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MULTI-THRESHOLD ACCELERATED FAILURE TIME MODEL1

BY JIALIANG LI AND BAISUO JIN

National University of Singapore and
University of Science and Technology of China

A two-stage procedure for simultaneously detecting multiple thresholds
and achieving model selection in the segmented accelerated failure time
(AFT) model is developed in this paper. In the first stage, we formulate the
threshold problem as a group model selection problem so that a concave 2-
norm group selection method can be applied. In the second stage, the thresh-
olds are finalized via a refining method. We establish the strong consistency of
the threshold estimates and regression coefficient estimates under some mild
technical conditions. The proposed procedure performs satisfactorily in our
simulation studies. Its real world applicability is demonstrated via analyzing
a follicular lymphoma data.

1. Introduction. Applied economists routinely test their models for the pres-
ence of structural change. If the evidence supports it, a threshold model is con-
structed and one needs to detect the thresholds (also called break points) at which
to split the sample. The threshold variable may be an element of regressors.
One such example is the well-known threshold autoregressive model [see Tong
(2012)]. Sometimes the threshold variable is simply the index of observed sam-
ples (e.g., time in a time series model) and the model is commonly referred to as
the change point model or segmented regression model [see Yao and Au (1989),
Perron (2006), Fearnhead and Vasileiou (2009)].

In this paper, we focus on the setting of multiple thresholds which is a much
more challenging problem than a single break-point detection [Hansen (2000)].
A number of issues arise in the presence of multiple change points. These include
the determination of the number of breaks, estimation of the thresholds given the
number and statistical analysis of the resulting estimators. There exists a rich lit-
erature on this subject. For example, Inclán and Tiao (1994) identified multiple
change-points of variance using the iterated cumulative sum of squares (ICSS)
algorithm. Bai and Perron (2003) developed the dynamic programming principle

Received August 2016; revised July 2017.
1Supported by National Medical Research Council NMRC/CBRG/0014/2012 in Singapore, Aca-

demic Research Funding R-155-000-174-114 and National Natural Science Foundation of China
(General Program, No. 11571337; Key Program, No. 71631006).

MSC2010 subject classifications. 60K35.
Key words and phrases. Break points, MCP penalty, SCAD penalty, Stute estimator, threshold

regression.

2657

http://www.imstat.org/aos/
https://doi.org/10.1214/17-AOS1632
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2658 J. LI AND B. JIN

for the estimation of multiple change-points in linear regression. Following the fa-
miliar idea of penalized estimation, Harchaoui and Lévy-Leduc (2010) used the
least absolute shrinkage and selection operator (LASSO) algorithm to estimate the
locations of multiple change-points, in one-dimensional piecewise constant sig-
nals. Davis, Lee and Rodriguez-Yam (2006) proposed a genetic algorithm to detect
multiple break points, while recently Jin, Shi and Wu (2013) considered noncon-
cave penalty functions including the smoothly clipped absolute deviation (SCAD)
penalty and minimax concave penalty (MCP) penalty in piecewise stationary au-
toregressive processes. However, computational procedure and theoretical justifi-
cation in Jin, Shi and Wu (2013) cannot be easily extended to survival analysis.
We will consider a more difficult setting with censored event time in this paper.
The theoretical results established in this paper are also more general than those in
Jin, Shi and Wu (2013).

In life-testing research studies, single change point problem has been addressed
by many authors. Specifically, Luo, Turnbull and Clark (1997) considered the Cox
model with a change point at an unknown time and established asymptotic results
for maximum partial likelihood estimates. Pons (2003) studied unknown threshold
of a predictor variable under Cox model using counting processes theory while
Kosorok and Song (2007) further examined the more sophisticated linear transfor-
mation models and provided necessary inference tools. Very few authors consid-
ered the problem of estimating multiple thresholds for survival regression analysis.
Censored lifetime data break down the usual estimation framework for completely
observed data. We usually cannot attain a closed-form solution for regression esti-
mates and, therefore, face an increased complexity of estimating thresholds accu-
rately. To address this under-developed issue, we consider the accelerated failure
time (AFT) model as a typical example of regression models in this paper and
contribute a new methodology on change-point problem for survival data analysis.

The AFT model permits a direct assessment of the covariate effects on the sur-
vival time, facilitating the interpretation of regression coefficients for the mean
response. There are many estimation methods available for AFT model in the liter-
ature, including Buckley and James (1979), Prentice (1978), Tsiatis (1990), Ying
(1993), Lin, Wei and Ying (1998). Many estimation methods for right censored
data are rank-based and in practice the estimating functions may be discontinuous,
producing challenges to the computation. In contrast, Stute (1993, 1996) proposed
a weighted least squares estimator for AFT model, and established the consistency
and asymptotic normality under technical conditions. Huang, Ma and Xie (2006)
carried out a variable selection procedure and estimation in AFT model with high-
dimensional covariates based on Stute’s estimator. Xia et al. (2016) also employed
Stute’s estimator for nonparametric variable screening and selection. In this paper,
we formally adopt the Stute estimator to study the parameter estimation for the
AFT model with s thresholds, where s ≥ 0 is unspecified. Using a two-stage pro-
cedure proposed in this paper, we may estimate the thresholds and the regression
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coefficients simultaneously. Interestingly, our procedure may be straightforwardly
extended to incorporate variable selection for high-dimensional data analysis.

The paper is arranged as follows. In Section 2, the multiple break-point prob-
lem for the AFT model is formulated. We then propose a two-stage procedure to
detect the thresholds and estimate model parameters. In Section 3, we establish
theoretical properties of our procedure. Next, simulation studies are conducted in
Section 4 to examine the performance of our methods. An empirical application to
a follicular lymphomais data is presented in Section 5.

Throughout the paper, 1q = (1, . . . ,1)� is a q-dimensional constant vector, Iq

is the q × q identity matrix, 1{·} is an indicator function, A� is the transpose of a
matrix A, and �c� is the integer part of a real number c. For a vector a, a� is its
transpose, aj is its j th component, |a| and ‖a‖ are respectively its L1-norm and
L2-norm. If A is a set, its complement and its size are denoted by Ac and �A,
respectively. In addition, “→a.s.” denotes convergence with probability 1.

2. Methodology for multiple thresholds under the AFT model. Let Ti ,
i = 1, . . . , n be the independent logarithm of the failure time and X1, . . . ,Xn are
i.i.d. p-dimensional regressors. Assume (Ti,Xi), i = 1, . . . , n, satisfy the follow-
ing AFT model with s thresholds located at a1 < · · · < as :

Ti =
s+1∑
j=1

X�
i β∗

j 1{aj−1<Zi≤aj } + εi

= X�
i

[
β∗

1 +
s∑

�=1

d∗
�1{a�<Zi≤as+1}

]
+ εi, i = 1, . . . , n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X�
i β∗

1 + εi if a0 < Zi ≤ a1,

X�
i

(
β∗

1 + d∗
1
)+ εi if a1 < Zi ≤ a2,

. . . . . .

X�
i

(
β∗

1 +
s∑

�=1

d∗
�

)
+ εi if as < Zi ≤ as+1,

(2.1)

where β∗
1, . . . ,β

∗
s+1 are unknown p-dimensional regression coefficients for s + 1

subgroups, d∗
� = β∗

�+1 − β∗
� , � = 1, . . . , s, are the increments of coefficients be-

tween two adjacent subgroups, s ≥ 0 is the unknown number of thresholds, Zi

is the thresholding variable, a1, . . . , as are unknown threshold locations, a0 = 0,
as+1 = n, ε1, . . . , εn are independent random errors and εa�−1+1, . . . , εa�

, the
subgroup in the series {εi, i = 1, . . . , n} separated by the threshold locations
{a�, � = 1, . . . , s}, are identically distributed with mean zero and variance σ 2

� ,
� = 1, . . . , s +1. Notice that if s = 0, the model (2.1) does not involve threshold. If
s ≥ 1, we denote P(Zi ≤ aj ) = τj , j = 1, . . . , s where 0 < τ1 < τ2 < · · · < τs < 1.
If Zi = i, we retain the usual change point model, and the condition P(Zi ≤ aj ) =
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FIG. 1. An example of model (2.1).

τj will be replaced by aj/n → τj since change point locations actually depend on
the sample size in this setting. Figure 1 is an example of model (2.1), where s = 2,
Z is generated from a normal distribution and T is generated from a mixture nor-
mal distribution.

Let Ci , i = 1, . . . , n be logarithm of the censoring time which are assumed to
be independent and identically distributed (i.i.d.). In practice, we only observe
(Yi, δi,Xi), i = 1, . . . , n, where Yi = min(Ti,Ci) is the censored logarithm of the
failure time and δi = 1{Ti≤Ci} is the censoring indicator.

Throughout this paper, let Y(1,I) ≤ · · · ≤ Y(b,I) be the ordered failure times in
the index set I and b = �I . Let δ[�,I] be the concomitant of the �th-ordered Y(�,I),
� = 1, . . . , b. Define the Kaplan–Meier weights as

w[1,I] = δ[1,I]
b

, w[�,I] = δ[�,I]
b − � + 1

�−1∏
k=1

(
b − k

b − k + 1

)δ[k,I]
, � = 2, . . . , b.

Such weights are constructive elements of the Kaplan–Meier estimator for the sur-
vival function [see Lawless (2011)]. Let rYi,I ∈ [1, b] be the rank of Yi among
{Yi : i ∈ I}, that is, Yi = Y(rYi ,I ,I), i ∈ I . For simplicity, we denote Y(rYi ,I ) =
Y(rYi ,I ,I) = Yi and w[rYi ,I ] = w[rYi ,I ,I].

If aj , j = 1, . . . , s are known, define I∗
j = {i : aj−1 < Zi ≤ aj } and b∗

j = �I∗
j ,

we can use the Stute estimator to fit the AFT model. The resulting estimator β̂
∗
1,

d̂∗
1, . . . , d̂∗

s may be represented by a weighted least squares estimator that mini-
mizes

(2.2)
s+1∑
j=1

b∗
j

2n

∑
i∈I∗

j

w[rYi ,I∗
j
]
(
Yi − X�

i

(
β∗

1 +
j−1∑
k=1

d∗
k

))2

.

We note that the weights {w[rYi ,I∗
j
]} depend on the order of the random failure

times, and hence the related asymptotic argument is not as standard as the inde-
pendent and identically distributed (i.i.d.) case in linear regression.

We intend to estimate s, a1, . . . , as and then use the detected change point(s)
to obtain the Stute estimator for regression coefficients. To this end, first we need
to decide the total number of thresholds and the approximate distances between
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pairs of thresholds. After that, we may proceed to determine the exact locations of
thresholds. We propose a two-stage procedure in the following sections.

2.1. The splitting stage. First, we split the data sequence into qn + 1 seg-
ments where qn tends to infinity as n → ∞. Let {Zi : δi = 1, i = 1, . . . , n} =
{Z̃1, . . . , Z̃n∗} where n∗ =∑n

i=1 δi is the total number of events. In order to al-
low each segment to include enough failure event observations, the data sequence
is split such that the first segment I1 = {i : Zi ≤ Z̃(n∗−qnm)} involves n∗ − qnm

events, and each of the other qn segments Ij = {i : Z̃(n∗−(qn−j+2)m) < Zi ≤
Z̃(n∗−(qn−j+1)m)}, j = 2, . . . , qn + 1 involve m events where m = �n∗/qn
 and
Z̃(1) ≤ Z̃(2) · · · ≤ Z̃(n∗) are the ordered threshold variables associated with subjects
no failed. Define bj = �Ij , j = 1, . . . , qn + 1.

To select these intervals covering thresholds {aj }, we propose a concave 2-norm

group selection method, such that an estimate θ̂ = (β̂
�
1 , d̂�

1 , . . . , d̂�
qn

)� is given by
minimizing

qn+1∑
j=1

bj

2n

∑
i∈Ij

w[rYi ,Ij
]
(
Yi − X�

i

(
β1 +

j−1∑
k=1

dk

))2

+
qn∑

k=1

pλn,γn

(‖dk‖),(2.3)

where λn > 0, γn > 1 are tuning parameters, and the penalty function pλn,γn(|u|) >

0 is concave in |u|. For the simplicity of presentation, we shall only consider two
well-studied penalty functions in this paper, namely the smoothly clipped abso-
lute deviation (SCAD) penalty and the minimax concave penalty (MCP). SCAD
was introduced in Fan and Li (2001) and defined as pλ,γ (u) = λuI[0,λ](u) +
γ λu−0.5(u2+λ2)

γ−1 I(λ,γ λ](u) + λ2(γ 2−1)
2(γ−1)

I(γ λ,∞)(u), γ > 1. MCP was introduced in
Zhang (2010) and defined as pλ,γ (u) = (λu − u2

2γ
)I[0,γ λ](u) + 1

2γ λ2I(γ λ,∞)(u),
γ > 2.

Let Y(j) = (Yi, i ∈ Ij )
�, X(j) = (Xi , i ∈ Ij )

�, w̃(j) = bj (w[rYi ,Ij
], i ∈ Ij )

�,
ỹ(j) = diag(w̃(j))

1/2Y(j), X̃(j) = diag(w̃(j))
1/2X(j), j = 1, . . . , qn+1. Denote ỹ =

(ỹ�
(1), . . . , ỹ�

(qn+1))
�, X̃ = (X̃(1), . . . , X̃(qn+1)) where X̃(1) = (X̃�

(1), . . . , X̃�
(qn+1))

�

and X̃(j) = (0
p×∑j−1

i=1 bi
, X̃�

(j), . . . , X̃�
(qn+1))

�, j = 2, . . . , qn + 1. The estimator θ̂

in (2.3) can be written as

(2.4) θ̂ = arg min
θ

{
1

2n
‖ỹ − X̃θ‖2 +

qn∑
j=1

pλn,γn

(‖dj‖)
}
.

We apply the group coordinate descent (GCD) algorithm to estimate θ̂n from (2.4).
The properties of θ̂ will be given by Theorem 3.2 in the next section. For

simplicity, we write θ̂ = (θ̂
�
1 , . . . , θ̂

�
qn+1)

� such that θ̂1 = β̂1 and θ̂ j = d̂j−1,

j = 2, . . . , qn+1. Let Â = {j : θ̂ j �= 0, j = 1, . . . , qn+1}, and Â∗ be a subset of Â
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such that Â∗ = {j : j ∈ Â, j − 1 /∈ Â, j = 2, . . . , qn + 1} = {k̂1, . . . , k̂ŝ}. If ŝ = 0,
we declare there is no threshold. If ŝ > 0, by Theorem 3.2, the true threshold aj is
highly likely to be located in (Z̃

(n∗−(qn−k̂j+3)m)
, Z̃

(n∗−(qn−k̂j+1)m)
], j = 1, . . . , ŝ.

2.2. The refining stage. If ŝ > 0, by Theorem 3.2, we can estimate the thresh-
old aj in (Z̃

(n∗−(qn−k̂j+3)m)
, Z̃

(n∗−(qn−k̂j+1)m)
]. To obtain the estimates of the

thresholds {aj }, we denote Îj = {i : Z̃
(n∗−(qn−k̂j+3)m)

< Zi ≤ Z̃
(n∗−(qn−k̂j+1)m)

},
Îj,ς− = {i : Z̃

(n∗−(qn−k̂j+3)m)
< Zi ≤ ς}, Îj,ς+ = {i : ς < Zi ≤ Z̃

(n∗−(qn−k̂j+1)m)
}

Qj

(
ς−,β

)= �Îj,ς−

�Îj

∑
i∈Îj,ς−

w[r
Yi ,Îj,ς− ]

(
Yi − X�

i β
)2

,

Qj

(
ς+,β

)= �Îj,ς+

�Îj

∑
i∈Îj,ς+

w[r
Yi ,Îj,ς+ ]

(
Yi − X�

i β
)2

,

and use the following method to estimate aj :

âj = argmin
ς∈(Z̃

(n∗−(qn−k̂j +3)m)
,Z̃

(n∗−(qn−k̂j +1)m)
]∩{Z(1),...,Z(n)}

{
Qj(ς)

}
,(2.5)

where Qj(ς) = minβ Qj(ς
−,β) + minβ Qj(ς

+,β), j = 1, . . . , ŝ, and Z(1) ≤
Z(2) · · · ≤ Z(n) are the order of Zi , i = 1, . . . , n. The regions separated by the
thresholds achieve the overall minimum least squares errors. The consistency of
âj will be provided in Theorem 3.3.

2.3. Remarks. After we obtain âj , j = 1, . . . , ŝ by (2.5), it is sensible to use
the weighted least squares to obtain a final estimate of the coefficients in model
(2.1). Let Î∗

j = {i : âj−1 < Zi ≤ âj } and b̂∗
j = �Î∗

j , j = 1, . . . , ŝ + 1 where â0 =
−∞ and âŝ+1 = +∞. Then the coefficient θ∗ = ((β∗

1)
�, (d∗

1)
�, . . . , (d∗

ŝ
)�)� =

(θ∗
1 , . . . , θ∗

p(ŝ+1)
)� can be estimated by minimizing the following penalized least

squares:

M(θ) =
ŝn+1∑
j=1

b̂∗
j

2n

∑
i∈Î∗

j

w[r
Yi ,Î∗

j
]
(
Yi − X�

i

(
β1 +

j−1∑
k=1

dk

))2

+
p(ŝn+1)∑

i=1

pλn,γn

(|θi |),
(2.6)

where the penalty function pλn,γn(|u|) > 0 is the same as in (2.4) and θ =
(β�

1 ,d�
1 , . . . ,d�

ŝ
)� = (θ1, . . . , θp(ŝ+1))

�. The inclusion of the penalty functions
may lead to a sparse solution since the number of parameters could be quite large
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for all the subgroups. The oracle property of θ̂
∗ = arg minθ M(θ) will be given by

Theorem 3.3.
Similar to Jin, Shi and Wu (2013), γn is set as 2.4 for SCAD and MCP penal-

ties. The regularization parameter λn can be chosen by the Bayesian information
criterion (BIC).

The performance of θ̂
∗

is further dependent on the segment length m. The se-
lection of an optimal m can be carried out as follows: Apply the splitting stage
to the data sequence L times with the common segment length of events (exclud-
ing the first segment) m�, � = 1, . . . ,L. In order to meet the assumption, that is,
m = �c√n� made in Theorem 3.2, we set m� = �κ�

√
n�, � = 1, . . . ,L, where κ�

takes values from L grid-points in an interval, say [0.1, 2.0]. For each m�, apply-
ing the proposed two-stage procedure, we obtain the set of estimated thresholds
M̂� = {â1,�, . . . , âŝ�,�}, � = 1, . . . ,L. We use the BIC to choose the best index

(2.7) �̂ = argmin�=1,...,L{BICM̂�
},

where

BICM̂�
= n log

(
ŝ�+1∑
j=1

�Îj,�

n

(
min

β

∑
i∈Îj,�

w[r
Yi ,Îj,�

]
(
Yi − X�

i β
)2))

+ q(ŝ� + 1) log(n)

(2.8)

with Îj,� = {i : âj−1,� < Zi ≤ âj,�}, â0,� = −∞, âŝ�+1,� = +∞. The optimal
mopt = �κ

�̂

√
n� and the optimal estimated thresholds M̂opt = {â1,�̂

, . . . , â
ŝ
�̂
,�̂
}.

We refer to the proposed two-stage procedure as Two Stage Multiple Change-
points Detection (TSMCD) from now on. Since two regularization methods, that
is, MCP, and SCAD, will be utilized in the splitting stage, we refer to the corre-
sponding TSMCD as TSMCD(MCP) and TSMCD(SCAD), respectively. The detailed
algorithm of TSMCP is described in Algorithm 1.

3. Asymptotic theory. Under model (2.1), we further denote the distributions
of {Ti, i ∈ I∗

j } and {Yi, i ∈ I∗
j } to be Fj and Hj , j = 1, . . . , s + 1. Denote the

distribution of log censoring times {c1, . . . , cn} by G. We define UFj
, UHj

and UG

to be the least upper bound for the support of Fj , Hj and G, respectively.
Throughout the paper, the following assumption will be made:

(A1) P(Zi ≤ aj ) = τj where 0 < τ1 < τ2 < · · · < τs < 1, E(εi |Xi ) = 0,
E(T 2

i ) < ∞, E(XiX�
i ) = 
0 is finite and nonsingular, and Zi and εi are inde-

pendent, i = 1, . . . , n.
(A2) Ti and Ci are independent, Hj is continuous, and censoring mechanism

is independent of covariates.
(A3) UFj

< UG or UFj
= UG = ∞.
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Algorithm 1 TSMCD
1: for � = 1,2, . . . ,20 do

Step 1: Splitting stage
2: Set m = �0.1�

√
n∗� and qn = �n∗/m� − 1 where n∗ is the number of

events;
3: Split the data sequence into qn + 1 segments Ij , j = 1, . . . , qn + 1 as

Section 2.1;
4: Estimate θ̂ = ((θ̂1)

�, . . . , (θ̂qn+1)
�)� by minimizing (2.3) or (2.4);

5: Compute the index sets Â = {j : θ̂ j �= 0, j = 1, . . . , qn + 1} and Â∗ = {j :
j ∈ Â, j − 1 /∈ Â, j = 2, . . . , qn + 1} ≡ {k̂1, . . . , k̂ŝ} where k̂1 < k̂2 < · · · < k̂ŝ

and ŝ = �Â∗;
Step 2: Refining stage

6: if ŝ = 0 then go to the step 9;
7: else if ŝ > 0 then estimate the threshold aj in (Z̃

(n∗−(qn−k̂j+3)m)
,

Z̃
(n∗−(qn−k̂j+1)m)

] by (2.5);
8: end if
9: Estimate the coefficient θ∗ = ((β∗

1)
�, (d∗

1)
�, . . . , (d∗

ŝ
)�)� by minimizing

(2.6);
10: Return the set of estimated thresholds M̂� = {â1,�, . . . , âŝ�,�} in step 7 and

the estimator of the coefficient θ̂
∗
� in step 9, and compute BICM̂�

by (2.8);
11: end for
12: Choose �̂ that minimizes the BICM̂�

and obtain the final estimators M̂opt =
M̂

�̂
and θ̂

∗
opt = θ̂

∗
�̂ .

Assumption (A1) allows heteroscedastic error. For example, we may relax the
error assumption to be εi = σ(X�

i β∗
j )ε

∗
i where ε∗

i is independent with Xi and

ε∗
1, . . . , ε∗

n are i.i.d. with mean zero and variance σ 2. (A2) assumes that δi is con-
ditionally independent of Xi given Ti . (A3) implies that UHj

= UFj
.

We first present a result for the simple case where s = 1 is known. Tentatively
we rewrite a1 and d∗

1 as a and d∗, respectively, in model (2.1), and replace τ1 with
τ in assumption (A1) for simplicity.

THEOREM 3.1. Assume conditions (A1)–(A3) hold for model (2.1), s = 1

is known and ‖d∗‖ > 0. Let â = argminς∈{Z(1),...,Z(n)}{minβ
�Îς−

n
×∑

i∈Îς− w[r
Yi ,Îς− ](Yi − X�

i β)2 + minβ
�Îς+

n

∑
i∈Îς+ w[r

Yi ,Îς+ ](Yi − X�
i β)2} where

Îς− = {i : Zi ≤ ς} and Îς+ = {i : ς < Zi}, then we have 1
n

∑n
i=1 1{Zi≤â} →a.s. τ

as n → ∞. Furthermore, if Zi is a continuous random variable, we have â →a.s. a;
if Zi = i, we have â/n →a.s. τ .
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The proof of Theorem 3.1 is given in the Appendix. The result itself may be of
interest since many econometric studies deal with a single change point.

If s ≥ 0 is unknown, we use the proposed TSMCD to estimate s, and the change
points aj , j = 1, . . . , s when s > 0. The following technical conditions are also
needed:

(A4) m → ∞ and m = O((n∗)r), where 0 < r ≤ 1/2 is a constant.
(A5) The penalty function pλn,γn(|u|) of (2.4) satisfies pλn,γn(0) = 0,

p′
λn,γn

(u) = 0 if u > γnλn, p′
λn,γn

(0) = λn, λn → 0 and λn

√
n/ logn → ∞ as

n → ∞.
(A6) εi = σ(X�

i β∗
j )ε

∗
i , i ∈ I∗

j , j = 1, . . . , s + 1, ε∗
i is independent of Xi ,

ε∗
1, . . . , ε∗

n are i.i.d. random errors with distribution F0. Suppose UF0 < UFj
, and

there exists some positive constant U∗
Fj

< UFj
− UF0 , such that σ(X�

i β∗
j ) = 0 if

X�β∗
j > U∗

Fj
, otherwise σ(X�

i β∗
j ) = 1, j = 1, . . . , s + 1.

By the law of large numbers and Assumption (A1), P(Zi ≤ aj ) = τj implies
n∑

i=1

1{aj−1<Zi≤aj }/n →a.s. τj − τj−1 > 0.

Assumption (A4) implies with probability 1
n∑

i=1

1{Z̃(n∗−(qn−j+2)m)<Zi≤Z̃(n∗−(qn−j+1)m)}/n = m/n∗ → 0.

Thus Assumptions (A1) and (A4) ensure that there is at most one threshold in each
segment {Zi : Z̃(n∗−(qn−j+2)m) < Zi ≤ Z̃(n∗−(qn−j+1)m)} for sufficiently large n

where Z̃(n∗−(qn−j+2)m) and Z̃(n∗−(qn−j+1)m), j = 1, . . . , qn + 1, are defined in
Section 2.1. Both SCAD and MCD satisfy the penalty assumption (A5). (A6) im-
plies Ti = X�

i β∗
j if U∗

Fj
+ UF0 < Yi ≤ UFj

.

Define A∗ = {i1, . . . , ia} to be the group index set and X̃A∗ = (X̃(i1), . . . , X̃(ia)).
Similarly, we can define θ̂A∗ and θ̂ (A∗)c . Let A= {1, kj,n, kj,n + 1 : j = 1, . . . , s}.

THEOREM 3.2. If Assumptions (A1)–(A6) hold, min{‖β∗
1‖,‖d∗

1‖, . . . ,
‖d∗

s‖} > 2
√

pγλn, then with probability 1, (2.4) has a local minimizer θ̂ such

that θ̂A∗ = (X̃�
A∗X̃A∗)−1X̃�

A∗ ỹ and θ̂ (A∗)c = 0, where

A∗ ⊆ A and 1 ∈ A∗,
k�,n ∈ A∗ or k�,n + 1 ∈ A∗ for all � = 1, . . . , s.

(3.1)

The proof of Theorem 3.2 is given in the Appendix. Theorem 3.2 provides the
existence of the solution of (2.4). In this theorem, A∗ is the group index set of
no-zero group elements of θ̂ . By (3.1), A∗ is not unique and may take 2s possible
forms.
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Let a = (a1, . . . , as)
� be the vector of threshold locations and â = (â1, . . . , âŝ )

�
is obtained by (2.5). Similar to the definition of ỹ and X̃, replacing Ij with I∗

j or
Î∗

j and then we may define ỹa or ỹâ and X̃a or X̃â. By Assumption (A1), we have
1
n

X̃�
a X̃a →a.s. �, where � is a positive definite matrix.

To obtain the limiting property of θ̂
∗

in (2.6), we will further need the following
assumption:

(A7) maxu≥0{p′′
λn,γn

(u)} + λ(s+1)p(�) > 0 where λ(s+1)p(�) is the minimal
eigenvalue of �.

For MCP, (A7) is equivalent to λ(s+1)p(�) > 1/γ , and for SCAD, (A7) is equiv-
alent to λ(s+1)p(�) > 1/(γ − 1). Let (θ∗

1 , . . . , θ∗
(s+1)p)� = ((β∗

1)
�, (d∗

1)
�, . . . ,

(d∗
s )

�)� and S = {j : θ∗
j �= 0, j = 1, . . . , (s + 1)p}.

Let Â = {j : θ̂ j �= 0, j = 1, . . . , qn + 1}, and Â∗ be a subset of Â such that
Â∗ = {j : j ∈ Â, j − 1 /∈ Â, j = 2, . . . , qn + 1} = {k̂1, . . . , k̂ŝ} where ŝ is the size
of Â∗.

THEOREM 3.3. Under the Assumptions (A1)–(A7), minj∈S{|θj |} > γλn, θ̂ is

the local minimizer in Theorem 3.2, Zi is a continuous random variable and θ̂
∗

is
a minimizer of M(θ) given by (2.6), then we have, with probability 1:

(1) ŝ = s,
(2) â → a,
(3) θ̂

∗ = θ̂
o
,

where θ̂
o = arg minθ {‖ỹâ − X̃âθ‖2 : θ = (θ1, . . . , θ(s+1)p)�, θj = 0 ∀j /∈ S} is the

oracle estimator when thresholds and the set S are known.

The proof of Theorem 3.3 is also given in the Appendix. We attain the consis-
tency of the TSMCD estimators in this theorem. Our estimators work as well as
the oracle estimators in large samples.

4. Simulation study. We generate random samples from model (2.1) with
s = 2 thresholds in the following. Specifically, we generate the regressors
Xi = (x1,i , x2,i , . . . , x6,i)

� with x1,i = 1, xj,i ∼ N(0,1), j = 2, . . . ,6, and εi ∼
N(0,0.5). We specify the coefficients (θ∗

1 , . . . , θ∗
18)

� = ((β∗
1)

�, (d∗
1)

�, (d∗
2)

�)� =
(2,1,1,1,1,1,−1,0,0,−1,−1,−1,0,−1,1,0,0,0)�, the threshold variable
Zi = x2,i and true thresholds a1 = −0.5244, a2 = 0.2533. The two thresholds
are the 30% and 60% lower percentiles of the standard normal distribution. We
first design the following four cases:

Example 1: n = 150, xj,i , j = 2, . . . ,6 are independent and censoring variable
Ci ∼ N(2,16).
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Example 2: The same setting as Example 1 except n = 300.
Example 3: The same setting as Example 2 except Ci ∼ N(

∑6
j=2 xj,i ,16).

Example 4: The same setting as Example 3 except covariance between xj1,i and
xj2,i is 0.5|j1−j2|.

The censoring rates are about 40% for all cases. Assumption (A2) stipulates
that Ti and Ci must be independent. This assumption is satisfied in the first two
examples. However, a more realistic assumption is that Ti and Ci are conditionally
independent given Xi . Example 3 is thus introduced to test the robustness of our
method. Example 4 is the case where the regressors are moderately correlated.

In order to examine the performance of TSMCP when the model has no thresh-
old. We design the following two cases:

Example 5: The same as Example 1 except s = 0 and β∗
1 = (1,0,2,0,0,0).

Example 6: The same as Example 4 except s = 0 and β∗
1 = (1,0,2,0,0,0).

All numerical studies are performed on a computer [Intel(R) Core(TM) i7 930
2.80 GHz 8 M Caches, 8 GB Memory]. The R program can be downloaded from
the first author’s website: http://www.stat.nus.edu.sg/~stalj/. The means and stan-
dard deviations of computing time by TSMCP are reported in Table 1 based on
100 simulations. The average computing time for MCP is slightly less than that
for SCAD. With the increase of model complexity and sample size, the average
computing time also tends to increase.

The estimation results for s are reported in Table 2 based on 1000 simulations.
Our methods can correctly identify the number of thresholds with very high prob-
ability. While their performance is comparable, SCAD seems to identify slightly
more unnecessary change points than MCP. Both methods improve as sample size
increases.

Figure 2 displays the histograms of the estimators of thresholds, indicating the
empirical estimates are symmetrically distributed around the true change points.
Table 3 summarizes the estimation performance of the estimated thresholds for the

TABLE 1
The means and standard deviations of computation time (seconds)

Example

s = 2 s = 0

1 2 3 4 5 6

TSMCP-MCP Mean 7.55 19.85 21.90 29.56 2.77 7.59
Stand deviation 1.97 3.15 3.56 5.14 1.59 3.34

TSMCP-SCAD Mean 9.76 22.58 24.51 30.81 3.61 9.82
Stand deviation 2.05 3.59 3.50 5.66 1.99 4.04

http://www.stat.nus.edu.sg/~stalj/
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TABLE 2
Frequency of estimated ŝ in 1000 simulations

ŝ

TSMCP-MCP TSMCP-SCAD

0 1 2 3 4 5 6 0 1 2 3 4 5

s = 2 Example 1 2 150 778 65 4 1 0 0 153 773 70 4 0
Example 2 0 13 919 64 3 0 1 0 12 869 116 3 0
Example 3 0 8 937 52 3 0 0 0 8 916 71 4 1
Example 4 0 24 947 26 3 0 0 0 33 920 43 4 0

s = 0 Example 5 914 82 4 0 0 0 0 899 88 11 1 1 0
Example 6 945 49 6 0 0 0 0 936 58 6 0 0 0

FIG. 2. Histograms of the estimated thresholds. The results for MCP and SCAD are displayed
in the first and the second row, respectively. Examples 1, 2, 3 and 4 are from the left to the right,
respectively.

TABLE 3
Estimation performance for the threshold estimation. Bias is the average of estimated parameter

minus the true value. RMSE refers to the relative mean squared errors

TSMCP-MCP TSMCP-SCAD

â1 â2 â1 â2

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Example 1 −0.014 0.031 0.037 0.476 −0.013 0.037 0.039 0.428
Example 2 −0.007 0.007 0.010 0.171 −0.008 0.007 0.012 0.158
Example 3 −0.009 0.006 0.008 0.145 −0.007 0.006 0.010 0.159
Example 4 −0.006 0.005 0.013 0.166 −0.006 0.005 0.012 0.158
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FIG. 3. Box plots of coefficients estimated from MCP (left) and SCAD (right). Results of Examples
1, 2, 3 and 4 are displayed in the four rows, respectively. Box plots of coefficients estimated from
MCP and SCAD of Examples 5 and 6 are reported in the five row, respectively. “∗”s are the true
values.

cases with correct estimation of ŝ = s. Again the two penalty methods give quite
similar results. The estimation bias and mean squared error for a1 are relatively
smaller than those for a2. In fact, we note that the jumps at the two change points
are ‖d∗

1‖2 = 4 and ‖d∗
2‖2 = 2, respectively, under our model. In general, it is easier

for our methods to detect a break point with greater jump.
Finally, we report the estimation performance of the regression coefficients θ̂j

using box-plots in Figure 3 when the number of thresholds are correctly estimated.
In Examples 2–6, the estimated coefficients are quite consistent to the true pa-
rameter values. We can see that the variances of θ̂∗

j , j = 1,2,7,8,13,14, which
are the estimators of the coefficients of the intercept x1,i and x2,i = Zi , are larger
than the others for Examples 1–4. The zero coefficients θ∗

j , j = 8,9,13,16,17,18
in Examples 1–4 and θ∗

j , j = 2,4,5,6 in Examples 5–6, can be successfully
identified by our method, suggesting a satisfactory variable selection perfor-
mance.
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It is noted in all simulations that results from Examples 3–4 and Example 6 are
comparable to those from Example 2 and Example 5, respectively. Even though
Examples 3–4 and Example 6 violate the independence censoring assumption, nu-
merical results in this section suggest our methods are quite robust and may still
work steadily under conditional independence.

5. Real data analysis. Follicular lymphoma is the second most common form
of non-Hodgkins lymphoma, accounting for about 22% of all documented cases.
Dave et al. (2004) investigated whether the survival risks of patients with follicular
lymphoma can be predicted by the gene-expression profiles of tumors and standard
clinical risk factors at diagnosis. Fresh-frozen tumor-biopsy specimens and clinical
data from 191 untreated patients who had received a diagnosis of follicular lym-
phoma between 1974 and 2001 were obtained. The median age at diagnosis was
51 years (range 23–81), and the median follow-up time was 6.6 years (range: less
than 1.0–28.2). The median follow-up time among patients alive at last follow-up
was 8.1 years.

A total of 156 subjects are included in analysis after excluding cases with miss-
ing information. Many authors analyzed this data in earlier works. We revisit this
data set in this section and consider an AFT model between the failure time and
5 most significant genetic markers selected in Yu, Li and Ma (2012). According
to Yu, Li and Ma (2012), genes 357, 2345, 6267, 6271 and 3653 in the original
sample are the most important markers for the survival risk prediction when clin-
ical information is adjusted. We thus set x1,i = 1 as the intercept, and chose the
five gene expressions as the regressors x2,i , . . . , x6,i . We pick gene 357 as the in-
dex variable in the following analysis and set Zi = x2,i since it is recognized as
the most predictive marker for the failure time. We have also attempted to detect
change points for other covariates but our numerical program returned an estimate
ŝ = 0 for them.

Applying TSMCD(MCP) and TSMCD(SCAD), we obtain the same estimation re-
sults, yielding ŝ = 2 and two thresholds â1 = −0.483 and â2 = 0.907. These two
change points divide the sample into three groups with cumulative group sizes
τ̂1 = ∑156

i=1 1{Zi≤−0.483}/156 = 0.263, and τ̂2 = ∑156
i=1 1{Zi≤0.907}/156 = 0.814.

Figure 4 displays the Kaplan–Meier survival curves for the three groups separated
by genes 357. The survival curves for Group 3 drops rapidly since the baseline
and represents a high-risk group in this sample. Such an observation is not avail-
able without considering the threshold AFT model in this paper. Practitioners may
adapt our model easily to discover more meaningful subpopulations with defining
features.

Traditionally, when the goal is to identify subgroups from the empirical sample
one may resort to clustering analysis [Gordon (1981)]. Such unsupervised learning
methods produce segmentation or grouping based on the variation of covariates
and ignore the censored response variable. One drawback is that those learned
groupings may not be relevant to the survival response. We have implemented
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FIG. 4. Survival curves for the three groups separated by the two thresholds of Gene 357. + in-
dicates a censored observation. Groups 1, 2 and 3 refer to Z ≤ −0.482, −0.482 < Z ≤ 0.907 and
Z > 0.907, respectively.

a hierarchical clustering procedure (R function hclust) using only the covariate
matrix and the identified clusters are quite different from our change point analysis.
The comparison of cluster sizes between clustering analysis and our method is
given in Table 4. There is only slight agreement between the two methods with
Cohen’s kappa value equal to 0.36. Furthermore, it is hard to interpret the groups
resulted from the hierarchical clustering algorithm. In particular, it is unclear if the
three groups suggest any practical difference in survival probability. Examining
the Kaplan–Meier curves for the three groups are shown in Figure 5, we notice
that the survival functions for groups 2 and 3 severely overlap for the observation
period. Such findings might be less meaningful for clinical investigation.

The estimated regression coefficients are θ̂
∗ = ((β̂

∗
1)

�, (d̂∗
1)

�, (d̂∗
2)

�)� where

β̂
∗
1 = (0.791,−0.492,0.291,0.990,−0.589,1.115)�, d̂∗

1 = (1.166,0,−0.451,

−1.055,0.540,−0.991)�, d̂∗
2 = (0,−0.381,0,0,0,0.770)�. Such results suggest

at the first threshold â1 = −0.483, only the coefficient of x2,i does not change; and
at the second threshold â2 = 0.907, only coefficients of x2,i and x6,j change and
all other coefficients remain the same.

TABLE 4
Cluster sizes of real data analysis

Cluster analysis

TSMCD Group 1 Group 2 Group 3

Group 1 32 5 4
Group 2 20 46 20
Group 3 0 14 15
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FIG. 5. Kaplan–Meier curves from the hierarchical clustering algorithm.

Using the identified break point structure, we refitted the AFT model and re-
ported the estimation results for the three subgroups in Table 5, along with 95%
bootstrap confidence intervals [Huang, Ma and Xie (2006)]. The effects of genes
on the survival outcome are quite different for the three groups. For example, Gene
2345 is not significant for the first group but are negatively associated with the fail-
ure time for the other two groups. Using our empirical findings, investigators may
evaluate the effects of various genetic biomarkers on mortality more specifically
for different subpopulations.

6. Discussion. The Stute estimator for the AFT model is mainly developed
for right-censored survival data. When the failure time is interval censored, usu-
ally a likelihood-based objective function is constructed to facilitate the regression
estimation. One can incorporate change point structure in such framework and
carry out the two-step estimation similar to our proposal. However, we note that

TABLE 5
Estimates of regression coefficients for the three groups, along with bootstrap standard errors (S.E.)

and P -values by Wald test

Z ≤ −0.482 −0.482 < Z ≤ 0.907 Z > 0.907

Covariates Coef. S.E. P -value Coef. S.E. P -value Coef. S.E. P -value

Intercept 0.791 0.507 0.056 1.957 0.083 0 1.957 0.083 0
Gene 357 −0.492 0.179 0.003 −0.492 0.179 0.003 −0.874 0.144 6e−10
Gene 2345 0.291 0.627 0.321 −0.159 0.084 0.029 −0.159 0.084 0.029
Gene 6267 0.990 0.725 0.086 −0.065 0.110 0.277 −0.065 0.110 0.277
Gene 6271 −0.589 0.568 0.150 −0.049 0.120 0.341 −0.049 0.120 0.341
Gene 3653 1.115 0.556 0.022 0.124 0.078 0.056 0.894 0.250 2e−4
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the functional form for the likelihood under interval censoring may be quite com-
plicated and the numerical solution may not be straightforward. More extensions
in theory and computation are needed to provide a complete solution.

We consider independent survival times in this paper. Individuals observed over
time may experience multiple events of the same type, or a number of events
of different types. Correlated survival time data require further model structures
and technical assumptions to achieve efficient results. Two familiar approaches are
the marginal model and the frailty model [Kalbfleisch and Prentice (2002), Chap-
ter 10]. In both approaches, one may still consider Stute estimator for the AFT
regression and our TSMCD adapts directly. However, the asymptotic results for
such analysis are not trivial since one must take care of the chapter-dependence of
the repeated measures.

The TSMCD involves the penalization approaches, and thus can be easily ex-
tended to incorporate high-dimensional data analysis. Not many authors examined
the change point problem under such settings and, therefore, the results in this pa-
per could contribute significantly toward this goal. However, when the dimension
of feature space is ultra-high with an exponential order of the sample size, usually
a screening step must be conducted before the application of penalized estimation.
In particular, one may adopt TSMCD at the screening step and estimate the effects
of individual markers using the change point structure. This differs from the exist-
ing literature where the marginal effects are usually modeled as a smooth function
at the initial screening. The detailed methodology construction is beyond the scope
of this paper. We will carry out necessary theoretical and empirical studies for this
topic.

APPENDIX A: MATRIX REPRESENTATION OF MODEL (2.1)

Let Ci = ⋃qn+1
j=i Ij , i = 1, . . . , qn + 1. We split the segment Ikj,n

into two

segments: I(1)
kj,n

= {i : Z̃(n∗−(qn−kj,n+2)m)) < Zi ≤ aj } and I(2)
kj,n

= {i : aj < Zi ≤
Z̃(n∗−(qn−kj,n+1)m))}. We rewrite the model (2.1) as the following linear regression
model that takes the segmentation of the data sequence into consideration:

Ti = X�
i

(
β∗

1 +
s∑

j=1

d∗
j 1{i∈Ckj,n

}
)

− X�
i

s∑
j=1

d∗
j 1{i∈I(1)

kj,n
} + εi,(A.1)

where i = 1, . . . , n, d∗
j = β∗

j+1 − β∗
j , j = 1, . . . , s; to include them in (A.1) is to

facilitate the proof of Theorem 3.2. In order to estimate kj,n, j = 1, . . . , s and the
regression coefficients simultaneously, we expand the model (A.1) as the following
model:

(A.2) Ti = X�
i

[
β1 +

qn∑
�=1

d�1{i∈C�+1} + ωi

]
+ εi, i = 1, . . . , n,
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where {d�} and {ωi} are defined as follows:

d� =
{

d∗
j , � = kj,n, j = 1, . . . , s,

0p, otherwise;

ωi =
{−d∗

j , i ∈ I(1)
kj,n

, j = 1, . . . , s,

0p, otherwise.

Let ε(j) = (εi, i ∈ Ij )
�, xω,(j) = (X�

i ωi , i ∈ Ij )
�, ε̃(j) = diag(w̃(j))

1/2ε(j),
x̃ω,(j) = diag(w̃(j))

1/2xω,(j), ε̃ = (ε�
(1), . . . ,ε

�
(qn+1))

�, x̃ω = (x̃�
ω,(1), . . . ,

x̃�
ω,(qn+1))

�, θ∗ = (θ�
1 , . . . , θ�

qn+1)
� = (β�

1 ,d�
1 , . . . ,d�

qn
)� and dj = (dj1, . . . ,

djp)�, j = 1, . . . , qn. The model (A.2) has the matrix form as follows:

ỹ = X̃θ∗ + x̃ω + ε̃,(A.3)

Remove the zero elements of θ∗, model (A.3) can be rewritten as

ỹ = X̃Aθ∗
A + x̃ω + ε̃,(A.4)

which corresponds to the matrix form of model (A.1).

APPENDIX B: PROOF OF THEOREMS 3.1–3.3

B.1. Proof of Theorem 3.1. Let ς = Z(k), Y1k = (Yi, i ∈ IZ−
(k)

)�, X1k =
(Xi , i ∈ IZ−

(k)
)�, ε1k = (εi, i ∈ IZ−

(k)
)�, Y2k = (Yi, i ∈ IZ+

(k)
)�, X2k = (Xi , i ∈

IZ+
(k)

)�, ε2k = (εi, i ∈ IZ+
(k)

)�, W 1k = diag((w[rYi ,IZ
−
(k)

], i ∈ IZ−
(k)

)), W 2k =
diag((w[rYi ,IZ

+
(k)

], i ∈ IZ+
(k)

)), Q1(k,β) = Q(Z−
(k),β) and Q2(k,β) = Q(Z+

(k),β).

Then we have

β̂1k = arg min
β

Q1(k,β) = (
X�

1kW 1kX1k

)−1X�
1kW 1kY1k,

β̂2k = arg min
β

Q2(k,β) = (
X�

2kW 2kX2k

)−1X�
2kW 2kY2k.

Let k/n → τ ′, k∗/n → τ (e.g., k = �nτ ′�, k∗ = �nτ�), E(XiX�
i |Zi ≤ ς) =


0,ς− and E(XiX�
i |Zi > ς) = 
0,ς+ . First, we consider the case of 0 ≤ τ ′ < τ .

For �IZ−
(k)

= k, we get

Q1(k, β̂1k) = k

n
(Y1k − X1kβ̂1k)

�W 1k(Y1k − X1kβ̂1k)

= k

n
Y�

1k

(
Ik − W 1kX1k

(
X�

1kW 1kX1k

)−1X�
1k

)
× W 1k

(
Ik − X1k

(
X�

1kW 1kX1k

)−1X1kW 1k

)
Y1k
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= k

n
ε�

1kW
1/2
1k

(
Ik − W

1/2
1k X1k

(
X�

1kW 1kX1k

)−1X�
1kW

1/2
1k

)
W

1/2
1k ε1k

= k

n
ε�

1kW 1kε1k − k

n
ε�

1kW 1kX1k

(
X�

1kW 1kX1k

)−1X�
1kW 1kε1k.

By Corollary 1.8 of Stute (1993) and the assumption that Zi , εi are independent,

ε�
1kW 1kε1k = ∑

i∈I
Z

−
(k)

w[rYi ,IZ
−
(k)

]
(
Yi − X�

i β∗
1
)2 →a.s. E

[(
Yi − X�

i β∗
1
)2|Zi ≤ Z(k)

]

= Eε2
i = σ 2

1 ,

X�
1kW 1kX1k = ∑

i∈I
Z

−
(k)

w[rYi ,IZ
−
(k)

]XiX�
i →a.s. E

(
XiX�

i |Zi ≤ Z(k)

)= 
0,Z−
(k)

≤ 
0,

ε�
1kW 1kX1k = ∑

i∈I
Z

−
(k)

w[rYi ,IZ
−
(k)

]εiX�
i →a.s. E

(
εiX�

i |Zi ≤ Z(k)

)

= E
[
E
(
εiX�

i |Xi ,Zi ≤ Z(k)

)]= 0�
p .

Thus

Q1(k, β̂1k) →a.s. τ
′σ 2

1 .(B.1)

Let d∗ = β∗
2 − β∗

1, T2k = (Tk+1, . . . , Tn)
�, 0kk∗ = 0(k∗−k)×(p+1) and X2k∗ =

(Xk∗+1, . . . ,Xn)
�. We have

T2k = X2kβ
∗
1 +

(
0kk∗
X2k∗

)
d∗ + ε2k.

Notice that �IZ+
(k)

= n − k, we obtain

Q2(k, β̂2k) = n − k

n
(Y2k − X2kβ̂2k)

�W 2k(Y2k − X2kβ̂2k)

= n − k

n
Y�

2kW
1/2
2k P n−kW

1/2
2k Y2k

= n − k

n
ε�

2kW
1/2
2k P n−kW

1/2
2k ε2k

+ n − k

n

(
d∗)� (0kk∗

X2k∗

)�
W

1/2
2k P n−kW

1/2
2k

(
0kk∗
X2k∗

)
d∗

+ 2(n − k)

n

(
d∗)� (0kk∗

X2k∗

)�
W

1/2
2k P n−kW

1/2
2k ε2k,

where P n−k = In−k − W
1/2
2k X2k(X�

2kW 2kX2k)
−1X�

2kW
1/2
2k .
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Recall that k/n → τ ′, k∗/n → τ , 0 ≤ τ ′ < τ . Let α1k = limn→∞(k∗ − k)/(n −
k) = (τ − τ ′)/(1 − τ ′). In the following proof, we can consider that {Ti, i ∈ IZ+

(k)
}

are independent samples with the same mixture distribution as F̃k = α1kF1 + (1 −
α1k)F2. Let the distribution of Yi = min{Ti,Ci}, i ∈ IZ+

(k)
be H̃k . By (A2),

1 − H̃k(y) = (
1 − F̃k(y)

)(
1 − G(y)

)
= α1k

(
1 − F1(y)

)(
1 − G(y)

)+ (1 − α1k)
(
1 − F2(y)

)(
1 − G(y)

)
= α1k

(
1 − H1(y)

)+ (1 − α1k)
(
1 − H2(y)

)
,

which shows that Yi , i ∈ Iz+
(k)

are independent samples with the same mixture

distribution H̃k(y) = α1kH1(y) + (1 − α1k)H2(y).
Let β̃

∗ = β∗
11{T d=F1} + β∗

21{T d=F2}. By Corollary 1.8 of Stute (1993), we obtain

ε�
2kW 2kε2k = ∑

i∈I
Z

+
(k)

w[rYi ,IZ
+
(k)

]
(
Yi − X�

i β̃
∗)2

→a.s. E
[(

Ti − X�
i β̃

∗)2|Zi > Z(k)

]= α1kσ
2
1 + (1 − α1k)σ

2
2 ,

X�
2kW 2kX2k →a.s. E

(
XiX�

i |Zi > Z(k)

)= 
0,Z+
(k)

≤ 
0,

ε�
2kW 2kX2k →a.s. E

(
εiX�

i |Zi > Z(k)

)= 0�
p .

By Theorem 1 of Stute (1993), we have

X�
2kW 2k

(
0kk∗
X2k∗

)
d∗ = ∑

i∈I
Z

+
(k∗)

w[rYi ,IZ
+
(k)

]XiX�
i d∗

= ∑
i∈I

Z
+
(k)

w[rYi ,IZ
+
(k)

]XiX�
i 1{Ti

d=F2}d
∗

→a.s. E
[(

XiX�
i 1{Ti

d=F2}
)|Zi > Z(k∗)

]
d∗

= (1 − α1k)
0,Z+
(k∗)

d∗.

Similarly, we have

(
d∗)� (0kk∗

X2k∗

)�
W 2k

(
0kk∗
X2k∗

)
d∗ = (

d∗)� ∑
i∈I

Z
+
(k∗)

w[rYi ,IZ
+
(k)

]XiX�
i d∗

→a.s. (1 − α1k)
(
d∗)�
0,Z+

(k∗)
d∗,

(
d∗)� (0kan

X2k∗

)�
W 2kε2k = (

d∗)� ∑
i∈I

Z
+
(k∗)

w[rYi ,IZ
+
(k)

]Xiεi

→a.s. (1 − α1k)
(
d∗)�E(Xiεi |Zi > Z(k∗)) = 0.
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Thus

Q2(k, β̂2k) →a.s.
(
τ − τ ′)σ 2

1 + (1 − τ)σ 2
2

+ (1 − τ)(τ − τ ′)
1 − τ ′

(
d∗)�
0,z+

(k∗)
d∗.

(B.2)

Combining (B.1) and (B.2), if 0 ≤ τ ′ < τ , we have, with probability 1,

Q(Z(k)) → τσ 2
1 + (1 − τ)σ 2

2 + (1 − τ)
(
τ − τ ′)(1 − τ ′)−1(d∗)�
0,Z+

(k∗)
d∗

> τσ 2
1 + (1 − τ)σ 2

2 .

Similarly, if 1 ≥ τ ′ > τ , with probability 1, we can obtain

Q(Z(k)) → τσ 2
1 + (1 − τ)σ 2

2 + τ ′(1 − τ ′)−1(d∗)�
0,Z−
(k∗)

d∗

> τσ 2
1 + (1 − τ)σ 2

2 ,

and Q(Z(k∗)) →a.s. τσ 2
1 + (1 − τ)σ 2

2 . Thus if â = arg minς∈{Z(1),...,Z(n)}{Q(ς)} =
Z

(k̂)
, we have k̂/n →a.s. τ , that is, 1

n

∑n
i=1 1{Zi≤â} →a.s. τ . If Zi is a continuous

random variable, by continuous mapping theorem, we have â →a.s. a. Therefore,
the proof is completed.

B.2. Proof of Theorem 3.2. By the Karush–Kuhn–Tucker (KKT) conditions,
we only need to show with probability 1,

max
j /∈A

∥∥n−1(X̃(j))�(ỹ − X̃A∗ θ̂A∗)
∥∥≤ √

pλn,(B.3)

min
�=1,...,s

{‖θ̂1‖,max
{‖θ̂k�,n

‖,‖θ̂k�,n+1‖}}≥ √
pγλn.(B.4)

First, we prove (B.3). Note that αj is arbitrary in (A.4). By the condition (A7)
and (A8), we put αj = 1 if kj,n ∈ A∗ and kj,n + 1 /∈ A∗, and we put αj = 0 if
kj,n /∈ A∗ and kj,n + 1 ∈A∗. Thus, (A.4) can be rewritten as

ỹ = X̃A∗ θ̃
∗
A∗ + x̃ω + ε̃.

By θ̂A∗ = (X̃�
A∗X̃A∗)−1X̃�

A∗ ỹA∗ , we obtain∥∥(X̃(j))�(ỹ − X̃A∗ θ̂A∗)
∥∥

= ∥∥(X̃(j))�(In − X̃A∗
(
X̃�
A∗X̃A∗

)−1X̃�
A∗
)
ỹ
∥∥

= ∥∥(X̃(j))�(In − X̃A∗
(
X̃�
A∗X̃A∗

)−1X̃�
A∗
)
(̃x̃ω + ε̃)

∥∥
≤ ∥∥(X̃(j))�(̃x̃ω + ε̃)

∥∥≤ ∥∥(X̃(j))�x̃ω

∥∥+ ∥∥(X̃(j))�ε̃
∥∥,
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where since X̃A∗(X̃�
A∗X̃A∗)−1X̃�

A∗ is a projection matrix, the first inequality comes
from Theorem 2.22 of Puntanen (2011), and the second inequality comes from
triangle inequality.

By the definition of ωi , with probability 1, we have

max
j

∥∥∥∥ 1√
n

(
X̃(j))�x̃ω

∥∥∥∥
≤

qn+1∑
j=1

∥∥X̃�
(j)x̃ω,(j)

∥∥

≤
s∑

�=1

∥∥∥∥ 1√
n

∑
i∈I(1)

k�,n

X̃iX̃�
i (−α�)δ

∗
� + 1√

n

∑
i∈I(2)

k�,n

X̃iX̃T
i (1 − α�)δ

∗
�

∥∥∥∥

≤
s∑

�=1

∥∥δ∗
�

∥∥∥∥∥∥ 1√
n

X̃�
(k�,n)X̃(k�,n)

∥∥∥∥≤ s max� �Ik�,n√
n

‖
0‖ max
1≤�≤s

∥∥d∗
�

∥∥.

By (A4), we have
max� �Ik�,n√

n
= O(1). Thus maxj ‖ 1√

n
(X̃(j))�x̃ω‖ is bounded

with probability 1.
Assume ϕj (X, Y ) = X�(Y − X�β∗

j ). By (A6), ϕj = 0 for all Y ∈ (U∗
Fj

+
UEj

,UFj
] which is the condition (2.3) of Stute (1995). From (A1), we have

E‖ϕj‖2 < ∞. Denote X̃t = (x̃t,1, . . . , x̃t,p)�. By (2.5) in Stute (1995), we have

1√
�Ij

∑
t∈Ij

x̃t,i ε̃t = 1√
�Ij

∑
t∈Ij

Uj,i,t + Rj,i,(B.5)

where the Uj,i,t , t ∈ Ij are i.i.d. with mean zero and Vj,i = Var(Uj,i,t ) < ∞, and

|Rj,i | = Oa.s.
(
(�Ij )

−1/2 log(�Ij )
)
.

The expression of Vj,i can be found in Theorem 1.1 of Stute (1996).
Because there are s + 1 difference models in each of which T� has the dis-

tribution F�, � = 1, . . . , s + 1, and by a� ∈ Ik�,n
, � = 1, . . . , s, for all Vj,i ,

j ∈ [k�−1,n + 1, k�,n − 1] have the same value and set Vj,i = V ∗
�,i for all j ∈

[k�−1,n + 1, k�,n − 1], � = 1, . . . , s + 1, where k0,n = 0, ks+1,n = qn + 2. Assume
�I(1)

k�,n
/�Ik�,n

→ α�, and then we can consider that {ti , i ∈ Ik�,n
} are independent

samples with the same mixture distribution as F̃� = α�F� + (1 − α�)F�+1. Thus
when j = k�,n, Vj,i = Ṽ�,i = α�V

∗
�,i + (1 − α�)V

∗
�+1,i , � = 1, . . . , s. Therefore,

Vj,i , j = 1, . . . , qn + 1, i = 1, . . . , p have at most (2s + 1)p different values and
we denote the greatest value among them by V .
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By (B.5), we get

max
1≤j≤qn+1

∥∥∥∥ 1√
n

(
X̃(j))�ε̃

∥∥∥∥
≤

p∑
i=1

max
1≤k≤qn+1

∣∣∣∣∣ 1√
n

qn+1∑
j=k

∑
t∈Ij

x̃t,i ε̃t

∣∣∣∣∣

≤
p∑

i=1

max
1≤k≤qn+1

∣∣∣∣∣ 1√
n

qn+1∑
j=k

∑
t∈Ij

Uj,i,t

∣∣∣∣∣+
p∑

i=1

qn+1∑
j=1

√
�Ij√
n

|Rj,i |.

For n∗ = O(n), qn = O(m) = O(n1/2), we have
∑p

i=1
∑qn+1

j=1

√
�Ij√
n

|Rj,i | =
Oa.s.(logn).

By the Hájek and Rényi inequality [Hájek and Rényi (1955)], for any given
ε > 0, we have

∞∑
n=2

1

n
P

(
max

1≤k≤qn+1

∣∣∣∣∣ 1√
n

qn+1∑
j=k

∑
t∈Ij

Uj,i,t

∣∣∣∣∣≥ ε logn

)

≤
∞∑

n=2

1

ε2n(logn)2

qn+1∑
j=1

�Ij

n
Vj,i <

∞∑
n=2

V

ε2n(logn)2 < ∞.

By Theorem 2.1 of Yang, Su and Yu (2008), we have

p∑
i=1

max
1≤k≤qn+1

∣∣∣∣∣ 1√
n

qn+1∑
j=k

∑
t∈Ij

Uj,i,t

∣∣∣∣∣= oa.s.(logn).

Combining the above result, we have 1√
n

maxj /∈A ‖(X̃(j))�(ỹ − X̃A∗ θ̂A∗)‖ =
Oa.s.(logn), but

√
nλn/ logn → ∞, and then (B.3) holds with probability 1.

Let A∗ = {ji, i = 1, . . . , b̂} where j1 < j2 < · · · < j
b̂
. By the condition (A7) and

(A8), we have j1 = 1 and b̂ ≤ 2s + 1. Put X̃(c:d) = (X̃�
(c), X̃�

(c+1), . . . , X̃�
(d))

� and

ỹ(c:d) = (ỹ�
(c), ỹ�

(c+1), . . . , ỹ�
(d))

� for c ≤ d , and X̃i = X̃�
(ji :ji+1−1)X̃((ji :ji+1−1) =∑ji+1−1

k=ji
X̃�

(k)X̃(k), i = 1, . . . , b̂, j
b̂+1 = qn + 2. Then we have

(
X̃�
A∗X̃A∗

)−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X̃
−1
1 −X̃

−1
1 0 . . . 0 0 0

−X̃
−1
1 X̃

−1
1 + X̃

−1
2 −X̃

−1
2 . . . 0 0 0

...
...

...
...

...
...

...

0 0 0 . . . −X̃
−1
b̂−2

X̃
−1
b̂−2

+ X̃
−1
b̂−1

−X̃
−1
b−1

0 0 0 . . . 0 −X̃
−1
b̂−1

X̃
−1
b̂−1

+ X̃
−1
b̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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Thus

θ̂A∗ = (
X̃�
A∗X̃A∗

)−1X̃�
A∗ ỹA∗

=

⎛
⎜⎜⎜⎜⎜⎝

X̃
−1
1 X̃�

(j1:j2−1)ỹ(j1:j2−1)

X̃
−1
2 X̃�

(j2:j3−1)ỹ(j2:j3−1) − X̃
−1
1 X̃�

(j1:j2−1)ỹ(j1:j2−1)

...

X̃
−1
b̂

X̃�
(j

b̂
:j

b̂+1−1)ỹ(j
b̂
:j

b̂+1−1) − X̃
−1
b̂−1

X̃�
(j

b̂−1:jb̂
−1)ỹ(j

b̂−1:jb̂
−1)

⎞
⎟⎟⎟⎟⎟⎠ .

(B.6)

By (2.1), m = �c√n∗� and (B.6), we have the following results:

1. θ̂1 →a.s. β
∗
1.

2. If kj,n ∈ A∗ and kj+1,n /∈ A∗, θ̂kj,n
→a.s. d∗

j .

3. If kj,n /∈ A∗ and kj+1,n ∈ A∗, θ̂kj+1,n
→a.s. d∗

j .

4. If kj,n ∈ A∗ and kj+1,n ∈ A∗, θ̂kj,n
+ θ̂kj+1,n

→a.s. d∗
j .

By assuming min{‖β1‖2,‖δj‖2} > 2
√

pγλ, (B.4) holds with probability 1. Hence
the proof of Theorem 3.2 is complete.

B.3. Proof of Theorem 3.3. Following the definition of ŝ and the condition
(3.1), the result (1) can be directly proved by Theorem 3.2. Based on the con-
dition (3.1), the result (2) can be proved by applying Theorem 3.1 to each sin-
gle change point in disjoint intervals. Under Assumption (A7) and the result (2),
X̃T

â X̃â/n →a.s. � > 0. Thus the criterion

1

2n
‖ỹâ − X̃âθ‖2 +

(s+1)p∑
i=1

pλn,γ

(|θi |)

is strictly convex. By the KKT condition and result (2), (3) holds with probability 1
in the following events:

max
j /∈S

∣∣n−1(X̃j )
�(ỹâ − X̃âθ̂

o)∣∣≤ λn and min
j∈S

{∥∥θ̂ o
j

∥∥}≥ γ λn,

which can be proven similarly as the proof of Theorem 3.2. Hence the proof is
complete.
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