixing distri-
bution say G, the estimator considered there will converge at rate n−1/4, but with
a multiplicative constant that depends on G. It then becomes a statement on the
optimal pointwise rate of estimation everywhere, and can even be strengthened to
n−1/2 as we show in Theorem 4.1.

The paper by Chen (1995) has been widely cited and used.
Apart from applied papers citing it that may have relied on the theoretical guar-

antees [see, e.g., Kuhn et al. (2014), Liu and Hancock (2014)], there are essentially
two ways it could play a role. First, when it is used as part of a proof, secondly
when it is used as a benchmark.

The first case covers papers that generalize Chen’s result in other settings, and
re-use its theorems and proofs. For example, Ishwaran, James and Sun (2001) pro-
pose a Bayesian estimator that achieves the n−1/4 frequentist rate, and use Chen
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(1995), Lemma 2, in their analysis. More recently, Nguyen (2013) generalizes
those results to mixtures with an abstract parameter space and indefinite number of
components. But Nguyen (2013), Theorem 1, generalizes Chen (1995), Lemma 2,
while transposing the proof with the mistake. The main results of both these arti-
cles hold; however, they do not need the full strength of Chen (1995), Lemma 2,
but merely the weaker version (21). Ho and Nguyen (2016a) prove such a sufficient
version.

These two papers also use Chen’s (1995) article as a benchmark. However, the
optimal pointwise rate everywhere would probably be a better reference point in
their case, as in many others. In particular, it seems likely that a Bayesian esti-
mator could converge pointwise at speed n−1/2 everywhere. We have not checked
whether the proof by Ishwaran, James and Sun (2001) can be improved, or if an-
other prior is necessary.

This use as a benchmark is very usual, as expected for this kind of optimality
result [see, e.g., Zhu and Zhang (2006, 2004)]. Let us point in particular to a result
by Martin (2012). He achieves almost n−1/2 rate for the predictive recursion algo-
rithm, and tries to explain the discrepancy with Chen (1995) by the fact that the
parameters are constrained to live in a finite space for his algorithm. In fact, since
his rate is pointwise, it fits with the continuous case.

In parallel with early available versions of this article, there have been inter-
esting new developments: Ho and Nguyen (2015), Ho and Nguyen (2016b) have
made explicit, among others, the system of equations underlying the minimax ar-
gument, for any finite number of parameters, and solved important special cases.
The strong identifiability conditions we shall use in this article ensure that the sys-
tem of equations is generic.

In Section 2, we give the notation and define and discuss the regularity assump-
tions we use. In Section 3, we state and discuss the main theorem, giving the op-
timal local minimax rate. In Section 4, pointwise rate everywhere is investigated.
We try to give some intuition in both of these sections. In Section 5, we also dwell
on the interpretation and practical consequences of having different rates, and con-
clude with open questions. In Section 6, we give and explain the meaning of the
key intermediate results and prove the main theorems from here. In Section 7, we
prove those key intermediate results. In particular, we introduce the most original
tool of our proofs: the coarse-graining tree that allows to patch the mistake in the
article by Chen (1995).

Some auxiliary and technical results are detailed in appendices grouped in a
Supplementary Material [Heinrich and Kahn (2018)].

2. Notation and regularity conditions.

2.1. Basic notation. Throughout the paper, the parameter set �, of diameter
Diam�, is always assumed to be a compact subset of R with nonempty interior.
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Let Gm (resp., G≤m) be the set of (resp., at most) m-mixing or m-points support
distributions G on �. We set also G<∞ = ⋃

�≥1 G�.
As usual, we compare two mixing distributions G and G′ using transportation

distances, or Lq -Wasserstein metrics, with q ≥ 1. They completely bypass identi-
fiability issues that would arise with the square error on parameters. The definition
is

(1) Wq

(
G,G′) = inf

�

[∫
�2

∣∣θ − θ ′∣∣q d�
(
θ, θ ′)]1/q

,

where the infimum is taken over probability measures � on �×� with marginals
G and G′. By Jensen’s inequality, Wq ≥ Wq ′ if q > q ′, and moreover, W

q
q ≤

W
q ′
q ′ (Diam�)q−q ′

. We will usually work with the strongest available Wasserstein
metric for our results. Endowed with the metric Wq , the space G≤m is compact.

In the special case of W1, we will also use its dual representation, where |f |Lip
stands for the Lipschitz seminorm of f [e.g., Dudley (2002), Section 11.8]:

(2) W1
(
G,G′) = sup

|f |Lip≤1

∫
�

f (θ)d
(
G − G′)(θ).

Given G = ∑m
j=1 πjδθj

∈ Gm and a family {f (x, θ)}θ∈� of probability densities
on R w.r.t. some σ -finite measure λ, a finite mixture model with m components is
defined by

(3) f (x,G) =
∫
�

f (x, θ)dG(θ) =
m∑

j=1

πjf (x, θj ).

To compare mixture distribution functions F(x,G) and F(x,G′), we will use
the Kolmogorov metric ‖F(·,G) − F(·,G′)‖∞. Here, of course, we have by def-
inition F(x, θ) = ∫ x

−∞ f (y, θ)dλ(y), which extends to F(x,G) by linearity pro-
viding that f (y, δθ ) = f (y, θ) where δθ denotes the Dirac measure at θ .

2.2. Regularity conditions. (p,α)-smoothness. Hereafter, f (p)(x, θ) or
f (p)(·, θ) denote the pth derivative of f always taken w.r.t. the variable θ .

DEFINITION 2.1. The family {f (·, θ), θ ∈ �} w.r.t. some σ -finite measure λ

is (p,α)-smooth if

Ep,α

(
θ, θ ′, θ ′′) =

∫
R

∣∣∣∣f (p)(x, θ ′)
f (x, θ ′′)

∣∣∣∣αf (x, θ)dλ(x)(4)

is a well defined [0,∞]-valued continuous function on �3, and if there exists ε > 0
such that ∣∣θ ′ − θ ′′∣∣ < ε =⇒ ∀θ ∈ �, Ep,α

(
θ, θ ′, θ ′′) < ∞.(5)
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These smoothness conditions are easy to check in practice, and general enough.
For example, all exponential families satisfy them, as shown in the Supplementary
Material [Heinrich and Kahn (2018), E.2]. They will be useful for proving local
asymptotic normality [Le Cam (1986)] of relevant families.

k-strong identifiability (k ∈ N). Chen (1995) introduced a notion of strong iden-
tifiability. We will need a slightly more general version.

DEFINITION 2.2. The family {F(·, θ), θ ∈ �} of distribution functions is k-
strongly identifiable if for any finite set of say m distinct points θj ∈ �,∥∥∥∥∥

k∑
p=0

m∑
j=1

ap,jF
(p)(·, θj )

∥∥∥∥∥∞
= 0 =⇒ ‖a‖ = max

p,j
|ap,j | = 0.

Of course, ‖ · ‖∞ denotes the supremum norm with respect to the variable x.

Chen’s strong identifiability corresponds to 2-strong identifiability. Let us exem-
plify why this notion is useful. Consider Gn = 1

2(δn−1 + δ−n−1) in G2. We see that
F(·,Gn) = F(·,0) + n−2F (2)(·,0)/2 + o(n−2), provided we can expand around
θ = 0. Then 2-strong identifiability ensures that ‖F(·,0)−F(·,Gn)‖∞ is of order
n−2, as shown in Proposition 2.3 below, whereas simple (1-strong) identifiability
would say nothing. We will need k-strong identifiability with a higher k if more
cancellations of terms occur.

PROPOSITION 2.3. Let {F(·, θ), θ ∈ �} be k-strongly identifiable family of
distribution functions with F (k)(x, θ) continuous in θ . Set for ε > 0:

�m
ε =

{
(θj )1≤j≤m ⊂ � : min

j �=j ′ |θj − θj ′ | ≥ ε
}
.

Then, for all a = (ap,j )0≤p≤k
1≤j≤m

,

inf
�m

ε

∥∥∥∥∥
k∑

p=0

m∑
j=1

ap,jF
(p)(·, θj )

∥∥∥∥∥∞
�

ε,k,m
‖a‖,

where �
ε,k,m

means “more than”, up to some constant C(ε, k,m) > 0.

PROOF. The function (a, (θj )1≤j≤m) �→ ‖∑k
p=0

∑m
j=1 ap,jF

(p)(·, θj )‖∞ is
lower semi-continuous on the compact set {a : ‖a‖ = 1} × �m

ε , so that it admits a
minimum. By k-strong identifiability, it is nonzero. �

We expect the strong identifiability to be rather generic, and hence the state-
ments of this paper often meaningful. In particular, Chen (1995), Theorem 3, has
proved that location and scale families with smooth densities are 2-strongly iden-
tifiable. The theorem and the proof straightforwardly generalize to our setting. We
merely state the result.
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THEOREM 2.4. Let k ≥ 1. Let f be a probability density w.r.t. the Lebesgue
measure on R. Assume that f is k − 1 times differentiable with

lim
x→±∞f (p)(x) = 0 for p ∈ [[0, k − 1]].

Consider f (x, θ) = f (x − θ), with θ ∈ � ⊂ R. Then the corresponding distribu-
tions family {F(·, θ), θ ∈ �} is k-strongly identifiable. If � ⊂ (0,∞), the result
stays true with f (x, θ) = 1

θ
f (x

θ
).

For more general conditions, see the article by Holzmann, Munk and Stratmann
(2004), that also generalize well to k-strong identifiability.

3. Assumptions and main results on local asymptotic minimax rate. The
statistical estimation will always be done in the model G≤m and, for local state-
ments, around a fixed mixture G0 ∈ Gm0 with m0 ≤ m. Set once and for all

(6) d0 = m − m0.

Lower bounds on local asymptotic minimax rates.

ASSUMPTION A(k, θ0). For all (p,α) ∈ [[1,2k + 2]] × [[1,4]], the family of
densities {f (·, θ)}θ∈� is (p,α)-smooth and satisfies, for some point θ0 in the inte-
rior of �, ∫ ∣∣f (2k+1)(·, θ0)

∣∣ dλ > 0.

Typically, k will be d0 and θ0 a support point of G0. These conditions allow to
prove local asymptotic normality [Le Cam (1986)] for relevant families. This will
give some insight on the reason why the lower bound on the rate holds, and on how
the mixtures behave when we change the parameters in the least sensitive direc-
tion. The condition on the support point guarantees identifiability locally for the
families, and we need more derivatives than usual, since there will be cancellations
in the first terms.

REMARK 3.1. When comparing sequences, we will write an � bn or an =
O(bn) for an ≤ Cbn where C > 0 does not depend on n. We will furthermore use
an � bn for bn � an � bn. If needed, the dependence of C on other parameters,
say u, θ will be stressed by subscripts: an �

u,θ
bn or an �

u,θ
bn.

In what follows, EG will denote the expectation w.r.t. the measure dPG =
f (·,G)dλ. And all the mixing distribution estimators denoted by Ĝn below will
be based on i.i.d. n-samples.
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THEOREM 3.2. Recall (6) and set εn = n−1/(4d0+2)+κ for some κ > 0. Let
θ0 be a support point of G0. Under Assumption A(d0, θ0), for any sequence of
estimators Ĝn, we have

sup
G∈Gm

W1(G,G0)<εn

EG

[
W1(G, Ĝn)

]
� n−1/(4d0+2).

The data we have access to is the empirical distribution Fn where n is the sample
size, and which gets closer to the true mixture F(·,G) at rate n−1/2. Hence two
mixing distributions G and G′ can be told apart only if ‖F(·,G) − F(·,G′)‖∞ is
at least of order n−1/2.

As an example, let G0 = δ0 and consider two-component mixing distributions
around, say Gn = 1

2(δ−2n−1/6 + δ2n−1/6) and G′
n = 4

5δ−n−1/6 + 1
5δ4n−1/6 . Both have

0 as first moment, and 4n−1/3 as second moment but the third moment is zero for
Gn and 12n−1/2 for G′

n. A Taylor expansion in θ = 0 up to the third order gives
then F(·,Gn) − F(·,G′

n) = o(n−1/6). So that no test can reliably tell Gn from G′
n

with an n-sample. On the other hand, we clearly have W1(Gn,G
′
n) = n−1/6 for

all n. So that the minimax rate for two-mixing distributions cannot be better than
n−1/6.

This moment matching argument can be made rigorous and precise with two
tools. One is Lindsay’s Hankel trick [Lindsay (1989), Theorem 2A], also used
by Dacunha-Castelle and Gassiat (1997) to estimate the order of a mixture. The
other is local asymptotic normality property (LAN) developed by Le Cam (1986).
Section 6 uses them to build a LAN family with scale factor n1/(4d0+2) which gives
Theorem 3.2 via Theorem 6.1.

Upper bounds on local asymptotic minimax rates.

ASSUMPTION B(k). The family of densities {f (·, θ)}θ∈� satisfies:

• For all x, F(x, θ) = ∫ x
−∞ f (·, θ)dλ is k-differentiable w.r.t. θ ,

• {F(·, θ), θ ∈ �} is k-strongly identifiable,
• There is a uniform continuity modulus ω(·) such that

sup
x

∣∣F (k)(x, θ) − F (k)(x, θ ′)∣∣ ≤ ω
(
θ − θ ′) with lim

h→0
ω(h) = 0.

The latter condition holds if supx,θ |F (k+1)(x, θ)| exists and is finite. These dif-
ferentiability conditions should be compared with the usual parametric case, where
differentiability in quadratic mean, or twice differentiability in θ for a less techni-
cal condition, is enough to get n−1/2 local minimax rate. We will need B(2m) to
prove a global minimax rate of n−1/(4m−2) [see (9) in Theorem 3.3], and B(1) for
a pointwise rate of n−1/2 everywhere (Theorem 4.1).
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THEOREM 3.3. Let Ĝn(m) be “the” minimum distance estimator, that is any
mixing distribution in G≤m such that

(7)
∥∥F (·, Ĝn(m)

) − Fn

∥∥∞ = inf
G∈G≤m

∥∥F(·,G) − Fn

∥∥∞.

Under Assumption B(2m), there is ε > 0 such that, with q = 2d0 + 1:

sup
G∈G≤m

Wq(G,G0)<ε

EG

[
Wq

(
Ĝn(m),G

)]
� n−1/(2q),(8)

and more globally, with r = 2m − 1:

sup
G∈G≤m

EG

[
Wr

(
Ĝn(m),G

)]
� n−1/(2r).(9)

REMARK 3.4. Since G �→ ‖F(·,G) − Fn‖∞ is lower semi-continuous on the
compact metric space (G≤m,Wq), the infimum in (7) is attained. The minimum
distance estimator is discussed by Deely and Kruse (1968) and Chen.

Theorem 3.3 is proved it by establishing a uniform control of the ratio
‖F(·,G) − F(·,G′)‖∞/Wq(G,G′)q in Theorem 6.3. To do so, we consider
sequences of couples (Gn,G

′
n) minimizing the relevant ratios, and expand

F(·,Gn) − F(·,G′
n) as a weighted sum on the relevant derivatives F (p)(·, θj,n).

A difficulty arises since distinct support points θj,n may converge to the same θj ,
leading to cancellations in the sums. Forgetting this case was the mistake in the
proof of Chen (1995), Lemma 2. We overcome the issue in Section 7: we build
clusters of support points whose pairwise distances decrease at a given rate and
structured as nodes of a coarse-graining tree. We may then use Taylor expansions
on each node and its descendants (Lemma 7.4).

REMARKS 3.5. It is worth to notice the following from Theorems 3.2–3.3:

• They together imply that the optimal local asymptotic minimax rate is
n−1/(4d0+2) for estimating a mixture with at most m components around a
mixture with m0 components, for any transportation distance Wp with p ∈
[[1,2d0 + 1]].

• The rate is driven by d0, that is, it gets harder to estimate the parameters of a
mixture when it is close to a mixture with less components.

• The worst case is when m0 = 1, yielding a global minimax rate of estimation
n−1/(4m−2). The rate gets worse when more components are allowed. So that
the nonparametric rates for estimating mixtures with an infinite number of com-
ponents like in deconvolution appear natural.

• On the other hand, when the number of components is known, that is, m = m0,
we have the usual local minimax rate n−1/2.

• The global minimax rate on the mixtures with exactly m components stays at
n−1/(4m−2), because Gm is not compact, and Theorem 3.2 still apply in the vicin-
ity of m0-component mixtures.
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4. On pointwise rate and superefficiency. The slow rate n−1/(4m−2) in (9)
might be a little surprising when, for example, some Bayesian estimators have
n−1/4 rate of convergence [Ishwaran, James and Sun (2001)]. However, this con-
vergence rate is not the local minimax rate, but is closer to a pointwise rate of
convergence, that is the speed at which an estimator converges to a fixed G when
n increases. The difference with local minimax may be viewed as the loss of uni-
formity in G. We study here the optimal pointwise rates everywhere.

One motivation for local minimax results was to make clear how the Hodges’
estimator [van der Vaart (1998), Chapter 8] and other superefficient estimators
could cohabit with Craméer–Rao bound, and how much they could improve on it.

Specifically, a superefficient estimator can have a better pointwise convergence
rate than any regular estimator, but not a better local minimax convergence rate
[Hájek (1972)]. Moreover, it turns out that they can only have a better pointwise
rate on a Lebesgue-null set [van der Vaart (1998), Chapter 8].

Now, the set of parameters (weights and support points) defining G<m is a
Lebesgue-null w.r.t. the one defining G≤m. Hence, we might expect that, by bias-
ing the estimators toward the low numbers of components, we might attain better
pointwise rates on G<m, up to n−1/2, which is the value when the number of com-
ponents is known. By letting m go to infinity, we would have this pointwise rate
for all finite mixing distributions. It turns out this is indeed the case.

THEOREM 4.1. Consider for each m ≥ 1 the minimum distance estimator
Ĝn(m) in G≤m as defined in Theorem 3.3, with Ĝn(∞) arbitrary. Fix κ ∈ (0,1/2)

and set

(10) m̂n = min
{
m ≥ 1 : ∥∥F (·, Ĝn(m)

) − Fn

∥∥∞ ≤ n−1/2+κ}
.

Under Assumption B(1), for any finite mixing distribution G ∈ G<∞,

EG

[
W1

(
Ĝn(m̂n),G

)]
�
G,κ

n−1/2.

REMARKS 4.2. • Since the typical distance between empirical and theoretical
distribution functions is n−1/2, this m̂n in (10) is the lowest number of components
that is not clearly insufficient.
• The rate n−1/2 cannot be improved since it is the rate if the number of compo-

nents is known beforehand.
• This is slightly stronger than just checking that we find the right number of com-

ponents and then applying Theorem 3.3, because we need much less regularity.
Only Assumption B(1) is required, instead of B(2m). That is, we do not need
more smoothness when the number of components increases. Under the hood,
we rely on bound (20) instead of bound (19) in Theorem 6.3.

• There are easy methods, conceptually and numerically, to reach the pointwise
n−1/2 rate. Estimate the mixture for each number of components m, and choose
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the first m that is not clearly bad. We have used the minimum distance estimator
for consistency within the article. But any method with a global n−1/2 rate of
convergence when the number of components is known will work in the same
way, in particular, MLE. The important part is the model selection step (10).
Other good model selection methods or Bayesian priors would also work.

5. Practical consequences and perspectives. Local minimax rate and point-
wise rate everywhere disagreement might be rare enough that it is worth recalling
first what it means.

The asymptotic rate of convergence to a given G will be the pointwise rate
CGn−1/2 where CG is some positive constant. However, the estimator will enter
this asymptotic regime only after a long time. More precisely, it enters this regime
after that G is not anymore in any of the balls used in the local minimax bound.
Alternatively, we may view this situation as the constant CG exploding when G is
close to certain G0.

In our case, imagine we have a mixing distribution with three components, with
all support points within distance δ > 0 of some θ0. Then about δ−(4(3−1)+2) =
δ−10 observations are necessary to get an estimator with an error of δ. In particular,
if G and G′ are two such three-component mixing distributions, chosen to have the
same first four moments, and G̃ and G̃′ are the same mixing distributions, rescaled
to be ten times closer, we will need 1010 as many data points to tell them apart as
for G and G′.

As a consequence, if the components of the mixing distribution to be estimated
are not far apart one from the other, it is quite often impossible to get enough data
points to get an appropriate estimate. An experimentalist with any leeway in what
he measures (use of different markers, say) might then wish to ensure that the
peaks are far apart, even at the cost of many data points.

We end the section by some thoughts on possible further work. This article con-
tains the proof that the optimal local minimax rate of estimation around a mixing
distribution with m0 components among mixing distributions with m components
is n−1/(4(m−m0)+2), when the parameter space � is a compact subset of R.

We think that extension to a multivariate � should be workable, much like
Nguyen (2013) did for the former erroneous result. On the other hand, noncom-
pactness of � would probably bring about technical difficulties, and cases where
the result would not hold. Stronger forms of identifiability would probably be
required in general, to avoid problems with limits. Moreover, for many natural
higher-dimensional families, strong identifiability does not hold, so that the results
would be different.

Finally, another line of inquiry are the results that might be expected in a
Bayesian framework. The most natural equivalent to the convergence rate of the a
posteriori distribution to the real parameter is the pointwise rate of convergence.
Hence the question: can we build Bayesian estimators where the a posteriori dis-
tributions converge at rate n−1/2 everywhere? Of course, the convergence would
not be uniform.
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6. Key tools and proofs.

6.1. Local asymptotic normality for Theorem 3.2. All the densities considered
in the sequel are w.r.t. some given dominating σ -finite measure on R. We call
experiment a family E of densities.

THEOREM 6.1. Let G0 ∈ Gm0 with a support point θ0 in the interior of �.
There is a family {Gn(u)}n≥0,u∈R in Gm with the following properties:

(a) For all distinct u,u′ in R, we have together

W1
(
Gn(u),Gn

(
u′)) �

u,u′
n−1/(4d0+2) �

u
W1

(
Gn(u),G0

)
.

(b) Assume A(d0, θ0) for the family {f (·, θ)}θ∈� and set the product density
fn,u = ⊗n

i=1 f (·,Gn(u)). There is an increasing real sequence Un → ∞ such
that the sequence of experiments En = (fn,u)u∈[−Un,Un] is locally asymptoti-
cally normal (LAN): there are random variables Zn, asymptotically N (0,1),
and numbers �n > 0 such that for all u ∈ R,

Log
(

fn,u(X)

fn,0(X)

)
− uZn

√
�n + u2

2
�n

P−−−→
n→∞ 0,(11)

where X is a n-sample of density fn,0.
In addition, we have lim infn �n > 0 and lim supn �n < ∞.

REMARK 6.2. We want only an example of this slow convergence, and it
should be somewhat typical. That is why we have chosen the regularity conditions
to make the proof easy, while still being easy to check, in particular, for exponential
families.

In particular, in Assumption A(d0, θ0), it could probably be possible to lower α

in (p,α)-smoothness to 2 + ε and still get the uniform bound we use in the law
of large numbers below. Similarly, less differentiability might be necessary if we
tried to imitate differentiability in quadratic mean.

Conversely, under possibly more stringent regularity conditions, �n is expected

to converge to EG0 |f
(2d0+1)(·,θ0)
f (·,G0)

|2 up to a multiplicative constant.

PROOF OF THEOREM 6.1. Write the mixing distribution G0 as

(12) G0 =
m0−1∑
j=1

πjδθj
+ π0δθ0

with θ0 in the interior of �. Let u ∈ R and replace the Dirac measure δθ0 in (12)
with a mixing distribution Hn(u):

(13) Gn(u) =
m0−1∑
j=1

πjδθj
+ π0Hn(u).
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We want to choose Hn(u) close to δθ0 . To this end, set μ0 = 1 and μ2d−1 = u

with d = d0 + 1. Choose in addition numbers μ1, . . . ,μ2d−2 such that the k × k-
Hankel matrices (Mk)i,j = μi+j−2 satisfy detMk > 0 for k ∈ [[1, d − 1]]. Then,
by Lindsay’s Theorem 2A (1989), there is a unique mixing distribution H(u) =∑m

j=m0
πj (u)δhj (u) with exactly d support-points hj (u) and first moments μk up

to order 2d − 1 satisfying

(14)
m∑

j=m0

πj (u)hj (u)k = μk, k ∈ [[0,2d − 1]].

Define then Hn(u) by shifting and rescaling the support points of H(u):

Hn(u) =
m∑

j=m0

πj (u)δθ0+εnhj (u) with εn = n−1/(4d−2).

Now, using the dual representation (1) of W1, we see that

W1
(
Gn(u),G0

) = π0W1
(
Hn(u), δθ0

) = π0εnW1
(
H(u), δ0

)
and likewise, W1(Gn(u),Gn(u

′)) equals π0εnW1(H(u),H(u′)) so that Theo-
rem 6.1(a) follows.

To guarantee that the points θ0 + εnhj (u) involved in Gn(u) stay inside � uni-
formly in u, let us show that the functions hj (·) are continuous. Consider the map

ϕ(π1, . . . , πd, h1, . . . , hd) =
(

d∑
1

πj ,

d∑
1

πjhj ,

d∑
1

πjh
2
j , . . . ,

d∑
1

πjh
2d−1
j

)
on the set {(π1, . . . , πd, h1, . . . , hd) : π1 > 0, . . . , πd > 0, h1 < · · · < hd}. The
uniqueness in Theorem 2A by Lindsay (1989) implies that ϕ is injective. More-
over, its Jacobian is nonzero, as it can be seen by recurrence on d:

J (ϕ) = (−1)
(d−1)d

2 π1 · · ·πd

∏
1≤j<k≤d

(hj − hk)
4.

Thus the inverse of ϕ is locally continuous, so that, in particular, the hj (u) are all
continuous.

Set now

(15) h(U) = max
j≤d

max|u|≤U

∣∣hj (u)
∣∣,

which is finite for any U > 0 and choose a positive sequence (Un) such that

Un → ∞ and εnh(Un) → 0.

We can now prove local asymptotic normality (11). Let X = (X1,n, . . . ,Xn,n) be
an i.i.d. sample with density fn,0. Since we proceed along the lines of Chen (1995),
the proof is only sketched here. Write the log-likelihood ratio as

Log
(

fn,u(X)

fn,0(X)

)
=

n∑
i=1

Log
(
1 + Yi,n(u)

)
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with

Yi,n(u) = f (Xi,n,Gn(u)) − f (Xi,n,Gn(0))

f (Xi,n,Gn(0))
.

The main steps are as follows [see Heinrich and Kahn (2018), Sections A.1, A.2
and A.3] for the details:

Step 1. Use linearity of G �→ f (·,G) and Taylor expansions up to the order
2d − 1 with remainder on Yi,n(u) at θ0 to show that the r.v.’s

Zi,n = π0
f (2d−1)(Xi,n, θ0)

f (Xi,n,Gn(0))

are centered under fn,0.
Step 2. Define �n = EGn(0)|Z1,n|2 and Zn = n−1/2�

−1/2
n

∑n
i=1 Zi,n and prove

that Zn is asymptotically N (0,1) via Lyapunov theorem for triangular arrays.
Step 3. Show the following convergences for all u:

An(u) :=
n∑

i=1

Yi,n(u) − uZn

√
�n

L2−→ 0,

Bn(u) :=
n∑

i=1

Yi,n(u)2 − u2�n
L1−→ 0,

Cn(u) :=
n∑

i=1

∣∣Yi,n(u)
∣∣3 L1−→ 0.

Then derive the LAN property from the equality

Log
(

fn,u(X)

fn,0(X)

)
− uZn

√
�n + u2

2
�n = An(u) + 1

2
Bn(u) + OP

(
Cn(u)

)
. �

6.2. Proof of Theorem 3.2. Let us show how Theorem 6.1 entails Theorem 3.2
using just two points and contiguity [Le Cam (1960)]. Consider any sequence of
estimators Ĝn, and Gn(u) for u = 0,1 as defined in Theorem 6.1. It is enough to
show that for large n,

(16) sup
G∈{Gn(0),Gn(1)}

EG

[
W1(G, Ĝn)

]
� n−1/(4d0+2).

Recall that we set here εn = n−1/(4d0+2)+κ and note that Gn(0) and Gn(1) are in
the ball {G : W1(G,G0) < εn} for large n, by Theorem 6.1(a).

Consider the probability measures Pn,u with the densities fn,u of Theo-

rem 6.1(b) for u = 0,1 and set gn = fn,1(X)

fn,0(X)
exp(−Zn

√
�n + �n/2). Then

Pn,1(A) = e−�n
2

∫
A

eZn

√
�ngn dPn,0 ≥ e−�n

2

2

∫
A∩{Zn>0}∩{gn>1/2}

dPn,0.
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We have gn

Pn,0−−→ 1 by (11) so that Pn,0(gn ≤ 1/2) ≤ 1/16 for large n. Since
Zn is asymptotically N (0,1), we also have Pn,0(Zn ≤ 0) ≤ 1/2 + 1/16. Thus
Pn,0({Zn > 0} ∩ {gn > 1/2}) is at least 3/8 for n large enough and

(17) Pn,0(A) ≥ 3

4
=⇒ Pn,1(A) � e−�n/2.

Now, choose A = {W1(Gn(1), Ĝn) ≥ an−1/(4d0+2)} where a > 0 is such that
W1(Gn(1),Gn(0)) ≥ 2an−1/(4d0+2), by Theorem 6.1(a). By the triangle’s inequal-
ity, the complement Ac is included in {W1(Gn(0), Ĝn) ≥ an−1/(4d0+2)}. Now, ei-
ther we have Pn,0(A

c) ≥ 1
4 and, for G = Gn(0), we get

EG

[
W1(G, Ĝn)1Ac

] ≥ a

4
n−1/(4d0+2),

or we have Pn,0(A) ≥ 3
4 and by using (17), for G = Gn(1), we get

EG

[
W1(G, Ĝn)1A

]
� e−�n/2an−1/(4d0+2),

so that (16) is proved since lim supn �n < ∞.

6.3. Comparison between distances for Theorem 3.3 and Theorem 4.1. The
key technical tool is the following.

THEOREM 6.3. • Let G0 ∈ Gm0 . Under Assumption B(2m), there are ε > 0
and δ > 0 such that, with q = 2d0 + 1:

inf
G�=G′∈G≤m
Wq(G,G0)<ε

Wq(G′,G0)<ε

‖F(·,G) − F(·,G′)‖∞
Wq(G,G′)q

> δ,(18)

and more globally, with r = 2m − 1:

(19) inf
G�=G′∈G≤m

‖F(·,G) − F(·,G′)‖∞
Wr(G,G′)r

> δ.

• Let G0 ∈ Gm0 . Under Assumption B(1), there are ε > 0 and δ > 0 such that

inf
G�=G′∈G≤m0
W1(G,G0)<ε

W1(G
′,G0)<ε

‖F(·,G) − F(·,G′)‖∞
W1(G,G′)

> δ.(20)

• Let now G0 ∈ G≤m0 . Under Assumption B(2), there are ε > 0 and δ > 0 such
that

inf
G∈G≤m0

W1(G,G0)<ε

‖F(·,G) − F(·,G0)‖∞
W1(G,G0)2 > δ.(21)
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The proof of Theorem 6.3 is postponed to Section 7 where the novel ingredient,
a coarse-graining tree, is constructed to prove (18) and (19), the most difficult
points. These one entail Theorem 3.3. The two related bounds (20) and (21) hold
under weaker differentiability assumptions, but are less general. Bound (20) covers
the case where the number of components in the mixture is known, and is used for
the proof of Theorem 4.1. Bound (21) is the valid weaker version of Lemma 2 by
Chen (1995), which is sufficient for the use other authors have made of it. Here,
we only compare mixtures in a ball with the mixture at the center of the ball.

For the proofs of Theorem 3.3 and Theorem 4.1, we need in addition the fol-
lowing.

LEMMA 6.4. Let q, d ≥ 1 and G ∈ G≤m. Assume that the minimum distance
estimators Ĝn := Ĝn(m) defined in Theorem 3.3 satisfy for some constant C > 0
and on some event A,

Wq(Ĝn,G)d ≤ C
∥∥F(·, Ĝn) − F(·,G)

∥∥∞.

Then

EG

[
Wq(Ĝn,G)

] ≤ (
2πC2)1/2d

n−1/2d + Diam(�)PG

(
Ac).

Moreover, PG(Ac) is at most 2e−2nz2
if A is either {‖Fn − F(·,G)‖∞ ≤ z} or

{‖F(·, Ĝn) − F(·,G)‖∞ ≤ 2z}.
SKETCH OF PROOF. Bound Wq(Ĝn,G) by Diam(�) on Ac, use the defini-

tion (7) and the triangle’s inequality to bound ‖F(·, Ĝn) − F(·,G)‖∞ by 2‖Fn −
F(·,G)‖∞, then use Jensen’s inequality on A and bound EG1‖Fn − F(·,G)‖∞
[and PG(Ac)] by applying DKW’s inequality [Massart (1990)]. �

6.4. Proof of Theorem 3.3. Let ε, δ > 0 such (18) holds. Set

z = 1

2
inf

G,G′∈G≤m
Wq(G,G0)≤ε/2
Wq(G′,G0)≥ε

∥∥F(·,G) − F
(·,G′)∥∥∞.

The infimum is taken over a compact set and is thus attained. We have z > 0 by
identifiability [coming from Assumption B(2m)].

Consider A = {‖F(·,G) − F(·, Ĝn(m))‖∞ ≤ z}. If G is in G≤m with Wq(G,

G0) ≤ ε/2, then Ĝn(m) must satisfy Wq(Ĝn(m),G0) < ε on the event A so that
by (18),

On A, Wq

(
Ĝn(m),G

)q
<

1

δ

∥∥F (·, Ĝn(m)
) − F(·,G)

∥∥∞.

Applying Lemma 6.4 with d = q = 2d0 + 1 and C = 1/δ yields

EG

[
Wq

(
Ĝn(m),G

)] ≤
(

2π

δ2

)1/2q

n−1/2q + 2 Diam(�)e−nz2/2

so that bound (8) is proved. Bound (9) is obtained likewise from (19).
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6.5. Proof of Theorem 4.1. Consider a mixing distribution G0 ∈ Gm0 . Under
Assumption B(1), let ε, δ > 0 such (20) holds. Fix κ ∈ (0, 1

2) and set

z = n−1/2+κ ∧ 1

4
inf

G∈G≤m0
W1(G,G0)≥ε

∥∥F(·,G) − F(·,G0)
∥∥∞.

By compactness and identifiability, the infimum in z is attained and positive. On
the event A = {‖F(·,G0) − Fn‖∞ ≤ z}, the minimum distance estimator Ĝn(m0)

in G≤m0 , defined in Theorem 3.3, satisfies∥∥F (·, Ĝn(m0)
) − Fn

∥∥∞ ≤ ∥∥F(·,G0) − Fn

∥∥∞ ≤ z ≤ n−1/2+κ

so that m̂n is at most m0 by (10); thus we have Ĝn(m̂n) ∈ G≤m0 . Next, Ĝn(m̂n)

must satisfy W1(Ĝn(m̂n),G0) < ε on A since∥∥F (·, Ĝn(m̂n)
) − F(·,G0)

∥∥∞ ≤ 2
∥∥F(·,G0) − Fn

∥∥∞ ≤ 2z,

by the triangle’s inequality. Applying then (20) on A, we get

W1
(
Ĝn(m̂n),G0

)
<

1

δ

∥∥F (·, Ĝn(m̂n)
) − F(·,G0)

∥∥∞.

Now, apply Lemma 6.4 with q = d = 1, C = 1/δ and A as above, so that

EG0

[
W1

(
Ĝn(m̂n),G0

)] ≤
√

2π

δ
n−1/2 + 2 Diam(�) exp

(−2n2κ)
.

7. The coarse-graining tree and the proof of Theorem 6.3.

7.1. Proof of (18): The coarse graining tree. Let G0 ∈ Gm0 . We have to show
that, under Assumption B(2m), there is ε > 0 such that

L := inf
G�=G′∈G≤m
Wq(G,G0)<ε

Wq(G′,G0)<ε

‖F(·,G) − F(·,G′)‖∞
Wq(G,G′)q

> 0 with q = 2d0 + 1.(22)

Assume on the contrary that L = 0 and choose mixing distributions Gn and G′
n in

G≤m with Wq(Gn,G0) ∨ Wq(G′
n,G0) < 1/n such that for each n ≥ 1, the ratios

‖F(·,Gn) − F(·,G′
n)‖∞/Wq(Gn,G

′
n)

q are less than 1/n. We shall prove, up to
selecting subsequences, the following contradiction:

(23)
∥∥F(·,Gn) − F

(·,G′
n

)∥∥∞ � Wq

(
Gn,G

′
n

)q
.

Some notation. We may and do assume that there are integers m,m′ at most m
such that (Gn) ⊂ Gm and (G′

n) ⊂ Gm′ . We can then write Gn = ∑m
j=1 πj,nδθj,n

and

G′
n = ∑m′

j=1 π ′
j,nδθ ′

j,n
and set

(�j,n,ϑj,n) =
{
(πj,n, θj,n) if j ≤ m,(−π ′

j−m,n, θ
′
j−m,n

)
if j > m,
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so that the signed measure Gn − G′
n = ∑m+m′

j=1 �j,nδϑj,n
has total mass zero.

The discrepancy orders of the ϑj,n’s. We shall first classify the differences be-
tween the ϑj,n’s in an intrinsic way.

LEMMA 7.1. For a suitable subsequence of Gn −G′
n, there is a finite number

S of “scaling” sequences

0 ≡ ε0(n) < ε1(n) < · · · < εS(n) ≡ 1 with εs(n) = o
(
εs+1(n)

)
,

such that for all j, j ′ ∈ [[1,m + m′]] there is a unique s(j, j ′) ∈ [[0, S]] satisfying

|ϑj,n − ϑj ′,n| � εs(j,j ′)(n).

The proof is given in Heinrich and Kahn (2018), Appendix C. It follows from
the definition of s(j, j ′) that s(j, j ′) ≤ max(s(j, j ′′), s(j ′, j ′′)), and thus s(·, ·)
defines an ultrametric on [[1,m + m′]]. The ultrametric makes any two balls either
included one into the other or disjoint, and allows us to build a coarse-graining
tree.

DEFINITION 7.2. The coarse-graining tree T is the collection of distinct balls
J = {s(·, j) ≤ s}, called nodes, when j ranges over [[1,m+m′]] and s over [[0, S]].
Moreover:

• The root of T is Jr = [[1,m + m′]],
• The parent J↑ of a node J is defined by(

J ⊂ I � J↑, I ∈ T
) =⇒ I = J,

• The set of children of a node J is Child(J ) = {I ∈ T : I↑ = J },
• The set of descendants of a node J is Desc(J ) = {I ∈ T : I↑ ⊂ J },
• The diameter of a node J is s(J ) = maxj,j ′∈J s(j, j ′).

Let us show how the tree T looks like with a partial representation (Figure 1).
Note that the ends are not necessarily singletons since the ultrametric s(·, ·) does

not separate points. Note also that j and j ′ are in different children K and K ′ so
that |ϑj,n − ϑj ′,n| is actually exactly of order εs(J )(n).

The Wassertsein distances Wq(Gn,G
′
n) through the coarse graining tree T . In

what follows, n is skipped in the ϑj ’s, �j ’s and εs ’s. Set for short

(24) �J = ∑
j∈J

�j and εJ = εs(J ).

LEMMA 7.3. For any q ≥ 1, we have

Wq

(
Gn,G

′
n

)q � max
J∈Desc(Jr )

|�J |εq

J↑ .
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FIG. 1. The coarse-graining tree T .

PROOF. Consider any coupling � between Gn and G′
n and set

�
(
J,J ′) = �

({ϑj }j∈J∩[[1,m]] × {ϑj }j∈J ′∩[[m+1,m+m′]]
)
,

(25)
wq

(
J,J ′) = ∑

(j,j ′)∈J×J ′
�

({j}, {
j ′})|ϑj − ϑj ′ |q.

Set also πJ = ∑
j∈J∩[[1,m]] �j and π ′

J = −∑
j∈J∩[[m+1,m+m′]] �j . These define

the marginal distributions of � and we have �(J,J ) ≤ πJ ∧ π ′
J . Note also that

|�J | = πJ ∨ π ′
J − πJ ∧ π ′

J . With J c = Jr \ J , this gives

�
(
J,J c) ∨ �

(
J c, J

) ≥ |�J |.
Notice moreover that if (j, j ′) ∈ J × J c, then |ϑj − ϑj ′ | � εJ↑ . Hence, the lower
bound of Lemma 7.3 follows from

wq(Jr, Jr) ≥ wq

(
J,J c) + wq

(
J c, J

)
� |�J |εq

J↑ .

Conversely, for the upper bound, we show recursively that for all node J ,

wq(J, J ) � max
K∈Desc(J )

|�K |εq

K↑ .(26)
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This is obviously true if J is an end node, with the value of zero. Assume that (26)
holds for children K of a given node J . We may develop J on its children:

wq(J, J ) = ∑
K∈Child(J )

[
wq(K,K) + ∑

K ′∈Child(J )

K ′ �=K

wq

(
K,K ′)].

Furthermore, we get wq(K,K ′) � �(K,K ′)εq
J from (25) and

�
(
K,K ′) ≤ �

(
K,Kc) ≤ πK − �(K,K),

and if the coupling � is chosen [see Heinrich and Kahn (2018), Lemma B.2, for a
construction] such that �(K,K) = πK ∧ π ′

K for all node K , then it follows that

�
(
K,K ′) ≤ |�K |,

and thus

wq(J, J ) �
∑

K∈Child(J )

[
wq(K,K) + |�K |εq

J

]
.

The recurrence hypothesis on children K yields then (26). �

Expanding F(x,Gn) − F(x,G′
n) through the coarse graining tree. The de-

pendence on n is skipped in the following notation. Consider the additive set-
function J �→ F(x, J ) = ∑

j∈J �jF (x,ϑj ) and note that F(x,Jr) is equal to
F(x,Gn) − F(x,G′

n).

LEMMA 7.4. Choose ϑJ in {ϑj : j ∈ J } for each node J of T .
There are a vector aJ = (aJ (p))0≤p≤2m and a remainder R(x,J ) such that

(27) F(x, J ) =
2m∑
p=0

aJ (p)ε
p
J F (p)(x,ϑJ ) + R(x,J ),

where:

(a) aJ (0) = �J and ‖aJ ‖ � 1,
(b) There is an integer pJ < |J | such that ‖aJ ‖ � |aJ (pJ )|,
(c) The norm ‖aJ ‖ is bounded from below by a quantity linked to Wq :

‖aJ ‖ � max
K∈Desc(J )

[
|�K |

(
εK↑
εJ

)|J |−1]
,

(d) R(x,J ) = o(‖aJ ‖ε2m
J ) uniformly in x.

As a remark, the lower bound on F(x,Jr) will stem from points (c) and (d).
Points (a) and (b) are mainly there for transmitting recurrence hypotheses. They
control the size of F(x, J ), together with point (c). The behaviour of F(x, J ) only
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depends on the first |J | terms in the sum. However, the sum goes to 2m so that it
is useful when J = Jr .

PROOF. The proof uses Taylor expansions at θK for a given generation of
children K together with separation and order properties of the coarse-graining
tree T . Recall notation (24).

If K is an end of the tree T , then all the θj for j ∈ K are equal, and F(x,K) =
�KF(x, θK). Choose aK(p) = �K1{p=0} and R(x,K) = 0 so that the equality
(27) holds for the end node K with all the desired estimates (a), (b), (c) and (d).

Assume now that J has children K , each of them satisfying (27) with all the
estimates (a), (b), (c) and (d):

(28) F(x,K) =
2m∑
�=0

aK(�)ε�
KF (�)(x,ϑK) + R(x,K).

We want to transmit (28) and the estimates to the parent J . Suppose without loss of
generality that ϑJ ≤ ϑK and apply Taylor’s formula with remainder to F (�)(x,ϑK)

at ϑJ for all � ∈ [[0,2m]]:

F (�)(x,ϑK) −
2m−1∑
p=�

(ϑK − ϑJ )p−�

(p − �)! F (p)(x,ϑJ )

=
∫ ϑK

ϑJ

(ϑK − θ)2m−1−�

(2m − 1 − �)! F (2m)(x, θ)dθ.

Subtract the term (ϑK−ϑJ )2m−�

(2m−�)! F (2m)(x,ϑJ ) from either side so that

F (�)(x,ϑK) −
2m∑
p=�

(ϑK − ϑJ )p−�

(p − �)! F (p)(x,ϑJ )

=
∫ ϑK

ϑJ

(ϑK − θ)2m−1−�

(2m − 1 − �)!
[
F (2m)(x, θ) − F (2m)(x,ϑJ )

]
dθ

= (ϑK − ϑJ )2m−�O
(

sup
θ∈[ϑJ ,ϑK ]

∣∣F (2m)(x, θ) − F (2m)(x,ϑJ )
∣∣).

The modulus of continuity of F (2m)(x, ·) from B(2m) then yields

F (�)(x,ϑK) =
2m∑
p=�

(ϑK − ϑJ )p−�

(p − �)! F (p)(x,ϑJ ) + o
(
(ϑK − ϑJ )2m−�).

The normalised discrepancies φK := (ϑK − ϑJ )/εJ for K ∈ Child(J ) are by defi-
nition at most of order 1 so that

F (�)(x,ϑK) =
2m∑
p=�

ε
p−�
J

φ
p−�
K

(p − �)!F
(p)(x,ϑJ ) + ε2m−�

J o(1).
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Substitute in (28) and change the order of summation:

F(x,K) =
2m∑
p=0

[ p∑
�=0

aK(�)

(
εK

εJ

)� φ
p−�
K

(p − �)!
]
ε
p
J F (p)(x,ϑJ )

+ R(x,K) + ε2m
J max

0≤�≤2m

∣∣∣∣aK(�)

(
εK

εJ

)�∣∣∣∣o(1).

Add up over the children K of J to obtain (27) for J , that is,

F(x, J ) =
2m∑
p=0

aJ (p)ε
p
J F (p)(x,ϑJ ) + R(x,J ),

with aJ (p) = ∑
K∈Child(J )

∑p
�=0 aK(�)(εK

εJ
)�

φ
p−�
K

(p−�)! and

(29) R(x,J ) = ∑
K∈Child(J )

[
R(x,K) + ε2m

J max
0≤�≤2m

∣∣∣∣aK(�)

(
εK

εJ

)�∣∣∣∣o(1)

]
.

We have now to prove the estimates (a), (b), (c) and (d) for the defined co-
efficients aJ (p) and remainder R(x,J ). Keep in mind that these estimates are
assumed to be true for the children K and set for short

Mp,K := max
0≤�≤p

∣∣∣∣aK(�)

(
εK

εJ

)�∣∣∣∣.
Proof of (a) for J . It is immediate from the definition of aJ (p) that

aJ (0) = ∑
K∈Child(J )

aK(0) = ∑
K∈Child(J )

�K = �J ,

and, using (a) for K together with εK ≤ εJ , we get

(30)
∣∣aJ (p)

∣∣ � max
K∈Child(J )

Mp,K � 1.

Proof of (b) for J . It’s enough to establish

(31) max|J |≤p≤2m

∣∣aJ (p)
∣∣ � max

K∈Child(J )
M|K|−1,K � max

0≤p<|J |
∣∣aJ (p)

∣∣.
To prove the left-hand side of (31), note from (30) that |aJ (p)| �
maxK∈Child(J ) Mp,K . Moreover, for all p ≥ |K|,

Mp,K ≤ M|K|−1,K + max|K|≤�≤p

∣∣∣∣aK(�)

(
εK

εJ

)�∣∣∣∣ ≤ M|K|−1,K + ‖aK‖
(

εK

εJ

)|K|

and we have ‖aK‖ � max0≤�<|K| |aK(�)| by (b) so that, even for p < |K|,

(32) Mp,K �
(

1 + εK

εJ

)
M|K|−1,K � M|K|−1,K .



MINIMAX RATES FOR FINITE MIXTURE ESTIMATION 2865

Taking the supremum over K ∈ Child(J ) and over p give the left-hand side of (31).
To prove the right-hand side of (31), write aJ (p) = a

(1)
J (p) + a

(2)
J (p) with

a
(1)
J (p) = ∑

K∈Child(J )

|K|−1∑
�=0

aK(�)

(
εK

εJ

)� φ
p−�
K

(p − �)!1p≥�,

a
(2)
J (p) = ∑

K∈Child(J )

p∑
�=|K|

aK(�)

(
εK

εJ

)� φ
p−�
K

(p − �)!1p≥�.

Note that {φK}K∈Child(J ) is ε-separated since |φK − φK ′ | = |ϑK − ϑK ′ |/εJ � 1
for K �= K ′. Set λK,� = aK(�)(εK/εJ )� and apply Corollary D.2 of Heinrich and
Kahn (2018) to A({φK}K∈Child(J )) and � = (λK,�)K∈Child(J ),0≤�<|K|:

(33) max
0≤p<|J |

∣∣a(1)
J (p)

∣∣ � max
K∈Child(J )

0≤�<|K|

∣∣∣∣aK(�)

(
εK

εJ

)�∣∣∣∣ = max
K∈Child(J )

M|K|−1,K,

which is the right-hand side of (31) with a
(1)
J (·) instead of aJ (·).

We show now that the |a(2)
J (p)| are in fact negligible so that the right-hand side

of (31) will follows. Indeed, easy bounds on a
(2)
J (p) yield

max
0≤p<|J |

∣∣a(2)
J (p)

∣∣ � max
K∈Child(J )

[
‖aK‖

(
εK

εJ

)|K|]
,

whereas, as a by-product of (33), using ‖aK‖ � max0≤�<|K| |aK(�)|,

max
0≤p<|J |

∣∣a(1)
J (p)

∣∣ � max
K∈Child(J )

[
‖aK‖

(
εK

εJ

)|K|−1]
.

Proof of (c) for J . From the right-hand side of (31), and (a) for K , we deduce

(34) ‖aJ ‖ � max
K∈Child(J )

[
‖aK‖

(
εK

εJ

)|K|−1]
∨ max

K∈Child(J )
|�K |.

Here, we used M|K|−1,K ≥ M0,K = |�K |. Combining (34) with (c) for children K

gives

‖aJ ‖ � max
K∈Child(J )

max
F∈Desc(K)

[
|πF |

(
εF↑
εJ

)|K|−1]
∨ max

K∈Child(J )
|�K |.

Now, bound the exponent |K| by |J | to derive (c) for J .
Proof of (d) for J . Split (29) as R(x,J ) = R(1)(x, J ) + R(2)(x, J ) with

R(1)(x, J ) = ∑
K∈Child(J )

R(x,K),

R(2)(x, J ) = ε2m
J

∑
K∈Child(J )

M2m,Ko(1).



2866 P. HEINRICH AND J. KAHN

Note that (31) and (32) give maxK∈Child(J ) M2m,K � ‖aJ ‖; moreover,∥∥R(1)(·, J )
∥∥∞ � max

K∈Child(J )

[
o
(‖aK‖ε2m

K

)]
by assumption (d) for K , so that by triangle inequality,

∥∥R(·, J )
∥∥∞ � ε2m

J

{
max

K∈Child(J )

[
o

(
‖aK‖

(
εK

εJ

)2m)]
+ ‖aJ ‖o(1)

}
.

By (34), ‖aJ ‖ dominates ‖aK‖(εK/εJ )2m, and thus (d) follows for J . �

Concluding the proof of (23). We shall show that

(35)
∥∥F(·,Gn) − F

(·,G′
n

)∥∥∞ � max
J∈Desc(Jr )

|�J |ε2d0+1
J↑ .

Recall that F(x,Gn) − F(x,G′
n) = F(x,Jr) and distinguish two cases:

Case εJr → 0. All the ϑj,n’s converge to a single support point of G0 so that
m0 = 1. Apply directly Lemma 7.4 to the root node J := Jr :

F(x, J ) =
2m∑
p=0

aJ (p)ε
p
J F (p)(x,ϑJ ) + R(x,J ),

so that by the triangle’s inequality, Proposition 2.3 and (d) for J ,∥∥F(·, J )
∥∥∞ � max

0≤p≤2m

∣∣aJ (p)ε
p
J

∣∣ − o
(‖aJ ‖ε2m

J

)
.

By (b), the optimal p is at most |J | − 1, and since |J | ≤ 2m, we get∥∥F(·, J )
∥∥∞ � ‖aJ ‖ε|J |−1

J .

Now, the estimate (c) for J yields further∥∥F(·, J )
∥∥∞ � max

K∈Desc(J )
|�K |ε2m−1

K↑ .

But this estimate is nothing else than (35) since m0 = m − d0 is one.
Case εJr ≡ 1. This case means either there are more than one support point in

the limit G0 (m0 > 1) or there is only one support point for G0 but with possible
sequences θj,n converging to other points (vanishing weights �j,n may exist).

Here, all the ε
p
Jr

’s are of the same order (actually identical), so the scheme of
the case εJr → 0 does not work. It works however for the children J of Jr :

F(x,Jr) = ∑
J∈Child(Jr )

F (x, J )

= ∑
J∈Child(Jr )

2m∑
p=0

aJ (p)ε
p
J F (p)(x,ϑJ ) + ∑

J∈Child(Jr )

R(x, J ),
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so that by the triangle’s inequality, Proposition 2.3 and (d) for J ,∥∥F(·, Jr)
∥∥∞ � max

J∈Child(Jr )
max

0≤p≤2m

∣∣aJ (p)ε
p
J

∣∣ − max
J∈Child(Jr )

o
(‖aJ ‖ε2m

J

)
.

The optimal p is at most |J | − 1 by (b), so that ‖F(·, Jr)‖∞ dominates
maxJ∈Child(Jr )‖aJ ‖ε|J |−1

J , whereas for p = 0 we get that ‖F(·, Jr)‖∞ dominates
maxJ∈Child(Jr ) |�J |, by (a). Together with εJ↑ ≡ 1 and (c) for J , we obtain∥∥F(·, Jr)

∥∥∞ � max
J∈Child(Jr )

max
K∈Desc(J )∪{J } |�K |ε|J |−1

K↑ ,

which is nothing else than

(36)
∥∥F(·,Gn) − F

(·,G′
n

)∥∥∞ � max
J∈Desc(Jr )

|�J |ε|J |−1
J↑ .

Now, note that a descendant J of Jr of maximal cardinality must be a child of
Jr , call it J�. Since Gn and G′

n converge to G0 ∈ Gm0 , the root Jr has at least m0
children, each of them containing at least two points. Thus, we have

|Jr | ≥ |J�| + 2(m0 − 1).

Since |Jr | is at most 2m, we deduce further that |J�| ≤ 2m − 2m0 + 2. From (36),
we finally arrive at (35), exactly as in the case εJr → 0.

Now, recall that q = 2m − 2m0 + 1. Lemma 7.3 together with (35) ensure that,
whatever the case, εJr → 0 or εJr ≡ 1,∥∥F(·,Gn) − F

(·,G′
n

)∥∥∞ � Wq

(
Gn,G

′
n

)q
,

which is the stated contradiction (23).

7.2. From local to global: How (18) implies (19). We have to show that, under
Assumption B(2m), for r = 2m − 1,

L := inf
G�=G′∈G≤m

‖F(·,G) − F(·,G′)‖∞
Wr(G,G′)r

> 0.

From the definition of L, we can select mixing distributions Gn and G′
n in G≤m

such that ‖F(·,Gn) − F(·,G′
n)‖∞/Wr(Gn,G

′
n)

r converges to L. Since the set
G≤m × G≤m is compact, we can assume that (Gn,G

′
n) converges to some limit

(G∞,G′∞). Set w = Wr(G∞,G′∞).
Case w > 0. This case does not depend on (18). By identifiability, there is x0 ∈

R such that �0 := |F(x0,G∞) − F(x0,G
′∞)| > 0. Then, for all n,

(37)
‖F(·,Gn) − F(·,G′

n)‖∞
Wr(Gn,G′

n)
r

≥ |F(x0,Gn) − F(x0,G
′
n)|

Wr(Gn,G′
n)

r
.

The numerator of the right-hand side of (37) goes to �0 by the triangle’s inequality
and since the function θ �→ F(x0, θ) is Lipschitz w.r.t. the metric W1 and thus also
w.r.t. Wr . As a consequence, we get L ≥ �0/w

r > 0.
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Case w = 0. Consider (18) with G0 = G∞. For n larger than some n0, all
Wq(Gn,G0) and Wq(G

′
n,G0) are less than ε so that by (18),

inf
n≥n0

‖F(·,Gn) − F(·,G′
n)‖∞

Wq(Gn,G′
n)

q
> δ.

Since we have Wq(·, ·)qDiam(�)r−q ≥ Wr(·, ·)r for r ≥ q , we get

inf
n≥n0

‖F(·,Gn) − F(·,G′
n)‖∞

Wr(Gn,G′
n)

r
>

δ

Diam(�)r−q
,

which gives L ≥ δ/Diam(�)r−q in the limit and (19) in that case.

7.3. Completing the proof of Theorem 6.3: The easy cases (20) and (21). For
the proof of (20), we can simply make use of Theorem 3.1 of Ho and Nguyen
(2015). Alternatively, a detailed proof with our notations is available in the Sup-
plementary Material [Heinrich and Kahn (2018), B.2].

For the proof of (21), we can follow the proof of Chen (1995), Lemma 2, which
holds here, because the γj defined in his paper are all nonnegative, and at least one
is nonzero.
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SUPPLEMENTARY MATERIAL

Auxiliary results and technical details (DOI: 10.1214/17-AOS1641SUPP;
.pdf). This supplemental part gathers some proof details on some assertions given
in the paper.
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