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SUPPORT POINTS!

BY SIMON MAK AND V. ROSHAN JOSEPH

Georgia Institute of Technology

This paper introduces a new way to compact a continuous probability
distribution F' into a set of representative points called support points. These
points are obtained by minimizing the energy distance, a statistical potential
measure initially proposed by Székely and Rizzo [InterStat 5 (2004) 1-6] for
testing goodness-of-fit. The energy distance has two appealing features. First,
its distance-based structure allows us to exploit the duality between powers
of the Euclidean distance and its Fourier transform for theoretical analysis.
Using this duality, we show that support points converge in distribution to F,
and enjoy an improved error rate to Monte Carlo for integrating a large class
of functions. Second, the minimization of the energy distance can be for-
mulated as a difference-of-convex program, which we manipulate using two
algorithms to efficiently generate representative point sets. In simulation stud-
ies, support points provide improved integration performance to both Monte
Carlo and a specific quasi-Monte Carlo method. Two important applications
of support points are then highlighted: (a) as a way to quantify the propaga-
tion of uncertainty in expensive simulations and (b) as a method to optimally
compact Markov chain Monte Carlo (MCMC) samples in Bayesian compu-
tation.

1. Introduction. This paper explores a new method for compacting a con-
tinuous probability distribution F into a set of representative points (rep-points)
for F, which we call support points. Support points have many important appli-
cations in a wide array of fields, because these point sets provide an improved
representation of F' compared to a random sample. One such application is to the
“small-data” problem of uncertainty propagation, where the use of support points
as simulation inputs can allow engineers to quantify the propagation of input un-
certainty onto system output at minimum cost. Another important application is to
“big-data” problems encountered in Bayesian computation, specifically as a tool
for compacting large posterior sample chains from Markov chain Monte Carlo
(MCMC) methods [19]. In this paper, we demonstrate the theoretical and practical
effectiveness of support points for the general problem of integration, and illustrate
its usefulness for the two applications above.
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We first outline two classes of existing methods for rep-points. The first class
consists of the so-called mse-rep-points (see, e.g., Chapter 4 of [15]), which min-
imize the expected distance from a random point drawn from F to its closest rep-
point. Also known as principal points [16], mse-rep-points have been employed
in a variety of statistical and engineering applications, including quantizer design
[22, 50] and optimal stratified sampling [6, 7]. In practice, these rep-points can
be generated by first performing k-means clustering [36] on a large batch sample
from F, then taking the converged cluster centers as rep-points. One weakness of
mse-rep-points, however, is that they do not necessarily converge to F (see, e.g.,
[61, 72]). The second class of rep-points, called energy rep-points, aims to find a
point set which minimizes some measure of statistical potential. Included here are
the minimum-energy designs in [27] and the minimum Riesz energy points in [3].
While the above point sets converge in distribution to F, its convergence rate is
quite slow, both theoretically and in practice [3]. Moreover, the construction of
such point sets can be computationally expensive in high dimensions.

The key idea behind support points is that it optimizes a specific potential mea-
sure called the energy distance, which makes such point sets a type of energy
rep-point. First introduced in [63], the energy distance was proposed as a computa-
tionally efficient way to evaluate goodness-of-fit (GOF), compared to the classical
Kolmogorov—Smirnov (K-S) statistic [30], which is difficult to evaluate in high
dimensions. Similar to the existing energy rep-points above, we show in this paper
that support points indeed converge in distribution to F. In addition, we demon-
strate the improved error rate of support points over Monte Carlo for integrating a
large class of functions. The minimization of this distance can also be formulated
as a difference-of-convex (d.c.) program, which allows for efficient generation of
support points.

Indeed, the reverse-engineering of a GOF test forms the basis for state-of-the-art
integration techniques called quasi-Monte Carlo (QMC) methods (see [9] and [8]
for a modern overview). To see this, first let g be a differentiable integrand, and let
{x;}7_, be the point set (with empirical distribution, or e.d.f., F;;) used to approxi-
mate the desired integral [ g(x) d F (x) with the sample average [ g(x)d F,,(x). For
simplicity, assume for now that F = U[O0, 1]? is the uniform distribution on the p-
dimensional hypercube [0, 1]7, the typical setting for QMC. The Koksma—Hlawka
inequality (see, e.g., [45]) provides the following upper bound on the integration
error [:

I(g: F. Fy) = ]/g(x)d[F — R

(D
EVq(g)Dr(Fv F), 1/q+1/r:1,

where V,;(g) = ||8Pg/8x||Lq, and D, (F, F,) is the L,-discrepancy:

@) Dk F) = ([ IR0 - F<x>|’dx)1/r.
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The discrepancy D, (F, F,;) measures how close the e.d.f. F}, is to F, with a smaller
value suggesting a better fit. Setting r = 0o, the L-discrepancy (or simply dis-
crepancy) becomes the classical K-S statistic for testing GOF. In other words,
a point set with good fit to F also provides reduced integration errors for a large
class of integrands. A more general discussion of this connection in terms of kernel
discrepancies can be found in [24].

For a general distribution F, the optimization of D,(F, F;;) can be a difficult
problem. In the uniform setting F' = U[0, 1]”, there has been some work on di-
rectly minimizing the discrepancy Do, (F, Fy), including the cdf-rep-points in [15]
and the uniform designs in [13]. Such methods, however, are quite computationally
expensive, and are applicable only for small point sets on U[0, 1]7 (see [14]). Be-
cause of this computational burden, modern QMC methods typically use number-
theoretic techniques to generate point sets which achieve an asymprotically quick
decay rate for discrepancy. These include the randomly-shifted lattice rules [59]
using the component-by-component implementation of [46] (see also [44]), and
the randomly scrambled Sobol’ sequences due to [60] and [48]. While most QMC
methods consider integration on the uniform hypercube U [0, 1]7, there are several
ways to map point sets on U [0, 1]” to nonuniform F. One such map is the inverse
Rosenblatt transformation [54]; however, it can be computed in closed-form only
for a small class of distributions. When the density of F is known up to a propor-
tional constant, the Markov chain quasi-Monte Carlo (MCQMC) approach [49]
can also be used to generate QMC points on F'.

Viewed in this light, the energy distance can be seen as a kernel discrepancy [23]
for nonuniform distributions, with the specific kernel choice being the negative Eu-
clidean norm. However, in contrast with the typical number-theoretic construction
of QMC point sets, support points are instead generated by optimizing the under-
lying d.c. formulation for the energy distance. This explicit optimization can have
both advantages and disadvantages. On one hand, support points can be viewed as
optimal sampling points of F (in the sense of minimum energy) for any desired
sample size n. This optimality is evident in the three examples of support points
plotted in Figure 1—the points are concentrated in regions with high densities, but
is sufficiently spread out to maximize the representativeness of each point. Such a
“space-filling” property can allow for improved integration performance over ex-
isting QMC techniques, which we demonstrate in Section 4. On the other hand, the
computational work for optimization can grow quickly when the desired sample
size or dimension increases. To this end, we propose two algorithms which exploit
the appealing d.c. formulation to efficiently generate point sets as large as 10,000
points in dimensions as large as 500.

This paper is organized as follows. Section 2 proves several important theoreti-
cal properties of support points. Section 3 proposes two algorithms for efficiently
generating support points. Section 4 outlines several simulations comparing the
integration performance of support points with MC and an existing QMC method.
Section 5 gives two important applications of support points in uncertainty prop-
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Exponential ) Beta Banana

F1G. 1. n =350 support points for 2-d i.i.d. Exp(1), Beta(2, 4) and the banana-shaped distribution
in [21]. Lines represent density contours.

agation and Bayesian computation. Section 6 concludes with directions for future
research.

2. Support points.

2.1. Definition. Let us first define the energy distance between two distribu-
tions F and G.

DEFINITION 1 (Energy distance; Def. 1 of [64]). Let F and G be two distri-
bution functions (d.f.’s) on & # X C R” with finite means, and let X, X’ i G and
vy y b iid.
) E(F,G)=2E|X-Y| -E|X-X'|, —E|Y -Y'|,.

F. The energy distance between F' and G is defined as

When G = F, is the e.d.f. for {x;}}_, € X, this energy distance becomes

n
@ E(F E)=- > Ellx — Y2 — Z Z Ix; — xjlla = E[Y = Y[,
i3 i=1j=1

For brevity, F is assumed to be a continuous d.f. on @ # X C R? with finite mean
for the remainder of the paper.

The energy distance E(F, F,) was originally proposed in [63] as an efficient
GOF test for high-dimensional data. In this light, support points are defined as the
point set with best GOF under E(F, F).

DEFINITION 2 (Support points). Let Y ~ F. For a fixed-point set size n € N,

the support points of F are defined as
(&), € ArgrmnE(F F,)

.....

l n n
—Argmm: ZE”X, Y| —?ZZHX;' —Xjll2¢-

""" i=1j=1

(&)



2566 S. MAK AND V. R. JOSEPH

The minimization of E(F, F;) is justified by the following metric property.

THEOREM 1 (Energy distance, Proposition 2 of [64]). E(F,G) > 0, with
equality holding if and only if F = G.

This theorem shows that the energy between two distributions is always non-
negative, and equals zero if and only if these distributions are the same. In this
sense, E(F, G) can be viewed as a metric on the space of distribution functions.
Support points, being the point set which minimizes such a metric, can then be
interpreted as optimal sampling points which best represent F'.

The choice of the energy distance E (F, F;) as an optimization objective is sim-
ilar to its appeal in GOF testing. As mentioned in the Introduction, E(F, F;) was
originally proposed as an efficient alternative to classical K-S statistic. However,
not only is E(F, F,) easy-to-evaluate, it also has a desirable formulation as a d.c.
program. We present in Section 3 two algorithms which exploits this structure to
efficiently generate support points.

In the univariate setting of p = 1, an interesting equivalence can be established
between support points and optimal L»-discrepancy points.

PROPOSITION 1 (Optimal L,-discrepancy). For a univariate d.f. F, the sup-
port points of F are equal to the point set with minimal L,-discrepancy.

PROOF. It can be shown [62] that E(F, F,) = 2D§(F, F,), where F,, is the
e.d.f. of {x;}/_; € X SR and Dy(F, F,) is the one-dimensional L;-discrepancy
in (2). This proves the assertion. [J

Unfortunately, such an equivalence fails to hold for p > 1, since the L-
discrepancy is not rotation-invariant. Support points and optimal Lj-discrepancy
points can therefore behave quite differently in the multivariate setting.

2.2. Theoretical properties. While the notion of reverse engineering the en-
ergy distance is intuitively appealing, some theory is needed to demonstrate why
the resulting points are appropriate for (a) representing the desired distribution
F, and (b) integrating under F. To this end, we provide three theorems: the first
proves the distributional convergence of support points to F, the second estab-
lishes a Koksma—Hlawka-like bound connecting integration error with E(F, F},),
and the last provides an existence result for the resulting error convergence rate.
The proofs of these results rely on the important property that, for generalized
functions, the Fourier transform of the Euclidean norm || - || is proportional to the
same norm raised to some power (see pages 173—174 in [17]). We refer to various
forms of this duality property throughout the proofs.
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2.2.1. Convergence in distribution. We first address the distributional conver-
gence of support points to the desired distribution F'.

THEOREM 2 (Distributional convergence). Let X ~ F and X,, ~ F,, where
F, is the e.d.f. of the support points in (O). Then X, 4 X,

This relies on the following lemma, which slightly extends the Lévy continuity
theorem to the almost-everywhere (a.e.) pointwise convergence setting.

LEMMA 1. Let (F,);2, be a sequence of d.f’s with characteristic functions
(cf’s) (P ()2, and let F be a d.f. with c.f. ¢(t). If X, ~ F, and X ~ F, with

lim;,—s 5o @, (t) = @ (t) a.e. (in the Lebesgue sense), then X, i) X.

PROOF. (Lemma 1) See Appendix A.1 of the Supplementary Material [40].
g

PROOF. (Theorem 2) Define the sequence of random variables (Y;)72, ik

F, and let Fn denote the e.d.f. of {Y;}7_;. By the Glivenko—Cantelli lemma,
lim;,, oo SUPycRp |ﬁn (x) — F(x)|=0a.s., so Fn (x) > F(x) a.s. for all x. Let ¢(t)
and q~5n (t) denote the c.f.’s of F' and I:”,,, respectively. Since |exp(i(t, x))| < 1, ap-
plying the Portmanteau theorem (Theorem 8.4.1 in [53]) and the dominated con-
vergence theorem gives

5) 1im E[[¢(® — $.(0)]*] =

Using Proposition 1 of [64] (this is a duality result connecting the energy dis-
tance with c.f.’s), the expected energy between Fj, and F' becomes

[f () — $a (V)] t}_ap/ Ell¢(t) — du(t)? 1,

1 1
5+ il

(6) E[E(F, F,)]=

where a;, is some constant depending on p, with the last step following from Fu-
bini’s theorem. Note that E[|¢(t) — @, (t)|*] = I Var[exp(i(t, Y1))], so E[|¢(t) —

¢~>n (t)|2] is monotonically decreasing in n. By the monotone convergence theorem
and (5), we have

dt=0.

/1 E[|p(t) — ¢ (t)]?]

7 hm IE[E(F F)]=
e+

Consider now the e.d.f’s (F,);°, and c.f’s (¢,);°, for support points. By
Definition 2, E(F, F,) < E[E(F, F,)], so lim,_,« E(F, F,) = 0 by (7) and the
squeeze theorem. Take any subsequence (n4);>; € Ny, and note that

(t) — ¢, (D)

g

hm E(F, Fnk)_ 1 f|¢
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We know by the Riesz—Fischer theorem (page 148 in [55]) that a sequence of func-
tions (f;;), which converge to f in L, has a subsequence which converges point-
wise a.e. to f. Applied here, this suggests the existence of a further subsequence

(MR S (np)f2, satisfying ¢, (t) “Z° 9(t) ae., so by Lemma 1, X, 4 X
Since (ny)p2; was arbitrarily chosen, it follows by the proof of Corollary 1 in

Chapter 9 of [58] that X, i) X, which is as desired. [J

In words, this theorem shows that support points are indeed representative of
the desired distribution ¥ when the number of points n grows large. From this, the
consistency of support points can be established.

COROLLARY 1 (Consistency). Let X~ F and X,, ~ F,, with F,, as in Theo-

rem 2. (a) If g : X — R is continuous, then g(X;,) i) g(X). (b) If g is continuous
and bounded, then lim E[g(X,)] = lim Ly g&)=EgX)].

PROOF. Part (a) follows from the continuous mapping theorem and Theo-
rem 2. Part (b) follows by the Portmanteau theorem. [

The purpose of this corollary is two-fold: it demonstrates the consistency of sup-
port points for integration, and justifies the use of these point sets for a variety of
other applications. Specifically, part (a) shows that support points are appropriate
for performing uncertainty propagation in stochastic simulations, an application
further explored in Section 4.2. Part (b) shows that any continuous and bounded
integrand g can be consistently estimated using support points, that is, its sample
average converges to the desired integral.

2.2.2. A Koksma—Hlawka-like bound. Next, we present a theorem which up-
per bounds the squared integration error I%(g; F, F,,) by a term proportional to
E(F, F,) for a large class of integrands. Such a result provides some justification
on why the energy distance may be a good criterion for integration. Here, we first
provide a brief review of conditionally positive definite (c.p.d.) kernels, its native
spaces and their corresponding reproducing kernels, three ingredients which will
be used for proving the desired theorem.

Consider the following definition of a conditionally positive definite kernel.

DEFINITION 3 (c.p.d. kernel; Definition 8.1 of [68]). A continuous function
® : R? — Ris a c.p.d. kernel of order m if, for all pairwise distinct X1, ..., Xy €
R?” and all ¢ € RV \ {0} satisfying Z;VZ 1 ¢ p(x;) = 0 for all polynomials of degree
less than m, the quadratic form Z;VZ 1 Z,ivzl $iCk®(x; — xi) is positive.

Similar to the theory of positive definite kernels (see, e.g., Sections 10.1 and
10.2 of [68]), one can use a c.p.d. kernel @ to construct a reproducing kernel
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Hilbert space (RKHS) along with its reproducing kernel. This is achieved using
the so-called native space of ®.

DEFINITION 4 (Native space; Definition 10.16 of [68]). Let ®:R” —~ R bea
c.p.d. kernel of order m > 1, and let P = 7,1 (R”) be the space of polynomials
with degree less than m. Define the linear space

N ) N.

NeN; ¢ eRY;xy,...,xy €R?,
P\ — ) = . =)
Fo(R )—{f() JE:]CJCD(XJ ) M tipxj)=0forallpeP |

endowed with the inner product:

N M
<Z GO —), > G Py — ->>
j=1 k=1

Let {¢{,...,¥,,} SR?, m =dim(P) be a P-unisolvent subset,? and let {pi,...,
Pm} € P be a Lagrange basis of P for such a subset. Furthermore, define the
projective map Ip : C(RP)? — P as ITp(f) = i1 f () pr, and the map R :
Fo(R?P) - C(RP) as R f(x) = f(x) — [1p f(x). The native space for ® is then
defined as

N M
D GG — v

o j=lk=I

N@(Rp) = 'R,(fcp(Rp)) + P,
and is equipped with the semi-inner product

(f. &) No@ry = (RN —Tp ), R (g — Tpg))y.-

After obtaining the native space N (R?), one can then define an appropriate
inner product on NV (R?) to transform it into a RKHS.

THEOREM 3 (Native space to RKHS; Theorem 10.20 of [68]). The na-
tive space No(RP) for a c.p.d. kernel ® carries the inner product (f, g) =
(f, &) No®r) + X0y F(W g (Wy). With this inner product, No(RP) becomes a
reproducing kernel Hilbert space with reproducing kernel:

kx,y)=0x—y) — Y p®PW;—y) — > pyPx—9)
k=1 =1
+Y ) PN — ) + D pr(X) pr(y).
k=11=1 k=1

The following generalized Fourier transform (GFT) will also be useful.

2See Definition 2.6 of [68].
3¢ (RP) is the space of continuous functions on R”.
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DEFINITION 5 (GFT; Definitions 8.8, 8.9 of [68]). Suppose f :R? — C
is continuous and slowly increasing. A measurable function f € 4L12°C(R1’ \
{0}) is called the generalized Fourier transform of f if 3m € Np/2 such that
Jrp XY X)dX = [p, f(@)y(w)dw is satisfied for all y € Sy, where p de-
notes the standard Fourier transform of y. Here, Sy, = {y € S : y(w) =
O(IIwH%’") for ||w|l2 — 0}, where S is the Schwartz space.

Specific definitions for slowly increasing functions and Schwartz spaces can be
found in Definitions 5.19 and 5.17 of [68]. Here, the order of the GFT f refers to
the value m in Definition 5, which can reside on the half-integers No/2 since the
index of the underlying space S, will still be an integer.

With these concepts in hand, we now present the Koksma—Hlawka-like bound.
As demonstrated below, the choice of the negative distance kernel ® = —|| - ||» is
important for connecting integration error with the distance-based energy distance
E(F, F,).

THEOREM 4 (Koksma-Hlawka). Let {x;}7_; € X C R” be a point set with
edf. F,, and let ®(x) = —||X||2. Then ® is a c.p.d. kernel of order 1. Moreover:

(a) The native space of ®, No(RP), can be explicitly written as

&)
(G1) 3m € Ny s.t. f(x) = O(|Ix[15) for [|X|l2 = oo

={ feC(RP): (G2) f has a GFT f of order 1/2
(G3) [NwlZ™f@)]*dw < oo

with semi-inner product given by

©)  (f &)o@y = {T((p+ 1)/2)2P 7P~ D72} / f@z@ ol do,

(b) Consider the function space G, = No(RP), equipped with inner prod-
uct (f.8)g, = (f. 8)No@e) + f(#)g() for a fived choice of ¥ € X. Then
(Gps (-, *)g,) is a RKHS, and for any integrand g € G, the integration error in
(1) is bounded by

(10) I(g; F, Fy) < gllg,VEF, ), llgllg, = (2. &)g,-
PROOF OF THEOREM 4.  Consider first part (a). Let ®(-) = —|| - |2, and let ®

be its GFT of order 1. From Theorem 8.16 of [68], we have the following duality
representation:

2PPT((p+1)/2)  pe

d(w) = N loll, P~ @ eRP\ {0}

4L12°C denotes the space of locally L;-integrable functions.
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By Corollary 8.18 of [68], ®(-) is also c.p.d. of order 1. Using the fact that ®(-)
is even along with the continuity of ®(w) on R? \ {0}, an application of Theo-
rem 10.21 in [68] completes the proof for part (a).

Consider now part (b). By Proposition 3 of [64], the kernel ®(-) is c.p.d.
with respect to the space of constant functions P = { f (x) = C for some C € R},
with dimP = 1. Note that any choice of ¥ € X’ provides a P-unisolvent subset,
with the Lagrange basis for the single point ¥ being the unit function p(-) = 1.
Hence, by Theorem 3, the native space N¢(R”) can be transformed into a
RKHS g, by equipping it with a new inner product (f, g)g, = (f, 8)np®r) +
F(¥)g(¥). From the same theorem, the corresponding reproducing kernel for
the RKHS (Gp, (-, -)g,) becomes k(x,y) = P(x—y) — (¥ —y) — ®(¥ —x) +
1.

Next, let kx(z) = k(x, z). We claim the function I kx(-)d[F — F,](x) belongs
in G,. To see this, define the linear operator £L:G, — Ras Lf = [ f(x)dF(x).
Note that £ is a bounded operator, because for all f € G,

Lf] = ‘/ FRdF)

< [lrolare

= / (), IEX(-))gp |dF(x)  (RKHS reproducing property)
< f I £llg, I&x()]lg, dF () (Cauchy-Schwarz)
=1fllg, / k'2(x,x)dF(x)  (RKHS kernel trick)

and the last expression must be bounded because [ kY 2x,x)dF(x) <[ f IE(X,
x)dF (x)]'/2, the latter of which is finite due to the earlier finite mean assump-
tion on F. By the Riesz representation theorem (Theorem 8.12, [25]), there exists
a unique f € G, satisfying Lf = [ f(xX)dF(x) = (f, f)gp for all f € G,. Set-
ting f(x) = lzz(x) in this expression, we get flzz(x)dF(x) = <1€Z(.), f)gp = f(z)
by the RKHS reproducing property, so f= i kx()dF(x) € G p- Finally, note that
flzx(-) dF,(x) € G, because a RKHS is closed under addition, so fEX(-) d[F —
F,](x) € G, as desired.
With this in hand, the integration error can be bounded as follows:

1(g; F, Fy) = Vg(x)d[F RIS

= ‘/(g(-), /EX(-))gp d[F — F,1(x) (Reproducing property)
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_ Kg(-), / fx() dIF — Fn]<x)>g

p

<lglo, | [ BxdlF ~ FI0|  (Cauchy-Schwars),

9p

The last term can be rewritten as

J H / fx()dIF — Fy](®)

= \/</ kx(-)d[F — F,1(x), /iéy(-)d[F — Fn](Y)>g

2

g P

P

= / J [0, ks O, dUF = oo diF - Fu )

:\// Ig(x, Y dIF — F,]x)d[F — F,](y) (Kernel trick)

_ /f ®(x —y)d[F — F, 1) d[F — F,](y)

=V E(F,F,) [Equation (4)],

where the second-last step follows because [ ® (¥ —y)d[F — F,](x) = [P (¢ —
x)d[F — F,1(y) = [d[F — F,](x) = 0. This completes the proof. [

The appeal of Theorem 4 is that it connects the integration error I(g; F, Fy)
with the energy distance E(F, F;,) for all integrands g in the function space G,,.
Similar to the usual Koksma—Hlawka inequality, such a theorem justifies the use
of support points for integration, because the integration error for all functions in
G, can be sufficiently bounded by minimizing E(F, F;).

A natural question to ask is how large G, is compared with the commonly-used
Sobolev space W; 2, that is, the set of functions whose sth order differentials have
finite L, norm. Such a comparison is particularly important in light of the fact that
an anchored variant of the Sobolev space is typically employed in QMC analysis
(see, e.g., [8]). Recall that s can be extended to the nonnegative real numbers using
fractional calculus, in which case W 2 becomes the fractional Sobolev space. By
comparing the definition of the fractional Sobolev space in the Fourier domain
(see (3.7) in [10]), one can show that W, 1)/2,2 is contained within G,,. Moreover,
using the fact that W; 5 is a decreasing family as s > O increases (see paragraph
prior to Proposition 1.52 in [2]), it follows that W|'(p+1)/2]72 - W(p+1)/2’2 - gp. In
fact, for odd dimensions p, Theorem 10.43 of [68] shows that G, is indeed equal
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to the Sobolev space Wy(p+1)/21,2 = W(p+1),2,2, so the embedding result becomes
an equality.

Viewing this embedding now in terms of Theorem 4, it follows that all inte-
grands g with square-integrable [(p + 1)/27th order differentials enjoy the upper
bound in (10). Hence, as dimension p grows, an increasing order of smoothness
is required for integration using support points, which appears to be a necessary
trade-off for the appealing d.c. formulation in (O). This is similar to the anchored
Sobolev spaces employed in QMC, which requires integrands to have square-
integrable mixed first derivatives.

2.2.3. Error convergence rate. Next, we investigate the convergence rate of
1(g; F, F,,) under support points. Under eigenvalue decay conditions, the follow-
ing theorem establishes an existence result, which demonstrates the existence of
a point set sequence achieving a particular error rate. An additional theorem then
clarifies when such decay conditions are satisfied in practice. The main purpose
of these results is to demonstrate the quicker theoretical convergence of support
points over Monte Carlo. From the simulations in Section 4, the rate below does
not appear to be tight, and a quicker convergence rate is conjectured in Appendix
A.3 of the Supplementary Material [40].

THEOREM 5 (Error rate). Let Fy, be the e.df. for support points {§}}_,, and
let g € Gp. Define the kernel k(x,y) =E|x - Y2+ E|ly— Yl —E[|Y -Y[2 —

Ix =yl Y,Y - F.If (a) E[||Y||%] < 00, and (b) the weighted eigenvalues of

k under F satisfy Y p2 )»,1(/“ < 00 for some o > 1, then

(11) I(g; F, F,) = O{||g||g,,n71/2(logn)’(“’l)/z},

with constant terms depending on o and p.

Here, the weighted eigenvalue sequence of k£ under F is the decreasing sequence
(02, satistying dxgdr(x) = Elk(x, V) ()], E[g7 (V)] = 1.

The proof of this theorem exploits the fact that E(F, F;) is a goodness-of-fit
statistic. Specifically, writing E(F, F,) as a degenerate V-statistic V,,, we appeal
to its limiting distribution and a uniform Barry—Esseen-like rate to derive an upper
bound for the minimum of V,,. The full proof is outlined below, and relies on the
following lemmas.

LEMMA 2 ([57]). Let (Y2, - F, and let k be a symmetric, positive def-
inite (p.d.) kernel with E[k(x,Y1)] =0, E[k*(Y1, Y2)] < 0o and E|k(Y1,Y1)| <
0o. Define the V-statistic V, = n=2Y ", Y1 k(Yi, Y ). Then Wy =nV, 4,

PRty )»kaz = Weo, where (sz),fil Hd- x2(1), and (M) are the weighted eigen-
values of k under F .
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LEMMA 3 ([31]). Adopt the same notation as in Lemma 2, and let Fy, and
Fy, denote the d.f’s for W,, and Weo. If E[k(X, Y1)] =0, E|k(Y], Y>)|? < 0o and
Elk(Y1,Y1)[>? < oo, then

(12) sup| Fw, (x) — Fw, (x)| = O(nil/z),
X
with constants depending on dimension p.

LEMMA 4 (Paley—Zygmund inequality; [51]). Let X > 0, with constants a1 >
1 and ap > 0 satisfying E(X?) < a1E*(X) and E(X) > a>. Then, for any 6 €
0, 1), P(X > a20) > (1 —6)?/a;.

The proof of Theorem 5 then follows.

PROOF OF THEOREM 5. Following Section 7.4 of [64], the energy distance
E(F, F,,) can be written as the order-2 V -statistic

n n n n
(13)  E(F,Fy)= %ZZk(zsi,sj) < %ZZk(Yi,Y,» =V,
L L
where k(x, y) is defined in Theorem 5 and (Y;)?_, L F. The last inequality fol-
lows by the definition of support points.
By [70], the kernel k is symmetric and p.d., and the conditions for Lemma 2 can
easily be shown to be satisfied. Invoking this lemma we have

(14) inf{x : Fy, (x) >0} =nE(F, F,).

The strategy is to lower bound the left-tail probability of W, then use this to
derive an upper bound for inf{x : Fy, (x) > 0} using Lemma 3.

We first investigate the left-tail behavior of W4,. Define Z; = exp{—t Wy} for
some ¢ > 0 to be determined later. Since Z; is bounded a.s., E(Z;) =[]p2,(1 +
2xxt) " Y2 and E(th) =, (+ 4, t)~ Y2, From Lemma 4, it follows that, for
fixed x > 0, if our choice of ¢ satisfies

[Al]: [E(Z;) = 2exp{—tx} > exp{—tx},

[A2]: E(Z?) <aiE*(Z)),
then, setting 8 = 1/2 and ay = 2exp{—tx}, we have
(16)  Fw, () =P(Z = exp{—tx}) = P(Z, = E(Z1)/2) = (4a)~".
Consider [A1], or equivalently: zx > log2 + (1/2) Y32 log(1 4 2Axt). Since

log(1+x) <x?/g forx>0and0<gq <1, and } 2, )\,i/w < 0o by assumption,
a sufficient condition for [A1] is

(15)

o0
tx >log2+ (/2) Y Q)Y & Py(s)=s*—bpsx~' — (log2)x~' >0,
k=1

where s = !/* and b, = 2!/#71 3722, )»ll(/a > 0.
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Since log2 > 0 and b psx_1 > 0, there exists exactly one (real) positive root for
P, (s). Call this root r, so the above inequality is satisfied for s > r. Define P,(s)
as the linearization of Py(s) for s > s = (bpx_')l/(“_l), that is,

Py (s), 0<s<s,

f_’a(s):{ —1 ;- - _
—x" log2+ P,(5) - (s —5), s> S.

From this, the unique root of P,(s) can be shown to be 7 = § + x_l(log 2) x
[P, (5)17L. Since Py (s) > Py(s) forall s > 0,7 > r, the following upper bound for
r can be obtained for sufficiently small x:

’7 — (bpx—l)l/(a—l) + (logz)(a _ 1)—1b;1 S Z(bpx_l)l/(a_l),
Hence

t=s%> 2“(bpx_l)a/(a_l) & s> Z(bpx_])l/(a_l) >r>r

a7
= Y —bpx s — (log2)x~' >0,

so setting t = 2¢ (bpx_l)“/(“_l) = cpx_“/(“_l) satisfies [A1] in (15).

The next step is to determine the smallest a; satisfying [A2] in (15), or
equivalently, %Z,‘z‘;l log(1 4 4xxt) > Y22 log(1 + 2Akt) — loga;. Again, since
log(1+4x) <x%/q for x > 0 and 0 < g < 1, a sufficient condition for [A2] is

0 o
loga; > Zlog(l + 2 t) <« logar >« Z(Zkkt)l/“.
k=1 k=1

Plugging in ¢ = cpx_“/("‘_l) from (18) and letting d), = a(ZCp)l/“(Z,fil )\,1{/“),

we get loga; > dpx_l/("“l) & ap > exp{dpx_l/(“_l)}.
The choice of t = cpx_"‘/(“_l) and a; = exp{dpx_l/(“_l)} therefore [A1] and
[A2] in (16). It follows from (16) that

(18) Fyw., (x) > (4a)) "' = exp[—d,x~ 1@V} /4,

so Fy (x) converges to 0 at a rate of (’)(exp{—dpx_l/("‘_l)}) asx — 0.

Consider now the behavior of inf{x : Fy, (x) > 0} as n — oo. From the uniform
bound in Lemma 3, there exists a sequence (cp,p)oc |, lim, o0 ¢4, = 0 such that
| Fw, (x) — Fw,, (x)] < cn, pn~'/2 for all x > 0. Setting the right-hand side of (18)
equal to 2¢;, pn_l/ 2 and solving for x, we get

a—1
dP

~ [Llogn — log(8cy 1=~

*

= Fy, (x*) = exp{—d,(x*) /")

(19)
= ch,pl’l_l/z

so Lemma 3 ensures the above choice of x* satisfies Fy, (x*) > ¢y, pn_l/ 2>0.
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Using this with (14), it follows that
E(F, F,) = O{n""(logn)~ @V},
with constants depending on p. Finally, by Theorem 4, we have
1(g: F. Fa) = O{ligllg,n™"*(logm)=@ =72},

which is as desired. [

The following theorem provides some insight on when the eigenvalue decay
condition ) 72, )Lllc/ * < 00 in Theorem 5 is satisfied.

THEOREM 6 (Eigenvalue conditions). Let F,, and F be as in Theorem 5, and
let g € Gp:

(a) If X C R? is a bounded Borel set with nonempty interior, then 1(g; F,
Fy) = O{ligllg,n~"/*(logn)=1="/CP)} for any v € (0, 1).

(b) If X C R? is measurable with positive Lebesgue measure, and there exists
some B > 0 and C > 0 such that

(20) lim sup r? Elx-Y|2dF(x) <C forallye X,

r—00 X\B;(y)
then 1(g; F, Fy) = Oflgllg,n~"/*(logn)~="/CP)} for any v € (0, ), where
y = B/(B + 1) and B,(y) denotes an r-ball around y.

Here, constant terms may depend on v, p or f.
PROOF. See Appendix A.2 of the Supplementary Material [40]. [

In words, Theorem 6 demonstrates the improvement of support points over MC
under certain conditions on the sample space X or the desired distribution F.
Specifically, part (a) requires the sample space X to be bounded with a nonempty
interior, whereas part (b) relaxes this boundedness restriction on X at the cost of
the mild moment condition (20) on F. This condition holds for a large class of
distributions which are not too heavy-tailed.

For illustration, consider the standard normal distribution for F, with sample
space X = R”. Note that, when ||x||> becomes large, E||x — Y||2 =~ |x]|2. Hence,
the condition in (20) becomes

limsupr? P(r),  P(r)= (2n)_p/2f Ix[l2 exp{—IIx||3/2} dx.

r—00 RP\B,(0)
Since P'(r) o« —r? exp{—r2/2}, it follows that P(r) = O(rP~! exp{—r2/2}), SO
limsup,_, o, rPP(r) =0 for all B > 0. Applying part (b) of Theorem 6, support
points enjoy a convergence rate of O{n~!/2(logn)~(1="/CP)} for any v € (0, 1)
in this case. An analogous argument shows a similar rate holds for any spherically
symmetric distribution (see, e.g., [15]) with an exponentially decaying density in
its radius.
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2.3. Comparison with MC and existing QMC methods. We first discuss the
implications of Theorems 5 and 6 in comparison to Monte Carlo. Using the law
of iterated logarithms [29], one can show that the error convergence rate for MC
is bounded a.s. by O(n~!/2,/loglogn) for any distribution F. Comparing this
with (11), the error rate of support points is asymptotically quicker than MC by at
least some log-factor when dimension p is fixed. This improvement is reflected in
the simulations in Section 4, where support points enjoy a considerable improve-
ment over MC for all point set sizes n. When dimension p is allowed to vary [and
assuming ||gllg, and Var{g(X)}, X ~ F, do not depend on p], note that the MC
rate is independent of p, while the rate in (11) can have constants which depend
on p. From a theoretical perspective, this suggests support points may be inferior
to MC for high-dimensional integration problems. Such a curse-of-dimensionality,
however, is not observed in our numerical experiments, where support points enjoy
a sizable error reduction over MC for p as large as 500.

Compared to existing QMC techniques, the existence rate in Theorem 5 falls
short in the uniform setting of F' = U[0, 1]7. For fixed dimension p, [15] showed
that for any integrand g with bounded variation (in the sense of Hardy and Krause),
the error rate for classical QMC point sets is O{n~!(logn)?}, which is faster
than (11). Moreover, when p is allowed to vary, it can be shown (see [8, 32]) that
certain randomized QMC (RQMC) methods, such as the randomly-shifted lattice
rules in [59], enjoy a root-mean-squared error rate of O(n~'*%) with § € (0, 1/2),
where constant terms do not depend on dimension p. On the other hand, support
points provide optimal integration points (in the sense of minimum energy) for
nonuniform distributions at fixed sample size n. Because of this optimality, support
points can enjoy reduced errors to existing QMC methods in practice, which we
demonstrate later for a specific RQMC method called randomly-scrambled Sobol’
sequences [48, 60]. This suggests the rate in Theorem 5 may not be tight, and
further theoretical work is needed (we outline one possible proof approach in Ap-
pendix A.3 of the Supplementary Material [40]).

3. Generating support points. The primary appeal of support points is the
efficiency by which these point sets can be optimized, made possible by exploit-
ing the d.c. structure of the energy distance. Here, we present two algorithms,
sp.ccp and sp. sccp, which employ a combination of the convex-concave pro-
cedure (CCP) with resampling to quickly optimize support points. sp . ccp should
be used when sample batches are computationally expensive to obtain from F,
whereas sp . sccp should be used when samples can be easily obtained. We prove
the convergence of both algorithms to a stationary point set, and briefly discuss
their running times.

3.1. Algorithm statements. We first present the steps for sp . ccp, then intro-
duce sp.sccp as an improvement on sp.ccp when multiple sample batches
from F can be efficiently obtained. Suppose a single sample batch {ym},],\{:1 is
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obtained from F. Using this, sp.ccp optimizes the following Monte Carlo ap-
proximation of the support points formulation (O):

. 2 n N 1 n n
(MC) a;rgmmE({xi}; {ym}) = — D ym —xilla — p D> i = xjlla
1

----- Xn i=lm=1 i=1j=1

The approximated objective E was originally proposed by [63] as a two-sample
GOF statistic for testing whether {y,, } Z: , and {x;}?_, are generated from the same
distribution. Posed as an optimization problem, however, the goal in (MC) is to
recover the point set which best represents the random sample {y,, } ,]Z:l from F in
terms of goodness-of-fit.

The key observation here is that the objective function E can be written as
a difference of convex functions in x = (Xi, ..., X;), namely, the two terms in
(MC). This structure allows for efficient optimization using d.c. programming
methods, which enjoy a well-established theoretical and numerical framework [65,
67]. While global optimization algorithms have been proposed for d.c. programs
(e.g., [66]), such methods are typically quite slow in practice [35], and may not be
appropriate for the large-scale problem at hand. Instead, we employ a d.c. algo-
rithm called the convex-concave procedure (CCP, see [71]) which, in conjunction
with the distance-based property of the energy distance, allows for efficient opti-
mization of (MC).

The main idea in CCP is to first replace the concave term in the d.c. objec-
tive with a convex upper bound, then solve the resulting “surrogate” formulation
(which is convex) using convex programming techniques. This procedure is then
repeated until the solution iterates converge. CCP can be seen as a specific case
of majorization-minimization (MM, see [33]), a popular optimization technique in
statistics. The key to computational efficiency lies in finding a convex surrogate
formulation which can be minimized in closed-form. Here, such a formulation can
be obtained by exploiting the distance-based structure of (MC), with its closed-
form minimizer given by the iterative map Xl[l+l] <« Mi({xg.l]}’}zl; {ym}r]Z _hi=
1,...,n, where M; is given in (22). The appeal of CCP here is two-fold. First, the
evaluation of the iterative maps M;,i = 1, ...,n requires O(n®p) work, thereby
allowing for the efficient generation of moderately sized point sets in moderately-
high dimensions. Second, the computation of these maps can be greatly sped up
using parallel computing, a point further discussed in Section 3.3.

Algorithm 1 outlines the detailed steps for sp.ccp following the above dis-
cussion. One caveat for sp.ccp is that it uses only one sample batch from F,
even when multiple sample batches can be generated efficiently. This motivates
the second algorithm, sp. sccp, whose steps are outlined in Algorithm 2. The
main difference for sp.sccp is that {ym}fx:1 is resampled within each CCP it-
eration (a procedure known as stochastic MM). This resampling scheme allows
Sp . sccp to converge to a stationary point set for the desired problem (O), which
we demonstrate next.
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Algorithm 1 sp . ccp: Support points using one sample batch
e Sample DI = (xI”}7_ ii.d. from {y,.}V_,.

e Set [ =0, and repeat until convergence of DIl

e Fori=1,...,n do parallel:
— Setx!" M (D; {y, }N_ ), with M; defined in (22).
e Update DI+ {XIUH]}I’.’ZI, and set] <[+ 1.

e Return the converged point set D!,

3.2. Algorithmic convergence. For completeness, a brief overview of MM is
provided, following [33].

DEFINITION 6 (Majorization function). Let f : R® — R be the objective func-
tion to be minimized. A function /(z|z’) majorizes f(z) at a point Z' € R’ if
h(z|z') > f(z), with equality holding when z =z7’.

Starting at an initial point z!%, the goal in MM is to minimize the ma-
jorizing function h as a surrogate for the true objective f, and iterate the
updates zI'*!1 <« argmin, i (z|z!'") until convergence. This iterative procedure
has the so-called descent property f(xI‘t11) < f(x/!), which ensures solu-
tion iterates are always decreasing in f. The key for efficiency is to find a
majorizing function g with a closed-form minimizer which is easy to com-
pute.

Consider now the Monte Carlo approximation in (MC), which has a d.c. for-
mulation in {x;}7_,, with concave term —n2 Tl Z?: 1 IXi — x;|2. Following
CCP, we first majorize this term using a first-order Taylor expansion at the current

Algorithm 2 sp . sccp: Support points using multiple sample batches

v -
e Sample DI = {XI[O]}?ZI R, set (w2 = (ap/(np + D)2, (di[O])zr'lzl =0
e Set =0, and repeat until convergence of D'l

e Resample Y1 = {y,[fl]}N:1 i F.
e Fori=1,..., n do parallel:

—Set X (@ — T MOy,
with  M; defined in  (22), where « =
wig (T V) /fwig () Y + (1 — wpd)).

— setd™ — (1 — wp)d" + wqx; Yy,

e Update DI+l {XI[H_I]}?:I, andset/ <[+ 1.

e Return the converged point set DI
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iterate {x’j };?:1 , yielding the surrogate convex program

argmmh({X, =1 {X/J }?:1)

- Xn

1) = Z Z 1ym — Xi 12

t_lm 1

[Zz(nx X+

i=1j=1

2(x,—x) (x] - X )):|

X'_Xj”Z

Implicit here is the assumption that the current point set is pairwise distinct, that is,
X # x’j foralli, j =1,...,n. From simulations, this appears to be always satisfied
by initializing the algorithm with a pairwise distinct point set, because the random
sampling of {y,,} and the “almost-random” round-off errors [1] in the evaluation
of M; force subsequent point sets to be pairwise distinct. Such an assumption can
also be easily checked after each iteration.

While (21) can be solved using gradient-based convex programming techniques,
this can be computationally burdensome when n or p becomes large, because such
methods may require many evaluations of 4 and its subgradient. Instead, the fol-
lowing lemma allows us to perform a slight “convexification” of the convex term
in (21), which then yields a efficient closed-form minimizer.

2 ’
LEMMA 5 (Convexification). Q(x|x) = 2||||§|,|ﬁ2 + HX2H2

forany X' e RP,

PROOF. See Appendix A.4 of the Supplementary Material [40]. [

Lemma 5 has an appealing geometric interpretation. Viewing ||x||2 as a second-
order cone centered at 0, Q(x|x) can be interpreted as the tightest convex
paraboloid intersecting this cone at x'. Note that the quadratic nature of the ma-
jorizer Q, which is crucial for deriving a closed-form minimizer, is made possible
by the distance-based structure of the energy distance.

From this, the following lemma provides a quadratic majorizer for (21), along
with its corresponding closed-form minimizer.

LEMMA 6 (Closed-form iterations). Define the function h€ as

_ 1Ym = %il3 | Ilym — X2
Q({Xi}?:l’{; j=1 EnNZZ{ + ) l }

2llym —x;lI2

[ S (-x

i=1j=1

2(x; — X) (x; —X)>i|

X' _Xj||2
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Then h€(; {x/j};?zl) majorizes E at {x/j}’}zl. Moreover, the global minimizer of
hQ (- {x}"_,) is given by
» =1

X; = M[({X/j }’;-:1; {Ym}n]\{:l)

22) =q "X {ym)V_)
N n X —X N
X —Z Z i=1,...,n,
n X =Xl X —ymnz
J#l

where q (X (Ym}n—) = (Cp_y 1% = ymlly )
PROOF. See Appendix A.5 of the Supplementary Material [40]. [
One can now prove the convergence of sp.ccp and sp. sccp.

THEOREM 7. (Convergence—sp .ccp) Assume X is closed and convex. For
any pairwise distinct DIV C X and fixed sample batch {ym}zz | © &, the sequence
(D[l])fi] in Algorithm 1 converges to a limiting point set D'V which is stationary
for E.

PROOF. See Appendix A.6 of the Supplementary Material [40]. O

THEOREM 8. (Convergence—sp.sccp) Assume X is compact and con-
vex. For any pairwise distinct D9 C X all limiting point sets D> (there ex-
ists at least one) of the sequence (D[l])loi1 in Algorithm 2 are stationary for
E.

PROOF. See Appendix A.7 of the Supplementary Material [40]. [

[Recall that z € D is a stationary solution for a function f : D CR® — R if
f(z,d)>0 foralldeR’s.t.z+de D,

where f'(z, d) is the directional derivative of f at z in direction d.] Note that the
compactness condition on X in Theorem 8 is needed to prove the convergence of
stochastic MM algorithms, since it allows for an application of the law of large
numbers (see [37] for details).
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3.3. Running time and parallelization. Regarding the running time of
Sp.ccp, it is well known that MM algorithms enjoy a linear error convergence
rate [47]. This means L = O(log$~!) iterations of (22) are sufficient for achiev-
ing an objective gap of § > 0 from the stationary solution. Since the maps in
(22) require O{n(n + N)p} work to compute, the running time of sp.ccp is
O{n(n+N)p log(S_1 }. Assuming the batch sample size N does not increase with
n or p, this time reduces to O(n?plogd~"), which suggests the proposed algo-
rithm can efficiently generate moderately sized point sets in moderately-high di-
mensions, but may be computationally burdensome for large point sets. While a
similar linear error convergence is difficult to establish for sp.sccp due to its
stochastic nature (see [4, 20]), its running time is quite similar to sp.ccp from
simulations.

The separable form of (22) also allows for further computational speed ups
using parallel processing. As outlined in Algorithms 1 and 2, the iterative map
for each point x; can be computed in parallel using separate processing cores.
Letting P be the total number of computation cores available, such a par-
allelization scheme reduces the running time of sp.ccp and sp.sccp to
O([n/Pnplogs™'), thereby allowing for quicker optimization of large point sets.
This feature is particularly valuable given the increasing availability of multi-core
processors in personal laptops and computing clusters.

4. Simulations. Several simulations are presented here which demonstrate
the effectiveness of support points in practice. We first discuss the space-
filling property of support points, then comment on its computation time using
sp.sccp. Finally, we compare the integration performance of support points
with MC and a RQMC method called IT-RSS (defined later).

4.1. Visualization and timing. For visualization, Figure 2 shows the n = 128-
point point sets for the i.i.d. N(0, 1) and Exp(1) distributions in p = 2 dimen-
sions, with lines outlining density contours (additional visualizations provided in
Appendix B of the Supplementary Material [40]). Support points are plotted on
the left, Monte Carlo samples in the middle and inverse Sobol’ points on the right.
The latter is generated by choosing the Sobol’ points on U[0, 11> which maxi-
mize the minimum interpoint distance over 10,000 random scramblings (see next
section for details), then performing an inverse-transform of F on such a point
set. From this figure, support points appear to be slightly more visually represen-
tative of the underlying distribution F than the inverse Sobol’ points, and much
more representative than MC. Specifically, the proposed point set is concentrated
in regions with high density, but each point is sufficiently spaced out from one
another to maximize their representative power. Borrowing a term from design-
of-experiments literature [56], we call point sets with these two properties to be
space-filling on F. A key reason for this space-fillingness is the distance-based
property of the energy distance: the two terms for E(F, F;) in (4) force support
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Support Monte Carlo Inverse-Sobol’

FI1G. 2. n =128 support points, MC points and inverse Sobol’ points for i.i.d. N (0, 1) and Exp(1)
in p =2 dimensions. Lines represent density contours.

points to not only mimic the desired distribution F, but also ensure no two points
are too close together. This allows for a more appealing visual representation of
F, and can provide more robust integration performance.

Regarding computation time, Figure 3 shows the times (in seconds) needed for
Sp . sccp to generate support points for the i.i.d. Beta(2, 4) distribution, first as a
function of point set size n with fixed dimension p, then as a function of p with
fixed n. The resampling size is fixed at N = 10,000 for all choices of n and p.
Similar times are reported for other distributions, and are not reported for brevity.
All computations are performed on a 12-core Intel Xeon 3.50 GHz processor. From
this figure, two interesting observations can be made. First, for fixed n, these plots
show that the empirical running times grow quite linearly in p, whereas for fixed p,
these running times exhibit a slow quadratic (but almost linear) growth in n. This
provides evidence for the O(n?p) running time asserted in Section 3.3. Second,
as a result of this running time, support points can be generated efficiently for
moderate-sized point sets in moderately-high dimensions. For p = 2, the required
times for generating n = 50—10,000 points range from 3 seconds to 2 minutes; for
p =50, 27 seconds to 20 minutes; and for p = 500, 4 minutes to 2.5 hours. While
these times are quite fast from an optimization perspective, they are still slower
than number-theoretic QMC methods, which can generate, say, n = 10° points
in p = 10° dimensions in a matter of seconds. The appeal for support points is
that, by exploiting the d.c. structure of the energy distance in [63], one obtains for
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FI1G. 3.  Computation time (in seconds) of sp .sccp as a function of point set size (n) and dimen-
sion (p) for the i.i.d. Beta(2, 4) distribution.

any distribution (locally) minimum energy sampling points which can outperform
number-theoretic QMC methods.

4.2. Numerical integration. We now investigate the integration performance
of support points in comparison with Monte Carlo and a RQMC method called the
inverse-transformed randomized Sobol’ sequences (IT-RSS). The former is im-
plemented using the Mersenne twister [43], the default pseudo-random number
generator in the software R [52]. The latter is obtained by (a) generating a random-
ized Sobol’ sequence using the R package randtoolbox [12] (which employs
Owen-style scrambling [48] with Sobol” sequences generated in the implemen-
tation of [26]), and (b) performing the inverse-transform of F on the resulting
point set. As mentioned in Section 2, I'T-RSS performs well in the uniform setting
F =U[0, 1]7, and provides a good benchmark for comparing support points with
existing QMC methods.

The simulation set-up is as follows. Support points are generated using
Sp . sccp, with point set sizes ranging from n = 50 to 10,000 and resampling
size N fixed at 10,000. Since MC and I'T-RSS are randomized methods, we repli-
cate both for 100 trials to provide an estimate of error variability, with replica-
tions seeded for reproducibility. Three distributions are considered for F': the i.i.d.
N (0, 1), the i.i.d. Exp(1) and the i.i.d. Beta(2,4) distributions, with p ranging
from 5 to 500. For the integrand g, two (modified) test functions are taken from
[18]: the Gaussian peak function (GAPK): g(x) = exp{— lezl ozlz(xl —u;)?} and
the (modified) oscillatory function (OSC): g(x) = exp{— Zle ﬁlxlz} cos(Rmui +
le:l Bix;). Here, x = (x7) 1p:1 , 47 is the marginal mean for the /th dimension of F,
and the scale parameters o4 and f; are set as 20/ p and 5/ p, respectively.
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FI1G. 4. Log-absolute errors for GAPK under the i.i.d. Exp(1) distribution (top) and for OSC under
the i.i.d. N (0, 1) distribution (bottom). Lines denote log average-errors, and shaded bands mark the
25th and '15th quantiles.

Figure 4 shows the resulting log-absolute errors in p =5, 50 and 200 di-
mensions for GAPK under the i.i.d. Exp(1) distribution, and for OSC under the
iid. N(O, 1) distribution (results are similar for other settings, and are omit-
ted for brevity). For MC and IT-RSS, the dotted lines indicate average error
decay, and the shaded bands mark the area between the 25th and 75th er-
ror quantiles. Two observations can be made here. First, for all choices of n,
support points enjoy considerably reduced errors compared to the averages of
both MC and IT-RSS, with the proposed method providing an improvement
to the 25th quantiles of IT-RSS for most settings. Second, this advantage over
MC and IT-RSS persists in both low and moderate dimensions. In view of
the relief from dimensionality enjoyed by IT-RSS, this gives some evidence
that support points may enjoy a similar property as well, a stronger assertion
than is provided in Theorems 5 or 6. Exploring the theoretical performance of
support points in high dimensions will be an interesting direction for future
work.

In summary, for point set sizes as large as 10,000 points in dimensions as large
as 500, simulations show that support points can be efficiently generated and enjoy
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FI1G. 5. True and estimated density functions for g(X) using n = 60 points.

improved performance over MC and IT-RSS. This opens up a wide range of im-
portant applications for support points in both small-data and big-data problems,
two of which we describe next.

5. Applications of support points.

5.1. Uncertainty propagation in expensive simulations. We first highlight an
important small-data application of support points in simulation. With the devel-
opment of powerful computational tools, computer simulations are becoming the
de-facto method for conducting engineering experiments. For such simulations,
a key point of interest is uncertainty propagation, or how uncertainty in input vari-
ables (resulting from, say, manufacturing tolerances) propagate and affect output
variability. Mathematically, let g(x) be the observed output at input setting x, and
let X ~ F denote input uncertainties. The distribution g(X) can then be seen as
the resulting uncertainty on system output. For engineers, the estimation of g(X)
using as few simulation runs as possible is of great importance, because each run
can be computationally and monetarily expensive.

To demonstrate the effectiveness of support points for this problem, we use the
borehole physical model [69], which simulates water flow rate through a bore-
hole. The 8 input variables for this model, along with their corresponding uncer-
tainty distributions (assumed to be mutually independent), are summarized in Ap-
pendix C of the Supplementary Material [40]. To reflect the expensive cost of sim-
ulations, we test only small point set sizes ranging from n = 20 to n = 100 runs.
Support points are generated using sp.sccp with the same settings as before,
with the randomized MC and I'T-RSS methods replicated for 100 trials.

Consider now the estimation of the output distribution g(X), which quantifies
the uncertainty in water flow rate. Figure 5 compares the estimated density function
of g(X) using n = 60 points with its true density, where the latter estimated using
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a large Monte Carlo sample. Visually, support points provide the best density ap-
proximation for g(X), capturing well both the peak and tails of the desired output
distribution. This suggests support points are not only asymptotically consistent
for density estimation, but may also be optimal in some sense. A similar conclu-
sion holds in the estimation of the expected flow rate E[g(X)] (see Appendix C of
the Supplementary Material [40]).

5.2. Optimal MCMC reduction. The second application of support points is
as an improved alternative to MCMC thinning for Bayesian computation. Thin-
ning here refers to the discarding of all but every kth sample for an MCMC sample
chain obtained from the posterior distribution. This is performed for several rea-
sons (see [34]): it reduces high autocorrelations in the MCMC chain, saves com-
puter storage space and reduces processing time for computing derived posterior
quantities. However, by carelessly throwing away samples, a glaring fault of thin-
ning is that samples from thinned chains are inherently less accurate than that from
the full chain. To this end, the proposed algorithm sp . ccp can provide consider-
able improvements to thinning by optimizing for a point set which best captures
the distribution of the full MCMC chain.

We illustrate this improvement using the orange tree growth model in [11]. The

data here consists of trunk circumference measurements {Y; (tj)}?zlzzl, where
Y;(z;) denotes the measurement taken on day ¢; from tree i. To model these
measurements, the growth model Y;(z;) noep- N (n; (t_,-),cr%), ni(tj) = ¢in/(1 +
¢i2 exp{¢;3t;}) was assumed in [11], where ¢;1, ¢z and ¢;3 control the growth
behavior of tree i. There are 16 parameters in total, which we denote by the set
O = (¢11, P12, - .., P53, 02). Since no prior information is available on ®, vague
priors are assigned, with the full specification provided in the left part of Table 1.
MCMC sampling is then performed for the posterior distribution using the R pack-
age STAN [5], with the chain run for 150,000 iterations and the first 75,000 of these
discarded as burn-in. The remaining N = 75,000 samples are then thinned at a rate
of 200 and 100, giving n = 375 and n = 750 thinned samples, respectively. Sup-
port points are generated using sp . ccp for the same choices of n, using the full
MCMC chain as the approximating sample {ym}n’\{zl. Since posterior variances
vary greatly between parameters, we first rescale each parameter in the MCMC
chain to unit variance before performing sp . ccp, then scale back the resulting
support points after.

These two methods are then compared on how well they estimate two quantities:
(a) marginal posterior means and standard deviations of each parameter, and (b)
the averaged instantaneous growth rate r(¢) (see Table 1) at three future times.
True posterior quantities are estimated by running a longer MCMC chain with
600,000 iterations. This comparison is summarized in the right part of Table 1,
which reports the ratios of thinning over support point error for each parameter.
Keeping in mind that a ratio exceeding 1 indicates lower errors for support points,
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TABLE 1
Prior specification for the tree growth model (left), and the ratios of thinning over support point
error for posterior quantities (right). Ry, (n) and R 2 (n) denote the error ratios for posterior means
and variances using n points, respectively

Parameter Prior Ru(375) Ru(750) R,2(375)  R,2(750)
indep. 2

i1 loggit ~" N(ui,od) 227 275 15.89 6.37
indep.

bi log(@in+ 1)~ N, 02) 2.10 3.58 18.01 2.47
indep.

i3 log(—¢i3) ~" N(u3,02) 1.59 223 11.90 102.49

o2 62 ~ Inv-Gamma(0.001,0.001) 098 2.80 6.15 7.69

r(1600) r() =133 Ani(9)ls= 1.95 3.17 - -

r(1625) 2.30 3.8 - -

r(1650) 251 3.04 - -

nj N, 100) - - - -

o? o? M v-Gamma(0.01, 0.01) - - - -

one can see that sp . ccp provides a sizable improvement over thinning for nearly
all posterior quantities. Such a result should not be surprising, because sp.ccp
compacts the full MCMC chain into a set of optimal representative points, whereas
thinning wastes valuable information by discarding a majority of this chain.

6. Conclusion and future work. In this paper, a new method is proposed for
compacting a continuous distribution F into a set of representative points called
support points, which are defined as the minimizer of the energy distance in [64].
Three theorems are proven here which justify the use of these point sets for in-
tegration. First, we showed that support points are indeed representative of the
desired distribution, in that these point sets converge in distribution to F. Second,
we provided a Koksma—Hlawka-like bound which connects integration error with
the energy distance for a large class of integrands. Lastly, using an existence result,
we demonstrated the theoretical error improvement of support points over Monte
Carlo. A key appeal of support points is its formulation as a difference-of-convex
optimization problem. The two proposed algorithms, sp . ccp and sp . sccp, ex-
ploit this structure to efficiently generate moderate-sized point sets (n < 10,000) in
moderately-high dimensions (p < 500). Simulations confirm the improved perfor-
mance of support points to MC and a specific QMC method, and the practical ap-
plicability of the proposed point set is illustrated using two real-world applications,
one for small-data and the other for big-data. An efficient C++ implementation of
sp.ccp and sp. sccp is made available in the R package support [38].

While the current paper establishes some interesting results for support points,
there are still many exciting avenues for future research. First, we are interested
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in exploring a tighter convergence rate for support points which reflects its em-
pirical performance from simulations, particularly for high-dimensional problems.
Next, the d.c. formulation of the energy distance can potentially be further ex-
ploited for the global optimization of support points. Moreover, by minimizing
the distance-based energy distance, support points also have an inherent link to
the distance-based designs used in computer experiments [28, 39, 56], and ex-
ploring this connection may reveal interesting insights between the two fields, and
open up new approaches for uncertainty quantification in engineering [41] and
machine-learning [42] problems. Lastly, motivated by [23] and [28], rep-points in
high dimensions should not only provide a good representation of the full distri-
bution F, but also for marginal distributions of F. Such a projective property is
enjoyed by most QMC point sets in the literature [8], and new methodology is
needed to incorporate this within the support points framework.

Acknowledgments. The authors gratefully acknowledge helpful advice from
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SUPPLEMENTARY MATERIAL

Supplement A: Additional proofs and results (DOIL: 10.1214/17-
AOS1629SUPP; .pdf). We provide in this supplement further details on techni-
cal results and simulation studies.
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