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DESIGNS WITH BLOCKS OF SIZE TWO AND APPLICATIONS TO
MICROARRAY EXPERIMENTS

BY JANET GODOLPHIN

University of Surrey

Designs with blocks of size two have numerous applications. In exper-
imental situations where observation loss is common, it is important for a
design to be robust against breakdown. For designs with one treatment factor
and a single blocking factor, with blocks of size two, conditions for connec-
tivity and robustness are obtained using combinatorial arguments and results
from graph theory. Lower bounds are given for the breakdown number in
terms of design parameters. For designs with equal or near equal treatment
replication, the concepts of treatment and block partitions, and of linking
blocks, are used to obtain information on the number of blocks required to
guarantee various levels of robustness. The results provide guidance for con-
struction of designs with good robustness properties.

Robustness conditions are also established for row column designs in
which one of the blocking factors involves blocks of size two. Such designs
are particularly relevant for microarray experiments, where the high risk of
observation loss makes robustness important. Disconnectivity in row column
designs can be classified as three types. Techniques are given to assess design
robustness according to each type, leading to lower bounds for the breakdown
number. Guidance is given for robust design construction.

Cyclic designs and interwoven loop designs are shown to have good ro-
bustness properties.

1. Introduction. Designs incorporating a blocking factor with blocks of size
two have received considerable attention. Wu and Hamada (2009) provide a de-
scription of the special role of blocks of size two which arises, in part, due to oc-
currences of blocks of this size in nature. Developmental studies on twins are well
known and other relevant designs include those which have subjects as blocks,
with the experimental units comprising individual shoes, for example. Incomplete
block designs, with a single treatment factor and with treatments allocated to b

blocks each of two experimental units, are the simplest such designs and the most
commonly used; see, for example, Bagchi and Cheng (1993) and Yang and Draper
(2003).

If a second blocking factor is included with two levels, so that, of the two ex-
perimental units contained in a block of size two, exactly one unit corresponds to

Received June 2017; revised September 2017.
MSC2010 subject classifications. Primary 62K10; secondary 62K05.
Key words and phrases. Breakdown number, connectivity, incomplete block design, microarray

experiment, observation loss, robustness, row column design.

2775

http://www.imstat.org/aos/
https://doi.org/10.1214/17-AOS1638
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2776 J. GODOLPHIN

each level of the second blocking factor, then the design can be regarded as a row
column design and represented by a 2 × b array. Two-colour microarray experi-
ments provide an important application of such designs. The technical aspects of
microarray experiments are covered by Nguyen et al. (2002) and design issues are
discussed by Kerr and Churchill (2001). A thorough description of the use of row
column designs for microarray experiments is given by Bailey (2007). Other rele-
vant work includes Wit, Nobile and Khanin (2005), Gupta (2006) and Chai, Liao
and Tsai (2007).

The aim of an experiment in υ treatments, using an incomplete block design
or a row column design, is to determine whether the data collected depend on the
specific treatment applied and to obtain estimates of treatment contrasts. A design
for which these aims can be achieved, that is, for which all treatment contrasts are
estimable, is described as connected. Otherwise, the design is said to be discon-
nected.

In practice, observations may be lost during experimentation. Therefore, as part
of the process of planning an experiment, it is useful to take account, not only
of the properties of the planned design, but also those of potential eventual de-
signs that can result from a degree of observation loss. The extent of observation
loss considered will depend on knowledge of the particular experimental situation.
The loss of one observation from a block of size two is equivalent to loss of the
block, since no information is obtained from a single observation in a block. Thus,
for designs with blocks of size two, in any investigation of the effect of missing
observations, attention can be restricted to the loss of entire blocks.

Criteria for assessing the robustness of incomplete block designs against ob-
servation loss are introduced by Dey (1993), following the work of Ghosh
(1979, 1982). A design is robust against the loss of t blocks, according to Cri-
terion 1, if all treatment contrasts are estimable from any eventual design resulting
from the loss of t blocks. Baksalary and Tabis (1987), Bhaumik and Whittinghill
(1991) and Godolphin and Godolphin (2015) provide conditions for assessing the
robustness of incomplete block designs. The block breakdown number of a de-
sign is the smallest number of blocks that can be removed so there is at least one
eventual design from which not all treatment contrasts are estimable; see, for ex-
ample, Mahbub Latif, Bretz and Brunner (2009) and Bailey, Schiffl and Hilgers
(2013). For designs with blocks of size two, the terms block breakdown number
and breakdown number are interchangeable.

Little work has been done on the connectivity of designs involving more than
one blocking factor, and even less on the robustness of such designs against ob-
servation loss. Godolphin (2013) gives a theoretical consideration of connectivity
properties of designs with arbitrary numbers of treatment and blocking factors.
Disconnectivity in a row column design is characterised by the existence of lin-
ear relationships between columns of the design matrix in addition to those that
exist in connected designs. The forms of the additional relationships are covered
by Godolphin and Godolphin (2001). A method to assess the robustness of row
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column designs against the loss of a small number of observations is given by
Godolphin (2004).

In this work, general conditions on connectivity and Criterion 1 robustness are
developed, for incomplete block designs and row column designs with blocks of
size two, that do not depend on the planned design having properties such as bal-
ance. The aim is to provide conditions and construction strategies which ensure
that robustness properties of a design are appropriate for the anticipated level of
observation loss. The main value of the work is in facilitating design construction
that ensures a level of robustness, rather than in determining properties of indi-
vidual designs. For a given incomplete block design, with blocks of size two, the
approach of Godolphin and Warren (2014) can be used to obtain information on
Criterion 1 robustness.

For models with one blocking factor, cyclic designs are shown to be optimally
robust, subject to specified conditions. For two blocking factors, optimal robust-
ness of many of the interwoven loop designs is established.

The paper is structured as follows. In Sections 2–4, the focus is on incomplete
block designs with blocks of size two. The model and basic concepts are intro-
duced in Section 2, together with elementary results on connectivity and robust-
ness. In Section 3, representation of a design by its concurrence graph enables
use of results from graph theory to provide conditions for connectivity and lower
bounds for the breakdown number in terms of design parameters. Section 4 fo-
cuses on designs with treatment replications differing by one at most. An algorithm
which generates lower bounds for the number of blocks required to guarantee var-
ious levels of robustness is developed. Robustness of designs with the additional
complexity of a second blocking factor, that is, row-column designs with the block-
ing factors involving blocks of size two and size b, respectively, are covered in Sec-
tions 5–6. These designs are represented as digraphs, which parallels the graphical
representation of designs in Section 3. Results leading to lower bounds for the
breakdown number are derived and guidance is given for the construction of ro-
bust designs. It is demonstrated that minimum breakdown designs proposed in the
literature do not all have the robustness properties claimed. A brief investigation
of equireplicate designs suggests poor correlation between design robustness and
an optimality criterion. Most proofs are located in the Supplementary Material
[Godolphin (2017)].

2. Preliminaries. Let D denote an incomplete block design on υ treatments
applied to 2b experimental units arranged in b blocks of size two. Model 1 assumes
that the 2b × 1 observation vector, Y , is specified by

(2.1) E(Y ) = μ12b + X1β1 + X2β2,

where μ is a scalar constant, the n× 1 vector with all elements unity is denoted by
1n, and β1 and β2 are υ × 1 and b × 1 parameter vectors relating to treatments and
blocks, respectively. The design matrix for Model 1 is given by X = [12b X1 X2].
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Here, X1 and X2 are 2b × υ and 2b × b component matrices pertaining to treat-
ments and blocks. Each row of X1 has one element unity and υ − 1 zeros and
each row of X2 has one element unity and b − 1 zeros. This structure leads to the
relationship

(2.2) X11υ = X21b.

All designs are taken to be binary since no treatment information is gained from
a block if the same treatment is applied to both experimental units. Further, it is
assumed that no two blocks contain the same pair of treatments, so b ≤ υ(υ−1)/2.
Treatment replication numbers are given in decreasing order by r[1], . . . , r[υ], with

(2.3) υ − 1 ≥ r[1] ≥ r[2] ≥ · · · ≥ r[υ] ≥ 1.

The condition r[1] ≤ υ − 1 arises since the treatment pairs in blocks of D are dis-
tinct and, therefore, no treatment can occur in more than υ − 1 blocks. Optimality
criteria for D are functions of the nonzero eigenvalues of its information matrix,
which is

(2.4) C = XT
1

(
I − 1

2
X2X

T
2

)
X1;

see John and Williams (1995) for details.
If D is connected, all treatment contrasts are estimable. Conversely, if D is

disconnected, some treatment contrasts are not estimable. Two equivalent features
of treatment allocation to experimental units in a disconnected incomplete block
design characterise the disconnectivity. Description of the first feature uses the
concepts of partitions. A treatment partition, {V1,V2}, is an arrangement of the
treatments into disjoint nonempty sets, V1 and V2, of sizes u and υ −u with u ∈ U ,
where U = {2, . . . , [υ/2]} and [x] denotes the integer part of x. A block partition,
{B1,B2}, is a partitioning of the blocks into disjoint nonempty sets B1 and B2.
A disconnected design is characterised by the existence of consistent treatment
and block partitions so that all replicates of treatments in Vi occur in blocks in Bi

for i = 1,2. For a pairwise treatment contrast to be estimable, both treatments must
occur in the same Vi . In a connected design, there will be at least one linking block
for any treatment partition, that is, at least one block which contains a treatment
from each of V1 and V2. The notation �1(D) is used for the smallest number of
linking blocks over all treatment partitions in D. The notions of treatment and
block partitions and of linking blocks are used extensively in this work.

An alternative and equivalent characterisation of a disconnected design is the
existence of a relationship between the columns of X that is additional to and
independent of (2.2). Thus, for a disconnected design there is a relationship of the
form

(2.5) X1α1 = X2α2,
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where α1 is not a multiple of 1υ ; see Godolphin and Godolphin (2001) for further
details.

An eventual design realized after the loss of one or more blocks from D is
denoted by D# and the class of eventual designs resulting from the loss of every set
of p blocks is denoted by D(p). The block breakdown number, b0, is the smallest
number of blocks that needs to be lost before the possibility of an eventual design
from which not all treatment contrasts are estimable. Thus, a disconnected design
has b0 = 0 and a connected design has b0 > 0. For p < b0, every design in D(p)

is a connected design in υ treatments, but for p ≥ b0 there will be at least one
member of D(p) from which some treatment contrasts are inestimable. If some
treatment contrasts are not estimable in D# then one or both of the following must
be true: all replicates of a treatment are missing; at least one treatment partition
exists in D# for which there are no linking blocks. Thus, we have the following.

DEFINITION 2.1. The breakdown number of a design D is given by

(2.6) b0 = min
{
r[υ],�1(D)

}
.

Following Ghosh (1982), D is described as being maximally robust against the
unavailability of data and with respect to estimability of treatment contrasts if b0 =
r[υ].

Any treatment partition requires at least two treatments in each of V1 and V2.
It follows immediately that all designs with υ < 4 are connected and, further, that
the loss of any p < r[υ] blocks yields a connected eventual design in υ treatments.
Therefore, it is assumed throughout that υ ≥ 4.

Obtaining an upper bound for b0 is straightforward, even before allocation
of treatments to experimental units. Theorem 2.1 is given by Bailey, Schiffl and
Hilgers (2013).

THEOREM 2.1. For any design, b0 ≤ [2b/υ].

PROOF. At least one treatment has replication [2b/υ] or smaller. Thus, r[υ] ≤
[2b/υ] and the result follows immediately from (2.6). �

Theorem 2.1 leads to definitions of levels of design robustness.

DEFINITION 2.2. A design with b0 = [2b/υ] is described as having optimal
breakdown number.

DEFINITION 2.3. A design, D, with b0 = [2b/υ] and for which there are
exactly υ − η members of D([2b/υ]) from which not all treatment contrasts are
estimable, where η = 2b − [2b/υ]υ , is optimally robust.
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Designs with optimal breakdown number or optimal robustness have r[υ] =
[2b/υ]. Optimal breakdown number implies that �1(D) ≥ [2b/υ]. Optimal ro-
bustness implies that treatment replications differ at most by one, so r[1] ≤
[2b/υ] + 1, and that �1(D) > [2b/υ]. For an optimally robust design, each mem-
ber of D([2b/υ]) for which not all treatment contrasts are estimable is an eventual
design in which all replicates of a treatment have been lost. The properties of being
optimally robust, of having optimal breakdown number and of being maximally ro-
bust are hierarchical. Any optimally robust design has optimal breakdown number
and any design with optimal breakdown number is maximally robust.

For p < r[υ], an eventual design D# in D(p) has υ treatments and b−p blocks.
The design matrix, X# = [12(b−p) X1# X2#], is obtained by deleting 2p rows of
X and p columns of X2. As with the planned design, D# is disconnected iff there
is a relationship between the columns of X# of the form X1#α1 = X2#α2, where α1

is not a multiple of 1υ . This is equivalent to the existence of consistent treatment
and block partitions in D#.

The first condition for connectivity depends only on υ and b.

THEOREM 2.2. A sufficient condition for D to be connected is given by

(2.7) b >

(
υ − 2

2

)
+ 1.

All designs in a class with given υ and b are connected iff Theorem 2.2 is
satisfied. For a design, D, in a class satisfying Theorem 2.2, there are at least
b − (υ − 2)(υ − 3)/2 − 1 linking blocks for any treatment partition. This gives a
lower bound for �1(D).

COROLLARY 2.1. Let D be such that b > (υ − 2)(υ − 3)/2 + 1. Then

�1(D) ≥ b − (υ − 2)(υ − 3)/2 − 1.

EXAMPLE 1. Design D1 is given by

D1 = 1 1 1 1 2 2 2 3 3 4 5 5 6
2 4 5 7 3 5 7 4 6 6 6 7 7

where, as with all designs in this work, columns correspond to blocks of size two.
For designs of Model 1, the order of the blocks is immaterial, as is the order of
treatments within a block. Design D1 is in the class of designs with υ = 7 and
b = 13. By Theorem 2.2, all these designs are connected and, by Corollary 2.1, all
have �1(D1) ≥ 2. Since D1 has r[7] = 3, by (2.6) b0 ≥ 2. Note that not all designs
in the class have b0 ≥ 2: any design with r[7] = 1 will have b0 = 1.
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FIG. 1. Graphical representation of D1.

3. Robustness conditions from graph theory. A design of Model 1 can be
represented by a graph, GD , termed the concurrence graph of D, as in Bailey and
Cameron (2009). Treatments and blocks of D correspond to vertices and edges in
GD . Thus, a treatment with replication r[i] in D corresponds to a vertex of degree
r[i] in GD . The concurrence graph of D1 is given in Figure 1. In this section, results
from graph theory yield sufficient conditions for connectivity and lower bounds
for b0 in terms of b,υ and r[i]. Graph theory terminology used is consistent with
Bondy and Murty (2008).

The concurrence graph of a Model 1 design will be simple and finite, and only
graphs with these properties are considered. Note that a design is connected iff its
concurrence graph is connected. A connected graph with υ vertices must contain
at least υ − 1 edges: a connected graph with exactly υ − 1 edges has no cycles and
is termed a tree. Thus, every tree in υ vertices corresponds to a connected design
in υ − 1 blocks. However, such designs necessarily contain at least two treatments
with replication one and so have poor robustness.

In general, a graph G is k-edge-connected if the removal of any set of fewer
than k edges gives a connected graph. Thus, every connected graph is 1-edge-
connected. The maximum value of k for which G is k-edge-connected is the edge
connectivity, κ ′(G). Note that κ ′(G) cannot exceed the minimum vertex degree,
which is r[υ] for GD . It follows that a design has b0 = κ ′(GD). A sufficient condi-
tion for G to be k-edge-connected and, therefore, for the corresponding design to
have b0 ≥ k, is given by Theorem 4.1 of Bauer et al. (2009). The result is repro-
duced here without proof, first as a result in graph theory as given by Bauer et al.
(2009), and then as the design equivalent.

THEOREM 3.1 [Bauer et al. (2009)]. Let the graph G have υ vertices, with
vertex degrees r[1], . . . , r[υ] of (2.3), and let k ∈ {1, . . . , r[υ]}. If r[υ+k−i] ≤ i − 1
and r[υ+1−i] ≤ i + k − 2 implies r[1] ≥ υ + k − 1 − i, for i = k + 1, . . . , [υ/2] then
κ ′(G) ≥ k.

THEOREM 3.2. Let the treatment replicates of design D be such that
r[υ+k−i] ≤ i − 1 and r[υ+1−i] ≤ i + k − 2 implies r[1] ≥ υ + k − 1 − i, for
i = k + 1, . . . , [υ/2], where k ∈ {1, . . . , r[υ]}. Then b0 ≥ k.
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Theorem 3.2 uses information on the treatment replicates not used in Theo-
rem 2.2 and can therefore give improved lower bounds for b0. This is demonstrated
by returning to Example 1:

EXAMPLE 1 (Revisited). Design D1 has r[j ] = 4 for j = 1, . . . ,5 and r[6] =
r[7] = 3. Use of Theorem 3.2 with k = 3 establishes that b0 = 3.

Theorem 3.2 can be used to find a lower bound for b0 for all designs with the
same set of treatment replications.

EXAMPLE 2. Consider the design class with v = 9 and treatment replications:
r[1] = 6, r[2] = · · · = r[7] = 4, r[8] = r[9] = 3. Note that, with b = 18, Theorem 2.2
is not satisfied. By Theorem 3.2 with k = 2, all designs in the class have b0 ≥
2. The condition of Theorem 3.2 is not satisfied for k = 3, and so it cannot be
concluded that all designs have b0 = 3.

The bound cannot be improved since some designs in the class do have b0 = 2.
Such a design is D2, which is given below and which has concurrence graph in
Figure 2. Other designs in the class, such as D3, also below and with concurrence
graph in Figure 3, are maximally robust with b0 = 3.

D2 = 1 1 1 1 1 1 2 2 2 3 3 4 6 6 6 7 7 8
2 3 4 5 6 7 3 4 5 4 5 5 7 8 9 8 9 9

,

D3 = 1 1 1 1 1 1 2 2 2 3 3 4 4 4 5 5 6 6
2 3 4 5 6 8 3 5 7 7 9 5 6 8 7 9 8 9

.

The design in D2(2) resulting from the loss of the fifth and sixth blocks is
disconnected. From Figure 2, it is easily seen that removal of the edges in GD2
corresponding to these blocks gives rise to a disconnected graph, demonstrating
that κ ′(GD2) = 2. It is less easy to see, but there is no pair of edges in GD3 whose
removal gives rise to a disconnected graph. The removal of the edges incident to
any of the vertices of degree three does, of course, yield a disconnected graph
demonstrating that κ ′(GD3) = 3.

2

1

7

6

5

4

3

8

9

FIG. 2. GD2 of Example 2.
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FIG. 3. GD3 of Example 2.

Straightforward sufficient conditions for design connectivity are given as corol-
laries to Theorem 3.2. The first, obtained through setting k = 1, was originally
given in graph equivalent form by Bondy (1969).

COROLLARY 3.1. If r[υ+1−i] ≤ i −1 implies r[1] ≥ υ − i, for i = 2, . . . , [υ/2]
then D is connected.

COROLLARY 3.2. If r[1] ≥ υ − 2, then D is connected.

Use of k = r[υ] in Theorem 3.2 provides a sufficient condition for D to have
b0 = r[υ] and, therefore, to be maximally robust. This result is given by Chartrand
(1966) in graph equivalent form.

COROLLARY 3.3. If r[υ] > [υ/2] − 1, then D is maximally robust.

EXAMPLE 3. Consider the class of designs with υ = 9 and r[υ] = 4. By Corol-
lary 3.3, every design in the class is maximally robust.

A graph is described as being super-edge-connected if κ ′(G) = r[υ] and the
number of sets of r[υ] edges whose removal results in a disconnected graph is the
same as the number of vertices with degree r[υ]. Such graphs correspond to designs
with �1(D) > r[υ]. Kel’mans (1972) gives a sufficient condition for a graph to be
super-edge-connected.

THEOREM 3.3. Let G be a graph on υ vertices, with vertex degrees given by
r[1], . . . , r[υ] of (2.3). If r[υ] ≥ (υ + 1)/2, then G is super-edge-connected.

Theorem 3.3 and Definition 2.3 lead to a condition for optimal robustness.

COROLLARY 3.4. Let D have r[υ] = [2b/υ] ≥ (υ + 1)/2 and r[1] ≤ [2b/υ]+
1. Then D is optimally robust.
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EXAMPLE 4. Consider design classes with υ = 10 and treatment replicates:

(i) r[1] = r[2] = 7, r[3] = · · · = r[10] = 6;
(ii) r[1] = r[2] = 6, r[3] = · · · = r[10] = 5.

Designs in class (i) are optimally robust by Corollary 3.4. Thus, for any design, D,
in the class, b0 = 6 and there are exactly eight members of D(6) from which not all
treatment contrasts are estimable. Each of these is formed by the loss of all repli-
cates of a treatment with replication six. Designs in class (ii) are not established as
optimally robust by Corollary 3.4, but are maximally robust by Corollary 3.3 and
have optimal breakdown number, since r[10] = [2b/υ].

4. Designs with equal, or near equal, replication. In many situations, there
is no practical or economic advantage in replicating some treatments more than
others. It should be noted that for small b, many optimal designs with block size
two do not exhibit the equal or near equal treatment replication typically observed
in optimal incomplete block designs. For example, for design classes with υ > 8
and b = υ + 1, D- and E-optimal designs have r[υ] = 1. By contrast, A-optimal
designs do have treatments replicated as equally as possible. See Morgan (2015)
for a summary of relevant work on optimality. However, amongst equireplicate
designs with block size two and replication at least three, designs which perform
well with regards to the A-criterion tend to be the same as those that perform well
with regards to the D-criterion. Further, by investigation of equireplicate connected
designs with υ = 8 and b = 12, Bailey (2007) demonstrates that the designs with
b0 = 3 tend to have better A- and D- criteria measures than those with b0 = 2,
which in turn generally have better A- and D- criteria measures than those with
b0 = 1. Results from Bagchi and Cheng (1993) indicate that in many classes with
specific υ and b, where υ|2b, equireplicate designs are E-optimal. Thus, optimality
considerations provide some motivation for giving particular attention to designs
in which treatments are replicated as equally as possible. Also, of course, such de-
signs maximise r[υ] and, therefore, have the potential for high breakdown number.

In this section, designs have equal, or near equal, replication. There are υ − η

treatments with replication r = [2b/υ] and η treatments with replication r + 1,
where η = 2b − [2b/υ]υ . With this additional constraint, the properties of being
maximally robust and of having optimal breakdown number coincide.

4.1. Conditions depending only on the number of blocks. Conditions on the
number of blocks that guarantee connectivity, optimal breakdown number and op-
timal robustness, are now derived.

LEMMA 4.1. A sufficient condition for D to be connected is given by

b ≥ 2(υ − 1)2 + 7 + (−1)υ+1

8
.(4.1)
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The bound of (4.1) cannot be improved on since disconnected designs exist with
b = {2(υ − 1)2 − 1 + (−1)υ+1}/8. To demonstrate this, υ even and odd are dealt
with separately. Suppose υ is even and b = υ(υ − 2)/4. Then each treatment has
replication (υ −2)/2. Treatments can be allocated to blocks so there are consistent
treatment and block partitions with u = υ/2. This occurs if B1 contains υ(υ −2)/8
blocks comprising all pairs of the υ/2 treatments in V1 and B2 similarly contains
υ(υ − 2)/8 blocks comprising all pairs of the υ/2 treatments in V2. Such a design
is clearly disconnected. Now suppose υ is odd and b = (υ − 1)2/4. The design
has r = (υ − 3)/2 and η = υ − r − 1. Thus, (υ − 1)/2 treatments have replication
(υ −3)/2 and the remaining (υ +1)/2 treatments each have replication (υ −1)/2.
Arrangement of all pairs of the the (υ −1)/2 lower replicated treatments into (υ −
1)(υ − 3)/8 blocks and of all pairs of the (υ + 1)/2 higher replicated treatments
into (υ − 1)(υ + 1)/8 blocks gives a disconnected design.

EXAMPLE 5. Designs with υ = 9 and b > 16 are connected by Lemma 4.1.

An algorithm is now developed to determine values of b required to guarantee
optimal breakdown number and optimal robustness for a design in υ treatments.
The algorithm evaluates the smallest number of linking blocks for treatment parti-
tions with every possible cardinality for V1. As will be demonstrated, the bounds
for b0 achieved improve on those obtained from Theorem 3.2 in many cases. A pre-
liminary result is needed.

LEMMA 4.2. Let D satisfy the condition of Lemma 4.1. A lower bound for the
number of linking blocks for a treatment partition such that V1 has cardinality u

is given by

(4.2) bu = min
θ∈	u

{
max

{
u(r − u + 1) + θ, (υ − u)(r − υ + u + 1) + η − θ

}}
,

where 	u = {max{0, η − υ + u}, . . . ,min{u,η}}.

THEOREM 4.1. Let D satisfy the condition of Lemma 4.1. Define ω1 =
minu∈U {bu}. Then �1(D) ≥ ω1.

PROOF. For a treatment partition such that V1 has cardinality u, Lemma 4.2
establishes that bu is a lower bound for the number of linking blocks between V1
and V2. Thus, ω1 = minu∈U {bu} is a lower bound for the number of linking blocks
for any treatment partition and the result is established. �

The number of blocks required to guarantee optimal breakdown number and
optimal robustness can be identified from Theorem 4.1. Designs with ω1 ≥ r have
optimal breakdown number and those with ω1 > r have optimal robustness. Ta-
ble 1 gives values of ω1 and of b† = min{r,ω1} for υ = 4, . . . ,15. It follows that
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TABLE 1
Values of b† = min{r,ω1} for 4 ≤ υ ≤ 15. The smallest numbers of blocks to guarantee optimal

breakdown number and optimal robustness are labelled ob and or , respectively

υ b r ω1 b† υ b r ω1 b† υ b r ω1 b†

4 3 1 1 1 ob 9 20 4 4 4 13 38 5 4 4
4 4 2 2 2 9 21 4 5 4 or 13 39 6 6 6 ob
4 5 2 3 2 or 10 21 4 1 1 13 40 6 6 6
5 5 2 2 2 ob 10 22 4 2 2 13 41 6 6 6
5 6 2 2 2 10 23 4 3 3 13 42 6 6 6
5 7 2 3 2 or 10 24 4 4 4 ob 13 43 6 7 6 or
6 7 2 1 1 10 25 5 5 5 14 43 6 1 1
6 8 2 2 2 ob 10 26 5 6 5 or 14 44 6 2 2
6 9 3 3 3 11 26 4 2 2 14 45 6 3 3
6 10 3 4 3 or 11 27 4 4 4 ob 14 46 6 4 4
7 10 2 2 2 ob 11 28 5 5 5 14 47 6 5 5
7 11 3 3 3 11 29 5 5 5 14 48 6 6 6 ob
7 12 3 3 3 11 30 5 5 5 14 49 7 7 7
7 13 3 4 3 or 11 31 5 6 5 or 14 50 7 8 7 or
8 13 3 1 1 12 31 5 1 1 15 50 6 2 2
8 14 3 2 2 12 32 5 2 2 15 51 6 4 4
8 15 3 3 3 ob 12 33 5 3 3 15 52 6 6 6 ob
8 16 4 4 4 12 34 5 4 4 15 53 7 7 7
8 17 4 5 4 or 12 35 5 5 5 ob 15 54 7 7 7
9 17 3 2 2 12 36 6 6 6 15 55 7 7 7
9 18 4 4 4 ob 12 37 6 7 6 or 15 56 7 7 7
9 19 4 4 4 13 37 5 2 2 15 57 7 8 7 or

b† ≤ min{r,�1(D)} ≤ b0. For each value of υ , the number of blocks ranges from
that required to guarantee connectivity by Lemma 4.1, to the minimum to ensure
optimal robustness. For example, for υ = 10, any design with at least 21 blocks
is connected, and the numbers of blocks to guarantee optimal breakdown number
and optimal robustness are 24 and 26, respectively.

In many cases, lower bounds for b0 achieved by Theorem 4.1 improve on those
of Section 3. For example, for υ = 10 and b = 24, Theorem 4.1 gives ω1 ≥ 4 = r ,
showing that all such designs have optimal breakdown number b0 = 4. With the
same treatment replications, Theorem 3.2 only establishes that b0 ≥ 3. Likewise,
for υ = 10 and b = 26, Theorem 4.1 gives ω1 ≥ 6 > r and all the designs are
optimally robust. This is not established from Corollary 3.4, as seen from Exam-
ple 4(ii).

For large υ the number of blocks required by Theorem 4.1 to guarantee desir-
able robustness properties might exceed resources. If this is the case and if can-
didate designs are available, robustness properties can be determined using the
approach of Godolphin and Warren (2014). This essentially involves scanning po-
tential designs to identify linking blocks for each treatment partition. Alternatively,
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a cyclic construction, with all treatments having even replication r ≥ 4, yields op-
timally robust designs.

4.2. Cyclic designs. A class of cyclic designs with good robustness properties
is now described.

DEFINITION 4.1. Let δ < υ/2. A set of υ blocks containing treatment pairs i

and i + δ, for i = 1, . . . , υ , where i + δ ≡ i + δ − υ if i + δ > υ is termed a loop
with jump δ.

The blocks of a loop for which δ and υ are coprime form a cycle which in-
cludes all υ treatments. Such a loop is a connected design in υ blocks and has
b0 = 2. Note that the term loop is sometimes used to specify a set of υ blocks in a
row-column design; see, for example, Kerr and Churchill (2001), Wit, Nobile and
Khanin (2005). Such arrangements will be termed directed loops in this work and
are covered in Section 6.2.

THEOREM 4.2. Let D comprise p ≥ 2 loops L1, . . . ,Lp with distinct jumps
δ1, . . . , δp , such that δ1, . . . , δq are coprime to υ for some q with 1 ≤ q ≤ p. Then
�1(D) ≥ 2p + q and D is optimally robust.

EXAMPLE 6. Consider the two loop design for υ = 10 with δ1 = 1 and δ2 = 3:

D4 = 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 1 4 5 6 7 8 9 10 1 2 3

.

Design D4 has p = q = 2. By Theorem 4.2, �1(D4) ≥ 6 and D4 is optimally
robust.

5. A second blocking factor and applications to microarray experiments.
Detailed descriptions of two-colour microarray experiments are given by Kerr and
Churchill (2001) and Nguyen et al. (2002). To summarise, and to relate notation
used in this work to microarray experiments: the treatments comprise υ biological
samples which are applied to b microarray slides, with two samples applied to each
slide. This justifies modelling each slide as a block of size two. One sample on each
slide is labelled with a red fluorescent dye and the other with a green fluorescent
dye. The two dye aspect of the experiment is accommodated by the inclusion of a
second blocking factor in the model, and is the motivation for treating microarray
experiments as row column designs, as in Bailey (2007). Such a design can be
represented by a 2 × b array, with columns corresponding to the blocks of size
2 and rows to the additional blocking factor comprising two blocks of size b. As
an alternative and useful representation, which parallels the use of concurrence
graphs in Section 3, the designs can be depicted as digraphs on υ vertices: a block
with treatments v1 and v2 in rows 1 and 2 corresponds to an arc, that is, directed
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edge, from vertex v1 to vertex v2. Kerr and Churchill (2001), Wit, Nobile and
Khanin (2005), Mahbub Latif, Bretz and Brunner (2009), amongst others, include
dye colour in graphical portrayals of microarray designs in this way.

In this section and in Section 6, row column designs are investigated with em-
phasis on properties of eventual designs resulting from the loss of blocks of size
two, and on the construction of designs which are robust to observation loss.
This is particularly relevant for microarray experiments since, as described by
Mahbub Latif, Bretz and Brunner (2009), it is common for these to experience
observations loss.

5.1. Preliminaries for row-column designs. Model 1 is amended to Model 2
which incorporates a two level blocking factor, that is, dye colour for microarray
experiments. For Model 2, the observation vector Y is given by

(5.1) E(Y ) = μ12b + X1β1 + X2β2 + X3β3,

where β3 is the 2 × 1 parameter vector relating to the second blocking factor and
X3 is the corresponding 2b × 2 component of the design matrix, with each row
containing one element unity and one element zero. Other terms are as in (2.1).
As with Model 1 designs, no block of size two contains two replicates of the same
treatment, and no two blocks contain the same pair of treatments. The design ma-
trix is X = [12b X1 X2 X3] and the information matrix is

(5.2) C = XT
1

(
I − 1

2
X2X

T
2 − 1

b
X3X

T
3 + 1

2b
12b1T

2b

)
X1.

For such designs, (2.2) holds and there is a parallel relationship between
columns of X1 and X3:

(5.3) X11υ = X312.

In Sections 5–6, D is assumed to be a design following Model 2. A design is
disconnected iff there is a relationship between the columns of X1 and the columns
of the blocking component matrices, which is independent of (2.2) and (5.3). That
is, there is a relationship of the form

(5.4) X1α1 = X2α2 + X3α3,

where α1 is not a multiple of 1υ . If such a relationship exists, not all treatment
contrasts will be estimable and the aims of the experiment will not be achieved.
Unlike the situation with Model 1, a disconnected Model 2 design is not necessar-
ily characterised by the existence of a consistent partition between treatments and
a single blocking factor. Relationships covered by (5.4) can be categorised as three
types and these are now described briefly; see Godolphin and Godolphin (2001)
for a more thorough treatment.

Type 1: α2 is not a multiple of 1b, α3 is a multiple of 12
In this case, the additional relationship is identical in nature to that observed in a
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disconnected design of Model 1 and can be given as (2.5). The disconnectivity is
characterised by the existence of a treatment partition which is consistent with a
partition of the blocks of size two.

Type 2: α2 is a multiple of 1b, α3 is not a multiple of 12
The additional relationship can be expressed as

X1α1 = X3α3.

Here, the treatments are partitioned, with all replicates of a subset of the treatments
contained in one row and all replicates of the remaining treatments in the other row.

Type 3: α2 is not a multiple of 1b and α3 is not a multiple of 12
Such a relationship is more complex than types 1 and 2 and cannot be sim-
plified from (5.4). It is characterised by a partition of the treatments into sets
W1,W2, . . . ,Wz, where 3 ≤ z ≤ υ , which is consistent with a joint partition of
the columns into sets B1,B2, . . . ,Bz−1, and of the rows, such that, treatments in
row j of blocks in Bi are from Wi+j−1 for i = 1, . . . , z and j = 1,2. After possible
rearrangement of the blocks of size two, but not of the position of treatments within
blocks, the relationship is represented diagramatically as a staircase structure, with
treatments from the same Wi lying in a North East to South West diagonal:

(5.5)
B1 B2 B3 · · · Bz−1

row 1 W1 W2 W3 · · · Wz−1
row 2 W2 W3 W4 · · · Wz

For a pairwise treatment contrast to be estimable, both treatments must be in the
same set.

As with Model 1 designs, D(p) denotes the class of eventual designs in which p

blocks of size two are lost from D, and the breakdown number, b0, is the smallest
number of blocks of size two that need to be lost before the possibility of an even-
tual design from which not all treatment contrasts are estimable. In this situation,
all replicates of one or more treatments will have been lost or the eventual design
will be disconnected. The notation �1(D), introduced in Section 2, is extended for
Model 2 designs, so that �i(D) is the smallest number of blocks of size two that
need to be lost before there is at least one D# in which there is a relationship of
type i, for i ∈ {1,2,3}. Thus, we have the following.

DEFINITION 5.1. The breakdown number of D is given by

(5.6) b0 = min
{
r[υ],�1(D),�2(D),�3(D)

}
.

The main aim is to develop a construction approach to ensure that b0 is suffi-
ciently large that breakdown will not occur, given anticipated levels of observation
loss. A secondary aim is the determination of a lower bound for b0 for a given
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design. For p < r[υ], an eventual design, D#, in D(p) follows Model 2 and has
design matrix X# = [12(b−p) X1# X2# X3#], obtained by removal of 2p rows
from X and p columns from X2. All treatment contrasts are estimable in D# un-
less a relationship of type i exists for at least one i ∈ {1,2,3}. Determining b0 for a
specific design is technically straightforward, since a Model 2 design is connected
iff the rank of the design matrix is υ + b. However, even for moderate values of
b and r[υ], the process of checking the design matrix rank for every member of
D(p), for p < r[υ], can be computationally demanding due to the large number
of eventual designs. Thus, derivation of lower bounds for each �i(D) in terms of
design properties is useful towards both aims. As with Model 1 designs, Model
2 designs are described as having optimal breakdown number or being optimally
robust with regards to robustness in the event of the loss of blocks of size two.

5.2. Robustness of row-column designs. It is stressed that consideration of
�i(D) for all relationship types is important to avoid the use of designs with
smaller b0 and, therefore, greater vulnerability to breakdown, than anticipated. In
particular, the possibility of a type 3 relationship for members of D(p) for small
values of p should not be overlooked. This is illustrated by reference to Tsai and
Liao (2013) who investigate designs with regards to robustness against loss of
blocks of size two. For given υ and b, all designs following Model 2 are identi-
fied. For each design, a computationally intensive procedure seeks to determine
M{D}p , the number of members of D(p) for which not all treatment contrasts are
estimable, for 1 ≤ p ≤ b − υ + 1. For two designs, DI and DII say, DI is said to
have less breakdown than DII if there is an integer q such that M{DI}j = M{DII}j
for j < q and M{DI}q < M{DII}q . If no design has less breakdown than DI, then
DI is a minimum breakdown design (MBD). Tsai and Liao describe the proce-
dure as computationally infeasible for large b or υ and only generate results for
4 ≤ υ ≤ 9. However, the process of design assessment appears to overlook type 3
relationships, as the following example shows.

EXAMPLE 7.

DTL = row 1 1 1 7 2 2 7 5 6 3 5 6 4
row 2 5 6 1 5 6 2 3 3 7 4 4 7

Design DTL has r[1] = r[2] = r[3] = 4, r[4] = · · · = r[7] = 3. A digraph represen-
tation of DTL is given in Figure 4. Tsai and Liao (2013) report DTL as a MBD
with b0 = 3 and M{DTL}3 = 4, suggesting that DTL is optimally robust. This
would be correct if DTL was a Model 1 design. However, when viewed as a
row column design according to Model 2, DTL is far more vulnerable to ob-
servation loss. In fact, the correct value of M{DTL}3 is 28 and, of even more
concern, M{DTL}2 = 2 with two members of DTL(2) being disconnected via
type 3 relationships. To demonstrate this, consider the loss of columns 9 and 12.
The treatments and remaining blocks can be partitioned as W1 = {treatment 7},
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FIG. 4. The digraph corresponding to DTL of Example 7.

W2 = {treatments 1,2}, W3 = {treatments 5,6}, W4 = {treatments 3,4} and B1 =
{blocks 3,6}, B2 = {blocks 1,2,4,5}, B3 = {blocks 7,8,10,11}. A consequence
of the treatment groupings of the type 3 relationship is that only three of the 21
pairwise treatment contrasts are estimable. Arranging the ten remaining columns
according to the joint partition illustrates the type 3 relationship:

B1 B2 B3

row 1 7 7 1 1 2 2 5 6 5 6
row 2 1 2 5 6 5 6 3 3 4 4

Thus, �3(DTL) ≤ 2 and, from (5.6), b0 ≤ 2.
Attention is now given to the general problem of obtaining lower bounds for

each �i(D) and in gaining an understanding of design features which promote
larger �i(D) values.

�1(D). Results of Sections 3–4 can be used to determine lower bounds for
�1(D), for a design of Model 2, and to provide information on design properties
to guarantee desired levels of robustness against type 1 relationships. Alternatively,
for a given candidate design, the algorithm of Godolphin and Warren (2014) can
identify min{r[υ],�1(D)}.

�2(D). A relationship of type 2 exists in D or D# iff rows 1 and 2 have no
common treatments. Let ri,j be the number of replicates of treatment i in row j of
D. Then at least min{ri,1, ri,2} of these need to be lost before the possibility of a
type 2 relationship. This leads to a lower bound for �2(D).

THEOREM 5.1. For design D, let ω2 = �∑υ
i=1 min{ri,1, ri,2}/2�, where �·�

denotes the ceiling. Then �2(D) ≥ ω2.

When constructing a design, monitoring the distribution of treatment replicates
between the rows will ensure that ω2 > r[υ], so that b0 is not limited by type 2
relationships. For microarray experiments, this strategy is consistent with recom-
mendations of Kerr and Churchill (2001) and Bailey (2007), amongst others, who
advocate allocating dye colour as equally as possible for each treatment.
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Work to obtain a lower bound for �3(D), which follows, also provides an alter-
native bound for �2(D).

�3(D). Approaches to determine a lower bound for �3(D) for a specific de-
sign, and to construct designs which are not vulnerable to type 3 relationships, use
concepts similar to those of Butz (1982).

DEFINITION 5.2. Let v1, . . . , vn be a subset of n ≥ 3 treatments and let
b1, . . . , bn be a subset of n blocks of size two from D, such that the treatments
in bi are vi and vi+1, for i = 1, . . . , n − 1, and those in bn are v1 and vn. Such an
arrangement is termed an n-circuit, or circuit of length n and denoted 〈v1, . . . , vn〉.

Design DTL of Example 7 contains many 4-circuits and 6-circuits. For exam-
ple, columns 2, 3, 8 and 9 comprise the 4-circuit, 〈3,7,1,6〉. Another 4-circuit,
〈2,5,3,6〉, is formed from columns 4, 5, 7 and 8. These circuits can be seen in
Figure 4 and are also depicted as

3 7 1 6
↓ ↗ ↓ ↗ ↓ ↗ ↓
7 1 6 3

〈3,7,1,6〉

2 5 6 2
↓ ↗ ↓ ↑ ↘ ↑
5 3 → 3 6

〈2,5,3,6〉
DEFINITION 5.3. The sum of an n-circuit is S = ∑n

i=1 si , where s1 = 1 and,
for i = 2, . . . , n, si = si−1 if treatments common to blocks i and i − 1 are in dif-
ferent rows, and si = −si−1 otherwise.

DEFINITION 5.4. An n-circuit with S = n is termed an n-cycle.

For the two circuits of DTL already referred to: 〈3,7,1,6〉 has S = 4 and is a
4-cycle; 〈2,5,3,6〉 has S = 0. Note that the sign of a circuit sum relates to the
direction of travel around the circuit and can depend on the initial block. For ex-
ample, the following 4-circuits are equivalent, being formed from the same set of
four blocks, but have sums S = 2 and S = −2, respectively:

1 3 → 3 4
↓ ↑ ↓ ↗ ↓
2 → 2 4 1

S = 2

3 1 4 3
↓ ↑ ↘ ↑ ↘ ↑
2 → 2 1 4

S = −2

The blocks of the circuits are displayed in Figure 5. Traversing the circuit in
a clockwise direction gives S = 2 and in an anti-clockwise direction gives S =
−2. In general, traversing an arc in the direction of the arc contributes +1 to S

and traversing in the opposite direction contributes −1. The initial block fixes the
direction of travel. Note that circuits of odd length cannot have S = 0.

Lower bounds for �2(D) and �3(D) are now obtained in terms of disjoint
circuits in D.
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FIG. 5. A 4-circuit.

THEOREM 5.2. Let a subset of the blocks of D be allocated to ω3 disjoint
sets, for j = 1, . . . ,ω3, with blocks from the j th set forming a circuit with nonzero
sum, Si . Then �3(D) ≥ ω3 and �2(D) ≥ ω2 ≥ ∑ω3

i=1 |Si |/2.

When the circuits of Theorem 5.2 are all cycles, the bound for �2(D) from
Theorem 5.2 is maximised.

COROLLARY 5.1. Let the nonzero sum circuits of Theorem 5.2 be cycles of
lengths n1, . . . , nω3 . Then �2(D) ≥ ω2 ≥ ∑ω3

i=1 ni/2.

The use of disjoint cycles to provide lower bounds for �2(D) and �3(D) is
illustrated by returning to Example 7.

EXAMPLE 7 (Revisited). A subset of the blocks of DTL can be arranged into
two disjoint cycles in various ways. For example, the twelve blocks can be ar-
ranged into two 4-cycles, each with S = 4, namely 〈3,7,1,6〉 and 〈4,7,2,5〉, and
four remaining blocks:

DTL =
3 7 1 6
↓ ↗ ↓ ↗ ↓ ↗ ↓
7 1 6 3

4 7 2 5
↓ ↗ ↓ ↗ ↓ ↗ ↓
7 2 5 4

1 2 5 6

5 6 3 4
.

With r[1] = 4 and r[7] = 3, the results of Section 4 apply: from Table 1, �1(DTL) ≥
3. Theorems 5.1 and 5.2 give �2(DTL) ≥ 4 and �3(DTL) ≥ ω3 = 2. Thus, b0 ≥ 2
by (5.6). Removal of the blocks containing treatment pairs 3 and 7, and 4 and
7 destroys both cycles and gives the disconnected member of DTL(2) displayed
earlier. Removal of the blocks containing treatment pairs 1 and 7, and 2 and 7 gives
the other disconnected member of DTL(2). Breaking both cycles by the removal of
other pairs of blocks does not lead to a D# containing a type 3 relationship since, in
each case, the eventual design still contains at least one circuit with nonzero sum.

Using the understanding gained of design features that promote robustness
against each relationship type, an alternative to DTL is proposed, with the same
treatment replicates, but with improved robustness properties.
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FIG. 6. The digraph corresponding to DTLI of Example 8.

EXAMPLE 8. The treatment replicates of Example 7 are arranged as three
disjoint cycles and two additional blocks, to give DTLI:

DTLI =
1 5 3
↓ ↗ ↓ ↗ ↓
5 3 1

2 6 7
↓ ↗ ↓ ↗ ↓
6 7 2

4 6 5 7
↓ ↗ ↓ ↗ ↓ ↗ ↓
6 5 7 4

1 2

4 3

As with DTL, Table 1 gives ω1 = 3, so �1(DTLI) ≥ 3. By Theorems 5.1 and
5.2, �2(DTLI) ≥ 5 and �3(DTLI) ≥ 3. Thus, b0 = 3 by (5.6), which establishes
that DTLI has optimal breakdown number. Further, a check involving the removal
of each set of three blocks indicates that DTLI is optimally robust. The digraph
representing DTLI is given in Figure 6.

5.3. Robust design construction and optimality conflict. Strategies for con-
structing designs with good robustness properties are suggested by the definition
of b0 in (5.6) and results in Section 4 and Section 5. If all treatments can be repli-
cated r ≥ 4 times where r is even, then cyclic designs should be considered. These
are covered in Section 6.2. Otherwise, having treatments replicated as equally as
possible has the advantages that r[υ] is maximised for the resources used, and that
Theorem 4.1 applies. If possible, b should be such that ω1 of Theorem 4.1 is large
enough to provide appropriate robustness against type 1 relationships, given the
anticipated level of observation loss for the experiment. Second, Theorem 5.2 in-
dicates that constructing designs with as many disjoint cycles as possible gives
good robustness against type 2 and 3 relationships.

There are two issues with this combined approach. For large υ , the number
of blocks required by Theorem 4.1 to guarantee desired levels of robustness may
exceed the resources available. In this case, a candidate design, D, can be con-
structed just taking ω2 and ω3 into consideration. By then treating D as a design
of Model 1, min{r[υ],�1(D)} can be determined by the Godolphin and Warren
(2014) scanning procedure to check that b0 is of sufficient size. The other issue
relates to a conflict between design features which maximise ω3 and those which
promote optimality, and is now discussed.
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The quality of a connected design in υ qualitative treatments is typically mea-
sured by the A-criterion:

(5.7) �A(D) = (υ − 1)

(
υ−1∑
i=1

μ−1
i

)−1

,

where μ1, . . . ,μυ−1 are the nonzero eigenvalues of the information matrix (5.2).
Within a design class, D is A-optimal if no design has A-criterion higher than
�A(D). Paterson (1983) conjectures that designs with minimal numbers of short
circuits tend to have higher A-criterion that those with greater numbers of short cir-
cuits. The implication from Theorem 5.2 that constructing designs with as many
disjoint cycles as possible, to achieve good robustness against type 2 and 3 re-
lationships, favours designs with short cycles. Thus, there is some incompatibil-
ity between designs which guarantee good robustness properties and designs with
good A-criterion. This is most problematic if υ and 2b/υ are both relatively small,
when even achieving a small number of disjoint cycles may require 3-cycles.

The conflict is illustrated by Examples 6 and 7. The robustness properties of
DTLI have been demonstrated to be superior to those of DTL. However, whilst
the shortest circuits in DTL are 4-circuits, DTLI contains several 3-circuits, as
noted by inspection of the digraphs in Figures 4 and 6. The A-criterion values
reflect these design features, with �A(DTL) = 1.7809 and �A(DTLI) = 1.7107,
indicating that DTL has better A-criterion.

A suggested approach to construct designs which are robust against type 2 and
3 relationships is to arrange treatment replicates to form up to r[υ] + 1 disjoint
cycles, and to make the shortest cycle as long as possible. In practice, with r[υ] ≥ 4
and υ ≥ 10 it has been straightforward to construct cycles without compromising
the A-criterion unduly.

6. Row-column designs with equal replication. In this section, D is as-
sumed to follow Model 2 and to have all treatments equally replicated for some
r ∈ {3, . . . , υ − 1}, with applications divided as evenly as possible between the
rows. That is, for r even, each treatment is replicated r/2 times in each row and,
for r odd and υ even, each treatment has [r/2] replicates in one row and [r/2] + 1
in the other. Designs of these forms include the interwoven loop designs inves-
tigated by Wit, Nobile and Khanin (2005), where r is even, and the designs for
r = 3,4,5,6 with up to 30 blocks given in Bailey (2007).

With every treatment occurring in both rows, �2(D) > 0 and �3(D) > 0.
Therefore, (4.1) can be used as a condition for connectivity. To obtain informa-
tion on the robustness guaranteed by D, the relationship types are considered
separately. For robustness against type 1 relationships, Theorem 4.1 applies. If
resources do not enable b to be large enough for Theorem 4.1 to guarantee the
desired level of robustness, the approach of Godolphin and Warren (2014) can be
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used to assess candidate designs for connectivity and robustness against type 1
relationships. For robustness against type 2 relationships, Theorem 5.1 gives

(6.1) �2(D) ≥ ω2 =
⌈
υ

2

[
r

2

]⌉
.

From (6.1), �2(D) > r , except for the case υ = 4, r = 3, for which �2(D) ≥ 2.

6.1. Robustness against type 3 relationships. Determination of robustness
against type 3 relationships is more challenging. Consideration of possible ar-
rangements of the treatment replicates, taking into account the binary nature of the
blocks of size two and the property that each pair of treatments appears together in
no more that one such block, enables identification of configurations involving the
largest subset of the υr/2 blocks that can exhibit a type 3 relationship. These are
now described and illustrated for r even and odd.

r even. The largest number of blocks that can exhibit a type 3 relationship is
υr/2 − r2/4. This occurs when |W2|, . . . , |Wz−1| are all r/2, where |Wi | denotes
the cardinality of Wi , and |W1| and |Wz| have values in {1, . . . , r/2}, such that
the sum of the z cardinalities is υ . The r2/4 omitted blocks must contain: r/2
replicates of each treatment of Wz and r/2 − |Wz| replicates of each treatment of
Wz−1 in row 1; r/2 replicates of each treatment of W1 and r/2 − |W1| replicates
of each treatment of W2 in row 2. Any other type 3 arrangement contains fewer
blocks. For illustration, configurations for υ = 10, r = 4 are displayed, with details
of the omitted treatment replicates.

Configuration 1. W1 = {1}, W2 = {2,3}, W3 = {4,5}, W4 = {6,7}, W5 =
{8,9}, W6 = {10}. Omitted replicates are 8,9,10,10 in row 1 and 1,1,2,3 in
row 2.

B1 B2 B3 B4 B5

row 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 9
row 2 2 3 4 5 4 5 6 7 6 7 8 9 8 9 10 10

Configuration 2. W1 = {1,2}, W2 = {3,4}, W3 = {5,6}, W4 = {7,8}, W5 =
{9,10}. Omitted replicates are 9,9,10,10 in row 1 and 1,1,2,2 in row 2.

B1 B2 B3 B4

row 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8
row 2 3 4 3 4 5 6 5 6 7 8 7 8 9 10 9 10

r odd. The largest number of blocks demonstrating a type 3 relationship is
υr/2 − [r/2]2. This occurs when |W1| = [r/2], |W2| = |W3| = [r/2] + 1, |Wz| =
[r/2] and the staircase is formed from a Basic Structure and arbitrary numbers of
Structure A and/or Structure B arrangements positioned between W3 and Wz, such
that the sum of all cardinalities is υ . Structure A arrangements contain treatment
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sets Wi and Wi+1, with |Wi | = |Wi+1| = [r/2] + 1, and Structure B arrange-
ments contain sets Wj ,Wj+1,Wj+2 and Wj+3 with |Wj | = |Wj+1| = [r/2] and
|Wj+2| = |Wj+3| = [r/2] + 1. Within any given treatment set, all the treatments
have higher replication in the same row. The arrangements are depicted in (6.2)–
(6.4), with the row containing [r/2] + 1 replicates indicated by (h) for each treat-
ment set. If there are no Structure A or B arrangements, then z = 4.

(6.2)

Basic Structure
B1 B2 B3 · · · Bz−1

row 1 W1(h) W2(h) W3 · · · · · ·
row 2 W2 W3(h) · · · · · · Wz(h)

(6.3)

Structure A

Bi−1 Bi Bi+1

row 1 · · · Wi (h) Wi+1
row 2 Wi Wi+1(h) · · ·

(6.4)

Structure B

Bj−1 Bj Bj+1 Bj+2 Bj+3

row1 · · · Wj Wj+1(h) Wj+2(h) Wj+3
row2 Wj (h) Wj+1 Wj+2 Wj+3(h) · · ·

The [r/2]2 omitted blocks contain: [r/2] replicates of each treatment of Wz in
row 1 and [r/2] replicates of each treatment of W1 in row 2. Any other type 3
arrangement contains fewer blocks. For illustration, the configurations for υ = 10,
r = 3 and υ = 10, r = 5 are displayed.

Configuration for υ = 10, r = 3. W1 = {1}, W2 = {2,3}, W3 = {4,5}, W4 =
{6,7}, W5 = {8,9}, W6 = {10}. Omitted replicates are 10 in row 1 and 1 in row 2.
Note that W4 and W5 are contained in a Structure A arrangement.

B1 B2 B3 B4 B5

row 1 1 1 2 2 3 3 4 5 6 6 7 7 8 9
row 2 2 3 4 5 4 5 6 7 8 9 8 9 10 10

Configuration for υ = 10, r = 5. W1 = {1,2}, W2 = {3,4,5}, W3 = {6,7,8},
W4 = {9,10}. Omitted replicates are 9,9,10,10 in row 1 and 1,1,2,2 in row 2.
The arrangement is a Basic Structure.

B1 B2 B3

row 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 7 7 8 8
row 2 3 4 5 3 4 5 6 7 8 6 7 8 6 7 8 9 10 9 10 9 10

The results of the combinatorial investigation are expressed succinctly as the
following.
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1 2

3 4

K2,2

1 2 3

4 5 6

K3,3

FIG. 7. Complete bipartite digraphs.

PROPOSITION 6.1. Let all treatments in D have replication r and be dis-
tributed as evenly as possible between the rows. Then �3(D) ≥ [r/2]2.

By Proposition 6.1, if r ≥ 6, then �3(D) > r . Thus, since �2(D) > r from
(6.1), it follows that b0 = min{r,�1(D)}. However, for r = 3,4,5, Proposition 6.1
indicates that �3(D) can be as small as 1, 4, 4, respectively. From the configura-
tions which minimise �3(D), it is seen that the corresponding digraphs contain
copies of the complete bipartite digraph Kt,t , where t = [r/2] + 1. The digraphs
K2,2 and K3,3 are displayed in Figure 7. This feature can be used as a means of
avoiding designs which have lowest robustness against type 3 relationships for
r = 3,4,5 and is now investigated:

Robustness against type 3 relationships: r = 3. Using the result of Proposi-
tion 6.1, �3(D) ≥ 1. By inspection of (6.2)–(6.4), the digraph of a design with
�3(D) = 1 will contain one K2,2 sub-digraph for the Basic Structure and one for
each Structure A and Structure B arrangement. The Basic Structure involves six
treatments and A and B structures involve four and six treatments, respectively.
Thus, for the possibility of �3(D) = 1, the number of treatments must be of the
form υ = 6 + 4nA + 6nB where nA,nB ∈ {0,Z+}. This implies that any design
with υ = 4 or υ = 8 must have �3(D) ≥ 2. For υ �= 4,8, let υ = 6 + 4nA1 + 6nB1
be the representation of υ in the required form that minimises nA. For �3(D) = 1,
there must be at least 1 + nA1 + nB1 copies of K2,2 on disjoint sets of four treat-
ments. Therefore, ensuring that the digraph of a design does not have this property
ensures that �3(D) ≥ 2.

Robustness against type 3 relationships: r = 4. By the result of Proposition 6.1,
�3(D) ≥ 4. Thus, b0 = min{4,�1(D)}. Also, the configuration necessary for
�3(D) = 4 means that the digraph for such a design contains at least �υ−2

2 � copies
of K2,2.
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Robustness against type 3 relationships: r = 5. Using the result of Proposi-
tion 6.1, �3(D) ≥ 4. The digraph of a design with �3(D) = 4 contains copies
of K3,3: one copy for the Basic Structure and one for each A or B structure.
The Basic Structure involves ten treatments and A and B structures involve
six and ten treatments, respectively. For �3(D) = 4 to be a possibility, υ must
be of the form 10 + 6nA + 10nB where nA,nB ∈ {0,Z+}. Thus, if υ < 10 or
υ ∈ {12,14,18,24}, no such configuration is possible and �3(D) ≥ 5. Suppose υ

can be expressed in the required form and let the representation which minimises
nA be υ = 10+6nA1 +10nB1. For �3(D) = 4, there must be at least 1+nA1 +nB1
copies of K3,3 on disjoint sets of six treatments. Otherwise, �3(D) ≥ 5.

Thus, for r = 4,5 building designs with �3(D) ≥ 5 is straightforward. How-
ever, for r = 3, constructing designs with good robustness against type 3 relation-
ships can be problematic. Avoidance of the configuration required for �3(D) = 1
still gives the possibility that �3(D) = 2. The approach of Section 5 would be to
include three or four nonzero sum disjoint circuits in a design, which can be chal-
lenging since no treatment can appear in more than one circuit of such a set. It
may not be possible to construct a design containing a set of three or four disjoint
circuits if υ is small, or, taking optimality into consideration, it may be possible
but undesirable.

6.2. Interwoven loop designs. The interwoven loop designs investigated by
Wit, Nobile and Khanin (2005) can be considered as the Model 2 version of the
cyclic designs of Secction 4.2. The specification of a loop given in Definition 4.1
is amended to accommodate the second blocking factor of Model 2 designs.

DEFINITION 6.1. A set of υ blocks containing treatment pairs i in row 1 and
i + γ in row 2, for i = 1, . . . , υ , where 1 ≤ γ ≤ υ − 1 and i + γ ≡ i + γ − υ if
i + γ > υ is termed a directed loop with jump γ .

The interwoven loop designs comprise p ≥ 2 directed loops with jumps
γ1, . . . , γp such that i �= j implies γi �= γj and γi �= υ −γj . These designs have the
advantages of being simple to construct and of having the good robustness against
type 1 relationships of the cyclic designs. More general robustness properties are
now established.

THEOREM 6.1. Let D be an interwoven loop design such that γ1, . . . , γq are
coprime to υ for some q with 1 ≤ q ≤ p. Then D is optimally robust if: (i) p ≥ 3;
or (ii) p = 2 and γ1 = 1, γ2 �= υ/2 + 1.

PROOF. Each treatment is replicated r = 2p times in D. By Theorem 4.2,
�1(D) ≥ 2p + q > r . By Theorem 5.1, �2(D) > r . If p ≥ 3, then r ≥ 6 and, by
Proposition 6.1, �3(D) > r and (i) holds. If p = 2, then r = 4 and, by Propo-
sition 6.1, �3(D) ≥ 4. The configuration for �3(D) = 4 requires D to contain
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copies of K2,2. Suppose D has γ1 = 1 and γ2 �= υ/2 + 1 and does contain K2,2
and let υ0 be any treatment involved in row 1 of such an arrangement, then the
following four blocks of D form K2,2:

row 1 υ0 υ0 υ0 + γ2 − 1 υ0 + γ2 − 1
row 2 υ0 + 1 υ0 + γ2 υ0 + γ2 υ0 + 2γ2 − 1

where υ0 + 2γ2 − 1 ≡ υ0 + 1. But this implies that γ2 = υ/2 + 1 and gives a
contradiction. Thus, �3(D) > 4 = r and (ii) holds. �

EXAMPLE 9. Consider the interwoven loop designs, D5 and D6, with υ = 8
and r = 4:

D5 = row 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
row 2 2 3 4 5 6 7 8 1 4 5 6 7 8 1 2 3

D6 = row 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
row 2 2 3 4 5 6 7 8 1 6 7 8 1 2 3 4 5

The dashed vertical lines are used for clarity to separate the blocks of each directed
loop. Design D5 has γ1 = 1 and γ2 = 3 and is optimally robust by Theorem 6.1.
Design D6 has γ1 = 1 and γ2 = 5 = υ/2 + 1 and is not established as optimally
robust by Theorem 6.1. The blocks of D6 can be rearranged to highlight that the
design contains four copies of K2,2:

D6 = row 1 1 1 5 5 2 2 6 6 3 3 7 7 4 4 8 8
row 2 2 6 2 6 3 7 3 7 4 8 4 8 1 5 1 5

Dashed vertical lines are again used for clarity, this time to separate the blocks of
each K2,2. There are eight ways of removing four blocks to give a D# with a type
3 relationship. Thus, D6 is not optimally robust.

6.3. Designs recommended for r < 7. Bailey (2007) recommends designs for
r = 3,4,5,6. These are selected as having optimal or near-optimal A-criterion val-
ues and no robustness properties are claimed. For those designs without repeated
blocks and which have rυ > 2υ + 4r , so the degrees of freedom available do not
preclude the possibility of optimal robustness, it is interesting to determine b0. All
these designs have �1(D) > r by Corollary 3.4, Theorem 4.1, Theorem 6.1 or by
use of Godolphin and Warren (2014). All also have �2(D) > r , by Theorem 6.1.
Thus, all the designs have b0 = min{r,�3(D)}: any design with �3(D) = r has
optimal breakdown number and any with �3(D) > r is optimally robust.

By Proposition 6.1, the designs with r = 6 have �3(D) ≥ 9 and are therefore
optimally robust. Of the designs with r = 5, none of the corresponding digraphs
have properties necessary for �3(D) = 4, indicating that all have optimal break-
down number. In fact, in each case removal of every set of five blocks confirms that
�3(D) > 5 and so the designs are optimally robust. For the case r = 4, only the
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design with υ = 7 has digraph containing as many as �υ−2
2 � copies of K2,2. This

design is not optimally robust since �3(D) = 4: there are two ways of removing
four blocks to give eventual designs which are disconnected due to type 3 relation-
ships. The other designs with r = 4 are optimally robust. Several are interwoven
loop designs.

None of the digraphs for the designs with r = 3 contain the configuration for
�3(D) = 1. However, designs for υ = 8,12 have �3(D) = 2 and so do not have
optimal breakdown number, whilst those for υ = 10,18 have �3(D) = 3 and so
have optimal breakdown number but are not optimally robust. Alternatives to the
design for υ = 8 are now investigated.

EXAMPLE 10. The design given by Bailey for υ = 8, r = 3, denoted here
by DB, contains two disjoint nonzero sum circuits, in the form of the 4-cycles
〈1,2,3,4〉 and 〈5,6,7,8〉, and four additional blocks. There are other nonzero sum
circuits, for example, the 6-circuit 〈1,5,8,4,3,2〉 has S = −4, but no other pairs
of disjoint nonzero sum circuits. The digraph for DB is given in Figure 8(i). Four
designs in DB(2) are disconnected via type 3 relationships. One such example,
formed by the loss of blocks with treatment pairs 1, 2 and 5, 6, has a digraph in
Figure 8(ii). The relevant feature of the digraph is that all circuits have zero sum.
For completeness, the staircase is given below.

B1 B2 B3 B4

row 1 2 2 3 3 6 4 4 7 1 8
row 2 3 6 4 7 7 1 8 8 5 5

With υ = 8, r = 3, it is not possible to construct a design with more than two
disjoint circuits. Thirteen designs with υ = 8, r = 3, which also contain the cycles
〈1,2,3,4〉 and 〈5,6,7,8〉, are considered as potential alternatives to DB. For each
design, the four blocks not included in these cycles are given in Table 2 together
with robustness properties and A-criterion. Design 14 in the table is DB.

1 2

34

5 6

78

(i) Digraph for DB

1 2

34

5 6

78

(ii) Digraph for a disconnected
member of DB(2)

FIG. 8. Digraphs corresponding to Example 10.
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TABLE 2
Properties of designs with υ = 8 and r = 3

Robustness Optimality
Blocks 9–12 b0 M{D}b0 �A(D) rank rank

1 1 6 8 4 3 8 1.4388 1= 1
5 2 3 7

2 1 6 3 8 3 8 1.4359 1= 2=
5 2 7 4

3 1 2 8 7 3 8 1.4328 1= 4
5 6 3 4

4 1 6 3 4 3 8 1 4119 1= 7=
5 2 8 7

5 1 2 3 4 3 8 1.3243 1= 12
5 6 8 7

6 1 2 3 4 3 8 1.3125 1= 13=
5 8 7 6

7 1 2 7 6 3 10 1.4189 7= 5=
5 8 3 4

8 1 2 8 4 3 10 1.4119 7= 7=
5 6 3 7

9 1 2 7 8 3 12 1.4189 9= 5=
5 6 3 4

10 1 2 3 7 3 12 1.4119 9= 7=
5 6 8 4

11 1 2 3 6 3 14 1.4000 11 10=
5 8 7 4

12 1 6 3 4 3 18 1.4000 12 10=
5 2 7 8

13 1 8 3 6 2 2 1.4359 13 2=
5 2 7 4

14 1 2 3 4 2 4 1.3125 14 13=
5 6 7 8

There is a striking lack of correlation between the design ranking according to
robustness against breakdown and the ranking by A-criterion. Six of the 14 de-
signs are optimally robust and these have A-criterion ranks ranging from first to
thirteenth. The 14 designs do only form a subset of those with υ = 8, r = 3: even
so, this lack of correlation contrasts with the findings of Bailey (2007) discussed
in Section 4 for Model 1 designs also with υ = 8, r = 3.

7. Concluding comments. Combinatorial arguments and known results from
graph theory can aid in construction of robust Model 1 designs, by providing in-
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formation on robustness based only on υ , b and treatment replicates. For Model 2
designs, robustness considerations are more complex and guidance is given for
design construction. Much of the previous work on selecting Model 2 designs for
microarray experiments involves starting with a Model 1 design with good prop-
erties, and assigning dye colour to experimental units in blocks to maximise dye
balance over treatments; see, for example, Sanchez and Glonek (2009). This ap-
proach yields designs which tend to be robust against type 1 and 2 relationships,
but not necessarily against type 3 relationships. Further, investigation in Exam-
ple 10 suggests a lack of correlation between A-criterion and propensity for design
breakdown via a type 3 relationship. Thus, the predominant message is that care
should be taken to avoid designs with small �3(D).

Amongst equireplicate designs with treatments distributed as evenly as possible
between rows, designs with r ≥ 6 are robust against type 3 relationships and those
with r = 3 are particularly vulnerable. This supports the suggestion from Wit,
Nobile and Khanin (2005) that only designs with r ≥ 4 should be used.

For both models, cyclic constructions are shown to yield designs which are
optimally robust for even r .

Graphical representation of Model 1 designs is particularly appealing since an
eventual design in which breakdown has occurred corresponds to a disconnected
graph and vice versa. The relationship between the properties of Model 2 designs
and those of the corresponding digraphs are more complicated. The digraph for
an eventual design, which is disconnected by a type 1 relationship or which has
lost all replicates of one or more treatments, will be disconnected. By compari-
son, the digraph for an eventual design which is disconnected by a type 2 or type
3 relationship, but contains no type 1 relationship, is connected, but not strongly
connected. However, digraphs for connected eventual designs can be connected or
strongly connected. Therefore, it is not evident that results on connectivity proper-
ties of digraphs will provide information on robustness of Model 2 designs above
that provided by results on graphs.

Acknowledgement. The author gives grateful thanks to Jan van den Heuvel
for discussion and advice regarding graph theory.

SUPPLEMENTARY MATERIAL

Supplement to “Designs with blocks of size two and applications to
microarray experiments” (DOI: 10.1214/17-AOS1638SUPP; .pdf). Contains
proofs of: Theorem 2.2, Lemma 4.1, Lemma 4.2, Theorem 4.2 and Theorem 5.2.
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