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GOODNESS-OF-FIT TESTING OF ERROR DISTRIBUTION
IN LINEAR MEASUREMENT ERROR MODELS1

BY HIRA L. KOUL∗, WEIXING SONG† AND XIAOQING ZHU∗

Michigan State University∗ and Kansas State University†

This paper investigates a class of goodness-of-fit tests for fitting an er-
ror density in linear regression models with measurement error in covariates.
Each test statistic is the integrated square difference between the deconvo-
lution kernel density estimator of the regression model error density and a
smoothed version of the null error density, an analog of the so-called Bickel
and Rosenblatt test statistic. The asymptotic null distributions of the proposed
test statistics are derived for both the ordinary smooth and super smooth
cases. The asymptotic power behavior of the proposed tests against a fixed
alternative and a class of local nonparametric alternatives for both cases is
also described. The finite sample performance of the proposed test is evalu-
ated by a simulation study. The simulation study shows some superiority of
the proposed test over some other tests. Finally, a real data is used to illustrate
the proposed test.

1. Introduction. The problem of fitting an error distribution in regression
models has been well studied when covariates are fully observed; see, for ex-
ample, Loynes (1980), Koul (2002), Khmaladze and Koul (2004, 2009) and the
references therein. However, there are examples where covariates are not observ-
able as is demonstrated in the monographs of Fuller (1987), Cheng and Van Ness
(1999) and Carroll et al. (2006). In these situations, one observes a surrogate that
provides a measurement, up to an error, of the given covariate. The regression mod-
els where covariates are measured with error are often called errors-in-variables or
measurement error regression models. Relatively little is known about fitting an er-
ror distribution in these models. This paper provides a class of tests for this testing
problem based on deconvoluted density estimators of the error density.

Let p ≥ 1 be a given dimension of the covariate vector X. In a multiple linear
regression model with measurement error in X, one observes the response variable
Y and a surrogate p-vector Z obeying the relations

(1.1) Y = α + β ′X + ε, Z = X + u

for some α ∈ R, β ∈R
p , where the p-vector u is the measurement error in X. Here,

for an x ∈ R
p , x′ denotes its transpose. The variables ε, u and X are assumed to be
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mutually independent, with Eε = 0 and Eu = 0. And for the model identifiability
reasons, we assume the density g of the measurement error u to be known.

Let f denote the density of ε, and f0 be a known density with zero mean. The
problem of interest in this paper is to test the hypothesis

(1.2) H0 : f = f0 versus H1 : f �= f0,

based on a random sample (Yi,Zi),1 ≤ i ≤ n from the joint distribution of (Y,Z)

obeying the model (1.1). The case of fitting a parametric family of densities to f

is discussed in Remark 2.1 below. The case of unknown g is briefly discussed in
Remark 2.2.

A motivation for considering the above testing problem is as follows. There
are situations where knowing the distribution of ε helps to improve the effi-
ciency of the estimators of α and β in the above measurement error model. Com-
monly used estimators of α and β are the so-called bias-corrected estimators: β̂ =
(SZZ −�u)

−1SZY , α̂ = Ȳ − β̂ ′Z̄, where SZZ is the sample covariance matrix of Z,
SZY is the sample covariance matrix of Z and Y , Ȳ and Z̄ are the sample means of
Y ’s and Z’s, respectively, and �u is the covariance matrix of u. These estimators
are consistent and asymptotically normal even when the actual distribution of ε is
misspecified within the class of distribution with finite variance. But in addition
to the normality assumption on X and u, if we can further have normality of ε,
then certainly we can construct more efficient estimators of α and β than these
bias-corrected estimators. For example, if p = 1, X ∼ N(1,1), u ∼ N(0,1) and
ε ∼ N(0,1), then, from Fuller (1987), another possible estimator for β is

β̃ =
[
SYY − SZZ +

√
(SYY − SZZ)2 + 4S2

ZY

]
/2SZY .

A simulation study shows that the mean squared error of β̃ is smaller than that of
the bias-corrected estimator β̂ , in particular, when the sample size is small. There-
fore, by taking the distributional information of the regression error into account,
it is possible to construct more efficient estimators of the underlying parameters in
the model (1.1).

Note that if in (1.1), β = 0, then Y bears no relation with X, and hence whether
X is observable or not is irrelevant for making inference about f . In particular
any goodness-of-fit test based on Yi,1 ≤ i ≤ n, useful for fitting a density up to an
unknown location parameter may be used to test the above hypotheses. Thus, from
now onward we shall assume β �= 0 in this paper.

Since we observe Z instead of X, we shall rewrite the model (1.1) as

Y = α + β ′Z + e, e = ε − β ′u.

Because u and ε are independent, the density of e is h(v) = ∫
f (v + β ′u)g(u)du,

v ∈ R. Let h0(v) = ∫
f0(v + β ′u)g(u)du, v ∈ R. As argued in Koul and Song

(2012), there is a one-to-one map between the densities of ε and e. Hence, testing
for H0 is equivalent to testing for

(1.3) H0 : h = h0 versus H1 : h �= h0.
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In the one sample i.i.d. set-up, Bickel and Rosenblatt (1973) goodness-of-fit
test for fitting a known density is based on an L2 distance between a kernel density
estimator and its null expected value. This test, when adapted to fitting an error
density up to an unknown location parameter, where the density estimator would
be based on the estimated residuals, has the property that its asymptotic null dis-
tribution is not affected by not knowing the location parameter. In other words,
not knowing the nuisance location parameter has no effect on the asymptotic level
of the test based on the analog of this statistic. Lee and Na (2002), Bachmann
and Dette (2005) and Koul and Mimoto (2012) observed that this fact continues to
hold for the analog of this test statistic when fitting an error density based on resid-
uals in autoregressive and generalized autoregressive conditionally heteroscedastic
time series models. This type of property makes these L2-distance type tests more
desirable, compared to the tests based on residual empirical processes, because the
asymptotic null distribution of the standardized residual empirical process depends
on the estimators of the underlying nuisance parameters in these models in a com-
plicated fashion, which renders it be unknown. In all of these works, all data are
completely observable.

In the above measurement error model, Koul and Song (2012) proposed analo-
gous class of tests for the testing problem (1.3) based on kernel density estimators
of h obtained from the residuals Yi − α̂ − β̂ ′Zi , 1 ≤ i ≤ n, where α̂, β̂ are some
n1/2-consistent estimators of α,β , under H0. Since this test is about the hypoth-
esis pertaining to the density of e rather than that of ε, it is a direct testing pro-
cedure. As pointed out in Holzmann, Bissantz and Munk (2007), when discussing
the goodness-of-fit tests for the density of the latent variable X, the direct method
generally is inferior to the indirect ones in which the test statistic is based on the
deconvolution estimate of the density of X. This motivates us to search for similar
indirect tests tailored to our set-up. Interestingly, when testing signals for a func-
tional regression model with Gaussian errors, Laurent, Loubes and Marteau (2011)
showed that the indirect testing procedures might be better than the direct ones.

There is a vast literature on the deconvolution estimators of the density of X in
the measurement error model (1.1), as is evidenced in the papers of Carroll and
Hall (1988), Stefanski and Carroll (1990), Fan (1991), Van Es and Uh (2004) and
Delaigle and Hall (2006). In addition to Holzmann, Bissantz and Munk (2007), the
goodness-of-fit testing problem pertaining to the density function of X has been
also studied by several authors including Butucea (2004), Holzmann and Boysen
(2006) and Loubes and Marteau (2014). All of these authors use analogs of the
above L2-distance type tests based either on the deconvoluted estimator of den-
sity of X or on a density estimator of Z density. None of them address the above
problem of testing (1.2) or (1.3) pertaining to the error density in the above mea-
surement error model (1.1).

Assume for the time being that α,β in (1.1) are known. Since we observe Y and
Z, we can construct a density estimator of density h of e := Y −α−β ′Z = ε−β ′u,
which is also an estimator of the convolution of the density f of ε with the known



2482 H. L. KOUL, W. SONG AND X. ZHU

density of β ′u. From this, we obtain a deconvolution density estimator of f , which
we shall use to construct tests of H0.

Let �γ denote the characteristic function of a density γ . Let K be a kernel
function having characteristic function �K . Let ej := Yj − α − β ′Zj ,1 ≤ j ≤ n

and bn be a bandwidth sequence of positive numbers. We shall often write b for
bn. Then a kernel density estimator of h, when α,β are known, is

hn(x,α,β) = 1

nb

n∑
j=1

K

(
x − ej

b

)
.

Clearly, the characteristic function of hn is �K(bt)�n(t), where �n(t) =
n−1 ∑n

j=1 eitej . Assume that �g �= 0. Then �f (t) = �h(t)/�g(−βt). Replacing
�h(t) with �K(bt)�n(t), and by the inversion formula,

fn(x,α,β) = 1

2π

∫
R

e−itx�K(bt)
�n(t)

�g(−βt)
dt

is a deconvolution estimate of f when α and β are known. But, in practice α,β are
seldom known. Let α̂, β̂ be estimators of α,β , respectively. Then the correspond-
ing deconvolution estimator of f is f̂n(x) := fn(x, α̂, β̂). The proposed class of
tests, one for each K and b, of H0 is to be based on

T̂n =
∫
R

(
f̂n(x) − Kb ∗ f0(x)

)2 dx,

where for any functions K and γ , Kb(x) = b−1K(x/b), K ∗ γ (x) :=∫
K(x − y)γ (y)dy.
It is well known that the convergence rate of the deconvolution density estima-

tors depends sensitively on the tail behaviour of the characteristic function �g of
the underlying measurement error. There are two general cases: one is the ordi-
nary smooth case, where |�g(t)| is of polynomial order |t |−κ , for some κ > 0,
as |t | → ∞; the other is the super smooth case, where |�g(t)| is of the order

|t |λ0e−|t |λ/ν , for some λ0 ∈ R, λ > 0 and ν > 0, as |t | → ∞. In this paper, we
obtain asymptotic distributions of T̂n under H0 in both the ordinary smooth and
super smooth cases in Section 2. The consistency against a fixed alternative, the
asymptotic power against a class of local nonparametric alternatives and against a
fixed alternative for both cases is described in Section 3.

The findings of a finite sample simulation that compares the empirical power
of a member of the proposed class of tests with that of Koul and Song (2012) test
based on hn(·, α̂, β̂) are presented in Section 4. The comparison is made for the
five choices of the measurement error variance σ 2

u and three alternatives. In the
super smooth case, while the empirical levels of both tests are conservative, the
proposed test dominates the other test in terms of the empirical power at almost all
chosen alternatives for all choices of σ 2

u ≥ 0.25. For more details, see Section 4.
A supplement [Koul, Song and Zhu (2018)] to this paper describes the findings
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of a simulation that compares these two tests with the Kolmogorov–Smirnov and
Cramér–von Mises tests based on the empirical d.f. of {Yj − α̂ − β̂ ′Zj ,1 ≤ j ≤ n}.
It is observed that the T̂n test dominates these two tests for the larger chosen values
of σ 2

u at most of the chosen alternatives and for a larger sample size.
In this paper, N (μ,σ 2) denotes the normal distribution with mean μ and vari-

ance σ 2, →d (→p) denotes the convergence in distribution (probability), the range
of integration in all the integrals is R, and all limits are taken as n → ∞, unless
specified otherwise.

2. Asymptotic null distribution. This section discusses the asymptotic null
distribution T̂n for the ordinary smooth and super smooth cases.

2.1. Ordinary smooth case. Here, we shall first derive the limiting null dis-
tribution of T̂n for the ordinary smooth case. To begin with, we state the needed
assumptions:

(A): �g satisfies �g(t) �= 0, for all t ∈ R
p , and |�g(t)| ≈ ‖t‖−κ , for a κ > 0,

that is, there are c, C > 0 such that c‖t‖−κ ≤ |�g(t)| ≤ C‖t‖−κ , for all sufficiently
large ‖t‖.

(B): �f satisfies |�f (t)| = O(|t |−r ), for some r > 1, as |t | → ∞.
(C): �K is symmetric around 0 and compactly supported on [−1,1].
(D): E{‖X‖4 + |ε|4 + ‖u‖4} < ∞.

Next, define ψ(β, s, t) := �g(βt + βs)�f (t + s), and let

Tn(α,β) :=
∫ (

fn(x,α,β) − Kb ∗ f0(x)
)2 dx, CM,b :=

∫ |�K(tb)|2
|�g(βt)|2 dt,

CV,b :=
∫∫ |�K(tb)|2|�K(sb)|2

|�g(βt)|2|�g(βs)|2
∣∣ψ(β, s, t)

∣∣2 ds dt.

Using Theorem 1 of Holzmann, Bissantz and Munk (2007), one can derive the
following result. Suppose H0 and the assumptions (A)–(C) hold and b → 0, nb →
∞. Then

CM,b ≈ b−(2κ+1), CV,b ≈ b−(4κ+1),(2.1)

nC
−1/2
V,b

(
Tn(α,β) − CM,b/(2πn)

) →d N
(
0,1/2π2)

.(2.2)

Note that T̂n = Tn(α̂, β̂). Thus, we need the above results to hold with α,β

replaced by α̂ and β̂ , respectively. Accordingly, write ĈM,b, ĈV,b and �̂n(t) for
CM,b, CV,b and �n(t), when α,β are replaced by α̂, β̂ , respectively. We are now
ready to state the following theorem, which provides yet another example where
the asymptotic null distributions of these L2-distance statistics are not affected by
not knowing the nuisance parameters α,β .
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THEOREM 2.1. Suppose H0 holds, assumptions (A), (B) with r > 3/2, (C)
and (D) hold, and that

(2.3) n1/2{|α̂ − α| + ‖β̂ − β‖} = Op(1).

In addition, suppose b → 0, and nbmax{2κ+3,3.5} → ∞, with κ as in (A). Then
ĈM,b ≈ b−(2κ+1), ĈV,b ≈ b−(4κ+1), and

(2.4) nĈ
−1/2
V,b

(
T̂n − ĈM,b

2πn

)
→d N

(
0,

1

2π2

)
.

The proof of this theorem is given in the last section. For a 0 < a < 1, let za be
(1 − a)100th percentile of the N (0,1) distribution. By (2.4), the test that rejects
H0 whenever

Tn := √
2πnĈ

−1/2
V,b

∣∣∣∣T̂n − ĈM,b

2πn

∣∣∣∣ > za/2

has the asymptotic size a.
Examples of g that satisfy assumption (A) include gamma distributions with

scale γ where κ = γ , exponential where κ = 1 and Laplace distribution with loca-
tion 0 and scale 1 where κ = 2. The class of the regression error densities f that
satisfy assumption (B) includes Laplace where r = 2, normal and Cauchy for any
r > 0.

2.2. Super smooth case. Now we consider the problem of obtaining the lim-
iting distribution of T̂n in the super smooth case. Here, we need the following
assumptions:

(A′): �g satisfies �g(t) �= 0, for any t ∈ R
p . For any β ∈ R

p , βk �= 0, for

k = 1, . . . , p, |�g(β
′t)| ∼ C(β)|t |λ0e−ν(β)|t |λ , as |t | → ∞, for a λ > 1, C(β) > 0,

ν(β) > 0 and differentiable λ0 ∈ R.
(B′): The density f is square-integrable, has bounded first and second deriva-

tives, and Eε2 < ∞.
(C′): �K satisfies (C). Moreover, �K(0) = 1, and there exist A > 0, ω ≥ 0

such that �K(1 − t) = Atω + o(tω), as t → 0.

From Holzmann and Boysen (2006), we can deduce that under the conditions
(A′)–(C′) and b → 0,

(2.5)
(2λ)1+2ωπC2(β)n

A2ν1+2ω(β)bλ−1+2λω+2λ0 exp(2ν(β)/bλ)�(2ω + 1)
Tn(α,β) →d χ2

2 /2,

where χ2
2 is a r.v. having chi-square distribution with two degrees of freedom,

and �(·) is the Gamma function. In the current situation, we obtain the following
theorem.
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THEOREM 2.2. Suppose H0 and the assumptions (A′), (B), (B′), (C′), (D)
hold, b → 0, and

(2.6) nb−η exp
(−2ν(β)/bλ) → ∞ for any η > 0.

Then

(2.7) Tn,s := (2λ)1+2ωπC(β̂)2n

A2ν(β̂)1+2ωbλ−1+2λω+2λ0 exp(2ν(β̂)/bλ)�(2ω + 1)
T̂n →d χ2

2 /2.

Note that the factor multiplying T̂n here is all known. Again, the proof of this
theorem appears in the last section. The corresponding test is to reject H0 with
asymptotic size a, for 0 < a < 1, whenever Tn,s >Xa/2, where Xa is (1−a)100th
percentile of the χ2

2 distribution.
Examples satisfying assumption (A′) include normal densities. If g is a standard

normal density, then Cg = 1, λ0 = 0, λ = 2 and ν = 2. For kernel functions satis-
fying assumption (C′), Holzmann and Boysen (2006) used the sinc kernel K(x) =
sin(x)/(πx), with A = 1 and ω = 0, and Fan (1992) used �K(t) = (1 − t2)3 with
A = 8 and ω = 3. Other suitable kernel functions can also be found in Delaigle
and Hall (2006).

REMARK 2.1. Here, we shall discuss tests for fitting a parametric family of
densities. Let fθ , θ an Euclidean parameter, be family of parametric densities and
consider the problem of testing the hypothesis H : f = fθ0 , for some θ0. Let θ̃ be
a

√
n-consistent estimate of θ0 under H and define

T̃n =
∫
R

(
f̂n(x) − Kb ∗ fθ̃ (x)

)2 dx.

One can show that if fθ , θ ∈ � is quadratic mean differentiable at θ0 with the
corresponding vector of derivatives ḟθ satisfying

∫ ‖ḟθ0(x)‖2 dx < ∞, then the
asymptotic distributions of a suitably standardized T̃n are the same as in the sim-
ple hypothesis case where f0 is replaced by the fθ0 , in both ordinary and su-
per smooth cases. Obtaining the estimator θ̃ is often not difficult. For example,
consider the problem of testing f = N(0, σ 2

ε ), σε > 0. Here, n−1 ∑n
i=1(Yi − α̂ −

β̂ ′Zi)
2 − β̂ ′�uβ̂ is a

√
n-consistent estimator of σ 2

ε , where α̂, β̂ are
√

n-consistent
estimators of α, β , respectively, and �u is the covariance of u, which is assumed
to be known.

REMARK 2.2. In the case of unknown g, one may consider the following
two possibilities. First, if replicated observations of Z at X are available, then we
can construct a nonparametric estimator g̃ of g, and use �g̃ , instead of �g , in the
proposed test. The large sample properties of the resulting tests remain unchanged.
Second possibility is that the density function of X might be identifiable in some
special cases, such as if X is nonnormal, or u does not have a normal factor, that is,
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u is not a sum of a normal r.v. and of an independent nonnormal r.v. In such cases,
density f of ε is also identifiable, and one may develop a test based on the sieve
estimate of f proposed in Schennach and Hu (2013). These alternatives deserve an
independent study; however, in this paper in order to make our testing procedure
more broadly applicable, we refrained from imposing any additional distributional
assumptions on X.

It is perhaps worth emphasizing that correct specification of the measurement
error distribution is crucial when applying the proposed tests. We can clearly see
that the tests are very different for ordinary and super smooth measurement errors.

REMARK 2.3. The selection of a proper bandwidth for any test based on
smoothing techniques is challenging. In the literature, two general approaches are
often employed to deal with this problem. One is to use an estimator based optimal
bandwidth, such as a cross-validation bandwidth, the other is to consider a set of
suitable values for the bandwidth and check how the test results varies with these
values. More discussion on this challenging question can be found in Gao and Gi-
jbels (2008). We may follow Gao and Gijbels’s (2008) idea to develop a procedure
to select the bandwidth based on the consideration of size and power functions of
the tests. However, such development is not easy and it deserves an independent
study.

3. Consistency and asymptotic power. In this section, we shall discuss the
consistency and asymptotic power for fixed and local nonparametric alternatives
of the above tests for both ordinary and super smooth cases.

Consistency. Let f1 be another fixed density of ε such that

(3.1) ‖f1 − f0‖ :=
(∫ [

f1(x) − f0(x)
]2 dx

)1/2
> 0.

Consider the fixed alternatives, H1 : f (x) = f1(x), for all x ∈ R.
The following two theorems yield the consistency of the above Tn and Tn,s tests

against H1 for the ordinary and super smooth cases, respectively.

THEOREM 3.1. Suppose assumptions (A) and (C) hold, f0 and f1 satisfy (B)
with r > 3/2, and have finite fourth moment and (2.3) holds under H1. Further-
more, suppose (D) holds, b → 0, and nbmax{2κ+3,3.5} → ∞. Then

(3.2)
√

2πnĈ
−1/2
V,b

∣∣∣∣T̂n − ĈM,b

2πn

∣∣∣∣ →p ∞.

THEOREM 3.2. Assume (2.3) holds under H1, and that the assumptions of
Theorem 2.2 hold. Then

n

bλ−1+2λω+2λ0 exp(2ν(β̂)/bλ)
T̂n →p ∞.
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Asymptotic local power. First, we consider the ordinary smooth case. We shall
describe the asymptotic distribution of T̂n under a sequence of the local nonpara-
metric alternatives

f1n(x) = f0(x) + δ1n�(x), x ∈ R,

with δ1n = (CV,b/2)1/4/(nπ)1/2, f1n a nonnegative function, � ∈ L2(R) such that∫
�(x)dx = 0. We obtain the following.

THEOREM 3.3. Suppose the assumptions of Theorem 2.1 hold and that under
H1n : f (x) = f1n(x), (2.3) holds. Then, under H1n,

√
2πnĈ

−1/2
V,b

(
T̂n − ĈM,b/(2πn)

) →d N
(‖�‖2,1

)
.

Similarly, for the super smooth case, consider a sequence of the local nonpara-
metric alternatives

f2n(x) = f0(x) + δ2n�(x), x ∈R,

δ2n =
(

(2λ)1+2ωπC(β)2n

A2ν(β)1+2ωbλ−1+2λω+2λ0 exp(2ν(β)/bλ)�(2ω + 1)

)−1/2
,

with f2n a nonnegative function, � ∈ L2(R) and
∫

�(x)dx = 0. We obtain the fol-
lowing.

THEOREM 3.4. Suppose the assumptions of Theorem 2.2 hold and (2.3) holds
under H2n : f (x) = f2n(x). Then, under H2n,

(2λ)1+2ωπC(β̂)2n

A2ν(β̂)1+2ωbλ−1+2λω+2λ0 exp(2ν(β̂)/bλ)�(2ω + 1)
T̂n − ‖�‖2 →d χ2

2 /2.

The above two theorems show that the proposed tests can detect alternatives
which converge to f0 at a rate slower than n−1/2.

Asymptotic power against a fixed alternative. Now we describe the asymptotic
power for the ordinary smooth case against a fixed alternative f1 satisfying (3.1).
For this purpose, we need the following result, which follows from Theorem 2 of
Holzmann, Bissantz and Munk (2007). Suppose assumptions (A) and (C) hold,
b → 0, nbmax{4κ+2,2κ+3} → ∞, f0, f1 have bounded second derivatives, satisfy
assumption (B) for some r > κ + 1 and (3.1) holds. Then

n1/2(
Tn(α,β) − ∥∥Kb ∗ (f1 − f0)

∥∥2) →d N
(
0, τ 2

0
)

(under H1),(3.3)

where

τ 2
0 = 1

2π3 Var
(∫

e−itε �f1(t) − �f0(t)

�g(βt)
dt

)
.
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We shall use this result to analyze the asymptotic distribution of T̂n under the
fixed alternative H1. To proceed further, let μZ := EZ, and suppose the first
derivatives ḟ1 and ḟ0 exist. Define

Af = 2
∫

(f1 − f0)ḟ0(x)dx, Bf = 2μZ

∫
(f1 − f0)ḟ1(x)dx.

THEOREM 3.5. Assume that (A), (C) and (D) hold, f1 and f0 satisfy as-
sumption (B) with r > κ + 1, r > 3/2, and κ as in (A) and have bounded second
derivatives. Also, assume (3.1) and (2.3) hold under H1. Furthermore, if b → 0,
nbmax{4κ+2,2κ+3} → ∞, then

(3.4) n1/2(
T̂n − ∥∥Kb ∗ (f1 − f0)

∥∥2 − (α̂ − α)Af − (β̂ − β)′Bf

) →d N
(
0, τ 2

0
)
.

Note that the effect of estimating α and β introduces another bias term
n1/2((α̂ − α)Af + (β̂ − β)′Bf ) in the asymptotic distribution of the statistic T̂n.
This bias will vanish if to begin with there is no intercept parameter in the model
and μZ = 0. It also vanishes if, under H1, the estimators α̂ and β̂ satisfy the lin-
earity conditions

α̂ − α = 1

n

n∑
j=1

ηj + op

(
n−1/2)

,(3.5)

β̂k − βk = 1

n

n∑
j=1

ζjk + op

(
n−1/2)

, k = 1, . . . , p,(3.6)

where ηj are i.i.d. with Eη = 0, Var(η) > 0, E|η|2+ϑ < ∞, for some ϑ > 0. More-
over, the same conditions are satisfied by ζjk’s, and also for 1 ≤ i �= j �= m ≤ n,
ηi , ζj := (ζj1, . . . , ζjp)′ and em are mutually independent.

Examples of the estimators of α̂, β̂ that satisfy these two conditions include the
naive least square estimators, maximum likelihood estimators [see Hušková and
Meintanis (2007)], and the bias-corrected estimators [see Fuller (1987)]. Using
the above expansion, we obtain the following theorem.

THEOREM 3.6. Assume the conditions of Theorem 3.5 and (3.5)–(3.6) for α̂

and β̂ hold. Then, for some τ > 0,

(3.7) n1/2(
T̂n − ∥∥Kb ∗ (f1 − f0)

∥∥2) →d N
(
0, τ 2)

.

The form of τ is described in the proof of this theorem in the last section; see
(6.26). Although τ is complicated to calculate in practice, the bootstrap simulation
methods can be used to estimate τ .

For the super smooth case, in order to obtain a similar result as above, we need
to make the following stronger assumptions on f1 and f0:
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(B∗): The characteristic function �f of the density f of ε satisfies |�f (t)| =
O(|t |ξ0e−|t |ξ /ζ ) for some ξ0 ∈R, ζ > 0 and ξ > λ.

Assumption (B∗) implies (B) and ensures
∫ |�f (t)/�g(βt)|dt < ∞. An example

of f and g satisfying (B∗) is where f is a normal density with variance smaller
than 1, and g is standard normal density.

A result analogous to (3.3) can be obtained in the super smooth case also by
following the proof of Theorem 2 in Holzmann, Bissantz and Munk (2007) with
known α and β . To be clear, assume f1, f0 satisfying (3.1), assumptions (A′) and
(C′) hold, and f1 and f0 satisfy assumption (B∗). Assume b → 0, and

(3.8) nb−η exp
(−4ν(β)/bλ) → ∞ for any η > 0.

Then (3.3) holds. In the case of unknown α and β , we obtain the following theo-
rem.

THEOREM 3.7. Suppose assumptions (A′), (C′) and (B∗) hold, f1, f0 satisfy
(3.1), and have bounded second derivatives. If, in addition, b → 0, and (2.6) holds,
then we have (3.4).

Furthermore, if α̂ and β̂ satisfy (3.5)–(3.6), then (3.7) holds.

4. Simulations. In this section, we report the findings of some extensive sim-
ulations, which assess some finite sample level and power behavior of a member
of the above class of tests. Consider the measurement error model

(4.1) Y = 1 + X + ε, Z = X + u.

We wish to test the hypothesis that ε ∼ N (0, θ0), θ0 = σ 2
ε > 0, that is, fθ0 in H

of Remark 2.1 is the N (0, σ 2
ε ) density. As in Koul and Song (2012), we used the

bias-corrected estimators α̂ = Ȳ − β̂Z̄, β̂ = SZY /(SZZ − σ 2
u ), and σ̂ 2

ε := n−1 ×∑n
i=1(Yi − α̂ − β̂Zi)

2 − β̂2σ 2
u , where Ȳ and Z̄ denote the sample mean of Y and

Z, and SZY and SZZ denote the sample covariance of Z and Y and the sample
variance of Z, respectively. In the simulations here, we used σε = 1.

In the ordinary smooth case, we used �g(t) = 1/(1 + σ 2
u t2/2), that is, the

measurement error density is double exponential with variance σ 2
u . This �g sat-

isfies assumption (A) with κ = 2. In the deconvolution estimator of f , we used
the sinc kernel K(x) = sinx/(πx), with the bandwidth b = σun

−1/8. The pro-
posed test based on T̃n of Remark 2.1 rejects H for the large values of T̂n :=
nC̃

−1/2
V,b |T̃n − ĈM,b/(2πn)|.
In the super smooth case, u ∼ N (0, σ 2

u ). The sinc kernel K(x) = sinx/(πx) is
used in the deconvolution kernel estimator, with the bandwidth b =
(σu + 0.05)(logn)−0.1. Thus, Cg = 1, ν = 2/σ 2

u , λ0 = 0, λ = 2, A = 1 and ω = 0
in condition (C′). Then the left-hand side of (2.7) becomes

T̂n,s := 2πnσ 2
u β̂2T̃n

b exp(|β̂σu|2/b2)
.
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Here, we discuss the choice of our bandwidths. Carroll et al. [(2006), p. 282]
mention that in the super smooth case of normal measurement error as we
have here, an optimal bandwidth in the mean squared error sense of a non-
parametric density estimator is proportional to (logn)−0.5. We also need b →
0 and satisfy (2.6). In the normal measurement error case, the parameters λ

and ν(β) of (2.6) are 2 and β2σ 2
u /2, respectively, and (2.6) becomes dn :=

nb−η exp(−β2σ 2
ub−2) → ∞, for any η > 0. In our simulation, the largest value

of σ 2
u is chosen to be 1, β = 1. For these parameter values, the choice of

b = O((logn)−0.5) makes dn = O((logn)0.5η), a sequence that tends to infinity
at a very slow rate compared to the case when b = O((logn)−a),0 < a < 0.5
and dn = O(n(logn)aη exp(−(logn)2a)). For these reasons, we used the choice of
a = 0.1 in our simulations.

Similar considerations were used for selecting bandwidth in the ordinary
smooth case, when the measurement error density is double exponential with
κ = 2. By Theorem 2.1, the bandwidth b should satisfy b → 0 and nb7 → ∞.
Both requirements are satisfied by choosing b to be of the order n−1/8. The depen-
dence of bandwidths on σu is also suggested in the literature. See Stefanski (1990)
and Carroll et al. (2006) and the references therein.

To investigate the sensitivity of the tests against the choice of bandwidth,
we repeated the simulation using b = cσun

−1/8 in ordinary smooth case, and
b = c(σu + 0.05)(logn)−0.1 in super smooth case, with c = 0.3,0.5,0.8,0.9,1.2.
These simulation results are presented in the supplement to this paper. The sim-
ulation results presented in this paper are for the case c = 1. These simulations
show that the results for c = 1 are similar to those for c = 0.8,0.9 and c = 1.2 but
different from those for c = 0.3,0.5.

We compared the proposed test with the Wn test of Koul and Song (2012).
To define Wn, let ϕ be a density on R, c ≡ cn be another bandwidth, ϕ2(u) :=∫

ϕ(v)ϕ(u + v)dv, w be a compactly supported density on R, and let

h̃n(x) := 1

nc

n∑
j=1

ϕ

(
x − êj

c

)
, Ĉn := 1

n2c2

n∑
i=1

∫
ϕ2

(
v − êi

c

)
w(v)dv,

�̂n := 2
∫

h̃2
n(x)w2(x)dx

∫ [
ϕ2(u)

]2 du.

Then, with h0(x, β̂) := ∫
f0(x + β̂u)g(u)du,

Wn := nb1/2�̂−1/2
n

∣∣∣∣ ∫ (
h̃n(x) − h0(x, β̂)

)2 dw(x) − Ĉn

∣∣∣∣.
In this simulation study, ϕ is chosen to be the standard normal density, the band-
width c = n−0.27, and w is chosen to be the uniform density on the closed interval
[−6,6].

To assess the effect of the measurement error on the finite sample level and
power of these tests, we conducted simulations for the five values of σ 2

u =
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0.1,0.25,0.5,0.75,1. The alternatives considered were t-distributions with k de-
grees of freedom, denoted by tk , for k = 3,5, and double exponential (DE) distri-
bution having zero mean and variance 1/8. The sample sizes chosen were 300 and
500 and the level was chosen to be 0.05.

For each scenario, we repeated the tests 200 times, and the empirical power is
computed by counting the proportion of times the given test statistics exceeds the
asymptotic critical values based on Theorems 2.1 and 2.2.

In all tables, N stands for N (0,1) distribution. Table 1 reports the simulation
results for both ordinary and super smooth cases. In the ordinary smooth case
with the DE measurement error, the empirical levels of both tests are often smaller
than 0.05 with the T̂n having a slight advantages over the Wn test. In terms of the
empirical power, at the alternatives t3 and t5, the T̂n test dominates Wn test for the
chosen larger values of σ 2

u while the reverse holds for the chosen smaller values of
σ 2

u , for both n = 300,500.

TABLE 1
Empirical level & power for the case of p = 1. H0 : ε ∼ N ≡ N(0, σ 2

ε ), σε = 1.
Alternatives: t3, t5 and DE distributions

Ordinary smooth Super smooth

n σ 2
u Test N t3 t5 DE N t3 t5 DE

300 0.1 T̂n 0.030 0.390 0.075 0.300 0.000 0.785 0.155 0.000
Wn 0.015 0.930 0.375 0.030 0.005 0.885 0.240 0.005

0.25 T̂n 0.020 0.510 0.110 0.080 0.000 0.845 0.220 0.000
Wn 0.025 0.860 0.255 0.080 0.005 0.785 0.160 0.005

0.5 T̂n 0.035 0.605 0.145 0.040 0.000 0.795 0.150 0.000
Wn 0.015 0.745 0.180 0.125 0.010 0.645 0.025 0.010

0.75 T̂n 0.045 0.635 0.150 0.025 0.000 0.690 0.080 0.000
Wn 0.030 0.635 0.145 0.095 0.010 0.475 0.050 0.010

1 T̂n 0.050 0.675 0.155 0.030 0.000 0.555 0.060 0.000
Wn 0.050 0.535 0.115 0.055 0.010 0.365 0.025 0.010

500 0.1 T̂n 0.055 0.660 0.170 0.505 0.025 0.970 0.405 0.000
Wn 0.020 0.995 0.545 0.005 0.010 0.985 0.515 0.015

0.25 T̂n 0.045 0.795 0.175 0.165 0.020 0.980 0.500 0.015
Wn 0.025 0.985 0.440 0.060 0.020 0.955 0.365 0.000

0.5 T̂n 0.010 0.815 0.235 0.090 0.000 0.970 0.355 0.000
Wn 0.020 0.940 0.245 0.125 0.020 0.890 0.205 0.000

0.75 T̂n 0.025 0.830 0.240 0.080 0.000 0.925 0.180 0.000
Wn 0.040 0.880 0.165 0.110 0.015 0.755 0.095 0.000

1 T̂n 0.050 0.840 0.270 0.065 0.000 0.855 0.075 0.000
Wn 0.040 0.800 0.130 0.110 0.020 0.650 0.060 0.000
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In the super smooth case, when u ∼ N(0,1), both tests are very conservative,
but T̂n test dominates Wn test in terms of the empirical power at the t3 and t5
alternatives for almost all chosen values of σ 2

u and for both values of n = 300,500.
Both tests have little empirical power against the DE alternative. A possible ex-

planation for this is as follows. The DE density is different from the normal density
because of the sharp peak at the center. Note that the deconvolution kernel density
estimate f̂n is a smoothing operator. In finite sample cases, this smoothing nature
of f̂n may “smooth out” this sharp turning point, “twisting” the density in the di-
rection of normal. This, together with the light tail of the DE distribution may result
in f̂n to be closer to normal density. For illustration, we generated three random
samples, each of size n = 300, from model (4.1), when ε has t3, t5, and the DE
distribution with mean 0 and variance 1/8, respectively. We used the bandwidth
0.5σun

−1/8 and 0.5(σu +0.05)(logn)−0.1 to construct the deconvolution estimates
for ordinary smooth and super smooth case, respectively, with σ 2

u = 0.5. All other
simulation setups are the same as before. All the four curves, K ∗ f0, and f̂n from
the three alternatives, are put in the same plots as shown in Figure 1. In both plots,
the black curve is K ∗ f0, where f0 is the N(0, σ̂ 2

ε ) density; the red curve is f̂n(x)

when ε ∼ DE with mean 0 and variance 1/8; the blue curve is f̂n when ε ∼ t3 and
the cyan curve is f̂n when ε ∼ t5.

Note that in both ordinary and super smooth cases, the red curve, that is, f̂n

when ε ∼ DE, are much closer to the curve of K ∗ f0 than the other two curves,
implying that the proposed test should have a much lower power in testing the
normality of ε against the DE alternative. Also note that Wn test is of a smoothing
nature, based on the above observation, its lower power performance is also not
surprising.

FIG. 1. Plots of f̂n(x) and K ∗ f0(x) when ε ∼ t3, t5 and Laplace.
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For the two-dimensional X, the data are generated from the following linear
regression model:

(4.2) Y = 1 + X1 + 2X2 + ε, Z1 = X1 + u1, Z2 = X2 + u2,

where X1,X2 are independently drawn from N (0,1). The null hypothesis H :
ε ∼ N (0, σ 2

ε ), is tested and again the bias-corrected estimators of α,β1, β2 and σ 2
ε

are used. The measurement errors u1 and u2 are independent and following the
same distributions as in the one-dimensional X case, and other simulation setups
are also the same. The simulation results are shown in Table 2. Compared to the
one-dimensional case, in the ordinary smooth case with DE measurement error,
both tests are liberal as σ 2

u gets larger. In terms of the empirical power, the T̂n test
performs better than the Wn test for the larger chosen values of σ 2

u , but the latter is
much more powerful than the proposed test for the smaller chosen values of σ 2

u .

TABLE 2
Empirical level & power for the case of p = 2. H0 : ε ∼ N ≡ N(0, σ 2

ε ), σε = 1.
Alternatives: t3, t5 and DE distributions

Ordinary smooth Super smooth

n σ 2
u Test N t3 t5 DE N t3 t5 DE

300 0.1 T̂n 0.035 0.075 0.030 0.100 0.060 0.095 0.020 0.025
Wn 0.020 0.405 0.080 0.185 0.015 0.980 0.345 0.005

0.25 T̂n 0.055 0.100 0.060 0.080 0.050 0.075 0.045 0.030
Wn 0.060 0.150 0.050 0.065 0.010 0.825 0.070 0.015

0.5 T̂n 0.080 0.090 0.450 0.075 0.050 0.075 0.045 0.025
Wn 0.075 0.100 0.065 0.065 0.025 0.385 0.030 0.010

0.75 T̂n 0.095 0.105 0.065 0.075 0.055 0.190 0.055 0.030
Wn 0.055 0.055 0.075 0.055 0.010 0.130 0.025 0.010

1 T̂n 0.090 0.095 0.070 0.065 0.035 0.145 0.035 0.020
Wn 0.075 0.060 0.055 0.070 0.025 0.110 0.020 0.010

500 0.1 T̂n 0.015 0.075 0.050 0.055 0.045 0.120 0.085 0.040
Wn 0.040 0.655 0.180 0.400 0.005 0.870 0.215 0.005

0.25 T̂n 0.055 0.080 0.080 0.075 0.025 0.120 0.075 0.025
Wn 0.045 0.345 0.080 0.095 0.000 0.520 0.070 0.005

0.5 T̂n 0.070 0.100 0.090 0.085 0.025 0.110 0.070 0.045
Wn 0.090 0.185 0.045 0.055 0.005 0.230 0.040 0.015

0.75 T̂n 0.075 0.115 0.075 0.085 0.035 0.165 0.060 0.050
Wn 0.100 0.145 0.050 0.060 0.015 0.135 0.040 0.010

1 T̂n 0.055 0.145 0.075 0.080 0.040 0.180 0.055 0.040
Wn 0.085 0.100 0.065 0.070 0.010 0.065 0.015 0.010
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In the super smooth case, the empirical level performance of the T̂n,s test is
relatively better than that of the Wn test for n = 300, σ 2

u < 1, while for n = 500
both tests are conservative for all choices of σ 2

u . In terms of the empirical power,
the findings are similar to those in the case of p = 1.

We also ran an additional simulation comparing the four tests based on T̂n, Wn,
Kolmogorov–Smirnov and the Cramér–von Mises statistics. Because the asymp-
totic null distributions of the last two tests are unknown, we used the following
parametric bootstrap methodology [see Shao and Tu (1995)] to make this compar-
ison.

Step 1. Use the data set to obtain the bias-corrected estimators α̂ and β̂ for α

and β , and θ̂ for θ appearing in the composite null hypothesis K0 of Remark 2.1.
Step 2. Draw independent sample ẽj , j = 1, . . . , n, with ẽj ∼ h(x; α̂, β̂, θ̂ ) =∫

f
θ̂
(x + β̂u)g(u)du, write F̃n(x) as the empirical distribution function of ẽj , j =

1, . . . , n. Let F
θ̂,α̂,β̂

(x) denote the d.f. h(x; α̂, β̂, θ̂ ). Calculate the bootstrap values

T̃ ∗
n = nĈ

−1/2
V,b

∣∣T̃n − ĈM,b/(2πn)
∣∣, ordinary smooth

or

T̃ ∗
n,s := 2πnσ 2

u β̂2T̃n

b exp(|β̂σu|2/b2)
, super smooth,

T̃KS := sup
x∈R

n1/2∣∣F̃n(x) − F
θ̂,α̂,β̂

(x)
∣∣,

T̃CvM := n

∫ (
F̃n(x) − F

θ̂,α̂,β̂
(x)

)2 dF̃n(x),

W̃n := nb1/2�̃−1
n

∣∣∣∣ ∫ (
h̃n(x) − h(x; α̂, β̂, θ̂ )

)2 dx − Ĉn

∣∣∣∣,
where T̃n, �̃

−1/2
n and h̃n(x) denote the analogs of T̂n, �̂−1

n and ĥn(x), respectively,
where êj are replaced by ẽj .

Step 3. For each test, repeat step 2 for R times to obtain R bootstrap values of
the test statistic, define the 5% bootstrap critical value as the 95th percentile of
these R values.

Step 4. For each test, calculate the given test statistic based on the original data
and reject the null hypothesis if it exceeds the corresponding critical value obtained
in step 3.

For each test, we repeat steps 1 to 4 for 200 times, then the empirical power is
computed by counting the proportion of the times the given test statistic exceeds
the bootstrap critical value. The findings of this simulation for the model (4.1)
along with some discussion are reported in the supplement to this paper. From this
simulation, we note that in the ordinary smooth case, for the chosen smaller values
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of σ 2
u , in terms of the empirical power, the Wn test dominates T̂n test while T̂n

dominates the KS and CvM tests. For the larger chosen value of σ 2
u , the superiority

of the T̂n test becomes clear. In the super smooth case, the T̂n,s test appears to be
inferior to the Wn test for the chosen small values of σ 2

u , but its empirical power is
larger than that of the KS and CvM tests in all scenarios. Compared to Wn and the
proposed tests, the KS and CvM tests are more conservative in both ordinary and
super smooth cases.

Following the AE’s suggestion, we put the simulation results from both
asymptotic-based and bootstrap-based critical values together in Tables 3 and 4,
for ordinary and super smooth cases, respectively. From these tables, we see that
in the ordinary smooth case the empirical levels of both tests based on bootstrap
distributions are much closer to the nominal level of 0.05, compared to those based
on the asymptotic null distributions, for the chosen values of σ 2

u ≥ 0.25, with T̂n

TABLE 3
Ordinary smooth case. Empirical level & power using asymptotic (left panel) and bootstrap

(right panel) critical values, for the case of p = 1. H0 : ε ∼ N ≡ N(0, σ 2
ε ), σε = 1.

Alternatives: t3, t5 and DE distributions

Asymptotic Bootstrap

n σ 2
u Test N t3 t5 DE N t3 t5 DE

300 0.1 T̂n 0.030 0.390 0.075 0.300 0.025 0.495 0.120 0.370
Wn 0.015 0.930 0.375 0.030 0.085 0.740 0.215 0.095

0.25 T̂n 0.020 0.510 0.110 0.080 0.045 0.615 0.110 0.140
Wn 0.025 0.860 0.255 0.080 0.055 0.845 0.180 0.060

0.5 T̂n 0.035 0.605 0.145 0.040 0.050 0.655 0.150 0.115
Wn 0.015 0.745 0.180 0.125 0.065 0.730 0.120 0.060

0.75 T̂n 0.045 0.635 0.150 0.025 0.055 0.650 0.185 0.115
Wn 0.030 0.635 0.145 0.095 0.055 0.645 0.100 0.095

1 T̂n 0.050 0.675 0.155 0.030 0.055 0.635 0.185 0.105
Wn 0.050 0.535 0.115 0.055 0.065 0.545 0.095 0.075

500 0.1 T̂n 0.055 0.660 0.170 0.505 0.060 0.705 0.120 0.495
Wn 0.020 0.995 0.545 0.005 0.075 0.910 0.510 0.055

0.25 T̂n 0.045 0.795 0.175 0.165 0.045 0.815 0.190 0.175
Wn 0.025 0.985 0.440 0.060 0.090 0.970 0.400 0.025

0.5 T̂n 0.010 0.815 0.235 0.090 0.040 0.825 0.310 0.145
Wn 0.020 0.940 0.245 0.125 0.075 0.935 0.280 0.070

0.75 T̂n 0.025 0.830 0.240 0.080 0.050 0.880 0.300 0.120
Wn 0.040 0.880 0.165 0.110 0.065 0.840 0.200 0.075

1 T̂n 0.050 0.840 0.270 0.065 0.075 0.910 0.310 0.155
Wn 0.040 0.800 0.130 0.110 0.065 0.820 0.165 0.085
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TABLE 4
Super smooth case. Empirical level and power using asymptotic (left panel) and bootstrap

(right panel) critical values, for the case of p = 1. H0 : ε ∼ N ≡ N(0, σ 2
ε ), σε = 1.

Alternatives: t3, t5 and DE distributions

Asymptotic Bootstrap

n σ 2
u Test N t3 t5 DE N t3 t5 DE

300 0.1 T̂n 0.000 0.785 0.155 0.000 0,015 0.850 0.325 0.080
Wn 0.005 0.885 0.240 0.005 0.065 0.905 0.375 0.060

0.25 T̂n 0.000 0.845 0.220 0.000 0.015 0.820 0.325 0.000
Wn 0.005 0.785 0.160 0.005 0.090 0.825 0.225 0.120

0.5 T̂n 0.000 0.795 0.150 0.000 0.005 0.790 0.285 0.000
Wn 0.010 0.645 0.025 0.010 0.060 0.665 0.150 0.090

0.75 T̂n 0.000 0.690 0.080 0.000 0.000 0.710 0.195 0.000
Wn 0.010 0.475 0.050 0.010 0.080 0.515 0.090 0.055

1 T̂n 0.000 0.555 0.060 0.000 0.005 0.650 0.110 0.000
Wn 0.010 0.365 0.025 0.010 0.060 0.435 0.080 0.085

500 0.1 T̂n 0.025 0.970 0.405 0.000 0.030 0.990 0.495 0.215
Wn 0.010 0.985 0.515 0.015 0.075 1.000 0.610 0.155

0.25 T̂n 0.020 0.980 0.500 0.015 0.035 0.985 0.545 0.010
Wn 0.020 0.955 0.365 0.000 0.065 0.980 0.440 0.055

0.5 T̂n 0.000 0.970 0.355 0.000 0.015 0.970 0.495 0.000
Wn 0.020 0.890 0.205 0.000 0.060 0.905 0.225 0.085

0.75 T̂n 0.000 0.925 0.180 0.000 0.015 0.940 0.380 0.000
Wn 0.015 0.755 0.095 0.000 0.075 0.760 0.115 0.080

1 T̂n 0.000 0.855 0.075 0.000 0.005 0.875 0.245 0.000
Wn 0.020 0.650 0.060 0.000 0.090 0.620 0.050 0.045

test having a slight advantage over Wn test. The behavior of the empirical powers
of both tests is similar under both asymptotic and bootstrap methodologies.

In the super smooth case, neither asymptotic nor bootstrap levels of both tests
are anywhere close to 0.05 for any chosen values of σ 2

u , although the Wn test seems
to have slight advantage. Based on the bootstrap distributions, the T̂n,s test appears
to be conservative while the Wn test to be liberal for all the chosen values of σ 2

u

and n.
Some possible reasons for the above type of empirical findings are as follows.

It is well known that the tests based on kernel density estimators require much
larger sample sizes for the validity of the asymptotic level because of their slow
consistency rate. This rate is much worse in the presence of measurement error.
In the super smooth case, this rate for the deconvolution kernel estimate (DCE) is
notoriously slow and in addition the requirement (2.6) on the bandwidth makes it
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even slower. The consistency rate of a DCE is determined by its bias and variance.
Its bias is the same as of the classical kernel estimate, however, its variance heavily
depends on the smoothness of the measurement error. This variance is relatively
much larger in the super smooth case than that in ordinary smooth case. Thus, un-
der the null hypothesis, for fixed sample size, the proposed test has much larger
variance in the super smooth case than in the ordinary smooth case and the boot-
strap critical values in the super smooth case tend to be relatively larger, which
leads to conservative tests. In comparison, in the ordinary smooth case, the con-
sistency rate is relatively faster and the bootstrap empirical levels of the proposed
and the Wn tests tend to be closer to the nominal level.

We also compared the relative magnitude of the noncentral parameters from T̂n

and Wn tests for some particular hypotheses. These numerical examples indicate
that T̂n test generally has a larger noncentral parameter than the Wn test. This
indicates that the T̂n test has a larger relative efficiency than the Wn test based
on the relative efficiency concept defined in Hong and Lee (2013). However, an
independent study on the relative asymptotic efficiency of these two nonparametric
tests is needed before formal results can be presented.

5. A real data example. The pig data was collected by the Statistical Lab-
oratory of Iowa State University under contract to the Statistical Reporting Ser-
vice, U.S. Department of Agriculture. The study is originally described in Battese,
Fuller and Hickman (1976), and reinvestigated by Fuller (1987) under the frame-
work of the linear regression model with measurement error. The relationship be-
tween the two variables, the number of breeding hogs on hand X and the number
of sows farrowing (giving birth to baby pigs) Y is modeled by a linear regression
model. Since the data are collected by interviewing the farmers, so it is believed
both variables are measured with errors. The number of farmers interviewed in
this study is 184 and the same group of farmers were interviewed twice with one
month gap in between.

In this application, the average of Y -values from the two interviews from the
same farmers is treated as the response variable, and its measurement error is in-
corporated into the regression error term, the average of the X-values is treated as
the surrogate of “true” number of sows farrowing. We assume the measurement
error is normal. From Fuller (1987), the variance of the measurement error is es-
timated as 69.54 based on the analysis of covariance. We would like to check if
the regression error is normal. That is, the null hypothesis we would like to test is
H0 : f = N(0, σ 2

ε ), for some σ 2
ε .

The test statistic Tn,s in Theorem 2.2 gives a value of 0.2073, and it is far less
than the critical value 2.9957 designated by the half of the χ2-distribution with de-
grees of freedom 2. To evaluate the performance of the test based on large sample
theory, we also apply the proposed goodness-of-fit test with critical value deter-
mined by the bootstrap algorithm. To be specific, the following bootstrap algorithm
is used to determine the critical value at the significance level 0.05.
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Step 1. Use the date set to obtain the bias-corrected estimators α̂ and β̂ for α

and β .
Step 2. Draw independent sample ẽj , j = 1, . . . , n, with ẽj ∼ N(0, σ̂ 2

ε + β̂2σ 2
u ),

and calculate

T̃ ∗
n,s := 2πnσ 2

u β̂2T̃n/b exp
(|β̂σu|2/b2)

,

T̃n =
∫
R

(
1

2π

∫
R

e−itx�K(bt)
n−1 ∑n

j=1 eit ẽj

�g(−βt)
dt − Kb ∗ fσ̂ 2

ε
(x)

)2
dx.

Step 3. Repeat step 2 for 400 times and denote the T̃ ∗
n,s as T̃ ∗

1 , . . . , T̃ ∗
400. Sort

these values in an increasing order, and denote the 95% percentile as t∗α .
Step 4. Calculate the T̃n,s with the original data set and reject the null hypothe-

sis if T̃n,s > t∗0.05, otherwise, accept it.

The 0.05 bootstrap critical value is found to be around 0.4590, which is larger
than the value of the test statistic 0.2073. Although the result is consistent with the
test without using bootstrap, the critical value based on the large sample theory
is much larger than the one obtained from the bootstrap algorithm. Therefore, the
proposed test fails to reject the null hypothesis. We also tried the bootstrap algo-
rithm for the Kolmogorov–Smirnov and Cramér–von Mise tests, and arrived at the
same conclusion.

6. Proofs. Here we present the proof of Theorems 2.1–3.7. Write Tn :=
Tn(α,β) and fn(x) := fn(x,α,β) and f̂n(x) := fn(x, α̂, β̂), for convenience. Let
q̇ denote the first derivative of q for any differentiable function q .

Since CV,b ≈ b−(4κ+1), we first show

(6.1) nb2κ
∫

(f̂n − fn)
2(x)dx = op(1).

Using Parseval’s equation, the integral
∫
(f̂n − fn)

2(x)dx equals to

1

4π2

∫ (∫
e−itx�K(ht)

(
�̂n(t)

�g(−β̂t)
− �n(t)

�g(−βt)

)
dt

)2
dx

= 1

2π

∫ ∣∣�K(ht)
∣∣2∣∣∣∣ �̂n(t)

�g(−β̂t)
− �n(t)

�g(−βt)

∣∣∣∣2 dt

≤ 1

2π

∫ ∣∣�K(ht)
∣∣2 |�̂n(t) − �n(t))|2

|�g(−β̂t)|2 dt

+ 1

2π

∫ ∣∣�K(bt)�n(t)
∣∣2 |�g(−β̂t) − �g(−βt)|2

|�g(−β̂t)�g(−βt)|2 dt

= 1

2π
S1 + 1

2π
S2, say.

(6.2)
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Since �K is supported on [−1,1], �K(bt) = 0, for |t | > 1/b. Thus, in the above
two integrals, t ∈ [−1/b,1/b]. Since μg := ∫ |x|g(x)dx < ∞, �̇g exists and is
uniformly bounded above by μg . This fact together with (2.3) and assumption (A)
imply ∣∣�g(−β̂t) − �g(−βt)

∣∣ ≤ μg|t |‖β̂ − β‖,(6.3)

max|t |≤1/b

∣∣∣∣�g(−β̂t)

�g(−βt)
− 1

∣∣∣∣ = max|t |≤1/b

∣∣∣∣�g(−β̂t) − �g(−βt)

�g(−βt)

∣∣∣∣
(6.4)

= Op

(
n−1/2b−κ−1)

.

Let An := {|�g(−β̂t)| ≥ |�g(−βt)|/2, t ∈ [−1/b,1/b]}. Since nb2κ+3 → ∞,
(6.4) implies P(An) → 1. Thus, we need only to restrict our attention to An.

Consider S2. Conditions (A) and (B) imply that there exists a M , cβ , Cβ and
Cf , such that for all |t | > M , cβ |t |−κ ≤ |�g(βt)| ≤ Cβ |t |−κ and �f (t) ≤ Cf |t |−r .
Take n large enough so that M < 1/b. Split the integral in S2 into two ranges, one
with |t | ≤ M and the other with |t | > M . Then by (2.3) and (6.3), on the event An,
S2 is bounded from the above by

4μ2
g‖β̂ − β‖2

∫
1/b≥|t |>M

|t�K(bt)�n(t)|2
|�g(−βt)|4 dt + Op

(
n−1)

≤ 8μ2
g‖β̂ − β‖2

{∫
1/b≥|t |>M

[ |t�K(bt)|2|�n(t) − �h(t)|2
|�g(−βt)|4

+ |t�K(bt)�h(t)|2
|�g(−βt)|4

]
dt

}
+ Op

(
n−1)

.

By Parseval’s identity,

(6.5) Tn(α,β) = 1

2π

∫ |�K(bt)|2|�n(t) − �h(t)|2
|�g(−βt)|2 dt = Op

(
n−1b−2κ−1)

,

because of (2.1) and (2.2). Because |�g(βt)|−2 ≤ c2
β |t |2κ , the first term within the

curly brackets in the above bound is bounded above by b−2κ−2Tn =
Op(n−1b−4κ−3).

Similarly, assumptions (A) and (B) imply∫
|t |>M

|t�K(bt)�h(t)|2
|�g(−βt)|4 dt =

∫
|t |>M

|t�K(bt)�f (t)|2
|�g(−βt)|2 dt = O

(
bmin(2r−2κ−3,0)).

Hence, in view of (2.3),

(6.6) S2 = Op

(
n−2b−4κ−3) + Op

(
n−1bmin(2r−2κ−3,0)) = op

(
n−1b−2κ)

.
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Next, we analyze S1. Let

S11 := 1

n2

∫ |�K(bt)|2|∑n
j=1 t (β̂ − β)′Zje

it (Yj−α−β ′Zj )|2
|�g(−βt)|2 dt,

S12 := 1

n2

∫ |�K(bt)|2|∑n
j=1 teit (Yj−α−β ′Zj )|2

|�g(−βt)|2 dt,

S13 := 1

n2

∫ |�K(bt)|2|∑n
j=1 t ((β̂ − β)′Zj)

2eit (Yj−α−β ′Zj )|2
|�g(−βt)|2 dt.

Using the fact Yj − α − β ′Zj = εj − β ′uj , we obtain on the event An

S1 ≤ 4
∫ ∣∣�K(bt)

∣∣2 |�̂n(t) − �n(t)|2
|�g(−βt)|2 dt

≤ 16

n2

∫ |�K(bt)|2|∑n
j=1 t (β̂ − β)′Zje

it (εj−β ′uj )|2
|�g(−βt)|2 dt

+ 16(α̂ − α)2

n2

∫ |�K(bt)|2|∑n
j=1 teit (εj−β ′uj )|2

|�g(−βt)|2 dt

(6.7)

+ 16

n2b2

∫ |�K(bt)|2|∑n
j=1 t ((β̂ − β)′Zj)

2eit (εj−β ′uj )|2
|�g(−βt)|2 dt

+ 16(α̂ − α)4

n2b2

∫ |�K(bt)|2|∑n
j=1 teit (εj−β ′uj )|2

|�g(−βt)|2 dt + Op

(
n−3b−2κ−7)

= 16
[
S11 + (α̂ − α)2S12 + b−2S13 + (α̂ − α)4b−2S12

] + Op

(
n−3b−2κ−7)

,

by (2.3), assumption (A) and the fact that
∑n

j=1 |Zj |3 = Op(n):
Now, let us consider S11.

S11 ≤ p

p∑
k=1

(β̂k − βk)
2

n2

∫ |�K(bt)|2|∑n
j=1 tZkj e

it (εj−β ′uj )|2
|�g(−βt)|2 dt.

Since X, u and ε are mutually independent, for any k = 1, . . . , p,

EZke
it (εj−β ′uj ) = EXk�h(t) + �f (t)Euke

−itβ ′u.

We use this to obtain

1

n2

∫ |�K(bt)|2|∑n
j=1 tZkj e

it (εj−β ′uj )|2
|�g(−βt)|2 dt

≤ 3

n2

∫ |�K(bt)|2|∑n
j=1[Zkje

it (εj−β ′uj ) − EZkje
it (εj−β ′uj )]|2

b2|�g(−βt)|2 dt(6.8)
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+ 3

n2

∫ |�K(bt)|2|∑n
j=1 EXkt�h(t)|2

|�g(−βt)|2 dt

+ 3

n2

∫ |�K(bt)|2|∑n
j=1 t�f (t)Euke

−itβ ′u|
|�g(−βt)|2 dt.

An argument similar to the one used in the proof of Theorem 1 in Holzmann,
Bissantz and Munk (2007) implies that the first summand in the upper bound of
(6.8) is Op(n−1b−2κ−3). The second summand is Op(1), by assumption (B), and
�h(t)/�g(−βt) = �f (t). To analyze the third summand, decompose the integral
into two ranges, |t | > M and |t | ≤ M , and use the conditions (A)–(B) to show that
the term with integration over |t | ≤ M is Op(1), while the term with |t | > M is of
the order Op(bmin(2r−2κ−3,0)), thereby showing that the third summand in (6.8) is
of the order Op(1) + Op(b2r−2κ−3). Thus,

(6.9) S11 = Op

(
n−1b−2κ−3) + Op(1) + Op

(
b2r−2κ−3)

.

Similarly, one obtains that S12 and S13 are of the same order as S11. Then (6.7),
(6.9), nb2κ+3 → ∞, nb7/2 → ∞ imply

nb2κS1 = Op

(
n−1b−3) + Op

(
b2κ) + Op

(
b2r−3) + Op

(
n−2b−7) = op(1).

This together with (6.6) completes the proof of (6.1).
From (6.1) and (6.5), we obtain

T̂n − Tn =
∫

(fn − f̂n)
2(x)dx + 2

∫
(fn − f̂n)(fn − Kb ∗ f0)(x)dx

= op

(
n−1b−2κ−1/2)

,

by (2.1) and (2.2). Hence, in view of (2.2),

(6.10) n/C
1/2
V,b

(
T̂n − CM,b/(2πn)

) →d N
(
0,1/2π2)

.

To complete the proof of (2.4), it suffices to show that

(a)
∣∣∣∣1 − Ĉ

1/2
V,b

C
1/2
V,b

∣∣∣∣ = op

(
b1/2)

, (b)
∣∣∣∣ ĈM,b

Ĉ
1/2
V,b

− CM,b

C
1/2
V,b

∣∣∣∣ = op(1).(6.11)

To show (6.11)(a), recall ψ(β, s, t) := �g(βt + βs)�f (t + s). Then

|CV,b − ĈV,b|

=
∣∣∣∣ ∫∫ |�K(tb)|2|�K(sb)|2

|�g(βt)|2|�g(βs)|2
∣∣ψ(β, s, t)

∣∣2 ds dt

−
∫∫ |�K(tb)|2|�K(sb)|2

|�g(β̂t)|2|�g(β̂s)|2
∣∣ψ(β̂, s, t)

∣∣2 ds dt

∣∣∣∣
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≤
∫∫ |�K(tb)|2|�K(sb)|2||�g(βt)|2 − |�g(β̂t)|2|

|�g(βt)|2|�g(βs)|2|�g(β̂t)|2
∣∣ψ(β, s, t)

∣∣2 ds dt

+
∫∫ |�K(tb)|2|�K(sb)|2||�g(βs)|2 − |�g(β̂s)|2|

|�g(β̂t)|2|�g(βs)|2|�g(β̂s)|2
∣∣ψ(β, s, t)

∣∣2 ds dt

+
∫∫ |�K(tb)|2|�K(sb)|2

|�g(β̂t)|2|�g(β̂s)|2
∣∣∣∣ψ(β, s, t)

∣∣2 − ∣∣ψ(β̂, s, t)
∣∣2∣∣ ds dt.

In view of (6.4), the first term in the above bound is bounded from the above by

max|t |≤1/b

∣∣∣∣1 − |�g(βt)|2
|�g(β̂t)|2

∣∣∣∣ ∫∫ |�K(tb)|2|�K(sb)|2
|�g(βt)|2|�g(βs)|2

∣∣ψ(β, s, t)
∣∣2 ds dt

= Op

(
n−1/2b−1−κCV,b

)
.

The other two terms in the above bounds are bounded similarly. Together with
(2.1) and nb2κ+1 → ∞, we obtain

|1 − ĈV,b/CV,b| = Op

(
n−1/2b−1−κ) = op

(
b−1/2)

,

which implies (6.11)(a).
Next, consider (6.11)(b). Applying (2.1), (6.11)(a) and nb2κ+1 → ∞,∣∣ĈM,b/Ĉ

1/2
V,b − CM,b/C

1/2
V,b

∣∣
≤ |ĈM,b − CM,b|

∣∣Ĉ−1/2
V,b

∣∣ + CM,bC
−1/2
V,b

∣∣1 − Ĉ
1/2
V,b/C

1/2
V,b

∣∣
≤ max|t |≤1/b

∣∣∣∣1 − |�g(βt)|2
|�g(β̂t)|2

∣∣∣∣CM,bĈ
1/2
V,b + op(1)

= Op

(
n−1/2b−3/2−κ ) = op(1).

This completes the proof of (6.11), which combined with (6.10) also prove (2.4),
thereby completing the proof of Theorem 2.1.

PROOF OF THEOREM 2.2. Let ζβ(b) := exp(2ν(β)/bλ), β ∈R. We shall first
show that

(6.12)
n

bλ−1+2λω+2λ0ζβ(b)

∫
(f̂n − fn)

2(x)dx = op(1).

The proof is similar as in the ordinary smooth case. We only list some main differ-
ences.

First, arguing as for (6.4), for the super smooth case, (A′) implies

max|t |≤1/b

∣∣∣∣�g(−β̂t)

�g(−βt)
− 1

∣∣∣∣ = max|t |≤1/b

∣∣∣∣�g(−β̂t) − �g(−βt)

�g(−βt)

∣∣∣∣
= Op

(
n−1/2b−1+2λ0ζ

1/2
β (b)

)
.

(6.13)



GOF TESTING IN MEASUREMENT ERROR MODELS 2503

By (2.6), hence P(An) → 1, with An := {|�g(−β̂t)| ≥ |�g(−βt)|/2,

t ∈ [−1/b,1/b]}.
Assumptions (A′) and (B) imply that there exist constants M,cβ,Cβ < ∞, such

that for |t | > M , cβ |t |λ0e−ν(β)|t |λ ≤ |�g(t)| ≤ Cβ |t |λ0e−ν(β)|t |λ and |�f (t)| ≤
Cg1|t |−λ1 . Also, on the event An, there exists some β̃ between β̂ and β , such
that S2 is bounded from the above by

2μg‖β̂ − β‖2

b2

∫
|t |≥M

|�K(bt)|2(|�n(t) − �h(t)|2 + |�h(t)|2)
|�g(−βt)|4 dt + Op

(
n−1)

.

Based on (2.5),∫
|t |≥M

|�K(bt)|2|�n(t) − �g(t)|2
|�g(−βt)|4 dt = Op

(
n−1bλ−1+2λω+4λ0ζ 2

β (b)
)
.

From Lemma 5 in Van Es and Uh (2004), it follows that∫
|t |≥M

|�K(bt)�h(−βt)|2
|�g(−βt)|4 dt = Op

(
b2λ0+2λ1+λ(1+2ω)ζβ(b)

)
.

So when λ1 > 1 and n,b satisfy (2.6), we have

S2 = op

(
n−1bλ−1+2λω+2λ0ζβ(b)

)
.

Next, let us consider S1. Assumptions (A′), (B′) and the bound in (6.7) yield

(6.14) S1 ≤ 8(β̂ − β)2/b2S11 + 8(α̂ − α)2/b2S12 + Op

(
b2λ0−1ζβ(b)

n2b4

)
.

Consider S11 first. Similarly, as in (6.8), together with assumptions (A′)–(C′), we
obtain

(6.15) S11 = Op

(
n−1b−1+2λ0ζβ(b)

) + Op(1) + Op

(
b2λ0−1+2λ1+λ(1+2ω)ζβ(b)

)
.

S12 can be considered the same way. Hence, by (2.6), (6.14) and (6.15)

nS1

bλ−1+2λω+2λ0ζβ(b)
= Op

(
n−1b−λ−2λω) + Op

(
n−1b−λ−2λω−1−2λ0

)
+ O

(
b2λ1−2) + Op

(
n−1b−λ−4−2λω)

= op(1).

This completes the proof of (6.12). Combining this with (2.5), we obtain

T̂n − Tn =
∫

(fn − f̂n)
2(x)dx + 2

∫
(fn − f̂n)(fn − Kb ∗ f0)(x)dx

= op

(
n−1bλ−1+2λω+2λ0ζβ(b)

)
.

(6.16)
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Also, since the first derivatives of ν(β) and C(β) exist and ‖β̂ −β‖ = Op(n−1/2),

(6.17)
∣∣1 − exp

(−2
(
ν(β̂) − ν(β)

)
/bλ)∣∣ = op(1).

Facts (6.16) and (6.17) yield (2.7). This completes the proof of Theorem 2.2. �

PROOF OF THEOREM 3.1. Define

T̃n =
∫ (

f̂n(x) − Kb ∗ f1(x)
)2 dx.

We argue as in the proof of Theorem 2.1 to obtain

(6.18) nC̃
−1/2
V,b

(
T̃n − ĈM,b/(2πn)

) →d N
(
0,1/2π2)

,

where C̃V,b is same as ĈV,b with f replaced by f1. Hence, C̃V,b ≈ b−(4κ+1).
Next, consider

nb2κ+1/2(T̂n − T̃n)

= nb2κ+1/2
∫ (

Kb ∗ f0(x) − Kb ∗ f1(x)
)2 dx

+ 2nb2κ+1/2
∫ (

f̂n(x) − Kb ∗ f1(x)
)(

Kb ∗ f1(x) − Kb ∗ f0(x)
)

dx.

Because
∫
(Kb ∗ f0(x) − Kb ∗ f1(x))2 dx → ‖f1 − f0‖2 > 0 and nb2κ+3 → ∞,

the first term in the right-hand side above is of the order O(nb2κ+1/2) → ∞,
while by (6.18) and the Cauchy–Schwarz inequality, the second term is of the
order op(nb2κ+1/2). This completes the proof of Theorem 3.1. �

The proofs of Theorems 3.2, 3.3 and 3.4 are similar to those of Theorems 3.1
and 2.1, and hence no details are given.

PROOF OF THEOREM 3.5. For the sake of completeness of this paper, we first
provide a brief proof of (3.3). For j = 1, . . . , n, let

Dj = 1

π

∫ ∣∣�K(tb)
∣∣2(

eit (εj−β ′uj )

�g(−βt)
− �f1(t)

)(
�f1(t) − �f0(t)

)
dt.

Note that since K is symmetric, Dj is real. Rewrite

Tn − ∥∥Kb ∗ (f1 − f0)
∥∥2

=
∫

(fn − Kb ∗ f1)
2 dx + 2

∫
(fn − Kb ∗ f1)

(
Kb ∗ (f1 − f0)

)
dx.

Recall (2.2) and that nb4κ+2 → ∞. Hence, the first term on the right-hand side
above is Op(n−1b2κ+1) = op(n−1/2). Using Parseval’s equation, the second term
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can be written as n−2 ∑n
j=1 Dj . Here, Dj ’s are arrays of i.i.d. r.v.’s, with ED1 = 0,

and Var(D1) converging to

τ 2
0 := 1

π2

∫∫
�h(t − s)

(�f1(s) − �f0(s))(�f1(t) − �f0(t))

�g(βs)�g(−βt)
ds dt

− 1

π2

(∫
�f1(−t)

(
�f1(t) − �f0(t)

)
dt

)2

= 1

2π3 Var
(∫

e−itε �f1(t) − �f0(t)

�g(βt)
dt

)
.

Moreover,

E|D1|4 ≤ 1

π4

(∫ (
1

|�g(−βt)| + ∣∣�f1(t)
∣∣)(∣∣�f1(t)

∣∣ + ∣∣�f0(t)
∣∣) dt

)4
= O(1),

by the assumption (B) with r > κ +1. Hence, one obtains (3.3), by the Lindeberg–
Feller CLT.

To complete the proof of Theorem 3.5, first, consider the case where α is known,
so that f̂n is based on the residuals Yi −α− β̂ ′Zi’s only. Without loss of generality,
assume α = 0. Under the alternative H1,

n1/2(T̂n − Tn)

= n1/2
∫

(f̂n − fn)
2(x)dx + 2n1/2

∫
(f̂n − fn)(fn − Kb ∗ f1)(x)dx

+ 2n1/2
∫

(f̂n − fn)(Kb ∗ f1 − Kb ∗ f0)(x)dx.

The same proof as that of (6.1) and nb4κ+2 → ∞ imply

(6.19) n1/2
∫

(f̂n − fn)
2(x)dx = op

(
n−1/2b−2κ) = op(1).

This fact together with (2.4) and the Cauchy–Schwarz inequality implies

(6.20) 2n1/2
∫

(f̂n − fn)(fn − Kb ∗ f1)(x)dx = op

(
n−1b−3κ−1) = op(1).

To deal with the remaining part, let �f (x) := (Kb ∗ f1 − Kb ∗ f0)(x). Rewrite
f̂n − fn as the sum of the following two terms:

D1 :=
∫∫

e−itx�K(bt)

∑n
j=1(e

it (εj−β̂ ′uj ) − eit (εj−β̂ ′uj ))

2πn�g(−β̂t)
�f (x)dt dx,

D2 :=
∫∫

e−itx�K(bt)

∑n
j=1 eit (εj−β̂ ′uj )

2πn

(
1

�g(−β̂t)
− 1

�g(−βt)

)
�f (x)dt dx.
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Consider D1 first. Since nb4κ+2 → ∞, and κ > 1, then uniformly in |t | ≤ 1/b,

1

n

n∑
j=1

(
eit (εj−β̂ ′uj ) − eit (εj−β ′uj ))

=
∑n

j=1 it (β − β̂)′Zje
it (εj−β̂ ′uj )

n
+ op

(
n−1/2)

.

Let

C0 :=
∫∫

te−itx�K(bt)

∑n
j=1[Zjke

it (εj−β ′uj ) − EZjke
it (εj−β ′uj )]

2πn�g(−βt)
dt�f (x)dx.

Then EC0 = 0 and

EC2
0 ≤ E

(
n∑

j=1

∫∫
te−itx�K(bt)

× Zjke
it (εj−β ′uj ) − EZjke

it (εj−β ′uj )

2πn�g(−βt)
dt�f (x)dx

)

≤ E|Zk|2
n

(∫∫
te−itx �K(bt)

2π�g(−βt)
dt�f (x)dx

)2

≤ E|Zk|2
n

(∫∫
te−itx�K(bt)

�K(bt)

2π�g(−βt)
dt�f (x)dx

)2

≤ E|Zk|2
2πn

(∫ |�K(bt)|
|�g(−βt)| dt

∫ ∣∣�ḟ (x)
∣∣ dx

)2

= O
(
n−1b−2κ−2) = o(1).

(6.21)

Hence, C0 = op(1). Since

EZke
it (ε−β ′u) = μZ�h(t) + �f1(t)Euke

−iβ ′ut ,

assumption (B) with r > κ + 1 and the relation �h(t) = �g(t)�f1(t) imply∫∫
te−itx�K(bt)

EZke
it (ε−β ′u)

�g(−βt)
dt�f (x)dx = O(1).

Together with (6.4), and nb4κ+2 → ∞, the above analysis yields

D1 + i(β̂ − β)′

2πn

∫∫
te−itx�K(bt)

EZeit (ε−β ′u)

�g(−βt)
dt�f (x)dx

= Op

(
n−1b−κ−1) = op

(
n−1/2)

.

(6.22)
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Next, consider D2. Uniformly, in |t | ≤ 1/b,

�g(−β̂t) − �g(−βt)

�2
g(−βt)

=
p∑

k=1

{
it (βk − β̂k)Euke

−iβ ′ut

�2
g(−βt)

− (βk − β̂k)
2t2Eu2e−iβ ′ut

�2
g(−βt)

}
+ Op

(
n−3/2b−3−2κ)

.

Let

C1 :=
∫∫

te−itx�K(bt)

∑n
j=1(e

it (ε−β ′u) − �h(t))Euke
−iβ ′ut

�2
g(−βt)

�f (x)dt dx,

C2 :=
∫∫

t2e−itx�K(bt)

∑n
j=1(e

it (ε−β ′u) − �h(t))Eu2
ke

−iβ ′ut

�2
g(−βt)

�f (x)dt dx.

Note that ECi = 0, i = 1,2, and the same arguments as for (6.21) yield

EC2
1 = O

(
n−1b−4κ−2) = o(1), EC2

2 = O
(
n−1b−4κ−4) = o

(
b−2)

.

Hence, C1 = op(1) and C2 = op(b−1). Since �h(t) = �f1(t)�g(−βt), nb4κ+2 →
∞, by (6.4) and assumption (B) with r > κ + 1, we obtain

D2 − i(β̂ − β)′

2πn

∫∫
te−itx�K(bt)

�f1(t)Eue−iβ ′ut

�g(−βt)
dt�f (x)dx

= op

(
n−1/2)

.

(6.23)

Also,

− 1

2π

∫
ite−itx�K(bt)�f1(t)dt = Kb ∗ ḟ1(x).

Combine this with (6.22) and (6.23) to obtain

2n1/2
∫

(f̂n − fn)(fn − Kb ∗ f0)(x)dx = (β̂ − β)′Bf + op

(
n−1/2)

.

Recall (6.19) and (6.20), and immediately

(6.24) n1/2(
T̂n − Tn − (β̂ − β)′Bf

) = op(1).

Next, consider the case when the intercept parameter α is unknown. Let a =
α − α̂. Then

T̂n =
∫ (

fn(x,α, β̂) − Kb ∗ f0(x + a)
)2 dx

=
∫ (

fn(x,α, β̂) − Kb ∗ f0(x)
)2 dx

+
∫ (

Kb ∗ f0(x + a) − Kb ∗ f0(x)
)2 dx

− 2
∫ (

fn(x,α, β̂) − Kb ∗ f0(x)
)(

Kb ∗ f0(x + a) − Kb ∗ f0(x)
)

dx.
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The first term on the right-hand side above is Tn(α, β̂), and from (6.24) we obtain

n1/2(
Tn(α, β̂) − Tn − (β̂ − β)′Bf

) = op(1).

Because ḟ0 exists, and is finite, and a = Op(n−1/2), the second term is Op(n−1).
Then to deal with the third term, rewrite the factor multiplying −2 as the sum of
the following three terms:∫ (

fn(x,α, β̂) − fn(x)
)(

Kb ∗ f0(x + a) − Kb ∗ f0(x)
)

dx,∫ (
fn(x) − Kb ∗ f1(x)

)(
Kb ∗ f0(x + a) − Kb ∗ f0(x)

)
dx,∫ (

Kb ∗ f1(x) − Kb ∗ f0(x)
)(

Kb ∗ f0(x + a) − Kb ∗ f0(x)
)

dx.

By using the Cauchy–Schwarz inequality, together with a = Op(n−1/2), (6.18)
and (6.24), verify that each of the first two terms above are op(n−1/2). The finite-
ness of f̈0 implies that the third term is equal to

a

∫ (
Kb ∗ f1(x) − Kb ∗ f0(x)

)(
Kb ∗ ḟ0(x)

)
dx + op

(
n−1/2)

.

The above analysis and (6.24) imply

(6.25) n1/2(
T̂n − Tn − (β̂ − β)′Bf − (α̂ − α)Af

) = op(1).

This fact together with (3.3) completes the proof of Theorem 3.5. �

PROOF OF THEOREM 3.6. For T̂n, recall (3.5), (3.6) and (6.25). Using the
details in the proof of Theorem 3.5, we obtain

T̂n − ∥∥Kb ∗ (f1 − f0)
∥∥2 = 1

n

n∑
j=1

(
Dj + ηjAf + ζ ′

jBf

) + op

(
n1/2)

.

We write

(6.26) τ 2 := Var
(
D1 + η1Af + ζ ′

1Bf

)
.

Since Dj + ηjAf + ζ ′
jBf , for j = 1, . . . , n are arrays of i.i.d. zero mean r.v.’s and

E|D1|4 = O(1), E|η|2+ϑ < ∞ and E‖ζ‖2+ϑ < ∞ for some ϑ > 0. Thus, the claim
(3.7) follows by the Lindeberg–Feller CLT, thereby completing the proof. �

The proof of Theorem 3.7 is similar as the arguments in the proof of Theorems
3.5 and 3.6. Thus, we omit the details of the proof.
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SUPPLEMENTARY MATERIAL

Some simulation results of GOF tests in measurement error models (DOI:
10.1214/17-AOS1627SUPP; .pdf). This supplement contains some additional sim-
ulation results comparing the test proposed in this paper with some other tests and
a bandwidth sensitivity analysis.
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