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LIMIT THEOREMS FOR EIGENVECTORS OF THE NORMALIZED
LAPLACIAN FOR RANDOM GRAPHS

By MINH TANG AND CAREY E. PRIEBE

Johns Hopkins University

We prove a central limit theorem for the components of the eigenvec-
tors corresponding to the d largest eigenvalues of the normalized Laplacian
matrix of a finite dimensional random dot product graph. As a corollary, we
show that for stochastic blockmodel graphs, the rows of the spectral embed-
ding of the normalized Laplacian converge to multivariate normals and, fur-
thermore, the mean and the covariance matrix of each row are functions of
the associated vertex’s block membership. Together with prior results for the
eigenvectors of the adjacency matrix, we then compare, via the Chernoff in-
formation between multivariate normal distributions, how the choice of em-
bedding method impacts subsequent inference. We demonstrate that neither
embedding method dominates with respect to the inference task of recovering
the latent block assignments.
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1. Introduction. Statistical inference on graphs is a burgeoning field of re-
search in machine learning and statistics, with numerous applications to social net-
work, neuroscience, etc. Many statistical inference procedures for graphs involve a
preprocessing step of finding a representation of the vertices as points in some low-
dimensional Euclidean space. This representation is usually given by the truncated
eigendecomposition of the adjacency matrix or related matrices such as the combi-
natorial Laplacian or the normalized Laplacian. For example, given a point cloud
lying in some purported low-dimensional manifold in a high-dimensional ambi-
ent space, many manifold learning or nonlinear dimension reduction algorithms
such as Laplacian eigenmaps [5] and diffusion maps [14] use the eigenvectors of
the normalized Laplacian constructed from a neighborhood graph of the points as
a low-dimensional Euclidean representation of the point cloud before performing
inference such as clustering or classification. Spectral clustering algorithms such
as the normalized cuts algorithm [36] proceed by embedding a graph into a low-
dimensional Euclidean space followed by running K-means on the embedding to
obtain a partitioning of the vertices. Some network comparison procedures embed
the graphs and then compute a kernel-based distance measure between the result-
ing point clouds [3, 42].

The choice of the matrix used in the embedding step and its effect on subse-
quent inference is, however, rarely addressed in the literature. In a recent pioneer-
ing work, the authors of [35] addressed this issue by analyzing, in the context of
spectral embedding of the adjacency matrix or the normalized Laplacian matrix for
stochastic blockmodel graphs where the subsequent inference task is the recovery
of the block assignments, a metric given by the average distance between the ver-
tices of a block and its cluster centroid for the spectral embedding. The metric is
then used as a surrogate measure for the performance of the subsequent inference
task, that is, the metric is a surrogate measure for the error rate in recovering the
vertices to block assignments using the spectral embedding. The stochastic block-
model [19] is a popular generative model for random graphs with latent community
structure and many results are known regarding consistent recovery of the block
assignments; see, for example, [6, 12, 23, 27, 28, 30, 34, 37, 40] and the references
therein.

It was shown in [35] that for two-block stochastic blockmodels, for a large
regime of parameters the normalized Laplacian spectral embedding reduces the
within-block variance (occasionally by a factor of four) while preserving the
between-block variance, as compared to that of the adjacency spectral embedding.
This suggests that for a large region of the parameters space for two-block stochas-
tic blockmodels, the spectral embedding of the Laplacian is to be preferred over
that of the adjacency matrix for subsequent inference. However, we observed that
the metric in [35] is intrinsically tied to the use of K -means as the clustering proce-
dure, that is, a smaller value of the metric for the Laplacian spectral embedding as
compared to that for the adjacency spectral embedding only implies that clustering
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the Laplacian spectral embedding using K -means is possibly better than clustering
the adjacency spectral embedding using K -means.

Motivated by the above observation, one main goal of this paper is to propose a
metric that is independent of any specific clustering procedure, that is, a metric that
characterizes the minimum error achievable by any clustering procedure that uses
only the spectral embedding, for the recovery of block assignments in stochas-
tic blockmodel graphs. We achieve this by establishing distributional limit results
for the eigenvectors corresponding to the few largest eigenvalues of the adjacency
or Laplacian matrix and then characterizing, through the notion of statistical in-
formation, the distributional differences between the blocks for either embedding
method. Roughly speaking, smaller statistical information implies less information
to discriminate between the blocks of the stochastic blockmodel.

More specifically, the limit result in [4] states that, for stochastic blockmodel
graphs, conditional on the block assignments the entries of the scaled eigenvectors
corresponding to the few largest eigenvalues of the adjacency matrix converge to
a multivariate normal (see Theorem 2.2) as the number of vertices increases. Fur-
thermore, the associated covariance matrix is not necessarily spherical, and hence
K -means clustering for the adjacency spectral embedding does not always yield
minimum error for recovering the block assignment. Analogous limit results (see
Theorem 3.2) for the eigenvectors of the normalized Laplacian matrix then facil-
itate comparison between the two embedding methods via the classical notion of
Chernoff information [10]. The Chernoff information is a supremum of the Cher-
noff a-divergences for @ € (0, 1) and characterizes the error rate of the Bayes’
decision rule in hypothesis testing; the Chernoff «-divergence is an example of
a f-divergence [1, 15] and it satisfies the information processing lemma and is
invariant with respect to invertible transformations [24].

Our paper is thus structured as follows. We recall in Section 2 the definition of
random dot product graphs, stochastic blockmodel graphs, and spectral embedding
of the adjacency and Laplacian matrices. We then state in Section 2.1 several limit
results for the eigenvectors of the adjacency spectral embedding. These results are
generalizations of results from [4, 41]. The main technical contribution of this pa-
per, namely analogous limit results for the eigenvectors of the Laplacian spectral
embedding, are then given in Section 3. All of the limit results derived in this pa-
per are for relatively dense graphs; more precisely, those for which the average
degree grows at rate at least logk (n) for some k > 4 as n, the number of vertices in
the graph increases. We then discuss the implications of these limit results in Sec-
tion 4; in particular Section 4.3 characterizes, via the notion of Chernoff statistical
information, the large-sample optimal error rate of spectral clustering procedures.
We demonstrate that neither embedding method dominates for the inference task
of recovering block assignments in stochastic blockmodels. We conclude the pa-
per with some brief remarks on potential extensions of the results presented herein.
Proofs of stated results are given in the Appendix.
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2. Background and setting. We first recall the notion of a random dot prod-
uct graph [31].

DEFINITION 1. Let F be a distribution on a set X C R? satisfying x "y €
[0, 1] for all x,y € X. We say (X, A) ~ RDPG(F) with sparsity factor p, < 1 if
the following hold. Let X1, ..., X,~F be independent and identically distributed
random variables and define

2.1)  X=[Xi]-|Xn]" eR™ and P=p,XX' €][0, 1]"*".

The X; are the latent positions for the random graph, that is, we do not observe
X, rather we observe only the matrix A. The matrix A € {0, 1}"*" is defined to be
symmetric with all zeros on the diagonal such that for all i < j, conditioned on
X;, X the A;; are independent and

(2.2) A;j ~ Bernoulli(p, X X ;),

namely,

(2.3) PA[X]=T] (aniTXj)Au (1- aniij)(l—Aij).
i<j

REMARK. We note that nonidentifiability is an intrinsic property of random
dot product graphs. More specifically, if (X, A) ~ RDPG(F) where F is a distri-
bution on R¢, then for any orthogonal transformation U, (Y, B) ~ RDPG(F o U)
is identically distributed to (X, A); we write F o U to denote the distribution of
Y = UX whenever X ~ F. Furthermore, there also exists a distribution F’ on
RY with d’' > d such that (Y, B) ~ RDPG(F’) is identically distributed to (X, A).
Nonidentifiability due to orthogonal transformations cannot be avoided given the
observed A. We avoid the other source of nonidentifiability by assuming through-
out this paper that if (X, A) ~ RDPG(F) then F is nondegenerate, that is, E[ X X M
is of full rank.

As an example of random dot product graphs, we could take X to be the unit
simplex in R? and let F be a mixture of Dirichlet distributions or logistic-normal
distribution. Random dot product graphs are a specific example of latent position
graphs or inhomogeneous random graphs [7, 18], in which each vertex is associ-
ated with a latent position X; and, conditioned on the latent positions, the presence
or absence of the edges in the graph are independent Bernoulli random variables
where the probability of an edge between any two vertices with latent positions
X; and X is given by «(X;, X;) for some symmetric function «. A random dot
product graph on n vertices is also, when viewed as an induced subgraph of an
infinite graph, an exchangeable random graph [16]. Random dot product graphs
are related to stochastic block model graphs [19] and degree-corrected stochastic
block model graphs [21]; for example, a stochastic blockmodel graph on K blocks
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with a positive semidefinite block probability matrix B corresponds to a random
dot product graph where F is a mixture of K point masses.

For a given matrix M with nonnegative entries, denote by £(M) the normalized
Laplacian of M defined as

(2.4) L(M) = (diag(M1)) /M (diag(M1)) /2,

where, given z = (z1, ..., 2,) € R", diag(z) is the n x n diagonal matrix whose
diagonal entries are the z;’s. Our definition of the normalized Laplacian is slightly
different from that often found in the literature, for example, in [13, 36] the normal-
ized Laplacian is I — £(M). For the purpose of this paper, namely the notion of the
Laplacian spectral embedding via the eigenvalues and eigenvectors of the normal-
ized Laplacian, these two definitions of the normalized Laplacian are equivalent.
We shall henceforth refer to £(M) as the Laplacian of M, in contrast to the combi-
natorial Laplacian diag(M1) — M of M. See [29] for a survey of the combinatorial
Laplacian and its connection to graph theory.

DEFINITION 2 (Adjacency and Laplacian spectral embedding). Let A be
a n x n adjacency matrix. Suppose the eigendecomposition of A is given by
A= Z?:l )Liuiul.T where |A1| > |A2| > ... are the eigenvalues and u1, us, ..., u,
are the corresponding orthonormal eigenvectors. Given a positive integer d < n,
denote by Sp = diag(|Aq], ..., |Aq]) the diagonal matrix whose diagonal entries
are the [A1], ..., |Aq], and denote by Uy the n x d matrix whose columns are the
corresponding eigenvectors u1, ..., ug. The adjacency spectral embedding (ASE)
of A into R is then the n x d matrix X = UAS};/ 2, Similarly, let £(A) denote
the normalized Laplacian of A and suppose the eigendecomposition of L(A) is
given by L(A) =" 17\ u; ﬁ where (1] > [A2| > -+ > || > O are the eigen-
values and uq, u>, ..., U, are the correspondmg orthonormal elgenvectors Then
given a positive 1nteger d < n, denote by Sa = dlag(|k1| |Ad|) the diagonal
matrix whose diagonal entries are the |k1 l, .. |Ad| and denote by Uj the n x d
matrix whose columns are the eigenvectors %y, ..., #y. The Laplacian spectral

embedding of A into R4 is then the n x d matrix X UASI/ 2.

REMARK. Let (X, A) ~ RDPG(F) with sparsity factor p, and suppose that
the d x d matrix E[XX "] is of full rank where X ~ F. The n x d matrix X
the adjacency spectral embedding X of A into RY, can then be viewed as a con-
sistent estimate of p,,/ X. See [39] for a comprehensive overview of the consis-
tency results and their implications for subsequent inference. On the other hand,
as L(cM) = L(M) for any constant ¢ > 0, the n x d matrix X—the normalized
Laplacian embedding of A into R¢—can be viewed as a consistent estimate of
(on diag(XXTl))_l/ 2 ,i/ 2X which does not depend on the sparsity factor p,. This
is in contrast to the adjacency spectral embedding. For previous consistency re-
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sults of X as an estimator for X in various random graphs models, the reader
is referred to [33, 34, 43] among others. However, to the best of our knowl-
edge, Theorem 3.2—namely the distributional convergence of X to a mixture of
multivariate normals in the context of random dot product graphs and stochastic
blockmodel graphs—had not been established prior to this paper. Finally, we re-
mark that X and X are estimating quantities that, while closely related—X and
(dlag(XXTl)) 1/2X are one-to-one transformations of each other—are in essence
distinct “parametrizations” of random dot product graphs. It is therefore not en-
tirely straightforward to facilitate a direct comparison of the “efficiency” of X
and X as estimators. This thus motivates our consideration of the f-divergences
between the multivariate normals since the family of f-divergences satisfy the
information processing lemma and are invariant with respect to invertible transfor-
mations.

REMARK. For simplicity, we shall assume henceforth that either p, = 1 for
all n, or that p, — 0 with np, = w(log*n). We note that for our purpose, namely
the distributional limit results in Section 2.1 and Section 3, the assumption that
pn = 1 for all n is equivalent to the assumption that there exists a constant ¢ > 0
such that p, — ¢. The assumption that np, = w (log* n) is so that we can apply the
concentration inequalities from [25] to show concentration, in spectral norm, of A
and £(A) around p, XX and £(XXT), respectively.

2.1. Limit results for the adjacency spectral embedding. We now recall sev-
eral limit results for X — X. These results are restatements of earlier results from
[4] and [41]. Theorem 2.2 as stated below is a slight generalization of Theorem 1
in [4]; the result in [4] assumed a more restrictive distinct eigenvalues assumption
for the matrix E[X X "] where X ~ F. We shall assume throughout this paper that
d, the rank of E[X X "] where X ~ F, is fixed and known a priori.

REMARK. For ease of exposition, many of the bounds in this paper are said
to hold “with high probability.” We say that a random variable £ € R is Op( f (n))
if, for any positive constant ¢ > 0 there exists a ng and a constant C > 0 (both of
which possibly depend on ¢) such that for all n > ng, |£| < Cf (n) with probability
at least 1 —n~¢; in addition, we say that a random variable £ € R is op(f (n)) if for
any positive constant ¢ > 0 and any ¢ > 0 there exists a ng such that for all n > ny,
|&| < ef (n) with probability at least 1 —n~°. Similarly, when & is a random vector
in R? or a random matrix in R4 >4, & = Op(f(n)) or € = op(f(n)) if ||&| =
Op(f(n)) or ||&]| = op(f (n)), respectively. Here, || x|| denotes the Euclidean norm
of x when x is a vector and the spectral norm of x when x is a matrix. We write
§=C0+0p(f(n)or§ =¢+op(f(n)if§ —¢ = Op(f(n)oré—¢=op(fn)),

respectively.
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THEOREM 2.1. Let (X, A,) ~ RDPG(F) with sparsity factor p,,. Then there
exists a d x d orthogonal matrix W, and a n x d matrix R,, such that
2.5) X, W — 3/ X = o 2 (An — P X, (X X,) ™' + Ry,

Furthermore, |R,| = O]p((n,on)_l/z). Let urp =E[X] € R? and A = E[X1X1T]
be a d x d matrix. If p, =1 for all n, then there exists a sequence of orthogonal
matrices W,, such that

2.6 IXK,W, =X, % 25 o ATV E[X X[ (X r — XTAX)])A™
If, however, p, — 0 and np, = a)(log4 n), then
2.7) IX, W, — o)X, |5 25 o ATVE[X X ] (X[ er)]) A"

THEOREM 2.2. Assume the setting and notation of Theorem 2.1. Denote by
X, the ith row of Xn Let ®(z, X) denote the cumulative distribution function for
the multivariate normal, with mean zero and covariance matrix X, evaluated at 7.
Also denote by ¥.(x) the d x d matrix

(2.8) Tx)=ATE[X X (x "X —x "X X[ x)]Aa

If pn =1 for all n, then there exists a sequence of orthogonal matrices W, such
that for each fixed index i and any z € R?,

(2.9) PIVAW, % = X)) <2 — [ @(z 2(0)dF (),

That is, the sequence /n (W,,)A( i — Xi) converges in glistribution to a mixture of
multivariate normals. We denote this mixture by N'(0, ¥ (X;)). If, however, p, — 0
and np, = a)(log4 n) then there exists a sequence of orthogonal matrices W,, such
that

(2.10) P{V/n(W,X; — pl/?X;) <z} — /CD(z, o) (x)) dF (x),
where X,1)(x) is the d x d matrix defined by
(2.11) Zoy (@) = ATIE[X X x T X ]ATT

An important corollary of Theorem 2.2 is the following result for when F is
a mixture of K point masses, that is, (X, A) ~ RDPG(F) is a K-block stochas-
tic blockmodel graph. Then for any fixed index i, the event that X; is assigned
to block k € {1,2,..., K} has nonzero probability, and hence one can condi-
tioned on the block assignment of X; to show that the conditional distribution
of o/n(W, X i — X;) converges to a multivariate normal. This is in contrast to the
unconditional distribution being a mixture of multivariate normals as in equation
(2.9) and equation (2.10).
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COROLLARY 2.3. Assume the setting and notation of Theorem 2.1 and let

K
F=an8vk, 711,...,711(>0,an=1
k=1 k

be a mixture of K point masses in R? where 8y, is the Dirac delta measure at vi.
Then if p, = 1, there exists a sequence of orthogonal matrices W,, such that for
any fixed index i,

(2.12) P{/n(W,X; — X;) <z| X; = u} — @(z, Tp),

where Xy = X (vy) is as defined in equation (2.8). If p,, — 0 and np, = a)(log4 (n))
as n — 00, then the sequence of orthogonal matrices W,, satisfies

(2.13) P{Vr(W,X; — pl/2X;) <z | Xi = v} —> @(2, Do1ya)
where X,1),xk = Zo(1)(Vk) is as defined in equation (2.11).

3. Limit results for Laplacian spectral embedding. We now present the
main technical results of this paper, namely analogues of the limit results in Sec-
tion 2.1 for the Laplacian spectral embedding.

THEOREM 3.1. Let (A,,X,,) ~ RDPG(F) for n > 1 be a sequence of random
dot product graphs with sparsity factors (pn)n>1. Denote by D,, and T, the n x n
diagonal matrices diag(A,1) and diag(annX,;rl), respectively, that is, the diag-
onal entries of Dy, are the vertex degrees of A,, and the diagonal entries of T, are
the expected vertex degrees. Let i,, = p,}t/ ZT; 1/ 2Xn = diag(X,,X,Tl)_l/ 2X,,. Then
Jor any n, there exists a d x d orthogonal matrix W, and a n x d matrix R, such
that ¢, := (X, W, — X,,) satisfies

| -
G 4 =T;"2@A,-P)T; X, XX,) " + E(I ~D,T; )X, +R,.

Furthermore, |Ry || F = Op((npa)™Y), that is, |Rull/I2all == 0 as n — co. De-
fine the following quantities:

d ~ Xi d
uw=E[X] eR% n=E T e R%;
X
(3.2)
X1 x|
Xiru,
Z_1X1 X7 Z_1X1 X> \' dxd
T, T T, oyl e RT
X n 2X, w X n 2X, u
If pn = 1, then the sequence of orthogonal matrices (W,),>1 satisfies
X! X, — XlTXzXzTXl]
XszL

Z:E[ } e R and

33)  g(X1.X2)= (

Gd) KWy — K2 8 trE[g(xl, X>)
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where the expectation in equation (3.4) is taken with respect to X| and X, being
i.i.d. drawn according to F. Equivalently, with A = IE[XleT],

y ~ A2x xT(xTi—xTAXx 3X X/
IR, W, — %, 2% [ SR R0 S

(X] p)? 4(X| w)?
+trE[£—1X1XTX2x2T(XTX2) B X1X1T(X1TAX1)]
X n(Xx; w)? 4(X| )3

If pn — 0 and np, = a)(log4 n), then the sequence (W,),>1 satisfies
X1 X[ (X[ ) B 3X1 X[ }
(X| )2 A(X| )2

A
(3.5) non | XW, — X, 1% =5 tIE[

As a companion of Theorem 3.1, we have the following result on the asymptotic
normality of the rows of X, W, —X,.

THEOREM 3.2.  Assume the setting and notation of Theorem 3.1. Denote by
X; and X; the ith row of X, and X,, respectively. We note that X = ﬁ

Also denote by S (x) the d x d matrix

AlX, x X A1 (xT X, —xTXlXTx)
(3.6) IE( — )( 1 )
X'uw  2xTp/\ X[ T xTu

If pn = 1, then there exists a sequence of d x d orthogonal matrices W, such that
for each fixed index i and any z € R4,

(3.7) P{n<wnf(,~ — L) } /CD z, (x)) dF (x).

V2 XX

That is, the sequence n(W,,X,- — X,-) converges in distribution to a mixture of
multivariate normals. We denote this mixture by N (0, f](X,-)). If pn — 0 and
np, = a)(log4 n), then there exists a sequence of d x d orthogonal matrices W,
such that

(3.8) P{np,,}/z(w,,i(,- — L) < z} — / D (z, Zp(1) (x)) dF (x),

V2 XX

where f],,(l)(x) is the d x d matrix defined by

39 S E[(Z_lxl * )(ij—l il )xTXL]
. X)= —_ i .
ot Xluw  2xTpu X! u 2xTn/) xTu

The proofs of Theorem 3.1 and Theorem 3.2 are given in Section B. We end this
section by stating the conditional distribution of np, (W, X; — X;) when (X, A) ~
RDPG(F) is a K-block stochastic blockmodel graph.
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COROLLARY 3.3. Assume the setting and notation of Theorem 3.1 and let

K
F:an&,k, 711,...,71K>O,an=1
k=1 k

be a mixture of K point masses in R%. Then if p, = 1, there exists a sequence of
d x d orthogonal matrices W,, such that for any fixed index i,

Vi

,/Zlnlv;vl

where ik = i(vk) is as defined in equation (3.6) and ny for k € {1,2,..., K}
denote the number of vertices in A,, that are assigned to block k. If instead p, — 0
and np, = a)(log4(n)) as n — 090, then the sequence of orthogonal matrices W,
satisfies

(3.10) P{n(an(,- — ) <z ‘ Xi= Uk} — ®(z, Zp),

o Vi =
(3.11) P{n,o,y2<WnX,~ — —T) <z \ X;= vk} — D(2, Zp1) k),
DMV vy

where flo(]),k = io(l)(vk) is as defined in equation (3.9).

REMARK. As a special case of Corollary 3.3, we have that if A is an Erd6s—
Rényi graph on n vertices with edge probability p2—which corresponds to a ran-
dom dot product graph where the latent positions are identically p—then for each
fixed index i, the normalized Laplacian embedding satisfies

. 1 d 1—p?
Xi—— N0, —— ).
(5= 7))
Recall that X; is proportional to 1/+/d; where d; is the degree of the ith vertex.
On the other hand, the adjacency spectral embedding satisfies

V(X = p) =5 N (0.1 - p?).

As another example, let A be a stochastic blockmodel graph with block probabil-
2
ities matrix B =7 ”?] and block assignment probabilities (r, 1 — 7). Since B

has rank 1, this model corresponds to a random dot product graph where the latent
positions are either p with probability w or g with probability 1 — w—then for
each fixed index i, the normalized Laplacian embedding satisfies

e ——
nyp? +n
(3.12) VirLp 2pq

d ( np(l—p?) + (1 —m)g(l — pg)
— N|{O0,
4(rp+ (1 — 7'r)q)3

) if X; = p,
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n<5(,- —~ +)
N + nyq?
(3.13) 19 29

KR N(O’ 7p(L = pg) + (1 = m)g(l —q2>)
4(rp+ (1 —m)g)’

if X; =¢q,

where n1 and ny = n — nj are the number of vertices of A with latent positions p
and ¢g. The adjacency spectral embedding meanwhile satisfies

V(X = p)
(3.14) q p*(1 = pH + (1 —m)pg*(1 — pq) .
_>N<O’ (Tp? + (1 —m)g?)? ) HXi=p,
V(X —q)
(3.15) d apq(1 — pg) + (1 —m)g*(1 — ¢?) )
—N (O’ @+ (1 —1)g2) ) HXi=a.

REMARK. We note that the quantity n; appears in equation (3.12) and
equation (3.13). Replacing nix by nm; in equation (3.12) and equation (3.13)

1s, however, not straightforward. More precisely, lettin =
g p y g ¢ e inara
P we have

N/ nap?4n(1—m)pg

_ap(ynap? +n(l = m)pg — \Jmip? +napq)

\/nlpz +napgy/nwp? +n(l —m)pq

= (np(nwp* +n(l — 1) pq — n1p* —napq))

/((\/mnv2 +n(l —7)pq +/np>+ nzpq)

x n1p2+n2pq\/nﬂp2+n(1—n)pq)
= (np(nw —n1)(p* = pq))

/((\/mrp2 +n(l = m)pg +mip? + nzpq)

x \/n1p? —i—nzpq\/nrrpz +n(l — n)pq).
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By the strong law of large numbers and Slutsky’s theorem, we have

232

(Ynmp*+n(l —m)pq + \/mp2 +n2pg)\/n1 p? +napgy[nrp? +n(l — 1) pg
a.s. 1
2(p* + pg)3*

We note that, as the n; are assumed to be random variables, that is, we are not
conditioning on the block sizes, by the central limit theorem we have

%(m‘r —np) —d>N(O,JT(1 —1)).

Therefore, by Slutsky’s theorem, we have

¢ =

— _ )2
LA i _dw(o,n(l mpP =) )
\/n1p2+nzpq \/nﬂpz—i-n(l—n')pq 4(p+q)

To replace ny by nmy in equation (3.12) and equation (3.13), we thus need to in-
clude the random term ¢. While we surmise that this can be done, and more gener-
ally, equation (3.10) and equation (3.11) can be modified to handle the randomness
in ng, we shall not do so in this paper.

3.1. Proofs sketch for Theorem 3.1 and Theorem 3.2. We present in this sub-
section a sketch of the main ideas in the proofs of Theorem 3.1 and Theorem 3.2;
the detailed proofs are given in Section B of the Appendix. We start with the moti-
vation behind equation (3.1). Given X,,, the entries of the right-hand side of equa-
tion (3.1), except for the term R,, can be expressed explicitly in terms of linear
combinations of the entries a;; — p;;j of A, — P,. This is in contrast Wlth the left-
hand side of equation (3.1) which depends on the quantities UA and SA (recall
Definition 2); since the quantities Uy and Sa cannot be expressed explicitly in
terms of the entries of A, and P,, we conclude that the right-hand side of equa-
tion 3.1) is simpler to analyze. From equation (3.1), the squared Frobenius norm
npul X Wy — X, |3 is

2

1
ot Op((npa)~1/?).

npn | T, (A, —P)T; 12X, (XTX,) ! + - D, T; "X,

Then conditional on P,, the above expression is, up to the term of order
Op((npp)~Y 2), a function of the independent random variables {a;; — pjj}i<;.

We can then apply concentration 1nequaht1es such as those in [8] to show that the
squared Frobenius norm np;, ||X W, — X || is, conditional on P,, concentrated
around its expectation. Here, the expectation is taken with respect to the random
entries of A,. Equation (3.4) and equation (3.5) then follows by direct evaluation
of this expectation, for the case when p, = 1 and for when p, — 0, respectively.
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Once equation (3.1) is established, we can derive Theorem 3.2 as follows. Let

&; denotes the ith row of np,i/ 2 (Wn)v(n — )Nin) and let r; denotes the ith row of R,,.
Equation (3.1) then implies

STS _inpy? aij — Pij npn’ (1 d)~ 12
= (R]%,) " (D LR ) 4 MR, el

NOSENG 2i
_ (XTX )—l npPn (Z \/n,On(Clij - pij)Xj)
n “*n ﬁ - t;
J

npp X
- r;/z Z(al] plj)+np1/2

_ A/1Pn Z (aij _Pij)((i;ll—in)_lxj X )+n,ol/2
T /o tj/(npn) 2ti [ (npn)

We then show that n,ol/ ri —d> 0. Indeed, there are n rows in R, and IR F =
O((np,)~1; hence, on average, for each index i, ||r,||2 Op(n—3 P ~2). Fur-
thermore, t;/(np,) = Zj Xl.TXj/n A5 Xl.T,u as n — oo. Finally, Xn X,, =

Z-(X‘XT/(ZJA X.TX‘)) which, as we show in Section B, converges to A=
T
E[);lxli ] as n — oo. We therefore have, after additional manipulations, that

mzmu m)(XT __X )+0p<1>

' 1Pn 2XI-T/,L
«/npn Z (aij — /OnX X )( _ Xi )+0P(1)
I N XT 2X," 1

Then conditioning on X; = x, the above expression for &; is roughly a sum of
independent and identically distributed mean 0 random variables. The multivariate
central limit theorem can then be applied to the above expression for &;, thereby
yielding Theorem 3.2.

We now sketch the derivation of equation (3.1). For simplicity, we ignore the
subscript n in the matrices A,, X, P, and related matrices. First, consider the
following expression:

Ua Sl/2 Up Sl/2

1/2 1/2

UpUa = LA)UAS, /* — L(P)UpS, /“Up Ua

-1/2 1/2:

= L(A)UAULUAS, /* — L(P)UpS, /“Up Ua.

Now L(A) is “concentrated” around L(P), that is, [[L(A) — L(P)| =
Op((npn)~"/?) (see Theorem 2 in [25]). Since |£(P)|| = ®(1) and the nonzero
eigenvalues of L(P) are all of order ®(1), this implies, by the Davis—Kahan
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theorem, that the eigenspace spanned by the d largest eigenvalues of L(A) is
“close” to_that spanned by the d largest eigenvalues of L(P). More precisely,
UAU} = UpUj + Op((nps)~"/?) and

<172 S1/2 172

UpUa = LA UpUR UsS % — L(P)UpS,
+ Op((noa) ™).

We then consider the terms S 12 UTUA and UTU S A . Since ﬁp and INJA
both have orthonormal columns UAU] A= UpUT + Op((nps)~'/?) implies that
there exists an orthogonal matrix W* such that UIT, Ux = W* + Op((np,)~ 1) (see
Proposition B.2). Furthermore, W* satisfies an important property, namely that
W*g:/z S 12w = Op((npn)~"). (see Lemma B.3). We can thus juxtapose
INJIT, Uy and S, A /2 in the above expression and replace INJIT, Ua by the orthogonal
matrix W*, thereby yielding

UaS)” — UpSp Up U,

UaS)? — UpS)*W* = (L(A) — LP))UpSp W + 0p((npa) ™).
As XXT = LP)= Sy 2UP, we have X = Ull,/ SPW for some orthogonal ma-

trix W. Therefore,
UaS)> —XWTw*
= (L(A) — LP))UpSp *W* + 0p((noa) ")
= (LA) — LP))UpS* WWTS; ' WWTW* + 0p((np,) ")
= (LA) — LP)XXX)"WTW* + 0p((np,) ).
Equivalently,
(3.16)  UaSY (W TW —X = (£A) — £@)XXTX) ™" + 0p((npn) 7).

The right-hand side of equation (3.16) can be written explicitly in terms of the
entries of A. However, since £(A) =D~ V2AD" /2 and D = diag(A1), the entries
of the right-hand side of equation (3.16) are not linear/affine combinations of the
entries of A. Nevertheless, by a Taylor-series expansion of the entries of D~1/2,
we have D™V/2 = T~1/2 4+ IT=3/2(T — D) + Op((np,) ~*/?). Substituting this into
equation (3.16) followed by further simplifications yield equation (3.1).

4. Subsequent inference. In this section, we demonstrate how the results of
Section 2.1 and Section 3 provide insights into subsequent inference. We first con-
sider graphs generated according to a stochastic blockmodel with parameters

B [0.42 0.42} .

@ ~ 1042 05

and 7 = (0.6,04).
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(a) n = 1000 (b) n = 2000 (c) n = 4000

FIG. 1. Plot of the estimated latent positions in a two-block stochastic blockmodel graph on n
vertices. The points are colored according to the block membership of the corresponding vertices.
Dashed ellipses give the 95% level curves for the empirical distributions, that is, the 95% level curves
using the sample covariance matrices as estimated from the rows of X. Solid ellipses give the 95%
theoretical level curves for the distributions as specified by Theorem 3.2. For each choice of n, the
points are scaled by \/n so that they are on a that is scale invariant with respect to n.

We sample an adjacency matrix A for graphs on n vertices from the above model
for various choices of n. For each adjacency matrix A, we compute the normalized
Laplacian embedding of A. Figure 1 presents examples of the scatter plots for
these embeddings for n = 1000, 2000 and 4000. The points in the scatter plots
are colored according to the block membership of the corresponding vertices in
the blockmodel. For each block, we also plot the ellipses showing the empirical
(dashed lines) and theoretical (solid lines) 95% level curves for the distribution of
X;. The theoretical level curves are as specified in Theorem 3.2.

We next investigate the implication of the multivariate normal distribution from
Theorem 3.2 on subsequent inference. Spectral clustering refers to a large class
of techniques used in partitioning data points into clusters that proceed by first
performing a truncated eigendecomposition of a similarity matrix between the data
points to obtain a low-dimensional Euclidean representation of these data points
followed by clustering of the data points in this low-dimensional representation;
see [26] for a comprehensive introduction. The normalized cuts algorithm of [36]
is a popular and widely-used instance of spectral clustering where the similarity
matrix is a normalized Laplacian matrix and clustering is done using the K -means
algorithm.

It was shown in [34] that the normalized cuts algorithm, that is, the normalized
Laplacian embedding followed by K-means, is consistent for estimating the block
memberships of stochastic blockmodels graphs. The result of Corollary 3.3, how-
ever, suggests that K-means clustering is suboptimal unless the covariance matri-
ces of the estimated latent positions for the blocks are spherical. We illustrate this
by generating sequences of stochastic blockmodel graphs on n vertices with pa-
rameters as given in equation (4.1) where n € {1000, 1250, 1500, ..., 4000}. For
each graph, we embed its normalized Laplacian matrix into R? and cluster the
embedded vertices via either K-means or the MCLUST Gaussian mixture model-
based clustering algorithm [17]. We then measure the error rate of the clustering
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0.100-

method
~—— GMM

~— K-means

error

~— oracle Bayes

0.010- — oracle K-means

0.001-

1000 2000 3000 4000
n

F1G. 2. Comparison of clustering error rates for Gaussian mixture model (GMM) cluster-
ing, K-means clustering, linear classifier and Bayes-optimal classifier. The error rate for each
n € {1000, 1250, 1500, ...,4000} was obtained by averaging 100 Monte Carlo iterations and are
plotted on a log | scale. The plot indicates that the assumption of a mixture of multivariate normals
can yield significant improvement in the accuracy of the spectral clustering procedure.

solution. The error rates, averaged over 100 replicates of the experiment, are pre-
sented on log-scale in Figure 2. We see that the Gaussian mixture model-based
clustering does yield significant improvement over K-means clustering. For fur-
ther comparison, we plot the Bayes-optimal error rate and that of a linear classi-
fier which assign an embedded point to the closest theoretical centroid. The error
rate of the linear classifier is computed under the assumption that the rows of the
Laplacian spectral embedding are indeed multivariate normal with known covari-
ance matrices and centered around the centroid of the respective blocks; this error
rate serves as a lower-bound for that of K-means clustering.

4.1. Comparison of ASE and LSE via within-class covariances. We now dis-
cuss a comparison of the use of adjacency spectral embedding and Laplacian spec-
tral embedding for subsequent inference. We consider as our subsequent inference
task the problem of recovering the block assignments in stochastic blockmodel
graphs. Our first metric of comparison is the notion of within-block variance for
each block of the stochastic blockmodel, following the work of Sarkar and Bickely
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[35]. We partially extend the results of [35] for two-block stochastic blockmodels
to K-block stochastic blockmodels with positive semidefinite block probability
matrices. However, while the collection of within-block variances is a meaningful
surrogate for the performance of our subsequent inference task, we argue that it
is not the “right” metric as it captures only the trace of the block-conditional co-
variance matrices and not the form of the block-conditional covariance matrices.
That is to say, the use of the within-block variances as a surrogate measure is sim-
ilar to the oracle K-means lower bound in Figure 2. A more appropriate surrogate
is the collection of pairwise Chernoff information between the block-conditional
multivariate normals, which behave similarly to the oracle Bayes’ lower bound in
Figure 2. The discussion of Chernoff information is postponed to the next subsec-
tion.

DEFINITION 3 (Within-block variances). Let (X, A) ~ RDPG(F) with spar-
sity factor p, where F =}, m;d,, is a mixture of K point masses at vy, 12, ...,
vk € R? and d,, denotes the Dirac delta function. Given A, let Cy for k €
{L,2,..., K} denote the set of vertices of A assigned to block k. Recall the defi-
nitions of Us and U, in Definition 2, that is, Ua and Uy are the n x d matrices
containing the d largest eigenvectors of the adjacency matrix and the Laplacian
matrix, respectively. For any index i, let Uo(i, : ) and Ua (i, : ) denote the ith
row of Ux and Ua (i, : ), respectively. Then for any &,/ € {1,2,..., K}, the ASE
variance between block k and block [ is defined as

S UaGo ) =l = |C|ZUA<J,.

ieCy jeC;

42) dy=dy(A) =

ICI

Similarly, the LSE variance between block k and block [ is

SoI0aG ) -5 = |C|ZUA<J,.

ieCy jeCxk

4.3) dj=duA) =

ICI

When k =1, c?,%k and E,fk are referred to as the ASE within-block variance for block
k and the LSE within-block variance for block k, respectively.

We note that the 021%1 and ‘71%1 are defined in terms of Uy and U A and not in terms

of X = UAS;‘/2 and X = UAS /2 This is because IS /2|| > ||S1/2||

We then have the following large-sample limit results for dkk and gkk Their
proofs are similar to those of Theorem 2.1 and Theorem 3.1 and, therefore, will
be omitted. The limit results for dk ; and dkl when k # [ are much simpler and will
not be presented here. Nevertheless, we will verify later in this section that The-
orem 4.1 and Theorem 4.2 are indeed generalizations of Theorem 3.1 and The-
orem 3.2 from [35]. We emphasize that neither Theorem 4.1 nor Theorem 4.2
assume distinct eigenvalues of the matrix XX ' or £(XXT); distinct eigenvalues
is a necessary assumption used in the proofs of Theorem 3.1 and Theorem 3.2 in
[35] (see Section 8 of the cited paper).
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THEOREM 4.1. Assume the setting and notation of Theorem 2.1 and sup-
pose furthermore that F = ) ; w6, is a mixture of K distinct point masses at
Vi, V2, ..., vk € RY. Let Up, denote the n x d matrix whose columns are the or-
thonormal eigenvectors corresponding to the nonzero eigenvalues of the matrix
P, = annX;ll—. For any k € {1,2,..., K}, let S be the n x n diagonal matrix
with diagonal entries (si(1), sx(2), ..., sx(n)) such that s(i) =1 if X; = v and
sk (i) = 0 otherwise. We then have, for any k € {1,2, ..., K}

n*d = z |||Sk<UAnW — Up,)[[} +o02(D)
4.4)

—3/2
= ||\sk(A P)X, (X! X,) 2|5 + op(1).

Therefore, if p, =1, then forany k € {1,2, ..., K}

(4.5) n?dy 25 o ATE[X X ] (v X1 — v X1 X[ w)]
as n — oo. If, however, p, — 0 and np, = a)(log4(n)), then

(4.6) n?dy 25w ATE[X X v X4 ]

asn — oo.
For the g,gk, we have the following result.

THEOREM 4.2. Assume the setting and notation of Theorem 3.1 and sup-
pose furthermore that F =) mi,, is a mixture of K distinct point masses at
Vi, v2,..., vk €RY. Let Up denote the n x d matrix whose columns are the or-
thonormal eigenvectors corresponding to the nonzero eigenvalues of the matrix
LP,) =L, Xn X)) = LX,X]). Forany k € (1,2,...,K}, let S be the n x n
diagonal matrix with diagonal entries (sx (1), sp(2), ..., sx(n)) such that sy (i) =1
if X;i = v and sy (i) = 0 otherwise. We then have, for any k € {1,2, ..., K},

ndiy = CP |||Sk(UA W, — Up)| 7 +op(1)

n2

TGl
where M1 and M3 are defined as

4.7

1 ~ o~
SM; (X!X,)~ 3/2+§SkM2(X,TX) e | +or(D),

(4.8) M, =T, A, —P)T,'*X,,
(4.9) M, =T, V*(T, — D,)T; /?X,,.
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Therefore, if p, =1, then forany k € {1,2, ..., K}

~ X Av X/ vl A
n’diy ﬁ”rA%E[( ——— )( = - = )
Xim 2vp/\Xin 2vpn

(4.10)

y (v];l—Xl — V;—XIXII)/():|
v,;ru
as n — oo. If, however, p, — 0 and np, = a)(log4(n)), then

~ X A X! v A\ X
(4.11) nza',%k&tm—%[( - — i")( 1 )kT 1]
Xim 20w/ \X{n 2v ) vu

as n — Q.

We now verify that Theorem 4.1 and Theorem 4.2 are indeed generalizations
of Theorem 3.1 and Theorem 3.2 from [35]. Suppose that K = d, that is, that
B is invertible. Then denoting by v the d x d matrix v =[vy | vy | -+ | vg], we
have that v is also invertible and that B=v v and A = vdiag(n)vT. Let z; =
(v,jvl(l — v;—vl), e v;—vd(l — v,jvd)). Then

E[XleT(vaXl — vaXleTvk)] = v(diag(r) dialg(zk))vT

Then equation (4.5) in Theorem 4.1 simplifies to

n2dy 25w ATE[X X[ (0] X1 — v X1 X[ w)]
tr(v diag () v ) v(diag(x) diag(zx))v "
tr((v ") " diag(m) = v ") v(diag(r) diag(zi))v "
tr(diag(m)~'v =" (v7) ") diag(ze)
(
(

tr(diag(m) ™ 'B~ ) diag(zx)

4.12)
tr(diag()~"/*B~! diag(m)~ l/2) diag(zx)

Vg Tl = Vg ”l)(Bl_l/ )2
Ty

Rz

Yy By (1 —By)(B,)?
TN Ty ’
where Bl}l is the {/’th entry of B~!. We emphasize that the above expression for

c?,fk can be written purely in terms of the entries of B and & without the need to
find the vy, vo, ..., vz explicitly.
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We compare equation (4.12) with Theorem 3.1 in [35]. Let A be sampled from

a stochastic blockmodel with parameters B = [ and ® = (71, mp) with

Op ,Bn]
Bn Y
o By # yn2. In [35], it is assumed that the number of vertices assigned to block
1 and block 2 are nmy and nmy, respectively. For ease of exposition and without
loss of generality, suppose that the row indices of A are such that the first nm
rows correspond to vertices assigned to block 1 and the last nmy = n — nmy rows
correspond to vertices assigned to block 2. Let v; and v, denote the eigenvectors
corresponding to the largest and second largest eigenvector of P = ZBZ ' where
Z is a n x 2 matrix whose ith row is (1,0) fori =1,2,...,nm and is (0, 1) for
i=nm+1,nm1+2,...,n. Wethen have that vi = (x1, X1, ..., X1, Y1, Y1, ---, Y1)
for some x1, yi, that is, the first nm| elements of v; are x; and the remaining nm>
elements are x». Similarly, we have v, = (x2, x2, ..., X2, ¥2, ¥2, ..., y2) for some
X2, ¥2. Then equation (3.1) in [35] states that [the notation a, ~ b, in [35] means
an/bp =1+ op(1)]

2 2

41 32 ) yf y%
(4.13) d11"’ _2+_2 nmio, (1 —ay,) + _2+_2 nmyn (1 —vu) |,
)“1 )“2 )\‘1 )“2

where A1 and A, are the largest and second largest eigenvalues of P. We can rewrite
equation (4.13) as

(4.14) a3, ~ (P diag((on (1 = atn)s .. yu (1 = ). ...)),

where PT is the Moore—Penrose pseudo-inverse of P and the first nm| entries of the
diagonal matrix diag(a,, (1 — ay), ... Yn (1 — Yu), ...) are a, (1 — o) while the re-
maining nmy diagonal entries are y, (1 — y;,). As Z is of full-column rank, we have
7" = (Z'72)7'ZT = diag((1/(nmy), 1/(nm2)))Z". Furthermore, B is invertible,
and hence

P =(zBZ")" = (2")'B'Z" = n?Zdiag(w) "' B~ diag(m)'Z".
Therefore,
(P")? = n=3Zdiag(w) "B~ diag(w) "' B~ diag(m)~'Z"
and hence
nzcilzl ~n? tr(PT)Zdiag((an(l — )y V(1 =), ..0))
~n~'trZ(diag(r) " 'B~")* diag(m) "' ZT
x diag (e (1 = @n), - Ya (1 = ¥a), - --))
~ tlr(diag(n)_lB_l)2 diag((an (1 — o), yu(1 = yn)))

which is a special case of equation (4.12). Theorem 4.1 is thus an extension of
Theorem 3.1 in [35] to general K -block stochastic blockmodels, provided that the
block probability matrix is positive semidefinite.
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We now consider nzg,fk. When B is invertible, equation (4.10) in Theorem 4.2
can be simplified as follows. Let u = (w1, 42, ... nqg) where ug = p]j,u, Then
A = v(diag(m) diag(u)_l)vT. The right-hand side of equation (4.10) can be de-
composed as {| — & + ¢3 with ¢ given by

X1 X! v/ X1 —v] X]XTvk}
(X| )2 m

1= tI‘Z_?’E[

1 -~
=—tr A_3vT(diag(7t) diag(;l,)_2 diag(zk))vT
Ik

1 . 1 _ 12 . 1
:mtr(dlag(n) ! diag(uyv=1(»T) 1)2dlag([l,) I diag(zy)
k

—itr(dia( )~ diag(u)B~")? diag(pe) ! diag(zx)

= o(m iag(u iag(p iag(zx
1

=— tr(diag(;t)_l/2 diag(p)/*B~! diag(p)'/? diag(zt)_l/z)2
Ik

x diag(p) " diag(zx)

_ ZZ By ) g v i (L= vl v) ZZ By (1 — Bu) (B )

Ty 1k TTITT) [k

{» given by (here ey is the vector whose ith element is 1 if i = k and O otherwise)

~ X v X —v XXTv
Q:tsz[ DEEDEE T
X u Mk

. L . . 1 4 T
= — tr A%y " (diag(rr) diag(p) " diag(zz))1v;
//“k

1 _
=— trdiag(m) ™! diag(p)v ™! (vT) 1diag(zk)lekT
M

1
=— trdiag(zt)_1 diag(;L)B_1 diag_g(zk)lekT

M
= — v Ul 1—1) v)B, = —— Bkl(l—Bkl)B ,
nkﬂka k )kl ﬂuz kl
and ¢3 given by
1
§3_—trA Yo Byl X1 — v X1 X v ]
4/Lk

_E[UkTXl X1X vk]
4;Lk

o ATy
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EwT X, — T X X7 _
= 20X =0 R T (diag ) diag () v

4,u2
_ Elv] X1 — v X1 X v i 2B (1 —By)
4 T A '

As = mvavl =Y, B, ¢1, &2 and ¢3 can also be written purely in terms
of the entries of B and x.
For the two-block stochastic blockmodel, equation (3.3) in [35] states that

an(l_an)(l+n2yn)+yn(1_yn)<n2 +77105n)’

i \4 i3 pio \Am ok

4.15)  n’d} ~

where 12 =m (o, B — ynz) /(1 p2) is the second largest eigenvalue of L(P) (cf.
Lemma 6.1 in [35]). Verifying that {; — & + ¢3 does indeed yield equation (4.15)
for the two-block stochastic blockmodel is a straightforward computation. We omit
the details. Theorem 4.2 is thus an extension of Theorem 3.2 in [35] for general
K -blocks stochastic blockmodels whenever the matrix of block probabilities is
positive semidefinite.

4.2. Chernoff information. Let Fy and F] be two absolutely continuous mul-
tivariate distributions in © = R? with density functions fy and fi, respectively.
Suppose that Y1, Y, ..., Y, are independent and identically distributed random
variables, with Y; distributed either Fy or Fj. We are interested in testing the
simple null hypothesis Hgy: F = Fp against the simple alternative hypothesis
H;: F = F1. A test T can be viewed as a sequence of mappings 7, : Q™ — {0, 1}

such that given Y| = y1, Y2 =y, ..., Yiy = ym, the test rejects Hy in favor of Hj
if T,y (y1, ¥2, ..., ym) = 1; similarly, the test favors Hy if 7,,, (y1, y2, ..., ym) =0.
The Neyman—Pearson lemma states that, given Y1 =y, Y2 =y2,..., Y = ¥

and a threshold n,, € R, the likelihood ratio test which rejects Hy in favor of H
whenever

(Z log fo(yi) — Y _log fi (y») <1

i=1 i=1

is the most powerful test at significance level o, = o (n,,), that is, the likelihood
ratio test minimizes the type-II error §,, subject to the constraint that the type-I
error is at most o,

Assuming that 7 € (0, 1) is a prior probability that Hy is true. Then, for a given
oy €(0,1), let B = B (o) be the type-II error associated with the likelihood
ratio test when the type-I error is at most «;;,. The quantity infox (0,1 7, + (1 —
)P,y is then the Bayes’ risk in deciding between Hy and Hl; given the m inde-
pendent random variables Y1, Y, ..., Y;,. A classical result of Chernoff [10, 11]
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states that the Bayes’ risk is intrinsically linked to a quantity known as the Chernoff
information. More specifically, let C (Fp, F1) be the quantity

C(Fo, Fi) =—tog inf. [ g0 f1~ x|
(4.16)

= sup | ~tog [ fiw s~ wax |

te(0,1)
Then we have

1
. lim — inf 1 * 1— *)=—C(Fy, F).
(4.17) i g log(men, + (1 —m),) (Fo, F)
Thus C (Fy, F1), the Chernoff information between Fy and Fi, is the exponential
rate at which the Bayes’ error infyx <o, D wa,, + (1 —m)p, decreases as m — 00;
we note that the Chernoff information is 1ndependent of . We also define, for a
given t € (0, 1) the Chernoff divergence C;(Fyp, F1) between Fp and F| by

CuFo, Fy=—log [ fi(x) /™" ) dx.

The Chernoff divergence is an example of a f-divergence as defined in [1, 15].
When ¢ = 1/2, C;(Fp, F) is the Bhattacharyya distance between Fj and Fj. As
we mentioned previously, any f-divergence satisfies the information processing
lemma and is invariant with respect to invertible transformations [24]. Thus any f-
divergence such as the Kullback-Liebler divergence can also be used to compare
the two embedding methods. We chose the Chernoff information mainly because
of its explicit relationship with the Bayes’ risk.

The result of equation (4.17) can be extended to K + 1 > 2 hypotheses. Let

Fo, Fy, ..., Fx be distributions on R? and suppose that Y1, Y»,..., Y, are in-
dependent and identically distributed random variables with Y; distributed F €
{Fo, F1, ..., Fx}. We are thus interested in determining the distribution of the Y;

among the K + 1 hypothesis Hy: F = Fy,...,Hg: F = Fx. Suppose also that

hypothesis Hy has a priori probability 7. Then for any decision rule §, the risk of

818 r(8) = X_p 7wk D12k ik (8) where o (8) is the probability of accepting hypoth-

esis H; when hypothesis Hy, is true. Then we have [22]

4.18 inf lim ") inC(Fy, F

(4.18) inf fim =~ =—min (Fk, F),

where the infimum is over all decision rules §. That is to say, for any §, r(§) de-

creases to 0 as m — oo at a rate no faster than exp(—m mingy; C(Fy, Fy)). It was

also shown in [22] that the Maximum A Posterior decision rule achieves this rate.
For this paper, we are interested in computing the Chernoff information

C(Fy, F1) when Fy and F; are multivariate normals. Suppose Fy = N (1o, o)

and F; = N (i1, X1); then, denoting by ¥, =t Xy + (1 — )X, we have

C(Fo, F) = sup (’(1 =Dy — i) = G —m)+1logi).
1€(0,1) 2 ! 2 TSl =
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4.3. Comparison of ASE and LSE via Chernoff information. We now employ
the limit results of Corollary 2.3 and Corollary 3.3 to compare the performance
of the Laplacian spectral embedding and the adjacency spectral embedding for
subsequent inference. Our subsequent inference task is once again the problem of
recovering the block assignments in stochastic blockmodel graphs; furthermore,
we are interested in estimating the large-sample optimal error rate possible for
recovering the underlying block assignments after the spectral embedding step is
carried out. The discussion in Section 4.2 indicates that an appropriate measure
for the large-sample optimal error rate for spectral clustering using adjacency or
Laplacian spectral embedding is in terms of the minimum of the pairwise Chernoff
information between the multivariate normal distributions as specified in Corol-
lary 2.3 or Corollary 3.3. More specifically, let B € [0, 1]15¥*X and & € RX be the
matrix of block probabilities and the vector of block assignment probabilities for
a K-block stochastic blockmodel. We shall assume that B is positive semidefinite.
Then given an n vertex instantiation of the SBM graph with parameters (x, B), for
sufficiently large n, the large-sample optimal error rate for recovering the block
assignments when adjacency spectral embedding is used as the initial embedding
step can be characterized by the quantity pa = pa (n) defined by

1 |2 ()]

oA =min sup —log———-—
[ S YA D D

1—
+ w(w{ — ) TEL O (k= ),

where Xy () =tZr + (1 — 1) X); i = X(v) and X; = X (vy) are as defined in
equation (2.8). We recall equation (4.18), in particular the fact that as pa increases,
the large-sample optimal error rate decreases. Similarly, the large-sample optimal
error rate when Laplacian spectral embedding is used as the pre-processing step
can be characterized by the quantity pr, = pr(n) defined by

k£ 101y 2 12kl 12

+ MO0 TS 0w,

where S4(1) =135 + (1 — 1)) with £ = £(w) and £; = £ (1) as defined in
equation (3.6), and Uy = v/ (D _pr nk/v,;r ve) /2. We emphasize that we have made
the simplifying assumption that ny = nm in our expression for vy in equation
(4.20). This is for ease of comparison between ps and pr in our subsequent dis-
cussion.

We thus propose to use the ratio pa /o1, as a measure of the relative large-sample
performance of the adjacency spectral embedding as compared to the Laplacian
spectral embedding for subsequent inference, at least in the context of stochastic

(4.19)

(4.20)
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blockmodel graphs. That is to say, for given parameters & and B, if pa/oL > 1
then adjacency spectral embedding is to be preferred over Laplacian spectral em-
bedding when 7, the number of vertices in the graph, is sufficiently large; similarly,
if pa/pL < 1 then Laplacian spectral embedding is to be preferred over adjacency
spectral embedding.

REMARK. We note that if the block-conditional covariance matrices X are all

nonsingular, then for sufficiently large n, the term log % in the definition

of pa is negligible; similarly, the term log l—ilk—ili’%i‘){—_, in the definition of pr, is
also negligible. However, on occasion, some of the block-conditional covariance

matrices Xy are singular. As an example, we consider a completely associative
2
two-block stochastic blockmodel with B = [% qoz] and w = (;r1, mp). Then the

block-conditional covariance matrices are

ElZ(l—Pz)[ngl 8] 22:(1_q2)|:8 7_[91]

~ (U=p)[x? 0], « U=gh[0 0
Z]—v 0o ol Yp=——— -2 >

and pap = pL = oo. Therefore, ASE and LSE are equivalent with respect to the
subsequent inference task. In contrast, [35] showed that the within-block variances
for ASE are four times larger than that of the within-block variances of LSE, while
the between-block variances for ASE and LSE are the same. We conclude that the
within-block variances measure fails to capture the fact that the block-conditional
covariance matrices | and X, are singular but in different subspaces, and sim-
ilarly ¥ and £, are also singular but in different subspaces, and thus if we had
used the within-block variances measure as a surrogate, we would have been mis-
led into believing that LSE is preferable to ASE for this particular subsequent

inference task. Indeed, had we ignored the terms log mmﬂ

Kl 12 7121~
in the definitions of ps and pr, we would have come to the similar conclusion that
2 2 2 2 .
oL = max{zln_1 52 , 21"_2;’2 } = 4max{ i’i’; =, ;’222} = 4pp for sufficiently large n.

As an illustration of the ratio pp/pr, we first consider the collection of 2-block

stochastic blockmodels where B = [ ” tp 7] for p,q € (0, 1) and & = (7, 72) with

1 + 2 = 1. We note that these B also have rank 1, and thus the Chernoff informa-
tion can be computed explicitly. Then for sufficiently large n, pa is approximately
nt (1 — t) -1
par sup ———(p—q)*(tof + (1 =no3)",
te(0,1)
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where o1 and o, are as specified in equation (3.14) and equation (3.15), respec-
tively. Simple calculations yield

pa ~ (n(p — @) (m1p* + m2q%)%)

/(2(ymp*(1 = p?) +mapg (1 - pg)

+ \/n1p3q(1 — pq) +mag*(1 - q2)>2)

for sufficiently large n. Similarly, denoting by 312 and 522 the variances specified
in equation (3.12) and equation (3.13), we have

nt(l—t)( p q
oL~ sup N
re0,y 2 \/mpz + mpq \/mpq + m2q?

2n(/P — /@ (m1p + m29)?
(\/m p(1 = p?) +m2q(1 — pg) +Jm1 p(1 — pg) + 29 (1 — ?))?

~ (2n(p — q)*(m1 p + m2q)?)
(VP + @) (Jmip( = p2) + 729(1 — pq)

+ymp(l = pg) +mag(1 = gH))

for sufficiently large n. Fixing @ = (0.6,0.4), we computed the ratio pa/pL
for a range of p and ¢ values, with p € [0.2,0.8] and ¢ = p + r where r €
[—0.15, 0.15]. The results are plotted in Figure 3. The y-axis of Figure 3 denotes
the values of p and the x axis are the values of r. We see from the above fig-
ure that in general, neither of the methods, namely adjacency spectral clustering
or normalized Laplacian spectral embedding followed by clustering via Gaussian
mixture models, dominates over the whole (p, r) parameter space. However, in
general one can easily show that LSE is preferable over ASE whenever the block
probability matrix B becomes sufficiently sparse. For example, if we let p =cp
and g = cq in the setting of Figure 3 and let ¢ — 0, then for sufficiently small c,
we have

2
) (52 + (1 —053) "

ncX(p — > (m p2 + mg?)? 1P - mp? + mg?)?

2(\/77117 + 12 pg> +\/mp G+mah? 2PV TP +mgd)

oy~ neX(p—§)*(m1 p + mq)
t 2(JP + V)?

and thus, by the Cauchy—Schwarz inequality,

PA

PA (1 P2 + mG*)?
oL (77117 +m@) (T p+mq) ~
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F1G. 3. The ratio pa/pL displayed for various values of p € [0.2,0.8] and r = q — p €
[—0.15,0.15]. The labeled lines are the contour lines for pa /pL.

Determination of similarly intuitive conditions for which ASE dominates over LSE
is considerably more subtle and is the topic of current research. But in general, we
observe that ASE dominates over LSE whenever the entries of B are relatively
large.

We also generate instances of a stochastic blockmodel graph on 200 vertices
with parameters p = 0.75 and ¢ = 0.6. For each graph, we measure the error
rate of the spectral embedding followed by the Gaussian mixture-model based
clustering procedure in recovering the block assignments. The error rate for the
GMM o ASE procedure, averaged over 1000 Monte Carlo replicates, is 0.079 with
a standard error of 6.6 x 10~*; meanwhile the error rate for the GMM o LSE
procedure, also averaged over 1000 Monte Carlo replicates, is 0.083 with a
standard error of 7.2 x 1076, The difference in the mean error rate is statisti-
cally significant at @« = 0.001. Conversely, when p = 0.2 and ¢ = 0.3 and the
graphs are on 400 vertices, the mean error rate, over 1000 Monte Carlo repli-
cates, for the GMM o ASE procedure is 0.161 while the mean error rate for the
GMM o LSE procedure is 0.151 and this difference is also statistically significant
ato =0.001.
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F1G. 4. The ratio ps/pr displayed for various values of p € [0.2,0.8] and r = q — p €
[—0.2, —0.01] for the 3-block stochastic blockmodel of equation (4.21). The labeled lines are the
contour lines for pa /pL.

We next consider the collection of stochastic blockmodels with parameters &
and B where

P 9 49g
(4.21) B= |:q P qi| , p,q€(0,1) and = =(0.8,0.1,0.1).
9 9 P

First, we compute the ratio ps/pL for p € [0.3,0.9] and r =g — p with r €
[—0.2, —0.01]. The results are plotted in Figure 4, with the y-axis of Figure 4
being the values of p and the x-axis being the values of r. Once again we see
that for the purpose of subsequent inference, neither embedding methods domi-
nates over the whole parameter space and that LSE is still preferable to ASE for
smaller values of p and ¢ and that ASE is preferable to LSE for larger values of p
and g. We also generate instances of a stochastic blockmodel graph on 800 vertices
with p =0.9 and ¢ = 0.72 and estimate the error rate of the GMM o ASE and the
GMM o LSE procedures in recovering the block assignments. The GMM o ASE
and GMM o LSE error rates, averaged over 1000 Monte Carlo replicates, are
0.29 and 0.38, respectively. For these choice of parameters, pa/por =~ 1.01. We
also generate instances of a stochastic blockmodel graph on 1600 vertices with
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p =0.34 and g = 0.15. The ratio pa/pr in this case is ~ 0.98; the GMM o ASE
and GMM o LSE error rates, averaged over 1000 Monte Carlo replicates, are 0.18
and 0.06, respectively.

5. Summary and conclusions. We have shown in this paper several limit re-
sults for the eigenvectors corresponding to the largest eigenvalues of the normal-
ized Laplacian matrix of random graphs. In particular, we show that for stochastic
blockmodel graphs, conditioned on the block assignments, each row of the Lapla-
cian spectral embedding converges to a multivariate normal distribution. We then
discuss the relationship between spectral embeddings of the adjacency and normal-
ized Laplacian matrices and subsequent inference. When the subsequent inference
task is the problem of clustering the vertices of a graph, we show that the Chernoff
information between the multivariate normals approximation of the embedding is
a suitable measure for the large-sample optimal error rate, that is, it characterizes
the minimum error rate achievable by any clustering procedure that operates only
on the spectral embedding. As a result, we are able to theoretically compare the
use of spectral embedding of the adjacency matrix versus that of the normalized
Laplacian for subsequent inference, thereby refining and extending the pioneering
work of [35].

The limit results in Section 2.1 and Section 3 of this paper assume that np,
grows at the rate of a)(log4 (n)) as n — oo. This technical condition is from Theo-
rem 6 of [25], which provides us with concentration inequalities for ||A — P| and
IL(A) — L(P)||. Similar results to Theorem 6 of [25] but under weaker conditions
exist; for example, Theorem 5.2 of [23] and Theorem 4 of [20] showed concen-
tration of the adjacency matrix and the Laplacian matrix, around their respective
expectation, under the weaker condition that np, = w(logn). These results can
then be applied to this paper to show that the limit results in Section 2.1 and Sec-
tion 3 hold for np, = w(log(n)). Finally, the limit results of this paper do not hold
for np, = o(logn) since, as it is widely known, neither the adjacency matrix nor
the normalized Laplacian matrix concentrate around their expectation in this case.

We now mention several potential extensions of this work. The normalized
Laplacian considered in this paper is just one example of possible normaliza-
tion. In particular, given 7 > 0 one can define the 7-regularized normalized Lapla-
cian £; via L;(A) = D + D) 2AD + D)2 or L:(A) =D+ D /2(A +
t117)(D + tD)~1/2[2, 9, 33]. It had been shown that regularization is particularly
useful for spectral clustering in sparse graphs. It will thus be of interest to derive
limit results for the eigenvectors of £;(A) analogous to those in this paper; such
results can potentially allow one to choose the regularization parameter t.

The limit results in this paper are for the spectral embedding of (X,A) ~
RPDG(F) into R? when d, the rank of the matrix E[X X "] where X ~ F, is fixed
and known. Similar results can be derived when the spectral embedding of A is into
R where d’ < d. Limit results for spectral embedding of the adjacency matrix or
Laplacian matrix into RY when d’ > d is, to the best of our knowledge, an open
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problem. A related inquiry is limit results for spectral embedding into RY" when
d' < d but d varies with n and is not fixed, such as when the graph arises from
a latent position model where the link function, viewed as an integral operator,
has infinite rank. Since new results on stochastic blockmodels indicate that they
can be regarded as a universal approximation to latent positions model graphs or
graphons of exchangeable random graphs [44, 45], limit results for the adjacency
and Laplacian spectral embedding will be useful in further understanding of this
approximation property.

Finally, the Chernoff information used in this paper is a measure of the effect
of spectral embedding on subsequent inference for a single graph. Recently, there
have been interests in the two-sample inference for graphs, for example, network
comparisons or two-sample hypothesis testing for graphs [3, 41, 42]. As an exam-
ple, given two distributions F and G, the problem of testing whether F = G given
two random dot product graphs A ~ RDPG(F) and B ~ RDPG(G) was consid-
ered in [42]; the proposed test statistic is a kernel-based distance measure between
the spectral embedding X of A and Y of B. Determining a measure that character-
izes the effect of spectral embedding for two-sample graphs inference problems,
akin to how the Chernoff information characterizes the effect of spectral embed-
ding for single graph inference, is of significant interest.

APPENDIX A: PROOF OF THEOREM 2.1 AND THEOREM 2.2

We first present a sketch of the proof of Theorem 2.1, noting that the main argu-
ments are given in [41]. We also note that similar, albeit more involved, arguments
are used in the proof of Theorem 3.1. Since the proof of Theorem 3.1 will be pre-
sented in much greater detail in Section B, to avoid repetitions, we chose to omit
the details in the current proof. Nevertheless, we emphasize that the statements
of the results in [41] are slightly different from how they are stated in the current
paper; these differences stem mainly from how sparseness in the graphs is incorpo-
rated. More specifically, [41] considered a sequence of random dot product graphs
where for each n, the matrix of latent positions X, are fixed but unknown (see Def-
inition 1 in [41]) and furthermore, there need not exist any relationship between X,
and X, for n # n’. Sparseness of the graphs is thus implicit (see, e.g., the condi-
tion on the minimum vertex’s degree in Assumption 1 in [41]). The current paper,
however, assumes that the rows of X, are independently sampled according to a
distribution F'. As such, sparseness needs to be made explicit through the sparsity
factor pj,.

REMARK. For ease of exposition, henceforth we shall on many occasions re-
move the subscript n from the matrices X,,, Xn, A,, P, and other related matri-
ces such as Uy, Up,, etc. The subsequent statements are thus to be interpreted
as holding for sufficient large n. Since we are concerned with limit results, this
should lead to minimal confusion.
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We first note that equation (2.5) follows from Theorem A.5 in [41]. More specif-
ically, if (X, A) ~ RDPG(F) with sparsity factor p,, then Theorem A.5 in [41]
yields

—1/2

K= P} 2XW] . = |(A = PYUS; 2] + O ((npn) ™).

Since P = p, XX we have UpSp 2w = ,on/ X for some orthogonal matrix W.
Therefore,

1/2

p "’ r = (A —P)UpSp

| (A —P)UpS; WW 'S 'W| .

= (A =Py, X (0 X"X) 7|

=07 A -PXXTX) .

Equation (2.5) is thus established. We now show equation (2.6) and equation (2.7).
We shall use the convention that, unless stated otherwise, expectation of a ran-
dom variable dependent on A is taken with respect to A conditional on P. Let

¢ =pall(A —P)UpSp I/ 2||%. Then, conditional on P, ¢ is a linear function of the
independent random variables {a;; — p;j}i<;j. Lemma A.5 in [41] shows that ¢ is
tightly concentrated around its expectation E[¢]. We then have

El¢] =E[|(A ~P)UpSp | 7]
= o, "E[[ (A - PX(XTX) ' |7]
=trn(X"X) (20 X E[(A - P)2]X)n(XX)

Now, the ijth entry of (A — P)2 is of the form > «k(@ix — pir)(arj — pij)- As the
upper diagonal entries of A are independent conditional on P, we have

iti#j,
E[Z(aik — Pit)(akj — pij ] Zka(l prj)  ifi=j.
k ki
By the strong law of large numbers, n'X7X, =n~! ¥, X; X lT converges to

A= E[XleT] almost surely as n — oo. Hence n(XTX)*1 converges to Al
almost surely. In addition,

n2p, ' XTE[(A —P)?]X=n" pn‘ZZXX pik(1 = pix)
i=1j#i

n
=172, Y Y XX (on X Xi — (X[ X)?)
i—1 k£i

n
—n 2 > ZXiXiT(XiTXk — ou X X X[ X)).
i=1 ki



EIGENVECTORS OF NORMALIZED LAPLACIAN MATRICES 2391

If p, =1 for all n, the above term converges to E[XlX (X1 UF — XTAle)]
almost surely. When p, — 0, the above term converges to E[ X X ITxT | M F] almost
surely. Equation (2.6) and equation (2.7) is thus established.

We now sketch the proof of Theorem 2.2. We emphasize that Theorem 2.2 is a
generalization of the corresponding result in [4, 39], the generalization being that
Theorem 2.2 does not assume distinct eigenvalues of the matrix E[X X ] where
X ~ F; distinct eigenvalues is a necessary assumption for the proof given in [4,
39].

Let a;; and p;; denote the ijth entry of A and P. From equation (2.5), by ex-

changeability of the collection {W,,X - ,01/ ’x j};le, for any fixed index i we
have
V(W Xi = )2 Xi) = np A(XTX) T Y (@i — pi) X+ op(1)
J#
,0_1/2( —lex)_l Z ( lprl])Xj +0P(1)
j# Y
_ = on XX
= 'XTX) 'Y (@ij = puX, f)xj +op(1).
J#i "ton

.. . ci—pn XX . .
Now conditional on X;, the quantity };_; %X j is a sum of indepen-
n

dent and identically distributed mean O random variables. Thus by the multivariate
central limit theorem, conditioning on X; = x yields
T
aji — pnx ' X d
> (”+Of)xj S NO,E[X1X] (xT X1 — pux " X1X] x)]).
J# "

Furthermore, since n ! X"TX =n~! > X,-Xl.T 2% Aasn— oo, we have by Slut-
sky’s theorem that

VAW X: = p12X) =5 N0, AT E[X X] (x T X1 — pux T X1 X[ x)]A7Y),

thereby establishing Theorem 2.2.

APPENDIX B: PROOF OF THEOREM 3.1 AND THEOREM 3.2

For ease of exposition, we present in Section B.1 a proof of Theorem 3.2, as-
suming equation (3.1) in Theorem 3.1 holds. We next derive, in Section B.2, equa-
tion (3.1) in Theorem 3.1. We then show, in Section B.4 that the Frobenius norms
in equation (3.4) and equation (3.5) are tightly concentrated around their expec-
tations. We complete the proof of Theorem 3.1 by computing these expectations
explicitly when p,, = 1 and when p,, — 0.
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B.1. Proof of Theorem 3.2. Recall that we suppress the dependency on n in
the subscript of the matrices A;,, X,,, P,, and other related matrices. In addition, re-
call that X = p,/*T~1/2X = diag(XX " 1)~!/2X. Equation (3.1) from Theorem 3.1
then implies

. ~ ooy 1 <
XW-X=T""2A-PT ?XX'X)"" + ET’I(T ~-D)X+R

for some orthogonal matrix W and n x d matrix R with |R| z = Op((np,)~"). For
a fixed index i, let ¢; denotes the ith row of n,o,y 2 (XW — X). Also let r; denote the
ith row of R. Now exchangeability of the {X j}’}:I implies exchangeability of the
(X ,-};?: | and exchangeability of the (X ,-};?: 1- This also implies exchangeability of
the {¢; }”_1 and thus exchangeability of the {r; }?:1. Now, for any fixed index i, by

exchangeablhty of the {r;}"_,, we have

j=r

o L7 12] = %0~ [anﬂ—nan[MRn%]

Now, with probability at least 1 —n 3UIRIF < Co (n,on)_l) for some constant Cy.
In addition, ||R||F < n almost surely. Thus E[||R]|%] < C3(np,)~2(1 —n™3) +
n x n=3 = 0((np,)~2). Therefore, n?p,E[|ri||*] = O((np,)~"). Since np, =

a)(log4(n)), we therefore have nzan[Hri 2] = 0 as n — oo, that is, n,o,l/2

asn — 0o.
Let a;; and p;; denote the ijth entry of A and P, respectively. The above rea-
soning implies that for a fixed index i, ¢; is of the form

STS 1n,0,{/2 ajj — pij ”,Ori/z(fz —di) 5
= (X' X)) X —X; 1
;l ( ) \/E (Xj: % J) + 2[l i +0]P’( )
_ (XTX)_I npn <Z A/ nlon(alj pl_/)X )
\/ﬁ ; tj
J#i
3/2y. e .
n X a
_ ( pn)3/2 i Z( ij pl]) +op(1).
22‘ j#i A/ 1Pn

We first note that X' X = X1 diag(XX1)~'X converges almost surely to A as
n — oo. This can be seen as follows. Denoting 1 = E[X], we have

XX,
XR=Y
Y XX

XinT> L T 1 1
= + XX < — )
(; nXiT,u ; ! > Xl-TXj nXl-TM

_ (i XiXiT> +i X x| (nX,T/,L—Zj X,TXJ-)
onXiu) DXl XXX

d
ri—>0
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Now, for any index i, let ¢; = |(nXiTM -2 XiTX‘,-)/(ZJ- XiTXj)|. Then by Ho-
effding’s inequality, ¢; = Op(n~172). As X; X ZT is positive semidefinite for each
index i, we thus have

X X! xix X u-%:X"X; X x!
i = ’ < l I >5Ci =
nX'u nXl.Tu, 2 Xl.TXj nX; u

1

where < denotes the positive semidefinite ordering of matrices. Hence

X x' XX X u—-3.Xx"X;
_<§up Cj)Z ;(Tl 52 i ( i ji )
J€ln] ;o A u

T T
—nX; n X X
X x'
< sup ¢;j .
(je[n] )Zi:nX,-TM

We then have by a union bound that sup;p,;ci = Op( n—!logn), and hence

SUp; e[ Ci 23 0 as n — oo. In addition, by the strong law of large numbers

Xix Xi1X{
& WA g MY ]
nX; u X

i

as n — o0. Thus

X,'XiT nX,'TM_Zj Xl'TXj a.s.
> T —0
nX; u Zin X

i
as n — 00. We thus conclude that

T T
“OX X\ & XX X -3 XX ﬁ)E[XlxlT}

(B.2) XTSZ=< i )+
2oxin) TR KK X

as n — o0.

Therefore, ()N(T)Ni)_l converges almost surely to A~ as n — oco. In addition,
t;/(npy) — X 1 as n — oo, and hence /np,/t; — (X' 11)~1/? as n — co. We
next consider the term

-
)3 Pn(aij — pij) X )3 (aij — pij) X, ns (aij — pi) X nenX; 1 —1;

. = T T : :
j#i £ A Nmen XS X g

The second sum on the right-hand side of the above display is, conditioned on P,
a sum of mean 0 random variables. Hoeffding’s inequality implies that the event

-
Z (aij — pij) X "onX; L —1;
i X g
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occurs with probability at most

—Cnpps?
eXp(Z#i X ||2(np,,X_ITM — tj)z(X_,Tu)‘zt_,-_z)
for some constant C > 0. Therefore,
3 (aij — PiQXj npnX | 11 a8
X g
as n — 0o. We thus have
= (X% Jj? (= S Ik 1) Xj)
i Nig Ve X
NP A/on X Z (aij — pij)
VT

(B.3)

+ op(1).

We now show that
1P /Npn X Z (aij — pij)
231 7 N/nPn
mon XTX)1AX;  (aij — pij)
= \/_2\/5)(?“ jé; i/%j + op(1).
This can be done as follows. We first consider the term
nPn/1Pn X i )3 (aij — pij)
23/t S5 /P
GG )
JF ! !
Once again, conditional on P,
npn (Z (aij — Pij))(n,onXi X )
2/t iz nPn ti X u
is a sum of mean O random variable. Hence, by Hoeffding’s inequality, we also

have that
NS (Z (aij —Pij)>(n,0nXi _ ?ii )i)o
as n — o0o. We thus have
B25) NP /NPn X i Z (aij — pij) _ /1Pn Z (aij — pij) Xi +os(l)
' 21i/ti i Ny NG i N 6

(B.4)
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We next write
N Z (aij — pij)Xi o (XTX) ! Z (aij — pij)(A +XTX - A)X;
26 o b X[ 1 2 N 8

We again evoke Hoeffding’s inequality conditionally on P to conclude that

Vo XTX)! 3 (@j — pi) XX - A)X; as

(B.6)
20WE o Ao X

0

as n — 00. Equation (B.4) then follows from equation (B.5) and equation (B.6).
Combining equation (B.3) and equation (B.4), we arrive at

o= (X% npy <Z (aij_PLi)( X AX; )>+0P(1)

VNG Ve \XJw 2XTw
o o XTX X ZX
_ (XTX) 14/ 1Pn (Z (al] Pnd; 1)( TJ — _l_l )) +op(1).
Vi \iZ " Xjw 2w

Now, for each fixed index i, conditioning on X; = x, the quantity

1 X, AX;
Z(aij_aniTXj)< / l )

N oy X;.rpb 2X1-T/,L

is a sum of independent and identically distributed mean 0 random variables.
Therefore, by the multivariate central limit theorem, we have that conditional on
X; = x, the term in equation (B.7) converges in distribution to

X; A X; Ax \T
N(O,E[( TJ - = )(xTXj —,onxTXjXTx)< Tj - = ) :|)
X;n 2x T J X;u 2x T

B.7)

Finally, recall that (iTi)_l and /np,/t; converge almost surely to A~! and
(X IT ,u)_l/ 2 asn — oo. Therefore, by Slutsky’s theorem, conditional on X; = x,

¢ = n,o,i/ 2 (WX; — X;) converges in distribution to

N<0 E[(Z—lxj_ x )(xTXj_anTXjX}—x>(5_1Xj_ X )TD
’ Xip 2xTp xTp Xip 2xTp

as desired.

B.2. Proof of equation (3.1). We start with a concentration inequality for
the spectral norm of A — P and £(A) — L(P) in the case when A is an edge-
independent inhomogeneous random graph.
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LEMMA B.1 ([25, 32]). Let A ~ Bernoulli(P), that is, A is a symmetric ma-
trix whose upper triangular entries are independent Bernoulli random variables
with Pla;j = 1] = p;j. Let A = max; Z#i pij and § = min; Z#i pij denote the

maximum and minimum row sums of P. Suppose § satisfies § > log4 (n). Then
IA =P = 0p(v/),
|£A) — L@)| = 0p(s~'/3).

When P = p, XX then § and A are both of order ® (np,). Furthermore, the
nonzero eigenvalues of P are all of order ® (np,) while the nonzero eigenvalues of
L(P) are all of order ®(1). In light of Lemma B.1, for our subsequent derivation,
we shall assume that p, = a)(logk (n)) for some positive integer k > 4.

Lemma B.1 implies the following proposition.

PROPOSITION B.2.  Let (A,X) ~ RDPG(F) with sparsity factor p,. Let
W, ZW;— be the singular value decomposition of U;,r Ua. Then

|OpUa — WiW; | = Op((npa) ™).

PROOF. Let oy, o09,..., 04 denote the singular values of INJII I~JA (the diagonal
entries of X). Then o; = cos(6;) where the 6; are the principal angles between
the subspaces spanned by Ua and Up. Furthermore, by the Davis—Kahan sin(®)
theorem (see, e.g., Theorem 3.6 in [38]),

I£(A) — LP)|| —1/2
— o = Op((npn) .
ha(L(P)) (o))

Here, A4(L(P)) denotes the d largest eigenvalue of L(P). We thus have

||ﬁAI~J[I — f]pINJIT, | = max|sin(9;)| <
l

d 1/2
[UpUs —WIW, | == —T||p = (Z(l — a,->2>
i=1

d

d
= Z(l — o) =
i=1 i

Therefore, ||I~JIT,fJA - W1W2T||F = Op((npy)~") as desired. O

sin®(6;).
1

From now on, we shall denote by W* the orthogonal matrix W 1W;— as defined
in the above proposition. Next, we state the following lemma.

LEMMA B.3. Let (A, X) ~ RDPG(F) with sparsity factor p,. Then

(B.8) npn |Up UaSa — SpUp Ua | = 0p(D),
(B.9) npn|UpUaSY? —§/2Up Ua || = 0p(1),

(B.10) npn |UpUAS, "> = 8,7 U U | = Op(1).
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In proving Lemma B.3, we need the following technical result. Lemma B.3
and Lemma B.4 are the key technical lemmas of this paper. Roughly speaking,
Lemma B.3 along with Proposition B.2 allows us to interchange the order of
the orthogonal transformation W* with the diagonal scaling matrices S or Sa;
Lemma B.4 simplifies various expressions involving A, D, £(A) and Uy.

LEMMA B.4. Let (A, X) ~ RDPG(F) with sparsity factor p,. Then the fol-
lowing holds simultaneously:

_ _ I _
(B.11) p-l2 122 5T 32(T = D) + Op((npy) /),
LA) =T A -P)T'/?
(B.12)
+D72PD712 4 Op((np) ™),
1
D 2PD 12— £(P) = ET—3/2(T —D)PD!/?
(B.13)

| _ _
+ 5T /ZPTA(T = D) + Op((np) ™),

(B.14) Up — UpUp Uy = Op((non)~12),
(B.15) T~ Y2PT73/2(T — D)Up = Op((non) "),
(B.16) UpT**(T—D)PD~'/2 = 0p((np,) "),
B.17)  Up(LA) — LP))Up = Op((npn) ).

We continue with the proof of equation (3.1). Let IT = fjpfjil; and M+ =1—1I.
Proposition B.2 and Lemma B.3 then yield
x5/ — TpSY2W* = Ux8Y2 — UpS8Y2TL U + Op((n0m) )
V2 _ ﬁpﬁgﬁAgi/z + OIP’((”,On)_l)
-1/2

=UaS,
=M1 L(A)UAS,

Since £(P) = UpSpUy, I L(P) = 0, and hence
312

+ Op((non)™").

U Sl/2

(B.18) UAS
In addition,

(L(A) — E(P))UAS

W* =L (L(A) — L(P)UaS, > + 0p((npn) ™).

S-1/2 172

= (L(A) — L(P))IT1TUAS,,

+(L(A) — L(P))TTUAS, 2

= O0p((no) ") + (LA) — L@)TTLS, >,
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where we bound (L(A) — L(P))HLUAS Al/ 2 using Lemma B.1, equation (B.14),
and the sub-multiplicativity of the spectral norm. Equation (B.18) then implies

1/2 S1/2w

UaS)? — UpS)/*W* = - (L(A) — LP))UAS, > + Op((npn) ™)
(B.19)

=TT (L(A) — LP))TTUAS, " + Op((npn) ™).

By equation (B.17) and sub-multiplicativity of the Frobenius norm, we also have

4 (L£(A) — LP)TTUAS, /> = (L(A) — L(P))TU,S, /2

—TI(L(A) — £(P)TTTLS, '/

1/2

= (L(A) — L(P))TTUAS, '~ + Op((npn) ™).

Equation (B.19) then becomes

1/2 312

UASY? — UpSY*W* = - (L(A) — £(P)TTTASL? + 0p((np) ™)

= (LA) — LP)TTLS, "> + 0p((non) ")
(B.20) = (LA) — LP))UpUp UaS"* + 0p((npn) ")

= (L(A) — LP))UpW*S, " + Op((no) ")

S-1/2

= (L(A) — L(P))UpSp /“W* + Op((npn) "),

where we once again use Proposition B.2 and Lemma B.3. Recall from equation
(B.12) the decomposition

LA) =T 2A-P)T 21D V2PD"2 + Op((np,)™Y).
Therefore, from equation (B.20), we have

172 S22

UaS)/” - UpSy "W
(B.21) = OIP((n,On)_ )—|-T_1/2(A _ P)T_l/zﬁ g—l/zw*
+(D712PD7Y2 — T7V2PT12) TS, P W,

We next recall from equation (B.13) the decomposition
]T*ﬂPD_”Z—T_”%ﬂ“”2=}IHWQT—JDPD_”Z
2
1
+ 5T 2PTA(T = D) + Op((npa) ).

In addition, we recall from equation (B.15) that

T-'2PT3/2(T — D)Up = Op((npn) ).
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Equation (B.21) therefore reduces to

1/2 S1/2 1/2

UaS)” — UpSy“W* = Op((non) ") + T-V2(A — P)T~/2UpS, /“W*
(B.22) 1 .
+2T—3/2(T D)PD~/2UpS, ' *W*.
Equation (B.11) now implies
T32(T-D)PD~'2=T3>T —D)P(D~/2 -T2 4 T71/?)
=T (T -D)PT~"/*+ Op((npn) "),
and thus equation (B.22) further simplifies to
UaSY? — UpSy*W* = Op((npn) ") + T~ /XA — YT~ 2UpS;, ' W*
(B.23) | i
+ 2T—3/2(T D)PT'/2UpS, '/ W*.
Since T and D are diagonal matrices, we have
T32(T - D)PT2UpS, *W* =T~ (T — D)T~/2PT~/2UpS, /" W*
=T 1(T D)L(P)UpS, W
~1(T — D)UpSpS, /*W*
—T 1(T D)UpSy/*W

‘We therefore arrive at

UASY? — UpSY>W* = 0p((npn) ") + T-1/2(A — P)T‘I/Zﬁp§;”2w*

(B.24) ] o
+5T° (T — D)UpSy*W

To conclude the proof of equation (3.1), we recall that XXT = L(P) = INJpgprIT, ;
hence X = ﬁpgll,/ W for some orthogonal matrix W. Therefore,

UpSy°W* = UpS/ " WW T W* = XW T w*,

UpS; '/*W* = UpS " WWTS; ' WWTw* = X(XTX) ' WTw*,

Substituting the above equations into equation (B.24) yield

UaSY? —XWTW* = 0p((np) ) + T 24 = P)T~2XXTX) ' WTW*

1 e
+ 5T—I(T —D)XW ' W*.
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Equivalently,
UaSY2(WH)TW — X = 0p((np) ™) + T2A - P)T 12X (XTX) !
+ %T_I(T ~-D)X.
Equation (3.1) is thereby established.

B.3. Proof of Lemma B.3 and Lemma B.4. We first present the proof of
Lemma B.4. We recall the notation D = diag(A1) and T = diag(P1). Denote by d;
and ¢; the ith diagonal elements of D and T. The ith diagonal element of D 1/2 -
T~1/2 can be written as

1 1 ti —d;
NN N SN AW N

—ti_di-i-(t d)( 1 1 )
27 N ad 2

i
_li—di v —d-)ti(ﬁ_ Vi) + (t; — di) /1)
212 2672 (di o/ + 13/
We have, by Chernoff’s bound, that |t; — d;| = Op(/np,) for any given index i,
and hence |/7; — v/d;| = Op(1). Therefore,
ti (Vi — Vdi) + (t; — di) /1) . Op(npn) . —-3/2
32 = ———=—= = Op((npy)~""").
267 °(di T+ 1/ dy) $2p(n° o;)

Upon taking an union bound over all indices i =1, 2, ..., n, we have

(t; —d;) Op(/npy)

1
(B.25) D2 112 = 5T—3/2(T — D) + Op((npy) >*logn).

Equation (B.11) is thereby established. Equation (B.13) follows directly from
equation (B.11) and the definition of L(P) = T-1/2PT~ /2. We next show equa-
tion (B.12). Consider the following decomposition of L(A):

LA)=D"2(A-P)D"/2 4D /2pD"1/2
=T '2A-P)T 2+ T2 A-P)(D" /2 -T"1/?)
+ (D 21712 A-P)D"/2 4+ D" 1/2PD1/2,
By Lemma B.1, we have
(B.26) [A=P)T~"?| <|A=P| x |T~"?| = 0p().
Similarly, Lemma B.1 and Chernoff bound yield
(B.27) [A=P)D™'2| < (A =P)|| x [D~"?| = Op(1).
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Combining equation (B.25) and equation (B.27), we have
|(D~172 —T-1/2)A — P)D~ /2|

< (IT72® =D /2 + Op((np)?)) x Op(1)

= Op((npa) ™).
Similarly, equation (B.25) and equation (B.26) implies

|T712(A —=P)(D™'2 = T7V2)| = Op((non) ™).

We thus have
(B.28) LA) =T 2A-P)T 24+ D7 ?PD" 2 + Op((non)™").

Equation (B.12) is thereby established.
We next derive equation (B.15) through equation (B.17). From equation (B.28),
we have

U5 (LA) — LP)Up = ULT~2(A — PYT~2Tp
+ Op((npa) ™).

We first bound the spectral norm of INJ]T T-'2A —P)TV zfjp. Let #; be the ith
column of UpT~!/2; the ijth entry of Uf,—T_l/z(A — P)T/2Up is then of the
form

i (A—P)i; =Y 2di(an — pr)iji+ Y ik Pkl jk,
k<l %

where 1i;; is the kth element of the vector #;. We note that

> ik pridiji| < el < 851 < a8yt = Op(pn(npn) ™).

k

In addition, } ; _; 2u; (ak; — px)U j; is, conditioned on P, a sum of mean 0 random
variables. Hoeffding’s inequality then implies

> -

P[ 2u;(ax — pro)Upj| > t} < eXP(—f>
k<l 2(X gyl )

t2
= eXP(—f)
2220 ufkuﬁz

2‘2
ceof-2)
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Hence &, (A —P)ii; = Op(5~"). AsUp T~ 1/2(A —P)T~'/2Up is a d x d matrix,
a union bound then implies

(B.30) Up T 2A —P)TV2Up = 0p(57 1) = Op((npn)7Y).

We next bound the spectral norm of fJIT, (D~-12pp—1/2 — T_I/ZPT_I/Z)pr. Let
¢;; denote the i jth entry of Ug (D~1/2PD~1/2 — T=1/2PT~1/2)Up. From equation
(B.25), we have

é‘ij — ﬁl—r((D—l/z _ T—1/2)PD—1/2 + T—]/ZP(D—l/Z _ T_l/z))ﬁ]

| O _ _ _ ~ _
= 5@ (T 2T —D)PD ™2 + T-12PT3/2(T — D))ii ; + Op((non)~>"?).
) (€3] fes
Now let ¢; j and ¢, i denote the quantities

éhi(Jl) 2~ITT—3/2(T D)PD~ 1/2~

1
2) _ 1 =Tp—1/2pp-3/2 ~
& = ZuiT 2PT3/2(T — D).
Because P = p, XX ", we have

2 < S 1oy TP x ol PXTT YT - D |

For k € {1,2,...,d}, let x; denote the kth column of X. Furthermore, for / €
{1,2,...,n}, let x;; denote the /th entry of x;—equivalently the kth entry of X;
(recall that X = [X{ | --- | X,]T). Also let ii3; denotes the /th entry of 7. Then
,o,i/ ZﬁiTT_3/ 2(T — D)X is a vector in R? whose kth element is of the form

P 2u] T2 — Tyxy = p)/? Z e =y — )

=p? Z Z 3/2 = (aim = pim)xi

=202y 3/2(alm le)xlir,On/zZ 3/2P11Xk1

I<m ] l
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Conditioned on P, the above is a sum of mean 0 random variables and a term of
order O((np,) /). Hoeffding’s inequality then yields

)
> s] < 2exp<— )
= = 3~
2pn Zl<m g uizlxlgl
2
s
< Zexp<— >
= 3~
2npn Xyt gy

SZ
Zexp<——_ — )
2npn 0y : 2 ”1'21

2¢3
8
=< 23XP<_S7:2)
2npp |lu; ||

5283
<2exp _2np ,
n

~

il
IP’HZp,i/z > 3—1/2(alm — Pim)Xki

l<m t[

A

where we used the fact that x,%l < 1 for all indices k and [ [as (A, X) ~ RDPG(F)].
We thus have

(B.31) P, 2@ T2(D = T)xy = Op((npa) ")

A union bound over the d entries of p,i/ zﬁlTT_y 2(T-D)X along with the bound

o> T~12X]| = Op(1) yield that ¢ = Op((nps)~"). An identical argument

also yield that ¢ = Op((np,)~"). Therefore, ¢;; = O((noy)~"). A union bound
y ij J

over the indices i, j € {1,2, ..., d} also implies
(B.32) T-'2PT~2(T — D)Up = Op((np,) "),
(B.33) Up T-¥2(T —D)PD~ /% = Op((np,) "),

(B.34) Up (D~V2PD~1/2 — T-12PT~V2)Up = Op((npn) ).

We thus derive equation (B.15) and equation (B.16). Equation (B.17) follows from
equation (B.29), equation (B.30) and equation (B.34). Lemma B.4 is thereby es-
tablished.

Lemma B.3 now follows directly from Lemma B.4. Indeed, by equation (B.14)
and equation (B.17), we have

Up UaSa — SpUp Uy
=Up L(A)Uy — Up L(P)U,
(B.35) =Up (L(A) — L(P))(Ua — UpUp Uy + UpUp Uy)
= Op((npn)~") + Up(L(A) — L(P))UpUp Ua
= Op((non) ™).
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Equation (B.8) is thereby established. We now establish equation (B.9), noting that
the same argument applies also to equation (B.10). For i, j € {1,2,...,d}, let rjj
denote the ijth entry of UP UA Also, fori € {1,2,...,d}, let A (A) and Aj(P)
denote the ith eigenvalue of £(A) and L(P), respectively. Then the ijth entry of

UTU Sl/2 SI/ZUTUA is of the form
rij (A j(A) — A (P))
@A)+ 32 ey

ri (2 A) = %) =

Since X,- (A) = Op(1) and x j(P) = ®Op(1), the previous expression and equation
(B.35) yield

1/2

rij (2 (&) = X2 (@) = OB ((np) ™).

A union bound over Z, j then implies equation (B.9).

B.4. Proof of equation (3.4) and equation (3.5). Recall equation (3.1), that
is, with ¢ = (XW X), we have

Illr = HT”Z(A —PTPRETR) T + %T%T - D)XH + Op((np) ™).
F
The above implies
1213 = [T2A -pT2XETX) 2 + H T-'(T - D)X|}

+uX T (T -D)T (A - P)T—”ZX(XTi)“ + OB ((npw) ™).

We show equation (3.4) and equation (3.5) by analyzing each term in the right-
hand side of the above display. In particular, we shall show that these terms are
concentrated around their expected values; evaluation of these expected values, in
the limit as n — o0, yield equation (3.4) and equation (3.5).

We first consider the term Z = || T~1/2(A —P)T_l/zi(f(Tf()_l ||2F. We note that
conditional on P, Z is a function of the n(n — 1)/2 independent random variables
{aij}i<j. Itis therefore expected that Z will be concentrated around its expectation
E[Z] where the expectation is taken with respect to A, conditional on P. We verify
this below.

Let A’ = (q] j) be an independent copy of A, that is, the upper triangular entries
of A’ are independent Bernoulli random variables with mean parameters {p;;}i<;.
Let A/ be the matrix obtained by replacing the (i, j) and (j, i) entries of A by a; j
and let Z0) = | T-1/2(A0) — P)T-1/2X(XTX)"! ||2F. We show concentration of
Z around E[Z] using the following concentration inequality from [8], Theorem 5
and Theorem 6.
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THEOREM B.5. Assume that there exists positive constants a and b such that
N(Z - 2D) <az +b.

i<j
Then forall t > 0,
_p2
(B.36) P[Z - E[Z] =] < eXp(4aE[Z] +4b+2at>’
_p2
(B.37) P[Z -E[Z] < —1] < eXp(4aE[Z])'

We now bound }_; _;(Z — Z (@/))2. For notational convenience, we denote the
ith row of X(XTX)~! by ¢; and the ith row of T-V/2(A — P)T~1/2X(X"X)~! by
&;. We shall also denote the inner product between vectors in Euclidean space by

{-,-). Foreachi, & = ’}:1 a%j ¢j, and hence
(ake — pre)(are — prer)
zZ=) &= (e, Gor).
I N

Now A and A/ ) differs possibly only in the (i, j) and (j, i) entries; furthermore,
the {#;} do not depend on the entries of A and A#/). We thus have, upon considering
the cases where k=i and ¢ = j,k=jand { =i,k =i and ¢’ = j, and k = j and
¢’ =i, that
I (ai —al) aie — pier)
7 — 7)) — 1

=1

tj[g/ <§]’ §€’>

(aji —aj)(aje — pje)

3

(Ci, &er)
poe tj/lity '
" (aie — pzﬂ)(au ,J)

+ s
EZ: o (& ¢e)
" (ajﬁ p/Z)(a/l - J,)

+ isCe).
ZZl T (i &)

Since a;; = aj; and a the above simplifies to

Jl’

_ 7)) _ o ai¢ — Pie ajt —pje,. )
Z—-7 2(61,] a”);( ti«/T (gj o) + tjm (Si Ce) ).

We then have, since a;; and alf ; are binary variables, that is, |a;; — alf j| <1, that

n 2 " 5
( F= (Z; N 2; T Gt



2406 M. TANG AND C. E. PRIEBE

Now (1;1)~"/2(¢;, &) is the (I, j)th entry of T~'/2X(X"X)~'(XTX)~'XT~1/2,
Thus Y7_, 4= W(g,g) is the (i, j)th entry of T"'(A — P)T~1/2X(XTX) 2 x

LiJtjte

XT~!/2, We therefore have

(7 - 20y

i<j

2
<4Z<Za;i/ﬁe C;&z) +4Z(Z aﬂ«/tl—lzﬂ({i,é“e»

i<j M=1 i<j \M=1 1
ai¢ — p 2
¢ — Pit
<szz(z ' <¢,~,g>)
i=1j=1\i=1 livLjle

<8|T7' (A - P T/’ XXTX) KT 2|

<8|T12A - PT 12X XTR) |2 XTK) 'K 2 | 7122
<8z|(XTX) 7' XT 2P T2

<8Z| o, (X T7'X) 7 'XT P T2

<8, Z|(XTTIX) T PIX T T

<80, Z|(X T 'X) ! |?ns 3

< ConZ|(XTT7'X) 7 Pr(non)

< C(npy)~*Z

for some constant C; note that C denote a generic constant, not depending on Z,
in the above display and could change from line to line. In the above derivation,
we have used the fact that Co/n < || X]|| < 4/n for some constant Cyp > 0 and
IT| =& = Cynp, for some constant C; > 0.

We then have, by Theorem B.5, that for all ¢ > 0,

—Cr?
(B.38) Pz -E(z]>1] = eXp((np,,)—ZE[Z] + 2(npn)—2z)’

(B39)  P[Z-E[Z]> —1] <ex (i)
' =P\ pw) 2E121)

In addition, it is straightforward to see that E[Z] < C3 (npp) ", for some constant
C3 > 0; here, the expectation is taken with respect to A conditional on P. We
therefore have that there exists a constant C > 0 such that 1 = C(np,) /2 logl/ ’n
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yield

Z =E[Z] + Op((npn) ~>*10g'?)
(B.40) =
=E|T "> - P)T—1/2x(XTX)71 ”% + 0p((np) "3 1og!/?).

We now evaluate [E[Z]. We have
E(Z]=E[u(X"X)"'X"T 24 -P)T'A -P)T/2X(X"X) ']
=uX'X)"'XTE[T2A -P)T A -P)T 2 IXX'X)"".

We note that T"1/2(A —P)T~ /(A = P)T~ Y2 is a n x n matrix whose ijth entry
&;; is of the form
—1/2.-1,-1/2
§ij = Zt,- / ty ltj (air — Pik)arj — pkj)
k

and hence
0 ifi # j,
BT =Y ol = pi) i =
k

We shall denote by M the diagonal matrix (E[£;;]) as given above. Then
nppE[Z] = np, tr(XTX)_IXTN/IX(iTX)_I.

We first recall from equation (B.2) that XTX 23 A and (in()_l I3 AT as
n — oo. We next consider np, X MX. Let 7; denote the ith diagonal element
of M. We have

o X: X7
nanTMX:n,OnZM
i l
aniX?ﬁi
_y X; X" npuii; s X; X" npuini; (HXI-T/L—Zj XI.TXJ-).
©onXin nX;' XX,

i

Similar to our derivation of equation (B.2), we have

X X Xi X npaii; (nX -3 X X;
_(supnpnﬁjcj>z lTl 52 i z’_’lrpnmz( i M X_:rj i J)
j€ln] i nleL i nXl-pL Zle XJ

X X

=gy 2
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In addition, for each index i,

npafiii =npn Y _t; 't pix(1 = pix) = Op(1)
k
and hence SUD; e[n] NP, M; C; 2% 0asn — oo. Therefore,

(B.41)

Xi X[ npaiiy (nX[ 10— Y XX\ as
Z T T —0
nX; 2 X Xy

i 1

as n — 0o. We thus only need to consider

Z X; X" npuii; B ZZ onXi X" pir(1 — pix)
T onXu i X Wit
PnXi X' pn X' Xi(1 = pu X" X)

- Z; X X oa X X300 on X X

vy X XX X — pu X" Xi X[ X0)
,. X X5 X X5 XX

k

vy Xi X, (X[ X — pu X X X[ X0)
i n2(X;" 2(X,

AYY X X, (X" X — pu X[ X0 X[ X0)
e (X (X 1)

y (nZ(X,-Tm(X,Iu) -3 X X Y X,Ixz)
X XXX X X

An analogous argument to that used in deriving equation (B.41) yields

D3 X X (X Xk — pu X Xe X[ X0)
T n? (X WX 1)

n2XT X ) =X XX XX s,

X - - —0
Zj X; Xj 2 Xy Xi

as n — oo. It thus remains to evaluate

Sy X XX X — pu X" Xi X[ X0)
—~ < n2(X; WX w
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The strong law of large numbers implies

T A o XXX
S E ——,
n2(X; WX, w

(X] w?
X XX XXX [XlXTXTAXI}
o 2T P X ) (X[ w2

We invoke Slutsky’s theorem and conclude that

npaZ =npu| T~ (A - TV PXXTX) |}

B4 = 1, tr(XTX) ' XTMX(XTX) ! + 0p((n,) ' log"/? n)

- trz_lE[XIX (Xl n— ,OnXIrZXI)]Z_l
(X| 1)

We next bound Z := ||(T — D)T_1)~(||%. Z is again a function of the n(n — 1) /2
independent random variables {a;;};;. Let Z @) = |(T — D(ij))T_liH where
D) is the diagonal matrix whose diagonal entries are the degrees of AW); we
recall that A@/) is obtained by replacing the (i, j) and (j, i) entries of A with an
independent copy a s of ajj. We now bound }_; _;(Z — Z (@1)2, Let X; denote the
ith row of X. Then

d
Z 3k 1%,

k

and hence (with d,gj ) denoting the degree of vertex k in A@/))

. LR
7 _ 7)) — Z((lk _ dk)2 _ (tk _ d}gu))z) Il Xl
k tk
~ i I X k2
=" — dp) 2t — dy — a7 ) =5
K 1
I1X; 112
= (al{j - aij)((zh' —2d; +aij — al{j)—t;
1

Sy 1X12
+( lj—2dj+ajj — lj) 1‘2- :
J
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Using the fact that (b + ¢)? < 2b% + 2¢? and that ajj =aji,a lj = aﬂ we have
. X |14
(Z = 29D)? < 2(aj; — aij)* (24 — 2d; + aij — af;)’ ! IZH
i
2 I1X11*

+2(a;~i —ajl-)z(th —2dj+aj —a}i) .

from which we derive

n n 4
(72— 2 < 303 ety — 166, — d? + 15

i<j i=1j=1 ?

<ZZ 16(1; — d;)? +4)”X I

i=1j=1

n o n .12 —1 2
IXill” put; 11X |
=2 2 (160 —dp)* +4) ——————
l

i=1j=1 i

<CY > (16( — d)+4)”)§” —p2

i=1j=1 i

< C1(npn) "2 Z 4 Ca(npy) ™ < C3(npn) 22

for some constants Cy, C>, C3 > 0. Once again, we apply Theorem B.5 to conclude

—Ct?
(B.43) Pz - ElZ)>1] = eXp( (npw)2EIZ] + 2(npn)—2z)’

—Ct?
(B.44) P[Z —E[Z] > —t] < exp(—2 >
(npn)~*E[Z]
In addition, E[Z] = E[Y(tx — di)?; 1 Xk|I?] < C(np,)~" for some constant
C > 0; here, the expectation is taken with respect to D conditional on P. We thus
conclude

Z=|(T-D)T 'X|5
(B.45) -
=E[|T-D)T"'X]|} + Op((np,)*log'*(n)).

We now evaluate np,E[|| %T*I (T- D)i”%]. We only sketch the argument, noting
that the details follow in a similar manner to that used in deriving equation (B.42).
We have that

1 ~ |2 1 ~
np”E[H ET_I (T — D)X } =npn; X T'E[(T - D)*]T~!
F
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Now T !'E[(T —=D)3]T 'isa diagonal matrix whose ith diagonal entry is of the
form tl._2 Zj pij(1 — p;ij). Hence,

no, X T~'E[(T — D)?]T"!
—l’lanl 3XX ZP:;(]—PU)

np XX
Z(nanT = 3anX X (l—an X;)+op(1)
n

_Z (XT )3 Z _IXTX (l_anlTX])-i_OIP(l)

i

X x'
:Zn*l(xTM)SZ n XX (1= paX [ Xi) +op(1).

i

‘We therefore have

1 ~
(B.46) nan[H ET_l (T —D)X

2 X X, WX TAX;
[ goel G (- ")
F (X; w? (X; )3
as n — OQ.

Finally, we consider Z :=np, r X ' T-/(T—D)T~'/2(A—P)T~/2X(XTX)".
A similar, albeit slightly more tedious argument to that used in deriving equation
(B.40) and equation (B.45) yields
Z=uX'TY(T-D)T"?A-P)T?XXX)™"
=eEX T Y(T-D)T >A -P)T 12X (X"X)™']
+ Op((npn) ' 10g'* n).
‘We now evaluate [E[Z]. We have

E[Z]=uX T E[(T - D)(A — P)]T"/2X(X"X)™"

Now the ijth entry of E[(A — P)(T — D)] is of the form
E[(aij — pij)(tj —dj)] =E[(aij — Pij) Z(pjk - ajk)}
3

=ZE[(aij_Pij)(Pk] arj)] = —pij(1 — pij),
3
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and hence, with o denoting the Hadamard product of matrices,
npnElZ] = —np, t X T3P - PoP)T/2X(XTX)™!
= —np, X T~(T~1/2PT~1/2
(B.47) ~T 2@oP) T /HX(X'X)™!
= —np, r X T/ XX =T 2P o P)T /)X (X'X) !
= —npptr X T 'X +np, t X T32(Po P)T_l/zf((f(—rf()_l
We first consider the term np, trX T T—!X. We have

emXi X 1 XX

nop rX T 'X = —np, =—=) ——— +op(l),
’ RV » 2 a7
and hence
STr—1< as. XIX;r
(B.48) —np, tr X' T X — —trE 5 |
(Xl ")

Finally, we consider the term np, rXTT-3/2 PoP)T 1/ zi(i—ri)_l. We recall
that XTX)"! 2% A~! as n — oo. In addition,

npaX T3 2PoP)T™/2X =np?X T 2(Po P)T™'X

2
pu
_ 2 2 v
=YY T xix)
i Ul

2
Pij T
=npy ZZ(H,O )3(XT )2xT Xin +0P(1)

p(X X )?
= np; Z Z ()3 (X )2X [ 1t

XiX] +op(1)

1 X" X; XTX .
_pnz ZnWXX +op(1).

We thus conclude
noa X T32PoP) T/ 2X(XTX)™!
(B.49) X[ X2X) X, T]Z—l

L} trE[i
Tl X
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where the expectation is taken with respect to X1, X» being i.i.d. drawn from F.
Combining equation (B.48) and equation (B.49) yield

(B.50)

npn tE[XTT- 1T —D)T~2(A —P)T /2X(XTX) ']

X! X>XJX ~ X1 X!
EEN trE[szi;gxlxg]A—l _tE[iz}
(X W)X, (X )

Equation (3.4) and equation (3.5) then follows directly from equation (B.42), equa-
tion (B.46) and equation (B.50).
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