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LIMIT THEOREMS FOR EIGENVECTORS OF THE NORMALIZED
LAPLACIAN FOR RANDOM GRAPHS

BY MINH TANG AND CAREY E. PRIEBE

Johns Hopkins University

We prove a central limit theorem for the components of the eigenvec-
tors corresponding to the d largest eigenvalues of the normalized Laplacian
matrix of a finite dimensional random dot product graph. As a corollary, we
show that for stochastic blockmodel graphs, the rows of the spectral embed-
ding of the normalized Laplacian converge to multivariate normals and, fur-
thermore, the mean and the covariance matrix of each row are functions of
the associated vertex’s block membership. Together with prior results for the
eigenvectors of the adjacency matrix, we then compare, via the Chernoff in-
formation between multivariate normal distributions, how the choice of em-
bedding method impacts subsequent inference. We demonstrate that neither
embedding method dominates with respect to the inference task of recovering
the latent block assignments.
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1. Introduction. Statistical inference on graphs is a burgeoning field of re-
search in machine learning and statistics, with numerous applications to social net-
work, neuroscience, etc. Many statistical inference procedures for graphs involve a
preprocessing step of finding a representation of the vertices as points in some low-
dimensional Euclidean space. This representation is usually given by the truncated
eigendecomposition of the adjacency matrix or related matrices such as the combi-
natorial Laplacian or the normalized Laplacian. For example, given a point cloud
lying in some purported low-dimensional manifold in a high-dimensional ambi-
ent space, many manifold learning or nonlinear dimension reduction algorithms
such as Laplacian eigenmaps [5] and diffusion maps [14] use the eigenvectors of
the normalized Laplacian constructed from a neighborhood graph of the points as
a low-dimensional Euclidean representation of the point cloud before performing
inference such as clustering or classification. Spectral clustering algorithms such
as the normalized cuts algorithm [36] proceed by embedding a graph into a low-
dimensional Euclidean space followed by running K-means on the embedding to
obtain a partitioning of the vertices. Some network comparison procedures embed
the graphs and then compute a kernel-based distance measure between the result-
ing point clouds [3, 42].

The choice of the matrix used in the embedding step and its effect on subse-
quent inference is, however, rarely addressed in the literature. In a recent pioneer-
ing work, the authors of [35] addressed this issue by analyzing, in the context of
spectral embedding of the adjacency matrix or the normalized Laplacian matrix for
stochastic blockmodel graphs where the subsequent inference task is the recovery
of the block assignments, a metric given by the average distance between the ver-
tices of a block and its cluster centroid for the spectral embedding. The metric is
then used as a surrogate measure for the performance of the subsequent inference
task, that is, the metric is a surrogate measure for the error rate in recovering the
vertices to block assignments using the spectral embedding. The stochastic block-
model [19] is a popular generative model for random graphs with latent community
structure and many results are known regarding consistent recovery of the block
assignments; see, for example, [6, 12, 23, 27, 28, 30, 34, 37, 40] and the references
therein.

It was shown in [35] that for two-block stochastic blockmodels, for a large
regime of parameters the normalized Laplacian spectral embedding reduces the
within-block variance (occasionally by a factor of four) while preserving the
between-block variance, as compared to that of the adjacency spectral embedding.
This suggests that for a large region of the parameters space for two-block stochas-
tic blockmodels, the spectral embedding of the Laplacian is to be preferred over
that of the adjacency matrix for subsequent inference. However, we observed that
the metric in [35] is intrinsically tied to the use of K-means as the clustering proce-
dure, that is, a smaller value of the metric for the Laplacian spectral embedding as
compared to that for the adjacency spectral embedding only implies that clustering
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the Laplacian spectral embedding using K-means is possibly better than clustering
the adjacency spectral embedding using K-means.

Motivated by the above observation, one main goal of this paper is to propose a
metric that is independent of any specific clustering procedure, that is, a metric that
characterizes the minimum error achievable by any clustering procedure that uses
only the spectral embedding, for the recovery of block assignments in stochas-
tic blockmodel graphs. We achieve this by establishing distributional limit results
for the eigenvectors corresponding to the few largest eigenvalues of the adjacency
or Laplacian matrix and then characterizing, through the notion of statistical in-
formation, the distributional differences between the blocks for either embedding
method. Roughly speaking, smaller statistical information implies less information
to discriminate between the blocks of the stochastic blockmodel.

More specifically, the limit result in [4] states that, for stochastic blockmodel
graphs, conditional on the block assignments the entries of the scaled eigenvectors
corresponding to the few largest eigenvalues of the adjacency matrix converge to
a multivariate normal (see Theorem 2.2) as the number of vertices increases. Fur-
thermore, the associated covariance matrix is not necessarily spherical, and hence
K-means clustering for the adjacency spectral embedding does not always yield
minimum error for recovering the block assignment. Analogous limit results (see
Theorem 3.2) for the eigenvectors of the normalized Laplacian matrix then facil-
itate comparison between the two embedding methods via the classical notion of
Chernoff information [10]. The Chernoff information is a supremum of the Cher-
noff α-divergences for α ∈ (0,1) and characterizes the error rate of the Bayes’
decision rule in hypothesis testing; the Chernoff α-divergence is an example of
a f -divergence [1, 15] and it satisfies the information processing lemma and is
invariant with respect to invertible transformations [24].

Our paper is thus structured as follows. We recall in Section 2 the definition of
random dot product graphs, stochastic blockmodel graphs, and spectral embedding
of the adjacency and Laplacian matrices. We then state in Section 2.1 several limit
results for the eigenvectors of the adjacency spectral embedding. These results are
generalizations of results from [4, 41]. The main technical contribution of this pa-
per, namely analogous limit results for the eigenvectors of the Laplacian spectral
embedding, are then given in Section 3. All of the limit results derived in this pa-
per are for relatively dense graphs; more precisely, those for which the average
degree grows at rate at least logk(n) for some k ≥ 4 as n, the number of vertices in
the graph increases. We then discuss the implications of these limit results in Sec-
tion 4; in particular Section 4.3 characterizes, via the notion of Chernoff statistical
information, the large-sample optimal error rate of spectral clustering procedures.
We demonstrate that neither embedding method dominates for the inference task
of recovering block assignments in stochastic blockmodels. We conclude the pa-
per with some brief remarks on potential extensions of the results presented herein.
Proofs of stated results are given in the Appendix.
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2. Background and setting. We first recall the notion of a random dot prod-
uct graph [31].

DEFINITION 1. Let F be a distribution on a set X ⊂ R
d satisfying x�y ∈

[0,1] for all x, y ∈ X . We say (X,A) ∼ RDPG(F ) with sparsity factor ρn ≤ 1 if
the following hold. Let X1, . . . ,Xn∼F be independent and identically distributed
random variables and define

(2.1) X = [X1 | · · · | Xn]� ∈ R
n×d and P = ρnXX� ∈ [0,1]n×n.

The Xi are the latent positions for the random graph, that is, we do not observe
X, rather we observe only the matrix A. The matrix A ∈ {0,1}n×n is defined to be
symmetric with all zeros on the diagonal such that for all i < j , conditioned on
Xi,Xj the Aij are independent and

(2.2) Aij ∼ Bernoulli
(
ρnX

�
i Xj

)
,

namely,

(2.3) P[A | X] = ∏
i<j

(
ρnX

�
i Xj

)Aij
(
1 − ρnX

�
i Xj

)(1−Aij )
.

REMARK. We note that nonidentifiability is an intrinsic property of random
dot product graphs. More specifically, if (X,A) ∼ RDPG(F ) where F is a distri-
bution on R

d , then for any orthogonal transformation U , (Y,B) ∼ RDPG(F ◦ U)

is identically distributed to (X,A); we write F ◦ U to denote the distribution of
Y = UX whenever X ∼ F . Furthermore, there also exists a distribution F ′ on
R

d ′
with d ′ > d such that (Y,B) ∼ RDPG(F ′) is identically distributed to (X,A).

Nonidentifiability due to orthogonal transformations cannot be avoided given the
observed A. We avoid the other source of nonidentifiability by assuming through-
out this paper that if (X,A) ∼ RDPG(F ) then F is nondegenerate, that is, E[XX�]
is of full rank.

As an example of random dot product graphs, we could take X to be the unit
simplex in R

d and let F be a mixture of Dirichlet distributions or logistic-normal
distribution. Random dot product graphs are a specific example of latent position
graphs or inhomogeneous random graphs [7, 18], in which each vertex is associ-
ated with a latent position Xi and, conditioned on the latent positions, the presence
or absence of the edges in the graph are independent Bernoulli random variables
where the probability of an edge between any two vertices with latent positions
Xi and Xj is given by κ(Xi,Xj ) for some symmetric function κ . A random dot
product graph on n vertices is also, when viewed as an induced subgraph of an
infinite graph, an exchangeable random graph [16]. Random dot product graphs
are related to stochastic block model graphs [19] and degree-corrected stochastic
block model graphs [21]; for example, a stochastic blockmodel graph on K blocks
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with a positive semidefinite block probability matrix B corresponds to a random
dot product graph where F is a mixture of K point masses.

For a given matrix M with nonnegative entries, denote by L(M) the normalized
Laplacian of M defined as

(2.4) L(M) = (
diag(M1)

)−1/2M
(
diag(M1)

)−1/2
,

where, given z = (z1, . . . , zn) ∈ R
n, diag(z) is the n × n diagonal matrix whose

diagonal entries are the zi’s. Our definition of the normalized Laplacian is slightly
different from that often found in the literature, for example, in [13, 36] the normal-
ized Laplacian is I−L(M). For the purpose of this paper, namely the notion of the
Laplacian spectral embedding via the eigenvalues and eigenvectors of the normal-
ized Laplacian, these two definitions of the normalized Laplacian are equivalent.
We shall henceforth refer to L(M) as the Laplacian of M, in contrast to the combi-
natorial Laplacian diag(M1)−M of M. See [29] for a survey of the combinatorial
Laplacian and its connection to graph theory.

DEFINITION 2 (Adjacency and Laplacian spectral embedding). Let A be
a n × n adjacency matrix. Suppose the eigendecomposition of A is given by
A =∑n

i=1 λiuiu
�
i where |λ1| ≥ |λ2| ≥ . . . are the eigenvalues and u1,u2, . . . ,un

are the corresponding orthonormal eigenvectors. Given a positive integer d ≤ n,
denote by SA = diag(|λ1|, . . . , |λd |) the diagonal matrix whose diagonal entries
are the |λ1|, . . . , |λd |, and denote by UA the n × d matrix whose columns are the
corresponding eigenvectors u1, . . . ,ud . The adjacency spectral embedding (ASE)
of A into R

d is then the n × d matrix X̂ = UAS1/2
A . Similarly, let L(A) denote

the normalized Laplacian of A and suppose the eigendecomposition of L(A) is
given by L(A) =∑n

i=1 λ̃i ũi ũ
�
i where |̃λ1| ≥ |̃λ2| ≥ · · · ≥ |̃λn| ≥ 0 are the eigen-

values and ũ1, ũ2, . . . , ũn are the corresponding orthonormal eigenvectors. Then
given a positive integer d ≤ n, denote by S̃A = diag(|̃λ1|, . . . , |̃λd |) the diagonal
matrix whose diagonal entries are the |̃λ1|, . . . , |̃λd | and denote by ŨA the n × d

matrix whose columns are the eigenvectors ũ1, . . . , ũd . The Laplacian spectral
embedding of A into R

d is then the n × d matrix X̆ = ŨAS̃1/2
A .

REMARK. Let (X,A) ∼ RDPG(F ) with sparsity factor ρn and suppose that
the d × d matrix E[XX�] is of full-rank where X ∼ F . The n × d matrix X̂,
the adjacency spectral embedding X̂ of A into R

d , can then be viewed as a con-
sistent estimate of ρ

1/2
n X. See [39] for a comprehensive overview of the consis-

tency results and their implications for subsequent inference. On the other hand,
as L(cM) = L(M) for any constant c > 0, the n × d matrix X̆—the normalized
Laplacian embedding of A into R

d—can be viewed as a consistent estimate of
(ρn diag(XX�1))−1/2ρ

1/2
n X which does not depend on the sparsity factor ρn. This

is in contrast to the adjacency spectral embedding. For previous consistency re-
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sults of X̆ as an estimator for X̃ in various random graphs models, the reader
is referred to [33, 34, 43] among others. However, to the best of our knowl-
edge, Theorem 3.2—namely the distributional convergence of X̆ to a mixture of
multivariate normals in the context of random dot product graphs and stochastic
blockmodel graphs—had not been established prior to this paper. Finally, we re-
mark that X̂ and X̆ are estimating quantities that, while closely related—X and
(diag(XX�1))−1/2X are one-to-one transformations of each other—are in essence
distinct “parametrizations” of random dot product graphs. It is therefore not en-
tirely straightforward to facilitate a direct comparison of the “efficiency” of X̂
and X̆ as estimators. This thus motivates our consideration of the f -divergences
between the multivariate normals since the family of f -divergences satisfy the
information processing lemma and are invariant with respect to invertible transfor-
mations.

REMARK. For simplicity, we shall assume henceforth that either ρn = 1 for
all n, or that ρn → 0 with nρn = ω(log4 n). We note that for our purpose, namely
the distributional limit results in Section 2.1 and Section 3, the assumption that
ρn = 1 for all n is equivalent to the assumption that there exists a constant c > 0
such that ρn → c. The assumption that nρn = ω(log4 n) is so that we can apply the
concentration inequalities from [25] to show concentration, in spectral norm, of A
and L(A) around ρnXX� and L(XX�), respectively.

2.1. Limit results for the adjacency spectral embedding. We now recall sev-
eral limit results for X̂ − X. These results are restatements of earlier results from
[4] and [41]. Theorem 2.2 as stated below is a slight generalization of Theorem 1
in [4]; the result in [4] assumed a more restrictive distinct eigenvalues assumption
for the matrix E[XX�] where X ∼ F . We shall assume throughout this paper that
d , the rank of E[XX�] where X ∼ F , is fixed and known a priori.

REMARK. For ease of exposition, many of the bounds in this paper are said
to hold “with high probability.” We say that a random variable ξ ∈ R is OP(f (n))

if, for any positive constant c > 0 there exists a n0 and a constant C > 0 (both of
which possibly depend on c) such that for all n ≥ n0, |ξ | ≤ Cf (n) with probability
at least 1−n−c; in addition, we say that a random variable ξ ∈R is oP(f (n)) if for
any positive constant c > 0 and any ε > 0 there exists a n0 such that for all n ≥ n0,
|ξ | ≤ εf (n) with probability at least 1 −n−c. Similarly, when ξ is a random vector
in R

d or a random matrix in R
d1×d2 , ξ = OP(f (n)) or ξ = oP(f (n)) if ‖ξ‖ =

OP(f (n)) or ‖ξ‖ = oP(f (n)), respectively. Here, ‖x‖ denotes the Euclidean norm
of x when x is a vector and the spectral norm of x when x is a matrix. We write
ξ = ζ +OP(f (n)) or ξ = ζ +oP(f (n)) if ξ −ζ = OP(f (n)) or ξ −ζ = oP(f (n)),
respectively.
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THEOREM 2.1. Let (Xn,An) ∼ RDPG(F ) with sparsity factor ρn. Then there
exists a d × d orthogonal matrix Wn and a n × d matrix Rn such that

(2.5) X̂nWn − ρ1/2
n Xn = ρ−1/2

n (An − Pn)Xn

(
X�

n Xn

)−1 + Rn.

Furthermore, ‖Rn‖ = OP((nρn)
−1/2). Let μF = E[X1] ∈ R

d and 
 = E[X1X
�
1 ]

be a d × d matrix. If ρn = 1 for all n, then there exists a sequence of orthogonal
matrices Wn such that

(2.6) ‖X̂nWn − Xn‖2
F

a.s.−→ tr
−1(
E
[
X1X

�
1
(
X�

1 μF − X�
1 
X1

)])

−1.

If, however, ρn → 0 and nρn = ω(log4 n), then

(2.7)
∥∥X̂nWn − ρ1/2

n Xn

∥∥2
F

a.s.−→ tr
−1(
E
[
X1X

�
1
(
X�

1 μF

)])

−1.

THEOREM 2.2. Assume the setting and notation of Theorem 2.1. Denote by
X̂i the ith row of X̂n. Let �(z,�) denote the cumulative distribution function for
the multivariate normal, with mean zero and covariance matrix �, evaluated at z.
Also denote by �(x) the d × d matrix

(2.8) �(x) = 
−1
E
[
X1X

�
1
(
x�X1 − x�X1X

�
1 x
)]


−1.

If ρn = 1 for all n, then there exists a sequence of orthogonal matrices Wn such
that for each fixed index i and any z ∈ R

d ,

(2.9) P
{√

n(WnX̂i − Xi) ≤ z
}−→

∫
�
(
z,�(x)

)
dF(x).

That is, the sequence
√

n(WnX̂i − Xi) converges in distribution to a mixture of
multivariate normals. We denote this mixture by N (0, �̃(Xi)). If, however, ρn → 0
and nρn = ω(log4 n) then there exists a sequence of orthogonal matrices Wn such
that

(2.10) P
{√

n
(
WnX̂i − ρ1/2

n Xi

)≤ z
}−→

∫
�
(
z,�o(1)(x)

)
dF(x),

where �o(1)(x) is the d × d matrix defined by

(2.11) �o(1)(x) = 
−1
E
[
X1X

�
1 x�X1

]

−1.

An important corollary of Theorem 2.2 is the following result for when F is
a mixture of K point masses, that is, (X,A) ∼ RDPG(F ) is a K-block stochas-
tic blockmodel graph. Then for any fixed index i, the event that Xi is assigned
to block k ∈ {1,2, . . . ,K} has nonzero probability, and hence one can condi-
tioned on the block assignment of Xi to show that the conditional distribution
of

√
n(WnX̂i − Xi) converges to a multivariate normal. This is in contrast to the

unconditional distribution being a mixture of multivariate normals as in equation
(2.9) and equation (2.10).
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COROLLARY 2.3. Assume the setting and notation of Theorem 2.1 and let

F =
K∑

k=1

πkδνk
, π1, . . . , πK > 0,

∑
k

πk = 1

be a mixture of K point masses in R
d where δνk

is the Dirac delta measure at νk .
Then if ρn ≡ 1, there exists a sequence of orthogonal matrices Wn such that for
any fixed index i,

(2.12) P
{√

n(WnX̂i − Xi) ≤ z | Xi = νk

}−→ �(z,�k),

where �k = �(νk) is as defined in equation (2.8). If ρn → 0 and nρn = ω(log4(n))

as n → ∞, then the sequence of orthogonal matrices Wn satisfies

(2.13) P
{√

n
(
WnX̂i − ρ1/2

n Xi

)≤ z | Xi = νk

}−→ �(z,�o(1),k),

where �o(1),k = �o(1)(νk) is as defined in equation (2.11).

3. Limit results for Laplacian spectral embedding. We now present the
main technical results of this paper, namely analogues of the limit results in Sec-
tion 2.1 for the Laplacian spectral embedding.

THEOREM 3.1. Let (An,Xn) ∼ RDPG(F ) for n ≥ 1 be a sequence of random
dot product graphs with sparsity factors (ρn)n≥1. Denote by Dn and Tn the n × n

diagonal matrices diag(An1) and diag(ρnXnX�
n 1), respectively, that is, the diag-

onal entries of Dn are the vertex degrees of An and the diagonal entries of Tn are

the expected vertex degrees. Let X̃n = ρ
1/2
n T−1/2

n Xn = diag(XnX�
n 1)−1/2Xn. Then

for any n, there exists a d × d orthogonal matrix Wn and a n × d matrix Rn such
that ζn := (X̆nWn − X̃n) satisfies

(3.1) ζn = T−1/2
n (An − Pn)T−1/2

n X̃n

(
X̃�

n X̃n

)−1 + 1

2

(
I − DnT−1

n

)
X̃n + Rn.

Furthermore, ‖Rn‖F = OP((nρn)
−1), that is, ‖Rn‖/‖ζn‖ a.s.−→ 0 as n → ∞. De-

fine the following quantities:

μ = E[X1] ∈ R
d; μ̃ = E

[
X1

X�
1 μ

]
∈ R

d;


̃ = E

[
X1X

�
1

X�
1 μ

]
∈ R

d×d; and

(3.2)

g(X1,X2) =
(


̃−1X1

X�
1 μ

− X2

2X�
2 μ

)(

̃−1X1

X�
1 μ

− X2

2X�
2 μ

)�
∈ R

d×d .(3.3)

If ρn ≡ 1, then the sequence of orthogonal matrices (Wn)n≥1 satisfies

(3.4) n‖X̆nWn − X̃n‖2
F

a.s.→ trE
[
g(X1,X2)

X�
1 X2 − X�

1 X2X
�
2 X1

X�
2 μ

]
,
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where the expectation in equation (3.4) is taken with respect to X1 and X2 being
i.i.d. drawn according to F . Equivalently, with 
 = E[X1X

�
1 ],

n‖X̆nWn − X̃n‖2
F

a.s.−→ trE
[

̃−2X1X

�
1 (X�

1 μ̃ − X�
1 
̃X1)

(X�
1 μ)2

− 3X1X
�
1

4(X�
1 μ)2

]

+ trE
[

̃−1X1X

�
1 X2X

�
2 (X�

1 X2)

X�
1 μ(X�

2 μ)2
− X1X

�
1 (X�

1 
X1)

4(X�
1 μ)3

]
.

If ρn → 0 and nρn = ω(log4 n), then the sequence (Wn)n≥1 satisfies

(3.5) nρn‖X̆Wn − X̃n‖2
F

a.s.−→ trE
[

̃−2X1X

�
1 (X�

1 μ̃)

(X�
1 μ)2

− 3X1X
�
1

4(X�
1 μ)2

]
.

As a companion of Theorem 3.1, we have the following result on the asymptotic
normality of the rows of X̆nWn − X̃n.

THEOREM 3.2. Assume the setting and notation of Theorem 3.1. Denote by
X̆i and X̃i the ith row of X̆n and X̃n, respectively. We note that X̃i = Xi√∑

j X�
i Xj

.

Also denote by �̃(x) the d × d matrix

(3.6) E

[(

̃−1X1

X�
1 μ

− x

2x�μ

)(
X�

1 
̃−1

X�
1 μ

− x�

2x�μ

)
(x�X1 − x�X1X

�
1 x)

x�μ

]
.

If ρn ≡ 1, then there exists a sequence of d × d orthogonal matrices Wn such that
for each fixed index i and any z ∈R

d ,

(3.7) P

{
n

(
WnX̆i − Xi√∑

j X�
i Xj

)
≤ z

}
−→

∫
�
(
z, �̃(x)

)
dF(x).

That is, the sequence n(WnX̆i − X̃i) converges in distribution to a mixture of
multivariate normals. We denote this mixture by N (0, �̃(Xi)). If ρn → 0 and
nρn = ω(log4 n), then there exists a sequence of d × d orthogonal matrices Wn

such that

(3.8) P

{
nρ1/2

n

(
WnX̆i − Xi√∑

j X�
i Xj

)
≤ z

}
−→

∫
�
(
z, �̃o(1)(x)

)
dF(x),

where �̃o(1)(x) is the d × d matrix defined by

(3.9) �̃o(1)(x) = E

[(

̃−1X1

X�
1 μ

− x

2x�μ

)(
X�

1 
̃−1

X�
1 μ

− x�

2x�μ

)
x�X1

x�μ

]
.

The proofs of Theorem 3.1 and Theorem 3.2 are given in Section B. We end this
section by stating the conditional distribution of nρn(WnX̆i − X̃i) when (X,A) ∼
RDPG(F ) is a K-block stochastic blockmodel graph.
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COROLLARY 3.3. Assume the setting and notation of Theorem 3.1 and let

F =
K∑

k=1

πkδνk
, π1, . . . , πK > 0,

∑
k

πk = 1

be a mixture of K point masses in R
d . Then if ρn ≡ 1, there exists a sequence of

d × d orthogonal matrices Wn such that for any fixed index i,

(3.10) P

{
n

(
WnX̆i − νk√∑

l nlν
�
k νl

)
≤ z

∣∣∣Xi = νk

}
−→ �(z, �̃k),

where �̃k = �̃(νk) is as defined in equation (3.6) and nk for k ∈ {1,2, . . . ,K}
denote the number of vertices in An that are assigned to block k. If instead ρn → 0
and nρn = ω(log4(n)) as n → ∞, then the sequence of orthogonal matrices Wn

satisfies

(3.11) P

{
nρ1/2

n

(
WnX̆i − νk√∑

l nlν
�
k νl

)
≤ z

∣∣∣Xi = νk

}
−→ �(z, �̃o(1),k),

where �̃o(1),k = �̃o(1)(νk) is as defined in equation (3.9).

REMARK. As a special case of Corollary 3.3, we have that if A is an Erdős–
Rényi graph on n vertices with edge probability p2—which corresponds to a ran-
dom dot product graph where the latent positions are identically p—then for each
fixed index i, the normalized Laplacian embedding satisfies

n

(
X̆i − 1√

n

)
d−→ N

(
0,

1 − p2

4p2

)
.

Recall that X̆i is proportional to 1/
√

di where di is the degree of the ith vertex.
On the other hand, the adjacency spectral embedding satisfies

√
n(X̂i − p)

d−→ N
(
0,1 − p2).

As another example, let A be a stochastic blockmodel graph with block probabil-

ities matrix B = [ p2 pq

pq q2

]
and block assignment probabilities (π,1 − π). Since B

has rank 1, this model corresponds to a random dot product graph where the latent
positions are either p with probability π or q with probability 1 − π—then for
each fixed index i, the normalized Laplacian embedding satisfies

n

(
X̆i − p√

n1p2 + n2pq

)

d−→ N
(

0,
πp(1 − p2) + (1 − π)q(1 − pq)

4(πp + (1 − π)q)3

)
if Xi = p,

(3.12)



2370 M. TANG AND C. E. PRIEBE

n

(
X̆i − q√

n1pq + n2q2

)

d−→ N
(

0,
πp(1 − pq) + (1 − π)q(1 − q2)

4(πp + (1 − π)q)3

)
if Xi = q,

(3.13)

where n1 and n2 = n − n1 are the number of vertices of A with latent positions p

and q . The adjacency spectral embedding meanwhile satisfies

√
n(X̂i − p)

d−→ N
(

0,
πp4(1 − p2) + (1 − π)pq3(1 − pq)

(πp2 + (1 − π)q2)2

)
if Xi = p,

(3.14)

√
n(X̂i − q)

d−→ N
(

0,
πp3q(1 − pq) + (1 − π)q4(1 − q2)

(πp2 + (1 − π)q2)2

)
if Xi = q.

(3.15)

REMARK. We note that the quantity nk appears in equation (3.12) and

equation (3.13). Replacing nk by nπk in equation (3.12) and equation (3.13)

is, however, not straightforward. More precisely, letting ζ = np√
n1p

2+n2pq
−

np√
nπp2+n(1−π)pq

we have

ζ = np(

√
nπp2 + n(1 − π)pq −

√
n1p2 + n2pq)√

n1p2 + n2pq
√

nπp2 + n(1 − π)pq

= (
np
(
nπp2 + n(1 − π)pq − n1p

2 − n2pq
))

/
((√

nπp2 + n(1 − π)pq +
√

n1p2 + n2pq
)

×
√

n1p2 + n2pq

√
nπp2 + n(1 − π)pq

)
= (

np(nπ − n1)
(
p2 − pq

))
/
((√

nπp2 + n(1 − π)pq +
√

n1p2 + n2pq
)

×
√

n1p2 + n2pq

√
nπp2 + n(1 − π)pq

)
.
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By the strong law of large numbers and Slutsky’s theorem, we have

n3/2

(

√
nπp2 + n(1 − π)pq +

√
n1p2 + n2pq)

√
n1p2 + n2pq

√
nπp2 + n(1 − π)pq

a.s.−→ 1

2(p2 + pq)3/2 .

We note that, as the nk are assumed to be random variables, that is, we are not
conditioning on the block sizes, by the central limit theorem we have

1√
n
(nπ − n1)

d−→ N
(
0, π(1 − π)

)
.

Therefore, by Slutsky’s theorem, we have

ζ = np√
n1p2 + n2pq

− np√
nπp2 + n(1 − π)pq

d−→ N
(

0,
π(1 − π)p(p − q)2

4(p + q)3

)
.

To replace nk by nπk in equation (3.12) and equation (3.13), we thus need to in-
clude the random term ζ . While we surmise that this can be done, and more gener-
ally, equation (3.10) and equation (3.11) can be modified to handle the randomness
in nk , we shall not do so in this paper.

3.1. Proofs sketch for Theorem 3.1 and Theorem 3.2. We present in this sub-
section a sketch of the main ideas in the proofs of Theorem 3.1 and Theorem 3.2;
the detailed proofs are given in Section B of the Appendix. We start with the moti-
vation behind equation (3.1). Given X̃n, the entries of the right-hand side of equa-
tion (3.1), except for the term Rn, can be expressed explicitly in terms of linear
combinations of the entries aij − pij of An − Pn. This is in contrast with the left-
hand side of equation (3.1) which depends on the quantities ŨA and S̃A (recall
Definition 2); since the quantities ŨA and S̃A cannot be expressed explicitly in
terms of the entries of An and Pn, we conclude that the right-hand side of equa-
tion (3.1) is simpler to analyze. From equation (3.1), the squared Frobenius norm
nρn‖X̆nWn − X̃n‖2

F is

nρn

∥∥∥∥T−1/2
n (An −Pn)T−1/2

n X̃n

(
X̃�

n X̃n

)−1 + 1

2

(
I−DnT−1

n

)
X̃n

∥∥∥∥2

F

+OP

(
(nρn)

−1/2).
Then conditional on Pn, the above expression is, up to the term of order
OP((nρn)

−1/2), a function of the independent random variables {aij − pij }i<j .
We can then apply concentration inequalities such as those in [8] to show that the
squared Frobenius norm nρn‖X̆nWn − X̃n‖2

F is, conditional on Pn, concentrated
around its expectation. Here, the expectation is taken with respect to the random
entries of An. Equation (3.4) and equation (3.5) then follows by direct evaluation
of this expectation, for the case when ρn ≡ 1 and for when ρn → 0, respectively.
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Once equation (3.1) is established, we can derive Theorem 3.2 as follows. Let
ξi denotes the ith row of nρ

1/2
n (WnX̆n − X̃n) and let ri denotes the ith row of Rn.

Equation (3.1) then implies

ξi = (
X̃�

n X̃n

)−1 nρ
1/2
n√
ti

(∑
j

aij − pij√
tj

X̃j

)
+ nρ

1/2
n (ti − di)

2ti
X̃i + nρ1/2

n ri

= (
X̃�

n X̃n

)−1
√

nρn√
ti

(∑
j

√
nρn(aij − pij )Xj

tj

)

− nρnXi

2t
3/2
i

∑
j

(aij − pij ) + nρ1/2
n ri

=
√

nρn√
ti

∑
j

(aij − pij )√
nρn

(
(X̃�

n X̃n)
−1Xj

tj /(nρn)
− Xi

2ti/(nρn)

)
+ nρ1/2

n ri .

We then show that nρ
1/2
n ri

d→ 0. Indeed, there are n rows in Rn and ‖Rn‖F =
O((nρn)

−1); hence, on average, for each index i, ‖ri‖2 = OP(n
−3ρ−2

n ). Fur-

thermore, ti/(nρn) = ∑
j X�

i Xj/n
a.s.−→ X�

i μ as n → ∞. Finally, X̃�
n X̃n =∑

i (XiX
�
i /(

∑
j X�

i Xj )) which, as we show in Section B, converges to 
̃ =
E[X1X

�
1

X�
1 μ

] as n → ∞. We therefore have, after additional manipulations, that

ξi =
√

nρn√
ti

∑
j

(aij − pij )√
nρn

(

̃−1Xj

X�
j μ

− Xi

2X�
i μ

)
+ oP(1)

=
√

nρn√
ti

∑
j

(aij − ρnX
�
i Xj )√

nρn

(

̃−1Xj

X�
j μ

− Xi

2X�
i μ

)
+ oP(1).

Then conditioning on Xi = x, the above expression for ξi is roughly a sum of
independent and identically distributed mean 0 random variables. The multivariate
central limit theorem can then be applied to the above expression for ξi , thereby
yielding Theorem 3.2.

We now sketch the derivation of equation (3.1). For simplicity, we ignore the
subscript n in the matrices An, Xn, Pn and related matrices. First, consider the
following expression:

ŨAS̃1/2
A − ŨPS̃1/2

P Ũ�
P ŨA = L(A)ŨAS̃−1/2

A −L(P)ŨPS̃−1/2
P Ũ�

P ŨA

= L(A)ŨAŨ�
AŨAS̃−1/2

A −L(P)ŨPS̃−1/2
P Ũ�

P ŨA.

Now L(A) is “concentrated” around L(P), that is, ‖L(A) − L(P)‖ =
OP((nρn)

−1/2) (see Theorem 2 in [25]). Since ‖L(P)‖ = �(1) and the nonzero
eigenvalues of L(P) are all of order �(1), this implies, by the Davis–Kahan
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theorem, that the eigenspace spanned by the d largest eigenvalues of L(A) is
“close” to that spanned by the d largest eigenvalues of L(P). More precisely,
ŨAŨ�

A = ŨPŨ�
P + OP((nρn)

−1/2) and

ŨAS̃1/2
A − ŨPS̃1/2

P Ũ�
P ŨA = L(A)ŨPŨ�

P ŨAS̃−1/2
A −L(P)ŨPS̃−1/2

P Ũ�
P ŨA

+ OP

(
(nρn)

−1).
We then consider the terms S̃−1/2

P Ũ�
P ŨA and Ũ�

P ŨAS̃−1/2
A . Since ŨP and ŨA

both have orthonormal columns, ŨAŨ�
A = ŨPŨ�

P + OP((nρn)
−1/2) implies that

there exists an orthogonal matrix W∗ such that Ũ�
P ŨA = W∗ + OP((nρn)

−1) (see
Proposition B.2). Furthermore, W∗ satisfies an important property, namely that
W∗S̃−1/2

A − S̃−1/2
P W∗ = OP((nρn)

−1). (see Lemma B.3). We can thus juxtapose

Ũ�
P ŨA and S̃−1/2

A in the above expression and replace Ũ�
P ŨA by the orthogonal

matrix W∗, thereby yielding

ŨAS̃1/2
A − ŨPS̃1/2

P W∗ = (
L(A) −L(P)

)
ŨPS̃−1/2

P W∗ + OP

(
(nρn)

−1).
As X̃X̃� = L(P) = ŨPS̃1/2

P Ũ�
P , we have X̃ = Ũ1/2

P S̃PW̃ for some orthogonal ma-
trix W̃. Therefore,

ŨAS̃1/2
A − X̃W̃�W∗

= (
L(A) −L(P)

)
ŨPS̃−1/2

P W∗ + OP

(
(nρn)

−1)
= (

L(A) −L(P)
)
ŨPS̃1/2

P W̃W̃�S̃−1
P W̃W̃�W∗ + OP

(
(nρn)

−1)
= (

L(A) −L(P)
)
X̃
(
X̃�X̃

)−1W̃�W∗ + OP

(
(nρn)

−1).
Equivalently,

(3.16) ŨAS̃1/2
A
(
W∗)�W̃ − X̃ = (

L(A) −L(P)
)
X̃
(
X̃�X̃

)−1 + OP

(
(nρn)

−1).
The right-hand side of equation (3.16) can be written explicitly in terms of the
entries of A. However, since L(A) = D−1/2AD−1/2 and D = diag(A1), the entries
of the right-hand side of equation (3.16) are not linear/affine combinations of the
entries of A. Nevertheless, by a Taylor-series expansion of the entries of D−1/2,
we have D−1/2 = T−1/2 + 1

2T−3/2(T − D)+OP((nρn)
−3/2). Substituting this into

equation (3.16) followed by further simplifications yield equation (3.1).

4. Subsequent inference. In this section, we demonstrate how the results of
Section 2.1 and Section 3 provide insights into subsequent inference. We first con-
sider graphs generated according to a stochastic blockmodel with parameters

(4.1) B =
[
0.42 0.42
0.42 0.5

]
; and π = (0.6,0.4).
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FIG. 1. Plot of the estimated latent positions in a two-block stochastic blockmodel graph on n

vertices. The points are colored according to the block membership of the corresponding vertices.
Dashed ellipses give the 95% level curves for the empirical distributions, that is, the 95% level curves
using the sample covariance matrices as estimated from the rows of X̆. Solid ellipses give the 95%
theoretical level curves for the distributions as specified by Theorem 3.2. For each choice of n, the
points are scaled by

√
n so that they are on a that is scale invariant with respect to n.

We sample an adjacency matrix A for graphs on n vertices from the above model
for various choices of n. For each adjacency matrix A, we compute the normalized
Laplacian embedding of A. Figure 1 presents examples of the scatter plots for
these embeddings for n = 1000, 2000 and 4000. The points in the scatter plots
are colored according to the block membership of the corresponding vertices in
the blockmodel. For each block, we also plot the ellipses showing the empirical
(dashed lines) and theoretical (solid lines) 95% level curves for the distribution of
X̆i . The theoretical level curves are as specified in Theorem 3.2.

We next investigate the implication of the multivariate normal distribution from
Theorem 3.2 on subsequent inference. Spectral clustering refers to a large class
of techniques used in partitioning data points into clusters that proceed by first
performing a truncated eigendecomposition of a similarity matrix between the data
points to obtain a low-dimensional Euclidean representation of these data points
followed by clustering of the data points in this low-dimensional representation;
see [26] for a comprehensive introduction. The normalized cuts algorithm of [36]
is a popular and widely-used instance of spectral clustering where the similarity
matrix is a normalized Laplacian matrix and clustering is done using the K-means
algorithm.

It was shown in [34] that the normalized cuts algorithm, that is, the normalized
Laplacian embedding followed by K-means, is consistent for estimating the block
memberships of stochastic blockmodels graphs. The result of Corollary 3.3, how-
ever, suggests that K-means clustering is suboptimal unless the covariance matri-
ces of the estimated latent positions for the blocks are spherical. We illustrate this
by generating sequences of stochastic blockmodel graphs on n vertices with pa-
rameters as given in equation (4.1) where n ∈ {1000,1250,1500, . . . ,4000}. For
each graph, we embed its normalized Laplacian matrix into R

2 and cluster the
embedded vertices via either K-means or the MCLUST Gaussian mixture model-
based clustering algorithm [17]. We then measure the error rate of the clustering
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FIG. 2. Comparison of clustering error rates for Gaussian mixture model (GMM) cluster-
ing, K-means clustering, linear classifier and Bayes-optimal classifier. The error rate for each
n ∈ {1000,1250,1500, . . . ,4000} was obtained by averaging 100 Monte Carlo iterations and are
plotted on a log10 scale. The plot indicates that the assumption of a mixture of multivariate normals
can yield significant improvement in the accuracy of the spectral clustering procedure.

solution. The error rates, averaged over 100 replicates of the experiment, are pre-
sented on log-scale in Figure 2. We see that the Gaussian mixture model-based
clustering does yield significant improvement over K-means clustering. For fur-
ther comparison, we plot the Bayes-optimal error rate and that of a linear classi-
fier which assign an embedded point to the closest theoretical centroid. The error
rate of the linear classifier is computed under the assumption that the rows of the
Laplacian spectral embedding are indeed multivariate normal with known covari-
ance matrices and centered around the centroid of the respective blocks; this error
rate serves as a lower-bound for that of K-means clustering.

4.1. Comparison of ASE and LSE via within-class covariances. We now dis-
cuss a comparison of the use of adjacency spectral embedding and Laplacian spec-
tral embedding for subsequent inference. We consider as our subsequent inference
task the problem of recovering the block assignments in stochastic blockmodel
graphs. Our first metric of comparison is the notion of within-block variance for
each block of the stochastic blockmodel, following the work of Sarkar and Bickely
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[35]. We partially extend the results of [35] for two-block stochastic blockmodels
to K-block stochastic blockmodels with positive semidefinite block probability
matrices. However, while the collection of within-block variances is a meaningful
surrogate for the performance of our subsequent inference task, we argue that it
is not the “right” metric as it captures only the trace of the block-conditional co-
variance matrices and not the form of the block-conditional covariance matrices.
That is to say, the use of the within-block variances as a surrogate measure is sim-
ilar to the oracle K-means lower bound in Figure 2. A more appropriate surrogate
is the collection of pairwise Chernoff information between the block-conditional
multivariate normals, which behave similarly to the oracle Bayes’ lower bound in
Figure 2. The discussion of Chernoff information is postponed to the next subsec-
tion.

DEFINITION 3 (Within-block variances). Let (X,A) ∼ RDPG(F ) with spar-
sity factor ρn where F =∑

k πkδνk
is a mixture of K point masses at ν1, ν2, . . . ,

νK ∈ R
d and δνk

denotes the Dirac delta function. Given A, let Ck for k ∈
{1,2, . . . ,K} denote the set of vertices of A assigned to block k. Recall the defi-
nitions of UA and ŨA in Definition 2, that is, UA and ŨA are the n × d matrices
containing the d largest eigenvectors of the adjacency matrix and the Laplacian
matrix, respectively. For any index i, let UA(i, : ) and ŨA(i, : ) denote the ith
row of UA and ŨA(i, : ), respectively. Then for any k, l ∈ {1,2, . . . ,K}, the ASE
variance between block k and block l is defined as

(4.2) d̂2
kl = d̂kl(A) = 1

|Ck|
∑
i∈Ck

∥∥UA(i, : ) − μ̂l

∥∥2; μ̂l = 1

|Cl|
∑
j∈Cl

UA(j, : ).

Similarly, the LSE variance between block k and block l is

(4.3) d̃2
kl = d̃kl(A) = 1

|Ck|
∑
i∈Ck

∥∥ŨA(i, : ) − μ̃l

∥∥2; μ̃l = 1

|Cl|
∑
j∈Ck

ŨA(j, : ).

When k = l, d̂2
kk and d̃2

kk are referred to as the ASE within-block variance for block
k and the LSE within-block variance for block k, respectively.

We note that the d̂2
kl and d̃2

kl are defined in terms of UA and ŨA and not in terms

of X̂ = UAS1/2
A and X̆ = ŨAS̃1/2

A . This is because ‖S1/2
A ‖ � ‖S̃1/2

A ‖.

We then have the following large-sample limit results for d̂2
kk and d̃2

kk . Their
proofs are similar to those of Theorem 2.1 and Theorem 3.1 and, therefore, will
be omitted. The limit results for d̂2

kl and d̃2
kl when k �= l are much simpler and will

not be presented here. Nevertheless, we will verify later in this section that The-
orem 4.1 and Theorem 4.2 are indeed generalizations of Theorem 3.1 and The-
orem 3.2 from [35]. We emphasize that neither Theorem 4.1 nor Theorem 4.2
assume distinct eigenvalues of the matrix XX� or L(XX�); distinct eigenvalues
is a necessary assumption used in the proofs of Theorem 3.1 and Theorem 3.2 in
[35] (see Section 8 of the cited paper).
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THEOREM 4.1. Assume the setting and notation of Theorem 2.1 and sup-
pose furthermore that F = ∑

k πkδνk
is a mixture of K distinct point masses at

ν1, ν2, . . . , νK ∈ R
d . Let UPn

denote the n × d matrix whose columns are the or-
thonormal eigenvectors corresponding to the nonzero eigenvalues of the matrix
Pn = ρnXnX�

n . For any k ∈ {1,2, . . . ,K}, let Sk be the n × n diagonal matrix
with diagonal entries (sk(1), sk(2), . . . , sk(n)) such that sk(i) = 1 if Xi = νk and
sk(i) = 0 otherwise. We then have, for any k ∈ {1,2, . . . ,K}

(4.4)

n2d̂2
kk = n2

|Ck|
∥∥Sk(UAn

Wn − UPn
)
∥∥2
F + oP(1)

= n2

|Ck|
∥∥Sk(An − Pn)Xn

(
X�

n Xn

)−3/2∥∥2
F + oP(1).

Therefore, if ρn ≡ 1, then for any k ∈ {1,2, . . . ,K}
(4.5) n2d̂2

kk

a.s.−→ tr
−3
E
[
X1X

�
1
(
ν�
k X1 − ν�

k X1X
�
1 νk

)]
as n → ∞. If, however, ρn → 0 and nρn = ω(log4(n)), then

(4.6) n2d̂2
kk

a.s.−→ tr
−3
E
[
X1X

�
1 ν�

k X1
]

as n → ∞.

For the d̃2
kk , we have the following result.

THEOREM 4.2. Assume the setting and notation of Theorem 3.1 and sup-
pose furthermore that F = ∑

k πkδνk
is a mixture of K distinct point masses at

ν1, ν2, . . . , νK ∈ R
d . Let ŨPn

denote the n × d matrix whose columns are the or-
thonormal eigenvectors corresponding to the nonzero eigenvalues of the matrix
L(Pn) = L(ρnXnX�

n ) = L(XnX�
n ). For any k ∈ {1,2, . . . ,K}, let Sk be the n × n

diagonal matrix with diagonal entries (sk(1), sk(2), . . . , sk(n)) such that sk(i) = 1
if Xi = νk and sk(i) = 0 otherwise. We then have, for any k ∈ {1,2, . . . ,K},

(4.7)

n2d̃2
kk = n2

|Ck|
∥∥Sk(ŨAn

Wn − ŨPn
)
∥∥2
F + oP(1)

= n2

|Ck|
∥∥∥∥SkM1

(
X̃�

n X̃n

)−3/2 + 1

2
SkM2

(
X̃�

n X̃n

)−1/2
∥∥∥∥2

F

+ oP(1),

where M1 and M2 are defined as

M1 = T−1/2
n (An − Pn)T−1/2

n X̃n,(4.8)

M2 = T−1/2
n (Tn − Dn)T−1/2

n X̃n.(4.9)
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Therefore, if ρn ≡ 1, then for any k ∈ {1,2, . . . ,K}

(4.10)

n2d̃2
kk

a.s.−→ tr 
̃−3
E

[(
X1

X�
1 μ

− 
̃νk

2ν�
k μ

)(
X�

1

X�
1 μ

− ν�
k 
̃

2ν�
k μ

)

× (ν�
k X1 − ν�

k X1X
�
1 νk)

ν�
k μ

]
as n → ∞. If, however, ρn → 0 and nρn = ω(log4(n)), then

(4.11) n2d̃2
kk

a.s.−→ tr 
̃−3
E

[(
X1

X�
1 μ

− 
̃νk

2ν�
k μ

)(
X�

1

X�
1 μ

− ν�
k 
̃

2ν�
k μ

)
ν�
k X1

ν�
k μ

]
as n → ∞.

We now verify that Theorem 4.1 and Theorem 4.2 are indeed generalizations
of Theorem 3.1 and Theorem 3.2 from [35]. Suppose that K = d , that is, that
B is invertible. Then denoting by ν the d × d matrix ν = [ν1 | ν2 | · · · | νd ], we
have that ν is also invertible and that B = ν�ν and 
 = ν diag(π)ν�. Let zk =
(ν�

k ν1(1 − ν�
k ν1), . . . , ν

�
k νd(1 − ν�

k νd)). Then

E
[
X1X

�
1
(
ν�
k X1 − ν�

k X1X
�
1 νk

)]= ν
(
diag(π)diag(zk)

)
ν�.

Then equation (4.5) in Theorem 4.1 simplifies to

(4.12)

n2d̂2
kk

a.s.−→ tr
−3
E
[
X1X

�
1
(
ν�
k X1 − ν�

k X1X
�
1 νk

)]
= tr

(
ν diag(π)ν�)−3

ν
(
diag(π)diag(zk)

)
ν�

= tr
((

ν�)−1 diag(π)−1ν−1)3ν(diag(π)diag(zk)
)
ν�

= tr
(
diag(π)−1ν−1(ν�)−1)2 diag(zk)

= tr
(
diag(π)−1B−1)2 diag(zk)

= tr
(
diag(π)−1/2B−1 diag(π)−1/2)2 diag(zk)

=∑
l

∑
l′

ν�
k νl(1 − ν�

k νl)(B
−1
ll′ )2

πlπl′

=∑
l

∑
l′

Bkl(1 − Bkl)(B
−1
ll′ )2

πlπl′
,

where B−1
ll′ is the ll′th entry of B−1. We emphasize that the above expression for

d̂2
kk can be written purely in terms of the entries of B and π without the need to

find the ν1, ν2, . . . , νd explicitly.
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We compare equation (4.12) with Theorem 3.1 in [35]. Let A be sampled from

a stochastic blockmodel with parameters B = [αn βn

βn γn

]
and π = (π1, π2) with

αnβn �= γ 2
n . In [35], it is assumed that the number of vertices assigned to block

1 and block 2 are nπ1 and nπ2, respectively. For ease of exposition and without
loss of generality, suppose that the row indices of A are such that the first nπ1
rows correspond to vertices assigned to block 1 and the last nπ2 = n − nπ1 rows
correspond to vertices assigned to block 2. Let v1 and v2 denote the eigenvectors
corresponding to the largest and second largest eigenvector of P = ZBZ� where
Z is a n × 2 matrix whose ith row is (1,0) for i = 1,2, . . . , nπ1 and is (0,1) for
i = nπ1 +1, nπ1 +2, . . . , n. We then have that v1 = (x1, x1, . . . , x1, y1, y1, . . . , y1)

for some x1, y1, that is, the first nπ1 elements of v1 are x1 and the remaining nπ2
elements are x2. Similarly, we have v2 = (x2, x2, . . . , x2, y2, y2, . . . , y2) for some
x2, y2. Then equation (3.1) in [35] states that [the notation an ∼ bn in [35] means
an/bn = 1 + oP(1)]

(4.13) d̂2
11 ∼

[(
x2

1

λ2
1

+ x2
2

λ2
2

)
nπ1αn(1 − αn) +

(
y2

1

λ2
1

+ y2
2

λ2
2

)
nπ2γn(1 − γn)

]
,

where λ1 and λ2 are the largest and second largest eigenvalues of P. We can rewrite
equation (4.13) as

(4.14) d̂2
11 ∼ tr

(
P†)2 diag

((
αn(1 − αn), . . . γn(1 − γn), . . .

))
,

where P† is the Moore–Penrose pseudo-inverse of P and the first nπ1 entries of the
diagonal matrix diag(αn(1 − αn), . . . γn(1 − γn), . . . ) are αn(1 − αn) while the re-
maining nπ2 diagonal entries are γn(1 − γn). As Z is of full-column rank, we have
Z† = (Z�Z)−1Z� = diag((1/(nπ1),1/(nπ2)))Z�. Furthermore, B is invertible,
and hence

P† = (
ZBZ�)† = (

Z�)†B−1Z† = n−2Z diag(π)−1B−1 diag(π)−1Z�.

Therefore, (
P†)2 = n−3Z diag(π)−1B−1 diag(π)−1B−1 diag(π)−1Z�

and hence

n2d̂2
11 ∼ n2 tr

(
P†)2 diag

((
αn(1 − αn), . . . , γn(1 − γn), . . .

))
∼ n−1 tr Z

(
diag(π)−1B−1)2 diag(π)−1Z�

× diag
((

αn(1 − αn), . . . γn(1 − γn), . . .
))

∼ tr
(
diag(π)−1B−1)2 diag

((
αn(1 − αn), γn(1 − γn)

))
which is a special case of equation (4.12). Theorem 4.1 is thus an extension of
Theorem 3.1 in [35] to general K-block stochastic blockmodels, provided that the
block probability matrix is positive semidefinite.
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We now consider n2d̃2
kk . When B is invertible, equation (4.10) in Theorem 4.2

can be simplified as follows. Let μ = (μ1,μ2, . . .μd) where μk = ν�
k μ. Then


̃ = ν(diag(π)diag(μ)−1)ν�. The right-hand side of equation (4.10) can be de-
composed as ζ1 − ζ2 + ζ3 with ζ1 given by

ζ1 = tr 
̃−3
E

[
X1X

�
1

(X�
1 μ)2

ν�
k X1 − ν�

k X1X
�
1 νk

μk

]

= 1

μk

tr 
̃−3ν�(diag(π)diag(μ)−2 diag(zk)
)
ν�

= 1

ν�
k μ

tr
(
diag(π)−1 diag(μ)ν−1(ν�)−1)2 diag(μ)−1 diag(zk)

= 1

μk

tr
(
diag(π)−1 diag(μ)B−1)2 diag(μ)−1 diag(zk)

= 1

μk

tr
(
diag(π)−1/2 diag(μ)1/2B−1 diag(μ)1/2 diag(π)−1/2)2

× diag(μ)−1 diag(zk)

=∑
l

∑
l′

(B−1
ll′ )2μlμl′

πlπl′
ν�
k νl(1 − ν�

k νl)

μlμk

=∑
l

∑
l′

Bkl(1 − Bkl)(B
−1
ll′ )2μl′

πlπl′μk

,

ζ2 given by (here ek is the vector whose ith element is 1 if i = k and 0 otherwise)

ζ2 = tr 
̃−2
E

[
X1ν

�
k

X�
1 μ

ν�
k X1 − ν�

k X1X
�
1 νk

μ2
k

]

= 1

μ2
k

tr 
̃−2ν�(diag(π)diag(μ)−1 diag(zk)
)
1ν�

k

= 1

μ2
k

tr diag(π)−1 diag(μ)ν−1(ν�)−1 diag(zk)1e�
k

= 1

μ2
k

tr diag(π)−1 diag(μ)B−1 diag(zk)1e�
k

= 1

πkμk

∑
l

ν�
k νl

(
1 − ν�

k νl

)
B−1

kl = 1

πkμk

∑
l

Bkl(1 − Bkl)B
−1
kl ,

and ζ3 given by

ζ3 = 1

4μ3
k

tr 
̃−1νkν
�
k E

[
ν�
k X1 − ν�

k X1X
�
1 νk

]
= E[ν�

k X1 − ν�
k X1X

�
1 νk]

4μ3
k

trν�
k 
̃−1νk
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= E[ν�
k X1 − ν�

k X1X
�
1 νk]

4μ3
k

trν�
k

(
ν�)−1(diag(π)−1 diag(μ)

)
ν−1νk

= E[ν�
k X1 − ν�

k X1X
�
1 νk]

4μ3
k

μk

πk

=
∑

l πlBkl(1 − Bkl)

4πkμ
2
k

.

As μk =∑
l πlν

�
k νl =∑

l πlBkl , ζ1, ζ2 and ζ3 can also be written purely in terms
of the entries of B and π .

For the two-block stochastic blockmodel, equation (3.3) in [35] states that

(4.15) n2d̃2
11 ∼ αn(1 − αn)

μ2
1

(
1

4
+ π2γn

μ1λ̃
2
2

)
+ γn(1 − γn)

μ2
1

(
π2

4π1
+ π1αn

μ2λ̃
2
2

)
,

where λ̃2 = π1π2(αnβn −γ 2
n )/(μ1μ2) is the second largest eigenvalue of L(P) (cf.

Lemma 6.1 in [35]). Verifying that ζ1 − ζ2 + ζ3 does indeed yield equation (4.15)
for the two-block stochastic blockmodel is a straightforward computation. We omit
the details. Theorem 4.2 is thus an extension of Theorem 3.2 in [35] for general
K-blocks stochastic blockmodels whenever the matrix of block probabilities is
positive semidefinite.

4.2. Chernoff information. Let F0 and F1 be two absolutely continuous mul-
tivariate distributions in � = R

d with density functions f0 and f1, respectively.
Suppose that Y1, Y2, . . . , Ym are independent and identically distributed random
variables, with Yi distributed either F0 or F1. We are interested in testing the
simple null hypothesis H0 : F = F0 against the simple alternative hypothesis
H1 : F = F1. A test T can be viewed as a sequence of mappings Tm : �m �→ {0,1}
such that given Y1 = y1, Y2 = y2, . . . , Ym = ym, the test rejects H0 in favor of H1
if Tm(y1, y2, . . . , ym) = 1; similarly, the test favors H0 if Tm(y1, y2, . . . , ym) = 0.

The Neyman–Pearson lemma states that, given Y1 = y1, Y2 = y2, . . . , Ym = ym

and a threshold ηm ∈ R, the likelihood ratio test which rejects H0 in favor of H1
whenever (

m∑
i=1

logf0(yi) −
m∑

i=1

logf1(yi)

)
≤ ηm

is the most powerful test at significance level αm = α(ηm), that is, the likelihood
ratio test minimizes the type-II error βm subject to the constraint that the type-I
error is at most αm.

Assuming that π ∈ (0,1) is a prior probability that H0 is true. Then, for a given
α∗

m ∈ (0,1), let β∗
m = β∗

m(α∗
m) be the type-II error associated with the likelihood

ratio test when the type-I error is at most α∗
m. The quantity infα∗

m∈(0,1) πα∗
m + (1 −

π)β∗
m is then the Bayes’ risk in deciding between H0 and H1 given the m inde-

pendent random variables Y1, Y2, . . . , Ym. A classical result of Chernoff [10, 11]
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states that the Bayes’ risk is intrinsically linked to a quantity known as the Chernoff
information. More specifically, let C(F0,F1) be the quantity

(4.16)

C(F0,F1) = − log
[

inf
t∈(0,1)

∫
Rd

f t
0 (x)f 1−t

1 (x)dx

]
= sup

t∈(0,1)

[
− log

∫
Rd

f t
0 (x)f 1−t

1 (x)dx

]
.

Then we have

(4.17) lim
m→∞

1

m
inf

α∗
m∈(0,1)

log
(
πα∗

m + (1 − π)β∗
m

)= −C(F0,F1).

Thus C(F0,F1), the Chernoff information between F0 and F1, is the exponential
rate at which the Bayes’ error infα∗

m∈(0,1) πα∗
m + (1 − π)β∗

m decreases as m → ∞;
we note that the Chernoff information is independent of π . We also define, for a
given t ∈ (0,1) the Chernoff divergence Ct(F0,F1) between F0 and F1 by

Ct(F0,F1) = − log
∫
Rd

f t
0 (x)f 1−t

1 (x)dx.

The Chernoff divergence is an example of a f -divergence as defined in [1, 15].
When t = 1/2, Ct(F0,F1) is the Bhattacharyya distance between F0 and F1. As
we mentioned previously, any f -divergence satisfies the information processing
lemma and is invariant with respect to invertible transformations [24]. Thus any f -
divergence such as the Kullback–Liebler divergence can also be used to compare
the two embedding methods. We chose the Chernoff information mainly because
of its explicit relationship with the Bayes’ risk.

The result of equation (4.17) can be extended to K + 1 ≥ 2 hypotheses. Let
F0,F1, . . . ,FK be distributions on R

d and suppose that Y1, Y2, . . . , Ym are in-
dependent and identically distributed random variables with Yi distributed F ∈
{F0,F1, . . . ,FK}. We are thus interested in determining the distribution of the Yi

among the K + 1 hypothesis H0 : F = F0, . . . ,HK : F = FK . Suppose also that
hypothesis Hk has a priori probability πk . Then for any decision rule δ, the risk of
δ is r(δ) =∑

k πk

∑
l �=k αlk(δ) where αlk(δ) is the probability of accepting hypoth-

esis Hl when hypothesis Hk is true. Then we have [22]

(4.18) inf
δ

lim
m→∞

r(δ)

m
= −min

k �=l
C(Fk,Fl),

where the infimum is over all decision rules δ. That is to say, for any δ, r(δ) de-
creases to 0 as m → ∞ at a rate no faster than exp(−mmink �=l C(Fk,Fl)). It was
also shown in [22] that the Maximum A Posterior decision rule achieves this rate.

For this paper, we are interested in computing the Chernoff information
C(F0,F1) when F0 and F1 are multivariate normals. Suppose F0 = N (μ0,�0)

and F1 = N (μ1,�1); then, denoting by �t = t�0 + (1 − t)�1, we have

C(F0,F1) = sup
t∈(0,1)

(
t (1 − t)

2
(μ1 − μ2)

��−1
t (μ1 − μ2) + 1

2
log

|�t |
|�0|t |�1|1−t

)
.
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4.3. Comparison of ASE and LSE via Chernoff information. We now employ
the limit results of Corollary 2.3 and Corollary 3.3 to compare the performance
of the Laplacian spectral embedding and the adjacency spectral embedding for
subsequent inference. Our subsequent inference task is once again the problem of
recovering the block assignments in stochastic blockmodel graphs; furthermore,
we are interested in estimating the large-sample optimal error rate possible for
recovering the underlying block assignments after the spectral embedding step is
carried out. The discussion in Section 4.2 indicates that an appropriate measure
for the large-sample optimal error rate for spectral clustering using adjacency or
Laplacian spectral embedding is in terms of the minimum of the pairwise Chernoff
information between the multivariate normal distributions as specified in Corol-
lary 2.3 or Corollary 3.3. More specifically, let B ∈ [0,1]K×K and π ∈ R

K be the
matrix of block probabilities and the vector of block assignment probabilities for
a K-block stochastic blockmodel. We shall assume that B is positive semidefinite.
Then given an n vertex instantiation of the SBM graph with parameters (π ,B), for
sufficiently large n, the large-sample optimal error rate for recovering the block
assignments when adjacency spectral embedding is used as the initial embedding
step can be characterized by the quantity ρA = ρA(n) defined by

(4.19)

ρA = min
k �=l

sup
t∈(0,1)

1

2
log

|�kl(t)|
|�k|t |�l|1−t

+ nt(1 − t)

2
(νk − νl)

��−1
kl (t)(νk − νl),

where �kl(t) = t�k + (1 − t)�l ; �k = �(νk) and �l = �(νl) are as defined in
equation (2.8). We recall equation (4.18), in particular the fact that as ρA increases,
the large-sample optimal error rate decreases. Similarly, the large-sample optimal
error rate when Laplacian spectral embedding is used as the pre-processing step
can be characterized by the quantity ρL = ρL(n) defined by

(4.20)

ρL = min
k �=l

sup
t∈(0,1)

1

2
log

|�̃kl(t)|
|�̃k|t |�̃l|1−t

+ nt(1 − t)

2
(̃νk − ν̃l)

��̃−1
kl (t)(̃νk − ν̃l),

where �̃kl(t) = t�̃k + (1 − t)�̃l with �̃k = �̃(νk) and �̃l = �̃(νl) as defined in
equation (3.6), and ν̃k = νk/(

∑
k′ πk′ν�

k νk′)1/2. We emphasize that we have made
the simplifying assumption that nk = nπk in our expression for ν̃k in equation
(4.20). This is for ease of comparison between ρA and ρL in our subsequent dis-
cussion.

We thus propose to use the ratio ρA/ρL as a measure of the relative large-sample
performance of the adjacency spectral embedding as compared to the Laplacian
spectral embedding for subsequent inference, at least in the context of stochastic
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blockmodel graphs. That is to say, for given parameters π and B, if ρA/ρL > 1
then adjacency spectral embedding is to be preferred over Laplacian spectral em-
bedding when n, the number of vertices in the graph, is sufficiently large; similarly,
if ρA/ρL < 1 then Laplacian spectral embedding is to be preferred over adjacency
spectral embedding.

REMARK. We note that if the block-conditional covariance matrices �k are all
nonsingular, then for sufficiently large n, the term log |�kl(t)|

|�k |t |�l |1−t in the definition

of ρA is negligible; similarly, the term log |�̃kl(t)|
|�̃k |t |�̃l |1−t in the definition of ρL is

also negligible. However, on occasion, some of the block-conditional covariance
matrices �k are singular. As an example, we consider a completely associative

two-block stochastic blockmodel with B = [p2 0
0 q2 ] and π = (π1, π2). Then the

block-conditional covariance matrices are

�1 = (
1 − p2) [π−1

1 0
0 0

]
; �2 = (

1 − q2) [0 0
0 π−1

2

]
,

�̃1 = (1 − p2)

4p2

[
π−2

1 0
0 0

]
; �̃2 = (1 − q2)

4q2

[
0 0
0 π−2

2

]
,

and ρA = ρL = ∞. Therefore, ASE and LSE are equivalent with respect to the
subsequent inference task. In contrast, [35] showed that the within-block variances
for ASE are four times larger than that of the within-block variances of LSE, while
the between-block variances for ASE and LSE are the same. We conclude that the
within-block variances measure fails to capture the fact that the block-conditional
covariance matrices �1 and �2 are singular but in different subspaces, and sim-
ilarly �̃1 and �̃2 are also singular but in different subspaces, and thus if we had
used the within-block variances measure as a surrogate, we would have been mis-
led into believing that LSE is preferable to ASE for this particular subsequent

inference task. Indeed, had we ignored the terms log |�kl(t)|
|�k |t |�l |1−t and log |�̃kl(t)|

|�̃k |t |�̃l |1−t

in the definitions of ρA and ρL, we would have come to the similar conclusion that

ρL = max{2π1p
2

1−p2 ,
2π2q

2

1−q2 } = 4 max{ π1p
2

1−p2 ,
π2q

2

1−q2 } = 4ρA for sufficiently large n.

As an illustration of the ratio ρA/ρL, we first consider the collection of 2-block

stochastic blockmodels where B = [ p2 pq

pq q2

]
for p,q ∈ (0,1) and π = (π1, π2) with

π1 +π2 = 1. We note that these B also have rank 1, and thus the Chernoff informa-
tion can be computed explicitly. Then for sufficiently large n, ρA is approximately

ρA ≈ sup
t∈(0,1)

nt (1 − t)

2
(p − q)2(tσ 2

1 + (1 − t)σ 2
2
)−1

,
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where σ1 and σ2 are as specified in equation (3.14) and equation (3.15), respec-
tively. Simple calculations yield

ρA ≈ (
n(p − q)2(π1p

2 + π2q
2)2)

/
(
2
(√

π1p4
(
1 − p2

)+ π2pq3(1 − pq)

+
√

π1p3q(1 − pq) + π2q4
(
1 − q2

))2)
for sufficiently large n. Similarly, denoting by σ̃ 2

1 and σ̃ 2
2 the variances specified

in equation (3.12) and equation (3.13), we have

ρL ≈ sup
t∈(0,1)

nt (1 − t)

2

(
p√

π1p2 + π2pq
− q√

π1pq + π2q2

)2(
t σ̃ 2

1 + (1 − t)σ̃ 2
2
)−1

≈ 2n(
√

p − √
q)2(π1p + π2q)2

(
√

π1p(1 − p2) + π2q(1 − pq) +
√

π1p(1 − pq) + π2q(1 − q2))2

≈ (
2n(p − q)2(π1p + π2q)2)

/
((√

p + √
q
)2

(

√
π1p(1 − p2) + π2q(1 − pq)

+
√

π1p(1 − pq) + π2q(1 − q2))2)
for sufficiently large n. Fixing π = (0.6,0.4), we computed the ratio ρA/ρL
for a range of p and q values, with p ∈ [0.2,0.8] and q = p + r where r ∈
[−0.15,0.15]. The results are plotted in Figure 3. The y-axis of Figure 3 denotes
the values of p and the x axis are the values of r . We see from the above fig-
ure that in general, neither of the methods, namely adjacency spectral clustering
or normalized Laplacian spectral embedding followed by clustering via Gaussian
mixture models, dominates over the whole (p, r) parameter space. However, in
general one can easily show that LSE is preferable over ASE whenever the block
probability matrix B becomes sufficiently sparse. For example, if we let p = cp̃

and q = cq̃ in the setting of Figure 3 and let c → 0, then for sufficiently small c,
we have

ρA ≈ nc2(p̃ − q̃)2(π1p̃
2 + π2q̃

2)2

2(

√
π1p̃4 + π2p̃q̃3 +

√
π1p̃3q̃ + π2q̃4)2

≈ nc2(p̃ − q̃)2(π1p̃
2 + π2q̃

2)2

2(
√

p̃ + √
q̃)2(π1p̃3 + π2q̃3)

,

ρL ≈ nc2(p̃ − q̃)2(π1p̃ + π2q̃)

2(
√

p̃ + √
q̃)2

and thus, by the Cauchy–Schwarz inequality,

ρA

ρL
≈ (π1p̃

2 + π2q̃
2)2

(π1p̃3 + π2q̃3)(π1p̃ + π2q̃)
≤ 1.
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FIG. 3. The ratio ρA/ρL displayed for various values of p ∈ [0.2,0.8] and r = q − p ∈
[−0.15,0.15]. The labeled lines are the contour lines for ρA/ρL.

Determination of similarly intuitive conditions for which ASE dominates over LSE
is considerably more subtle and is the topic of current research. But in general, we
observe that ASE dominates over LSE whenever the entries of B are relatively
large.

We also generate instances of a stochastic blockmodel graph on 200 vertices
with parameters p = 0.75 and q = 0.6. For each graph, we measure the error
rate of the spectral embedding followed by the Gaussian mixture-model based
clustering procedure in recovering the block assignments. The error rate for the
GMM ◦ ASE procedure, averaged over 1000 Monte Carlo replicates, is 0.079 with
a standard error of 6.6 × 10−4; meanwhile the error rate for the GMM ◦ LSE
procedure, also averaged over 1000 Monte Carlo replicates, is 0.083 with a
standard error of 7.2 × 10−6. The difference in the mean error rate is statisti-
cally significant at α = 0.001. Conversely, when p = 0.2 and q = 0.3 and the
graphs are on 400 vertices, the mean error rate, over 1000 Monte Carlo repli-
cates, for the GMM ◦ ASE procedure is 0.161 while the mean error rate for the
GMM ◦ LSE procedure is 0.151 and this difference is also statistically significant
at α = 0.001.
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FIG. 4. The ratio ρA/ρL displayed for various values of p ∈ [0.2,0.8] and r = q − p ∈
[−0.2,−0.01] for the 3-block stochastic blockmodel of equation (4.21). The labeled lines are the
contour lines for ρA/ρL.

We next consider the collection of stochastic blockmodels with parameters π
and B where

(4.21) B =
⎡⎣p q q

q p q

q q p

⎤⎦ , p, q ∈ (0,1) and π = (0.8,0.1,0.1).

First, we compute the ratio ρA/ρL for p ∈ [0.3,0.9] and r = q − p with r ∈
[−0.2,−0.01]. The results are plotted in Figure 4, with the y-axis of Figure 4
being the values of p and the x-axis being the values of r . Once again we see
that for the purpose of subsequent inference, neither embedding methods domi-
nates over the whole parameter space and that LSE is still preferable to ASE for
smaller values of p and q and that ASE is preferable to LSE for larger values of p

and q . We also generate instances of a stochastic blockmodel graph on 800 vertices
with p = 0.9 and q = 0.72 and estimate the error rate of the GMM ◦ ASE and the
GMM ◦ LSE procedures in recovering the block assignments. The GMM ◦ ASE
and GMM ◦ LSE error rates, averaged over 1000 Monte Carlo replicates, are
0.29 and 0.38, respectively. For these choice of parameters, ρA/ρL ≈ 1.01. We
also generate instances of a stochastic blockmodel graph on 1600 vertices with
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p = 0.34 and q = 0.15. The ratio ρA/ρL in this case is ≈ 0.98; the GMM ◦ ASE
and GMM ◦ LSE error rates, averaged over 1000 Monte Carlo replicates, are 0.18
and 0.06, respectively.

5. Summary and conclusions. We have shown in this paper several limit re-
sults for the eigenvectors corresponding to the largest eigenvalues of the normal-
ized Laplacian matrix of random graphs. In particular, we show that for stochastic
blockmodel graphs, conditioned on the block assignments, each row of the Lapla-
cian spectral embedding converges to a multivariate normal distribution. We then
discuss the relationship between spectral embeddings of the adjacency and normal-
ized Laplacian matrices and subsequent inference. When the subsequent inference
task is the problem of clustering the vertices of a graph, we show that the Chernoff
information between the multivariate normals approximation of the embedding is
a suitable measure for the large-sample optimal error rate, that is, it characterizes
the minimum error rate achievable by any clustering procedure that operates only
on the spectral embedding. As a result, we are able to theoretically compare the
use of spectral embedding of the adjacency matrix versus that of the normalized
Laplacian for subsequent inference, thereby refining and extending the pioneering
work of [35].

The limit results in Section 2.1 and Section 3 of this paper assume that nρn

grows at the rate of ω(log4(n)) as n → ∞. This technical condition is from Theo-
rem 6 of [25], which provides us with concentration inequalities for ‖A − P‖ and
‖L(A) −L(P)‖. Similar results to Theorem 6 of [25] but under weaker conditions
exist; for example, Theorem 5.2 of [23] and Theorem 4 of [20] showed concen-
tration of the adjacency matrix and the Laplacian matrix, around their respective
expectation, under the weaker condition that nρn = ω(logn). These results can
then be applied to this paper to show that the limit results in Section 2.1 and Sec-
tion 3 hold for nρn = ω(log(n)). Finally, the limit results of this paper do not hold
for nρn = o(logn) since, as it is widely known, neither the adjacency matrix nor
the normalized Laplacian matrix concentrate around their expectation in this case.

We now mention several potential extensions of this work. The normalized
Laplacian considered in this paper is just one example of possible normaliza-
tion. In particular, given τ > 0 one can define the τ -regularized normalized Lapla-
cian Lτ via Lτ (A) = (D + τ I)−1/2A(D + τ I)−1/2 or Lτ (A) = (D + τ I)−1/2(A +
τ11�)(D + τ I)−1/2[2, 9, 33]. It had been shown that regularization is particularly
useful for spectral clustering in sparse graphs. It will thus be of interest to derive
limit results for the eigenvectors of Lτ (A) analogous to those in this paper; such
results can potentially allow one to choose the regularization parameter τ .

The limit results in this paper are for the spectral embedding of (X,A) ∼
RPDG(F ) into R

d when d , the rank of the matrix E[XX�] where X ∼ F , is fixed
and known. Similar results can be derived when the spectral embedding of A is into
R

d ′
where d ′ < d . Limit results for spectral embedding of the adjacency matrix or

Laplacian matrix into R
d ′

when d ′ > d is, to the best of our knowledge, an open
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problem. A related inquiry is limit results for spectral embedding into R
d ′

when
d ′ < d but d varies with n and is not fixed, such as when the graph arises from
a latent position model where the link function, viewed as an integral operator,
has infinite rank. Since new results on stochastic blockmodels indicate that they
can be regarded as a universal approximation to latent positions model graphs or
graphons of exchangeable random graphs [44, 45], limit results for the adjacency
and Laplacian spectral embedding will be useful in further understanding of this
approximation property.

Finally, the Chernoff information used in this paper is a measure of the effect
of spectral embedding on subsequent inference for a single graph. Recently, there
have been interests in the two-sample inference for graphs, for example, network
comparisons or two-sample hypothesis testing for graphs [3, 41, 42]. As an exam-
ple, given two distributions F and G, the problem of testing whether F = G given
two random dot product graphs A ∼ RDPG(F ) and B ∼ RDPG(G) was consid-
ered in [42]; the proposed test statistic is a kernel-based distance measure between
the spectral embedding X̂ of A and Ŷ of B. Determining a measure that character-
izes the effect of spectral embedding for two-sample graphs inference problems,
akin to how the Chernoff information characterizes the effect of spectral embed-
ding for single graph inference, is of significant interest.

APPENDIX A: PROOF OF THEOREM 2.1 AND THEOREM 2.2

We first present a sketch of the proof of Theorem 2.1, noting that the main argu-
ments are given in [41]. We also note that similar, albeit more involved, arguments
are used in the proof of Theorem 3.1. Since the proof of Theorem 3.1 will be pre-
sented in much greater detail in Section B, to avoid repetitions, we chose to omit
the details in the current proof. Nevertheless, we emphasize that the statements
of the results in [41] are slightly different from how they are stated in the current
paper; these differences stem mainly from how sparseness in the graphs is incorpo-
rated. More specifically, [41] considered a sequence of random dot product graphs
where for each n, the matrix of latent positions Xn are fixed but unknown (see Def-
inition 1 in [41]) and furthermore, there need not exist any relationship between Xn

and Xn′ for n �= n′. Sparseness of the graphs is thus implicit (see, e.g., the condi-
tion on the minimum vertex’s degree in Assumption 1 in [41]). The current paper,
however, assumes that the rows of Xn are independently sampled according to a
distribution F . As such, sparseness needs to be made explicit through the sparsity
factor ρn.

REMARK. For ease of exposition, henceforth we shall on many occasions re-
move the subscript n from the matrices Xn, X̂n,An,Pn and other related matri-
ces such as UAn

, UPn
, etc. The subsequent statements are thus to be interpreted

as holding for sufficient large n. Since we are concerned with limit results, this
should lead to minimal confusion.



2390 M. TANG AND C. E. PRIEBE

We first note that equation (2.5) follows from Theorem A.5 in [41]. More specif-
ically, if (X,A) ∼ RDPG(F ) with sparsity factor ρn, then Theorem A.5 in [41]
yields ∥∥X̂ − ρ1/2

n XW
∥∥
F = ∥∥(A − P)UPS−1/2

P

∥∥
F + OP

(
(nρn)

−1/2).
Since P = ρnXX� we have UPS1/2

P W = ρ
1/2
n X for some orthogonal matrix W.

Therefore, ∥∥(A − P)UPS−1/2
P

∥∥
F = ∥∥(A − P)UPS1/2

P WW�S−1
P W

∥∥
F

= ∥∥(A − P)ρ1/2
n X

(
ρnX�X

)−1∥∥
F

= ρ−1/2
n

∥∥(A − P)X
(
X�X

)−1∥∥
F .

Equation (2.5) is thus established. We now show equation (2.6) and equation (2.7).
We shall use the convention that, unless stated otherwise, expectation of a ran-
dom variable dependent on A is taken with respect to A conditional on P. Let
ζ = ρn‖(A − P)UPS−1/2

P ‖2
F . Then, conditional on P, ζ is a linear function of the

independent random variables {aij − pij }i<j . Lemma A.5 in [41] shows that ζ is
tightly concentrated around its expectation E[ζ ]. We then have

E[ζ ] = E
[∥∥(A − P)UPS−1/2

P

∥∥2
F

]
= ρ−1

n E
[∥∥(A − P)X

(
X�X

)−1∥∥2
F

]
= trn

(
X�X

)−1(
n−2ρ−1

n X�
E
[
(A − P)2]X)n(X�X

)−1
.

Now, the ij th entry of (A − P)2 is of the form
∑

k(aik − pik)(akj − pkj ). As the
upper diagonal entries of A are independent conditional on P, we have

E

[∑
k

(aik − pik)(akj − pkj )

]
=
⎧⎪⎨⎪⎩

0 if i �= j,∑
k �=i

pkj (1 − pkj ) if i = j .

By the strong law of large numbers, n−1XT Xn = n−1∑
i XiX

�
i converges to


 = E[X1X
�
1 ] almost surely as n → ∞. Hence n(X�X)−1 converges to 
−1

almost surely. In addition,

n−2ρ−1
n XT

E
[
(A − P)2]X = n−2ρ−1

n

n∑
i=1

∑
j �=i

XiX
�
i pik(1 − pik)

= n−2ρ−1
n

n∑
i=1

∑
k �=i

XiX
�
i

(
ρnX

�
i Xk − ρ2

n

(
X�

i Xk

)2)

= n−2
n∑

i=1

∑
k �=i

XiX
�
i

(
X�

i Xk − ρnX
�
i XkX

�
k Xi

)
.
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If ρn = 1 for all n, the above term converges to E[X1X
�
1 (X�

1 μF − X�
1 
F X1)]

almost surely. When ρn → 0, the above term converges to E[X1X
�
1 X�

1 μF ] almost
surely. Equation (2.6) and equation (2.7) is thus established.

We now sketch the proof of Theorem 2.2. We emphasize that Theorem 2.2 is a
generalization of the corresponding result in [4, 39], the generalization being that
Theorem 2.2 does not assume distinct eigenvalues of the matrix E[XX�] where
X ∼ F ; distinct eigenvalues is a necessary assumption for the proof given in [4,
39].

Let aij and pij denote the ij th entry of A and P. From equation (2.5), by ex-

changeability of the collection {WnX̂j − ρ
1/2
n Xj }nj=1, for any fixed index i we

have
√

n
(
WnX̂i − ρ1/2

n Xi

)= √
nρ−1/2

n

(
X�X

)−1∑
j �=i

(aij − pij )Xj + oP(1)

= ρ−1/2
n

(
n−1X�X

)−1∑
j �=i

(aij − pij )√
n

Xj + oP(1)

= (
n−1X�X

)−1∑
j �=i

(aij − ρnX
�
i Xj )√

nρn

Xj + oP(1).

Now conditional on Xi , the quantity
∑

j �=i
(aij−ρnX�

i Xj )√
nρn

Xj is a sum of indepen-
dent and identically distributed mean 0 random variables. Thus by the multivariate
central limit theorem, conditioning on Xi = x yields

∑
j �=i

(aij − ρnx
�Xj)√

nρn

Xj
d−→ N

(
0,E

[
X1X

�
1
(
x�X1 − ρnx

�X1X
�
1 x
)])

.

Furthermore, since n−1X�X = n−1∑XiX
�
i

a.s.−→ 
 as n → ∞, we have by Slut-
sky’s theorem that

√
n
(
WnX̂i − ρ1/2

n Xi

) d−→ N
(
0,
−1

E
[
X1X

�
1
(
x�X1 − ρnx

�X1X
�
1 x
)]


−1),
thereby establishing Theorem 2.2.

APPENDIX B: PROOF OF THEOREM 3.1 AND THEOREM 3.2

For ease of exposition, we present in Section B.1 a proof of Theorem 3.2, as-
suming equation (3.1) in Theorem 3.1 holds. We next derive, in Section B.2, equa-
tion (3.1) in Theorem 3.1. We then show, in Section B.4 that the Frobenius norms
in equation (3.4) and equation (3.5) are tightly concentrated around their expec-
tations. We complete the proof of Theorem 3.1 by computing these expectations
explicitly when ρn ≡ 1 and when ρn → 0.
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B.1. Proof of Theorem 3.2. Recall that we suppress the dependency on n in
the subscript of the matrices An,Xn,Pn and other related matrices. In addition, re-
call that X̃ = ρ

1/2
n T−1/2X = diag(XX�1)−1/2X. Equation (3.1) from Theorem 3.1

then implies

X̆W − X̃ = T−1/2(A − P)T−1/2X̃
(
X̃�X̃

)−1 + 1

2
T−1(T − D)X̃ + R

for some orthogonal matrix W and n×d matrix R with ‖R‖F = OP((nρn)
−1). For

a fixed index i, let ζi denotes the ith row of nρ
1/2
n (X̆W − X̃). Also let ri denote the

ith row of R. Now exchangeability of the {Xj }nj=1 implies exchangeability of the

{X̆i}nj=1 and exchangeability of the {X̃i}nj=1. This also implies exchangeability of
the {ζj }nj=1 and thus exchangeability of the {rj }nj=1. Now, for any fixed index i, by
exchangeability of the {rj }nj=1, we have

n2ρnE
[‖ri‖2]= n2ρn

1

n
E

[∑
j

‖rj‖2
]

= nρnE
[‖R‖2

F

]
Now, with probability at least 1−n−3, ‖R‖F ≤ C0(nρn)

−1) for some constant C0.
In addition, ‖R‖F ≤ n almost surely. Thus E[‖R‖2

F ] ≤ C2
0(nρn)

−2(1 − n−3) +
n × n−3 = O((nρn)

−2). Therefore, n2ρnE[‖ri‖2] = O((nρn)
−1). Since nρn =

ω(log4(n)), we therefore have n2ρnE[‖ri‖2] → 0 as n → ∞, that is, nρ
1/2
n ri

d→ 0
as n → ∞.

Let aij and pij denote the ij th entry of A and P, respectively. The above rea-
soning implies that for a fixed index i, ζi is of the form

ζi = (
X̃�X̃

)−1 nρ
1/2
n√
ti

(∑
j

aij − pij√
tj

X̃j

)
+ nρ

1/2
n (ti − di)

2ti
X̃i + oP(1)

= (
X̃�X̃

)−1
√

nρn√
ti

(∑
j �=i

√
nρn(aij − pij )Xj

tj

)

− (nρn)
3/2Xi

2t
3/2
i

∑
j �=i

(aij − pij )√
nρn

+ oP(1).

We first note that X̃�X̃ = X� diag(XX1)−1X converges almost surely to 
̃ as
n → ∞. This can be seen as follows. Denoting μ = E[X1], we have

X̃�X̃ =
n∑

i=1

XiX
�
i∑

j X�
i Xj

=
(

n∑
i=1

XiX
�
i

nX�
i μ

)
+

n∑
i=1

XiX
�
i

(
1∑

j X�
i Xj

− 1

nX�
i μ

)

=
(

n∑
i=1

XiX
�
i

nX�
i μ

)
+

n∑
i=1

XiX
�
i

nX�
i μ

(
nX�

i μ −∑
j X�

i Xj∑
j X�

i Xj

)
.
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Now, for any index i, let ci = |(nX�
i μ −∑

j X�
i Xj )/(

∑
j X�

i Xj )|. Then by Ho-
effding’s inequality, ci = OP(n

−1/2). As XiX
�
i is positive semidefinite for each

index i, we thus have

−ci

XiX
�
i

nX�
i μ

� XiX
�
i

nX�
i μ

(
nX�

i μ −∑
j X�

i Xj∑
j X�

i Xj

)
� ci

XiX
�
i

nX�
i μ

,

where � denotes the positive semidefinite ordering of matrices. Hence

−
(

sup
j∈[n]

cj

)∑
i

XiX
�
i

nX�
i μ

�∑
i

XiX
�
i

nX�
i μ

(
nX�

i μ −∑
j X�

i Xj∑
j X�

i Xj

)

�
(

sup
j∈[n]

cj

)∑
i

XiX
�
i

nX�
i μ

.

We then have by a union bound that supi∈[n] ci = OP(
√

n−1 logn), and hence

supi∈[n] ci
a.s.→ 0 as n → ∞. In addition, by the strong law of large numbers

(B.1)
∑
i

XiX
�
i

nX�
i μ

a.s.−→ E

[
X1X

�
1

X�
1 μ

]
as n → ∞. Thus ∑

i

XiX
�
i

nX�
i μ

(
nX�

i μ −∑
j X�

i Xj∑
j X�

i Xj

)
a.s.−→ 0

as n → ∞. We thus conclude that

(B.2) X̃�X̃ =
(

n∑
i=1

XiX
�
i

nX�
i μ

)
+

n∑
i=1

XiX
�
i

nX�
i μ

nX�
i μ −∑

j X�
i Xj∑

j X�
i Xj

a.s.−→ E

[
X1X

�
1

X�
1 μ

]
as n → ∞.

Therefore, (X̃�X̃)−1 converges almost surely to 
̃−1 as n → ∞. In addition,
ti/(nρn) → X�

i μ as n → ∞, and hence
√

nρn/ti → (X�
i μ)−1/2 as n → ∞. We

next consider the term

∑
j �=i

√
nρn(aij − pij )Xj

tj
=∑

j �=i

(aij − pij )Xj√
nρnX

�
j μ

+∑
j �=i

(aij − pij )Xj√
nρnX

�
j μ

nρnX
�
j μ − tj

tj
.

The second sum on the right-hand side of the above display is, conditioned on P,
a sum of mean 0 random variables. Hoeffding’s inequality implies that the event∥∥∥∥∑

j �=i

(aij − pij )Xj√
nρnX

�
j μ

nρnX
�
j μ − tj

tj

∥∥∥∥≥ s
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occurs with probability at most

2 exp
( −Cnρns

2∑
j �=i ‖Xj‖2(nρnX

�
j μ − tj )2(X�

j μ)−2t−2
j

)
for some constant C > 0. Therefore,∑

j �=i

(aij − pij )Xj√
nρnX

�
j μ

nρnX
�
j μ − tj

tj

a.s.−→ 0

as n → ∞. We thus have

(B.3)

ζi = (
X̃�X̃

)−1
√

nρn√
ti

(∑
j �=i

(aij − pij )Xj√
nρnX

�
j μ

)

− nρn
√

nρnXi

2ti
√

ti

∑
j �=i

(aij − pij )√
nρn

+ oP(1).

We now show that

(B.4)

nρn
√

nρnXi

2ti
√

ti

∑
j �=i

(aij − pij )√
nρn

=
√

nρn(X̃�X̃)−1
̃Xi

2
√

tiX
�
i μ

∑
j �=i

(aij − pij )√
nρn

+ oP(1).

This can be done as follows. We first consider the term
nρn

√
nρnXi

2ti
√

ti

∑
j �=i

(aij − pij )√
nρn

=
√

nρn

2
√

ti

(∑
j �=i

(aij − pij )√
nρn

)(
Xi

X�
i μ

+ nρnXi

ti
− Xi

X�
i μ

)
.

Once again, conditional on P,
√

nρn

2
√

ti

(∑
j �=i

(aij − pij )√
nρn

)(
nρnXi

ti
− Xi

X�
i μ

)
is a sum of mean 0 random variable. Hence, by Hoeffding’s inequality, we also
have that √

nρn

2
√

ti

(∑
j �=i

(aij − pij )√
nρn

)(
nρnXi

ti
− Xi

X�
i μ

)
a.s.−→ 0

as n → ∞. We thus have

(B.5)
nρn

√
nρnXi

2ti
√

ti

∑
j �=i

(aij − pij )√
nρn

=
√

nρn

2
√

ti

∑
j �=i

(aij − pij )Xi√
nρnX

�
i μ

+ oP(1).
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We next write
√

nρn

2
√

ti

∑
j �=i

(aij − pij )Xi√
nρnX

�
i μ

=
√

nρn(X̃�X̃)−1

2
√

ti

∑
j �=i

(aij − pij )(
̃ + X̃�X̃ − 
̃)Xi√
nρnX

�
i μ

.

We again evoke Hoeffding’s inequality conditionally on P to conclude that

(B.6)
√

nρn(X̃�X̃)−1

2
√

ti

∑
j �=i

(aij − pij )(X̃�X̃ − 
̃)Xi√
nρnX

�
i μ

a.s.−→ 0

as n → ∞. Equation (B.4) then follows from equation (B.5) and equation (B.6).
Combining equation (B.3) and equation (B.4), we arrive at

ζi = (
X̃�X̃

)−1
√

nρn√
ti

(∑
j �=i

(aij − pij )√
nρn

(
Xj

X�
j μ

− 
̃Xi

2X�
i μ

))
+ oP(1)

= (
X̃�X̃

)−1
√

nρn√
ti

(∑
j �=i

(aij − ρnX
�
i Xj )√

nρn

(
Xj

X�
j μ

− 
̃Xi

2X�
i μ

))
+ oP(1).

Now, for each fixed index i, conditioning on Xi = x, the quantity

(B.7)
1√
nρn

∑
j �=i

(
aij − ρnX

�
i Xj

)( Xj

X�
j μ

− 
̃Xi

2X�
i μ

)

is a sum of independent and identically distributed mean 0 random variables.
Therefore, by the multivariate central limit theorem, we have that conditional on
Xi = x, the term in equation (B.7) converges in distribution to

N
(

0,E

[(
Xj

X�
j μ

− 
̃x

2x�μ

)(
x�Xj − ρnx

�XjX
�
j x
)( Xj

X�
j μ

− 
̃x

2x�μ

)�])
.

Finally, recall that (X̃�X̃)−1 and
√

nρn/ti converge almost surely to 
̃−1 and
(X�

i μ)−1/2 as n → ∞. Therefore, by Slutsky’s theorem, conditional on Xi = x,

ζi = nρ
1/2
n (WX̆i − X̃i) converges in distribution to

N
(

0,E

[(

̃−1Xj

X�
j μ

− x

2x�μ

)(x�Xj − ρnx
�XjX

�
j x

x�μ

)(

̃−1Xj

X�
j μ

− x

2x�μ

)�])
as desired.

B.2. Proof of equation (3.1). We start with a concentration inequality for
the spectral norm of A − P and L(A) − L(P) in the case when A is an edge-
independent inhomogeneous random graph.
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LEMMA B.1 ([25, 32]). Let A ∼ Bernoulli(P), that is, A is a symmetric ma-
trix whose upper triangular entries are independent Bernoulli random variables
with P[aij = 1] = pij . Let 
 = maxi

∑
j �=i pij and δ = mini

∑
j �=i pij denote the

maximum and minimum row sums of P. Suppose δ satisfies δ � log4(n). Then

‖A − P‖ = OP(
√


),∥∥L(A) −L(P)
∥∥= OP

(
δ−1/2).

When P = ρnXX� then δ and 
 are both of order �(nρn). Furthermore, the
nonzero eigenvalues of P are all of order �(nρn) while the nonzero eigenvalues of
L(P) are all of order �(1). In light of Lemma B.1, for our subsequent derivation,
we shall assume that ρn = ω(logk(n)) for some positive integer k ≥ 4.

Lemma B.1 implies the following proposition.

PROPOSITION B.2. Let (A,X) ∼ RDPG(F ) with sparsity factor ρn. Let
W1�W�

2 be the singular value decomposition of Ũ�
P ŨA. Then∥∥Ũ�

P ŨA − W1W�
2
∥∥
F = OP

(
(nρn)

−1).
PROOF. Let σ1, σ2, . . . , σd denote the singular values of Ũ�

P ŨA (the diagonal
entries of �). Then σi = cos(θi) where the θi are the principal angles between
the subspaces spanned by ŨA and UP. Furthermore, by the Davis–Kahan sin(�)

theorem (see, e.g., Theorem 3.6 in [38]),∥∥ŨAŨ�
A − ŨPŨ�

P
∥∥= max

i

∣∣sin(θi)
∣∣≤ ‖L(A) −L(P)‖

λd(L(P))
= OP

(
(nρn)

−1/2).
Here, λd(L(P)) denotes the d largest eigenvalue of L(P). We thus have

∥∥Ũ�
P ŨA − W1W�

2
∥∥
F = ‖� − I‖F =

(
d∑

i=1

(1 − σi)
2

)1/2

≤
d∑

i=1

(
1 − σ 2

i

)= d∑
i=1

sin2(θi).

Therefore, ‖Ũ�
P ŨA − W1W�

2 ‖F = OP((nρn)
−1) as desired. �

From now on, we shall denote by W∗ the orthogonal matrix W1W�
2 as defined

in the above proposition. Next, we state the following lemma.

LEMMA B.3. Let (A,X) ∼ RDPG(F ) with sparsity factor ρn. Then

nρn

∥∥Ũ�
P ŨAS̃A − S̃PŨ�

P ŨA
∥∥= OP(1),(B.8)

nρn

∥∥Ũ�
P ŨAS̃1/2

A − S̃1/2
P Ũ�

P ŨA
∥∥= OP(1),(B.9)

nρn

∥∥Ũ�
P ŨAS̃−1/2

A − S̃−1/2
P Ũ�

P ŨA
∥∥= OP(1).(B.10)
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In proving Lemma B.3, we need the following technical result. Lemma B.3
and Lemma B.4 are the key technical lemmas of this paper. Roughly speaking,
Lemma B.3 along with Proposition B.2 allows us to interchange the order of
the orthogonal transformation W∗ with the diagonal scaling matrices SA or SA;
Lemma B.4 simplifies various expressions involving A,D,L(A) and ŨA.

LEMMA B.4. Let (A,X) ∼ RDPG(F ) with sparsity factor ρn. Then the fol-
lowing holds simultaneously:

D−1/2 − T−1/2 = 1

2
T−3/2(T − D) + OP

(
(nρn)

−3/2),(B.11)

L(A) = T−1/2(A − P)T−1/2

(B.12)
+ D−1/2PD−1/2 + OP

(
(nρn)

−1),
D−1/2PD−1/2 −L(P) = 1

2
T−3/2(T − D)PD−1/2

(B.13)

+ 1

2
T−1/2PT−3/2(T − D) + OP

(
(nρn)

−1),
ŨA − ŨPŨ�

P ŨA = OP

(
(nρn)

−1/2),(B.14)

T−1/2PT−3/2(T − D)ŨP = OP

(
(nρn)

−1),(B.15)

Ũ�
P T−3/2(T − D)PD−1/2 = OP

(
(nρn)

−1),(B.16)

Ũ�
P
(
L(A) −L(P)

)
ŨP = OP

(
(nρn)

−1).(B.17)

We continue with the proof of equation (3.1). Let � = ŨPŨ�
P and �⊥ = I −�.

Proposition B.2 and Lemma B.3 then yield

ŨAS̃1/2
A − ŨPS̃1/2

P W∗ = ŨAS̃1/2
A − ŨPS̃1/2

P Ũ�
P ŨA + OP

(
(nρn)

−1)
= ŨAS̃1/2

A − ŨPŨ�
P ŨAS̃1/2

A + OP

(
(nρn)

−1)
= �⊥L(A)ŨAS̃−1/2

A + OP

(
(nρn)

−1).
Since L(P) = ŨPS̃PŨ�

P , �⊥L(P) = 0, and hence

(B.18) ŨAS̃1/2
A − ŨPS̃1/2

P W∗ = �⊥(L(A) −L(P)
)
ŨAS̃−1/2

A + OP

(
(nρn)

−1).
In addition,(

L(A) −L(P)
)
ŨAS̃−1/2

A = (
L(A) −L(P)

)
�⊥ŨAS̃−1/2

A

+ (
L(A) −L(P)

)
�ŨAS̃−1/2

A

= OP

(
(nρn)

−1)+ (
L(A) −L(P)

)
�ŨAS̃−1/2

A ,
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where we bound (L(A) − L(P))�⊥ŨAS̃−1/2
A using Lemma B.1, equation (B.14),

and the sub-multiplicativity of the spectral norm. Equation (B.18) then implies

(B.19)
ŨAS̃1/2

A − ŨPS̃1/2
P W∗ = �⊥(L(A) −L(P)

)
ŨAS̃−1/2

A + OP

(
(nρn)

−1)
= �⊥(L(A) −L(P)

)
�ŨAS̃−1/2

A + OP

(
(nρn)

−1).
By equation (B.17) and sub-multiplicativity of the Frobenius norm, we also have

�⊥(L(A) −L(P)
)
�ŨAS̃−1/2

A = (
L(A) −L(P)

)
�ŨAS̃−1/2

A

− �
(
L(A) −L(P)

)
�ŨAS̃−1/2

A

= (
L(A) −L(P)

)
�ŨAS̃−1/2

A + OP

(
(nρn)

−1).
Equation (B.19) then becomes

(B.20)

ŨAS̃1/2
A − ŨPS̃1/2

P W∗ = �⊥(L(A) −L(P)
)
�ŨAS̃−1/2

A + OP

(
(nρn)

−1)
= (

L(A) −L(P)
)
�ŨAS̃−1/2

A + OP

(
(nρn)

−1)
= (

L(A) −L(P)
)
ŨPŨ�

P ŨAS̃−1/2
A + OP

(
(nρn)

−1)
= (

L(A) −L(P)
)
ŨPW∗S̃−1/2

A + OP

(
(nρn)

−1)
= (

L(A) −L(P)
)
ŨPS̃−1/2

P W∗ + OP

(
(nρn)

−1),
where we once again use Proposition B.2 and Lemma B.3. Recall from equation
(B.12) the decomposition

L(A) = T−1/2(A − P)T−1/2 + D−1/2PD−1/2 + OP

(
(nρn)

−1).
Therefore, from equation (B.20), we have

(B.21)

ŨAS̃1/2
A − ŨPS̃1/2

P W̃∗

= OP

(
(nρn)

−1)+ T−1/2(A − P)T−1/2ŨPS̃−1/2
P W∗

+ (
D−1/2PD−1/2 − T−1/2PT−1/2)ŨPS̃−1/2

P W∗.

We next recall from equation (B.13) the decomposition

D−1/2PD−1/2 − T−1/2PT−1/2 = 1

2
T−3/2(T − D)PD−1/2

+ 1

2
T−1/2PT−3/2(T − D) + OP

(
(nρn)

−3/2).
In addition, we recall from equation (B.15) that

T−1/2PT−3/2(T − D)ŨP = OP

(
(nρn)

−1).



EIGENVECTORS OF NORMALIZED LAPLACIAN MATRICES 2399

Equation (B.21) therefore reduces to

(B.22)
ŨAS̃1/2

A − ŨPS̃1/2
P W∗ = OP

(
(nρn)

−1)+ T−1/2(A − P)T−1/2ŨPS̃−1/2
P W∗

+ 1

2
T−3/2(T − D)PD−1/2ŨPS̃−1/2

P W∗.

Equation (B.11) now implies

T−3/2(T − D)PD−1/2 = T−3/2(T − D)P
(
D−1/2 − T−1/2 + T−1/2)

= T−3/2(T − D)PT−1/2 + OP

(
(nρn)

−1),
and thus equation (B.22) further simplifies to

(B.23)
ŨAS̃1/2

A − ŨPS̃1/2
P W∗ = OP

(
(nρn)

−1)+ T−1/2(A − P)T−1/2ŨPS̃−1/2
P W∗

+ 1

2
T−3/2(T − D)PT−1/2ŨPS̃−1/2

P W∗.

Since T and D are diagonal matrices, we have

T−3/2(T − D)PT−1/2ŨPS̃−1/2
P W∗ = T−1(T − D)T−1/2PT−1/2ŨPS̃−1/2

P W∗

= T−1(T − D)L(P)ŨPS̃−1/2
P W∗

= T−1(T − D)ŨPS̃PS̃−1/2
P W∗

= T−1(T − D)ŨPS̃1/2
P W∗.

We therefore arrive at

(B.24)
ŨAS̃1/2

A − ŨPS̃1/2
P W∗ = OP

(
(nρn)

−1)+ T−1/2(A − P)T−1/2ŨPS̃−1/2
P W∗

+ 1

2
T−1(T − D)ŨPS̃1/2

P W∗.

To conclude the proof of equation (3.1), we recall that X̃X̃� = L(P) = ŨPS̃PŨ�
P ;

hence X̃ = ŨPS̃1/2
P W̃ for some orthogonal matrix W̃. Therefore,

ŨPS̃1/2
P W∗ = ŨPS̃1/2

P W̃W̃�W∗ = X̃W̃�W∗,

ŨPS̃−1/2
P W∗ = ŨPS̃1/2

P W̃W̃�S̃−1
P W̃W̃�W∗ = X̃

(
X̃�X̃

)−1W̃�W∗.

Substituting the above equations into equation (B.24) yield

ŨAS̃1/2
A − X̃W̃�W∗ = OP

(
(nρn)

−1)+ T−1/2(A − P)T−1/2X̃
(
X̃�X̃

)−1W̃�W∗

+ 1

2
T−1(T − D)X̃W̃�W∗.
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Equivalently,

ŨAS̃1/2
A
(
W∗)�W̃ − X̃ = OP

(
(nρn)

−1)+ T−1/2(A − P)T−1/2X̃
(
X̃�X̃

)−1

+ 1

2
T−1(T − D)X̃.

Equation (3.1) is thereby established.

B.3. Proof of Lemma B.3 and Lemma B.4. We first present the proof of
Lemma B.4. We recall the notation D = diag(A1) and T = diag(P1). Denote by di

and ti the ith diagonal elements of D and T. The ith diagonal element of D−1/2 −
T−1/2 can be written as

1√
di

− 1√
ti

= ti − di

(
√

di + √
ti)

√
di

√
ti

= ti − di

2t
3/2
i

+ (ti − di)

(
1

di

√
ti + ti

√
di

− 1

2t
3/2
i

)

= ti − di

2t
3/2
i

+ (ti − di)
ti(

√
ti − √

di) + (ti − di)
√

ti)

2t
3/2
i (di

√
ti + ti

√
di)

.

We have, by Chernoff’s bound, that |ti − di | = OP(
√

nρn) for any given index i,
and hence |√ti − √

di | = OP(1). Therefore,

(ti −di)
ti(

√
ti − √

di) + (ti − di)
√

ti)

2t
3/2
i (di

√
ti + ti

√
di)

= OP(
√

nρn)
OP(nρn)

�P(n3ρ3
n)

= OP

(
(nρn)

−3/2).
Upon taking an union bound over all indices i = 1,2, . . . , n, we have

(B.25) D−1/2 − T−1/2 = 1

2
T−3/2(T − D) + OP

(
(nρn)

−3/2 logn
)
.

Equation (B.11) is thereby established. Equation (B.13) follows directly from
equation (B.11) and the definition of L(P) = T−1/2PT−1/2. We next show equa-
tion (B.12). Consider the following decomposition of L(A):

L(A) = D−1/2(A − P)D−1/2 + D−1/2PD−1/2

= T−1/2(A − P)T−1/2 + T−1/2(A − P)
(
D−1/2 − T−1/2)

+ (
D−1/2 − T−1/2)(A − P)D−1/2 + D−1/2PD−1/2.

By Lemma B.1, we have

(B.26)
∥∥(A − P)T−1/2∥∥≤ ‖A − P‖ × ‖T−1/2‖ = OP(1).

Similarly, Lemma B.1 and Chernoff bound yield

(B.27)
∥∥(A − P)D−1/2∥∥≤ ‖(A − P)‖ × ‖D−1/2‖ = OP(1).
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Combining equation (B.25) and equation (B.27), we have∥∥(D−1/2 − T−1/2)(A − P)D−1/2∥∥
≤ (∥∥T−3/2(D − T)

∥∥/2 + OP

(
(nρn)

−3/2))× OP(1)

= OP

(
(nρn)

−1).
Similarly, equation (B.25) and equation (B.26) implies∥∥T−1/2(A − P)

(
D−1/2 − T−1/2)∥∥= OP

(
(nρn)

−1).
We thus have

(B.28) L(A) = T−1/2(A − P)T−1/2 + D−1/2PD−1/2 + OP

(
(nρn)

−1).
Equation (B.12) is thereby established.

We next derive equation (B.15) through equation (B.17). From equation (B.28),
we have

(B.29)

Ũ�
P
(
L(A) −L(P)

)
ŨP = Ũ�

P T−1/2(A − P)T−1/2ŨP

+ Ũ�
P
(
D−1/2PD−1/2 − T−1/2PT−1/2)ŨP

+ OP

(
(nρn)

−1).
We first bound the spectral norm of Ũ�

P T−1/2(A − P)T−1/2ŨP. Let ũi be the ith
column of ŨPT−1/2; the ij th entry of Ũ�

P T−1/2(A − P)T−1/2ŨP is then of the
form

ũ�
i (A − P)ũj =∑

k<l

2ũik(akl − pkl)ũj l +∑
k

ũikpkkũjk,

where ũik is the kth element of the vector ũi . We note that∣∣∣∣∑
k

ũikpkkũjk

∣∣∣∣≤ ρn‖ũi‖ × ‖ũj‖ ≤ ρnδ
−1
n = OP

(
ρn(nρn)

−1).
In addition,

∑
k<l 2ũik(akl −pkl)ũj l is, conditioned on P, a sum of mean 0 random

variables. Hoeffding’s inequality then implies

P

[∣∣∣∣∑
k<l

2ũik(akl − pkl)ũlj

∣∣∣∣≥ t

]
≤ exp

(
− t2

2(
∑

k<l ũ
2
ikũ

2
j l)

)

≤ exp
(
− t2

2
∑

k

∑
l ũ

2
ikũ

2
j l

)

≤ exp
(
− t2

2δ−2

)
.
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Hence ũ�
i (A − P)ũj = OP(δ

−1). As Ũ�
P T−1/2(A − P)T−1/2ŨP is a d × d matrix,

a union bound then implies

(B.30) Ũ�
P T−1/2(A − P)T−1/2ŨP = OP

(
δ−1)= OP

(
(nρn)

−1).
We next bound the spectral norm of Ũ�

P (D−1/2PD−1/2 − T−1/2PT−1/2)ŨP. Let
ζij denote the ij th entry of Ũ�

P (D−1/2PD−1/2 − T−1/2PT−1/2)ŨP. From equation
(B.25), we have

ζij = ũ�
i

((
D−1/2 − T−1/2)PD−1/2 + T−1/2P

(
D−1/2 − T−1/2))ũj

= 1

2
ũi

(
T−3/2(T − D)PD−1/2 + T−1/2PT−3/2(T − D)

)
ũj + OP

(
(nρn)

−3/2).
Now let ζ

(1)
ij and ζ

(2)
ij denote the quantities

ζ
(1)
ij = 1

2
ũ�

i T−3/2(T − D)PD−1/2ũj ,

ζ
(2)
ij = 1

2
ũ�

i T−1/2PT−3/2(T − D)ũj .

Because P = ρnXX�, we have

ζ
(1)
ij ≤ 1

2

∥∥ρ1/2
n ũ�

i T−3/2(T − D)X
∥∥× ∥∥ρ1/2

n X�D−1/2ũj

∥∥,
ζ

(2)
ij ≤ 1

2

∥∥ρ1/2
n ũ�

i T−1/2X
∥∥× ∥∥ρ1/2

n X�T−3/2(T − D)ũj

∥∥.
For k ∈ {1,2, . . . , d}, let xk denote the kth column of X. Furthermore, for l ∈
{1,2, . . . , n}, let xkl denote the lth entry of xk—equivalently the kth entry of Xl

(recall that X = [X1 | · · · | Xn]�). Also let ũkl denotes the lth entry of ũk . Then
ρ

1/2
n ũ�

i T−3/2(T − D)X is a vector in R
d whose kth element is of the form

ρ1/2
n ũ�

i T−3/2(D − T)xk = ρ1/2
n

∑
l

ũil

t
3/2
l

(dl − tl)xkl

= ρ1/2
n

∑
l

∑
m

ũil

t
3/2
l

(alm − plm)xkl

= 2ρ1/2
n

∑
l<m

ũil

t
3/2
l

(alm − plm)xkl + ρ1/2
n

∑
l

ũil

t
3/2
l

pllxkl.
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Conditioned on P, the above is a sum of mean 0 random variables and a term of
order O((nρn)

−3/2). Hoeffding’s inequality then yields

P

[∣∣∣∣2ρ1/2
n

∑
l<m

ũil

t
3/2
l

(alm − plm)xkl

∣∣∣∣≥ s

]
≤ 2 exp

(
− s2

2ρn

∑
l<m t−3

l ũ2
ilx

2
kl

)

≤ 2 exp
(
− s2

2nρn

∑
l t

−3
l ũ2

ilx
2
kl

)

≤ 2 exp
(
− s2

2nρnδ
−3
n
∑

l ũ
2
il

)

≤ 2 exp
(
− s2δ3

n

2nρn‖ũi‖2

)

≤ 2 exp
(
− s2δ3

2nρn

)
,

where we used the fact that x2
kl ≤ 1 for all indices k and l [as (A,X) ∼ RDPG(F )].

We thus have

(B.31) ρ1/2
n ũ�

i T−3/2(D − T)xk = OP

(
(nρn)

−1)
A union bound over the d entries of ρ

1/2
n ũ�

i T−3/2(T − D)X along with the bound

‖ρ1/2
n T−1/2X‖ = OP(1) yield that ζ

(1)
ij = OP((nρn)

−1). An identical argument

also yield that ζ
(2)
ij = OP((nρn)

−1). Therefore, ζij = O((nρn)
−1). A union bound

over the indices i, j ∈ {1,2, . . . , d} also implies

T−1/2PT−3/2(T − D)ŨP = OP

(
(nρn)

−1),(B.32)

Ũ�
P T−3/2(T − D)PD−1/2 = OP

(
(nρn)

−1),(B.33)

Ũ�
P
(
D−1/2PD−1/2 − T−1/2PT−1/2)ŨP = OP

(
(nρn)

−1).(B.34)

We thus derive equation (B.15) and equation (B.16). Equation (B.17) follows from
equation (B.29), equation (B.30) and equation (B.34). Lemma B.4 is thereby es-
tablished.

Lemma B.3 now follows directly from Lemma B.4. Indeed, by equation (B.14)
and equation (B.17), we have

(B.35)

Ũ�
P ŨAS̃A − S̃PŨ�

P ŨA

= Ũ�
P L(A)ŨA − Ũ�

P L(P)ŨA

= Ũ�
P
(
L(A) −L(P)

)(
ŨA − ŨPŨ�

P ŨA + ŨPŨ�
P ŨA

)
= OP

(
(nρn)

−1)+ ŨP
(
L(A) −L(P)

)
ŨPŨ�

P ŨA

= OP

(
(nρn)

−1).
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Equation (B.8) is thereby established. We now establish equation (B.9), noting that
the same argument applies also to equation (B.10). For i, j ∈ {1,2, . . . , d}, let rij
denote the ij th entry of Ũ�

P ŨA. Also, for i ∈ {1,2, . . . , d}, let λ̃i(A) and λ̃j (P)

denote the ith eigenvalue of L(A) and L(P), respectively. Then the ij th entry of

Ũ�
P ŨAS̃1/2

A − S̃1/2
P Ũ�

P ŨA is of the form

rij
(̃
λ

1/2
j (A) − λ̃

1/2
i (P)

)= rij (̃λj (A) − λ̃i(P))

λ̃
1/2
j (A) + λ̃

1/2
i (P))

.

Since λ̃i(A) = �P(1) and λ̃j (P) = �P(1), the previous expression and equation
(B.35) yield

rij
(̃
λ

1/2
j (A) − λ̃

1/2
i (P)

)= OP

(
(nρn)

−1).
A union bound over i, j then implies equation (B.9).

B.4. Proof of equation (3.4) and equation (3.5). Recall equation (3.1), that
is, with ζ = (X̆W − X̃), we have

‖ζ‖F =
∥∥∥∥T−1/2(A − P)T−1/2X̃

(
X̃�X̃

)−1 + 1

2
T−1(T − D)X̃

∥∥∥∥
F

+ OP

(
(nρn)

−1).
The above implies

‖ζ‖2
F = ∥∥T−1/2(A − P)T−1/2X̃

(
X̃�X̃

)−1∥∥2
F + 1

4

∥∥T−1(T − D)X̃
∥∥2
F

+ tr X̃�T−1(T − D)T−1/2(A − P)T−1/2X̃
(
X̃�X̃

)−1 + OP

(
(nρn)

−3/2).
We show equation (3.4) and equation (3.5) by analyzing each term in the right-
hand side of the above display. In particular, we shall show that these terms are
concentrated around their expected values; evaluation of these expected values, in
the limit as n → ∞, yield equation (3.4) and equation (3.5).

We first consider the term Z = ‖T−1/2(A−P)T−1/2X̃(X̃�X̃)−1‖2
F . We note that

conditional on P, Z is a function of the n(n − 1)/2 independent random variables
{aij }i<j . It is therefore expected that Z will be concentrated around its expectation
E[Z] where the expectation is taken with respect to A, conditional on P. We verify
this below.

Let A′ = (a′
ij ) be an independent copy of A, that is, the upper triangular entries

of A′ are independent Bernoulli random variables with mean parameters {pij }i<j .
Let A(ij) be the matrix obtained by replacing the (i, j) and (j, i) entries of A by a′

ij

and let Z(ij) = ‖T−1/2(A(ij) − P)T−1/2X̃(X̃�X̃)−1‖2
F . We show concentration of

Z around E[Z] using the following concentration inequality from [8], Theorem 5
and Theorem 6.
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THEOREM B.5. Assume that there exists positive constants a and b such that∑
i<j

(
Z − Z(ij))2 ≤ aZ + b.

Then for all t > 0,

P
[
Z −E[Z] ≥ t

]≤ exp
( −t2

4aE[Z] + 4b + 2at

)
,(B.36)

P
[
Z −E[Z] ≤ −t

]≤ exp
( −t2

4aE[Z]
)
.(B.37)

We now bound
∑

i<j (Z − Z(ij))2. For notational convenience, we denote the
ith row of X̃(X̃�X̃)−1 by ζi and the ith row of T−1/2(A − P)T−1/2X̃(X̃�X̃)−1 by
ξi . We shall also denote the inner product between vectors in Euclidean space by
〈·, ·〉. For each i, ξi =∑n

j=1
aij−pij√

ti tj
ζj , and hence

Z =
n∑

k=1

ξ2
k =

n∑
k=1

n∑
�=1

n∑
�′=1

(ak� − pk�)(ak�′ − pk�′)

tk
√

t�t�′
〈ζ�, ζ�′ 〉.

Now A and A(ij) differs possibly only in the (i, j) and (j, i) entries; furthermore,
the {ti} do not depend on the entries of A and A(ij). We thus have, upon considering
the cases where k = i and � = j , k = j and � = i, k = i and �′ = j , and k = j and
�′ = i, that

Z − Z(ij) =
n∑

�′=1

(aij − a′
ij )(ai�′ − pi�′)

ti
√

tj t�′
〈ζj , ζ�′ 〉

+
n∑

�′=1

(aji − a′
ji)(aj�′ − pj�′)

tj
√

ti t�′
〈ζi, ζ�′ 〉

+
n∑

�=1

(ai� − pi�)(aij − a′
ij )

ti
√

tj t�
〈ζj , ζ�〉

+
n∑

�=1

(aj� − pj�)(aji − a′
ji)

tj
√

ti t�
〈ζi, ζ�〉.

Since aij = aji and a′
ij = a′

ji , the above simplifies to

Z − Z(ij) = 2
(
aij − a′

ij

) n∑
�=1

(
ai� − pi�

ti
√

tj t�
〈ζj , ζ�〉 + aj� − pj�

tj
√

ti t�
〈ζi, ζ�〉

)
.

We then have, since aij and a′
ij are binary variables, that is, |aij − a′

ij | ≤ 1, that

(
Z − Z(ij))2 ≤ 4

(
n∑

�=1

ai� − pi�

ti
√

tj t�
〈ζj , ζ�〉

)2

+ 4

(
n∑

�=1

aj� − pj�

tj
√

ti t�
〈ζi, ζ�〉

)2

.
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Now (tj tl)
−1/2〈ζj , ζl〉 is the (l, j)th entry of T−1/2X̃(X̃�X̃)−1(X̃�X̃)−1X̃T−1/2.

Thus
∑n

�=1
ai�−pi�

ti
√

tj t�
〈ζj , ζ�〉 is the (i, j)th entry of T−1(A − P)T−1/2X̃(X̃�X̃)−2 ×

X̃T−1/2. We therefore have∑
i<j

(
Z − Z(ij))2

≤ 4
∑
i<j

(
n∑

�=1

ai� − pi�

ti
√

tj t�
〈ζj , ζ�〉

)2

+ 4
∑
i<j

(
n∑

�=1

aj� − pj�

tj
√

ti t�
〈ζi, ζ�〉

)2

≤ 8
n∑

i=1

n∑
j=1

(
n∑

�=1

ai� − pi�

ti
√

tj t�
〈ζj , ζ�〉

)2

≤ 8
∥∥T−1(A − P)T−1/2X̃

(
X̃�X̃

)−2X̃T−1/2∥∥2
F

≤ 8
∥∥T−1/2(A − P)T−1/2X̃

(
X̃�X̃

)−1∥∥2
F

∥∥(X̃�X̃
)−1X̃T−1/2∥∥2∥∥T−1/2∥∥2

≤ 8Z
∥∥(X̃�X̃

)−1X̃T−1/2∥∥2∥∥T−1/2∥∥2

≤ 8Z
∥∥ρ1/2

n

(
X�T−1X

)−1XT−1∥∥2∥∥T−1/2∥∥2

≤ 8ρnZ
∥∥(X�T−1X

)−1∥∥2‖X‖2∥∥T−1∥∥2∥∥T−1/2∥∥2

≤ 8ρnZ
∥∥(X�T−1X

)−1∥∥2
nδ−3

≤ CρnZ
∥∥(X�T−1X

)−1∥∥2
n(nρn)

−3

≤ C(nρn)
−2Z

for some constant C; note that C denote a generic constant, not depending on Z,
in the above display and could change from line to line. In the above derivation,
we have used the fact that C0

√
n ≤ ‖X‖ ≤ √

n for some constant C0 > 0 and
‖T‖ ≥ δ ≥ C1nρn for some constant C1 > 0.

We then have, by Theorem B.5, that for all t > 0,

P
[
Z −E[Z] > t

]≤ exp
( −Ct2

(nρn)−2E[Z] + 2(nρn)−2t

)
,(B.38)

P
[
Z −E[Z] > −t

]≤ exp
( −Ct2

(nρn)−2E[Z]
)
.(B.39)

In addition, it is straightforward to see that E[Z] ≤ C3(nρn)
−1, for some constant

C3 > 0; here, the expectation is taken with respect to A conditional on P. We
therefore have that there exists a constant C > 0 such that t = C(nρn)

−3/2 log1/2 n
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yield

(B.40)
Z = E[Z] + OP

(
(nρn)

−3/2 log1/2)
= E

∥∥T−1/2(A − P)T−1/2X̃
(
X̃�X̃

)−1∥∥2
F + OP

(
(nρn)

−3/2 log1/2).
We now evaluate E[Z]. We have

E[Z] = E
[
tr
(
X̃�X̃

)−1X̃�T−1/2(A − P)T−1(A − P)T−1/2X̃
(
X̃�X̃

)−1]
= tr

(
X̃�X̃

)−1X̃�
E
[
T−1/2(A − P)T−1(A − P)T−1/2]X̃(X̃�X̃

)−1
.

We note that T−1/2(A−P)T−1(A−P)T−1/2 is a n×n matrix whose ij th entry
ξij is of the form

ξij :=∑
k

t
−1/2
i t−1

k t
−1/2
j (aik − pik)(akj − pkj )

and hence

E[ξij ] =
⎧⎪⎨⎪⎩

0 if i �= j,∑
k

t−1
i t−1

k pik(1 − pik) if i = j .

We shall denote by M̃ the diagonal matrix (E[ξij ]) as given above. Then

nρnE[Z] = nρn tr
(
X̃�X̃

)−1X̃�M̃X̃
(
X̃�X̃

)−1
.

We first recall from equation (B.2) that X̃�X̃
a.s.→ 
̃ and (X̃�X̃)−1 a.s.→ 
̃−1 as

n → ∞. We next consider nρnX̃�M̃X̃. Let m̃i denote the ith diagonal element
of M̃. We have

nρnX̃�M̃X̃ = nρn

∑
i

ρnXiX
�
i m̃i

ti

= nρn

∑
i

ρnXiX
�
i m̃i

ρn

∑
j X�

i Xj

=∑
i

XiX
�
i nρnm̃i

nX�
i μ

+∑
i

XiX
�
i nρnm̃i

nX�
i μ

(
nX�

i μ −∑
j X�

i Xj∑
j X�

i Xj

)
.

Similar to our derivation of equation (B.2), we have

−
(

sup
j∈[n]

nρnm̃j cj

)∑
i

XiX
�
i

nX�
i μ

�∑
i

XiX
�
i nρnm̃i

nX�
i μ

(
nX�

i μ −∑
j X�

i Xj∑
j X�

i XJ

)

�
(

sup
j∈[n]

nρnm̃j cj

)∑
i

XiX
�
i

nX�
i μ

.
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In addition, for each index i,

nρnm̃i = nρn

∑
k

t−1
i t−1

k pik(1 − pik) = OP(1)

and hence supi∈[n] nρnm̃ici
a.s.−→ 0 as n → ∞. Therefore,

(B.41)
∑
i

XiX
�
i nρnm̃i

nX�
i μ

(
nX�

i μ −∑
j X�

i Xj∑
j X�

i XJ

)
a.s−→ 0

as n → ∞. We thus only need to consider

∑
i

XiX
�
i nρnm̃i

nX�
i μ

=∑
i

∑
k

ρnXiX
�
i pik(1 − pik)

(X�
i μ)ti tk

=∑
i

∑
k

ρnXiX
�
i ρnX

�
i Xk(1 − ρnX

�
i Xk)

(X�
i μ)

∑
j ρnX

�
i Xj

∑
l ρnX

�
k Xl

=∑
i

∑
k

XiX
�
i (X�

i Xk − ρnX
�
i XkX

�
k Xi)

(X�
i μ)

∑
j X�

i Xj

∑
l X

�
k Xl

=∑
i

∑
k

XiX
�
i (X�

i Xk − ρnX
�
i XkX

�
k Xi)

n2(X�
i μ)2(X�

k μ)

+∑
i

∑
k

XiX
�
i (X�

i Xk − ρnX
�
i XkX

�
k Xi)

n2(X�
i μ)2(X�

k μ)

×
(

n2(X�
i μ)(X�

k μ) −∑
j X�

i Xj

∑
l X

�
k Xl∑

j X�
i Xj

∑
l X

�
k Xl

)
.

An analogous argument to that used in deriving equation (B.41) yields

∑
i

∑
k

XiX
�
i (X�

i Xk − ρnX
�
i XkX

�
k Xi)

n2(X�
i μ)2(X�

k μ)

×
(

n2(X�
i μ)(X�

k μ) −∑
j X�

i Xj

∑
l X

�
k Xl∑

j X�
i Xj

∑
l X

�
k Xl

)
a.s.−→ 0

as n → ∞. It thus remains to evaluate

∑
i

∑
k

XiX
�
i (X�

i Xk − ρnX
�
i XkX

�
k Xi)

n2(X�
i μ)2(X�

k μ)
.
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The strong law of large numbers implies

∑
i

∑
k

XiX
�
i X�

i Xk

n2(X�
i μ)2(X�

k μ)

a.s.−→ E

[
X1X

�
1 X�

1 μ̃

(X�
1 μ)2

]
,

ρn

∑
i

∑
k

XiX
�
i X�

i XkX
�
k Xi

n2(X�
i μ)2(X�

k μ)
→ ρnE

[
X1X

�
1 X�

1 
̃X1

(X�
1 μ)2

]
.

We invoke Slutsky’s theorem and conclude that

(B.42)

nρnZ = nρn

∥∥T−1/2(A − P)T−1/2X̃
(
X̃�X̃

)−1∥∥2
F

= nρn tr
(
X̃�X̃

)−1X̃�M̃X̃
(
X̃�X̃

)−1 + OP

(
(nρn)

−1/2 log1/2 n
)

→ tr 
̃−1
E

[
X1X

�
1 (X�

1 μ̃ − ρnX
�
1 
̃X1)

(X�
1 μ)2

]

̃−1.

We next bound Z := ‖(T − D)T−1X̃‖2
F . Z is again a function of the n(n− 1)/2

independent random variables {aij }i<j . Let Z(ij) = ‖(T − D(ij))T−1X̃‖ where
D(ij) is the diagonal matrix whose diagonal entries are the degrees of A(ij); we
recall that A(ij) is obtained by replacing the (i, j) and (j, i) entries of A with an
independent copy a′

ij of aij . We now bound
∑

i<j (Z − Z(ij))2. Let X̃i denote the

ith row of X̃. Then

Z =∑
k

(tk − dk)
2

t2
k

‖X̃k‖2,

and hence (with d
(ij)
k denoting the degree of vertex k in A(ij))

Z − Z(ij) =∑
k

(
(tk − dk)

2 − (
tk − d

(ij)
k

)2)‖X̃k‖2

t2
k

=∑
k

(
d

(ij)
k − dk

)(
2tk − dk − d

(ij)
k

)‖X̃k‖2

t2
k

= (
a′
ij − aij

)((
2ti − 2di + aij − a′

ij

)‖X̃i‖2

t2
i

+ (
2tj − 2dj + aij − a′

ij

)‖X̃j‖2

t2
j

)
.
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Using the fact that (b + c)2 ≤ 2b2 + 2c2 and that aij = aji , a′
ij = a′

ji we have

(
Z − Z(ij))2 ≤ 2

(
a′
ij − aij

)2(2ti − 2di + aij − a′
ij

)2 ‖X̃i‖4

t4
i

+ 2
(
a′
ji − aji

)2(2tj − 2dj + aji − a′
ji

)2 ‖X̃j‖4

t4
j

,

from which we derive∑
i<j

(
Z − Z(ij))2 ≤

n∑
i=1

n∑
j=1

(
a′
ij − aij

)2(16(ti − di)
2 + 4

)‖X̃i‖4

t4
i

≤
n∑

i=1

n∑
j=1

(
16(ti − di)

2 + 4
)‖X̃i‖4

t4
i

≤
n∑

i=1

n∑
j=1

(
16(ti − di)

2 + 4
)‖X̃i‖2

t2
i

ρnt
−1
i ‖Xi‖2

t2
i

≤ C

n∑
i=1

n∑
j=1

(
16(ti − di)

2 + 4
)‖X̃i‖2

t2
i

n−3ρ−2
n

≤ C1(nρn)
−2Z + C2(nρn)

−4 ≤ C3(nρn)
−2Z

for some constants C1,C2,C3 > 0. Once again, we apply Theorem B.5 to conclude

P
[
Z −E[Z] > t

]≤ exp
( −Ct2

(nρn)−2E[Z] + 2(nρn)−2t

)
,(B.43)

P
[
Z −E[Z] > −t

]≤ exp
( −Ct2

(nρn)−2E[Z]
)
.(B.44)

In addition, E[Z] = E[∑k(tk − dk)
2t−2

k ‖X̃k‖2] ≤ C(nρn)
−1 for some constant

C > 0; here, the expectation is taken with respect to D conditional on P. We thus
conclude

(B.45)
Z = ∥∥(T − D)T−1X̃

∥∥2
F

= E[∥∥T − D)T−1X̃
∥∥2
F + OP

(
(nρn)

−3/2 log1/2(n)
)
.

We now evaluate nρnE[‖1
2T−1(T − D)X̃‖2

F ]. We only sketch the argument, noting
that the details follow in a similar manner to that used in deriving equation (B.42).
We have that

nρnE

[∥∥∥∥1

2
T−1(T − D)X̃

∥∥∥∥2

F

]
= nρn

1

4
tr X̃�T−1

E
[
(T − D)2]T−1X̃.
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Now T−1
E[(T − D)2]T−1 is a diagonal matrix whose ith diagonal entry is of the

form t−2
i

∑
j pij (1 − pij ). Hence,

nρnX̃�T−1
E
[
(T − D)2]T−1X̃

= nρ2
n

∑
i

t−3
i XiX

�
i

∑
j

pij (1 − pij )

=∑
i

nρ2
nXiX

�
i

(nρnX
�
i μ)−3

∑
j

ρnX
�
i Xj

(
1 − ρnX

�
i Xj

)+ oP(1)

=∑
i

n−1 XiX
�
i

(X�
i μ)3

∑
j

n−1X�
i Xj

(
1 − ρnX

�
i Xj

)+ oP(1)

=∑
i

n−1 XiX
�
i

(X�
i μ)3

∑
j

n−1X�
i Xj

(
1 − ρnX

�
j Xi

)+ oP(1).

We therefore have

(B.46) nρnE

[∥∥∥∥1

2
T−1(T − D)X̃

∥∥∥∥2

F

]
a.s.−→ 1

4
tr(E

[
XiX

�
i

(X�
i μ)2

(
1 − ρnX

�
i 
Xi

(X�
i μ)3

)]
as n → ∞.

Finally, we consider Z := nρn tr X̃�T−1(T−D)T−1/2(A−P)T−1/2X̃(X̃�X̃)−1.
A similar, albeit slightly more tedious argument to that used in deriving equation
(B.40) and equation (B.45) yields

Z = tr X̃�T−1(T − D)T−1/2(A − P)T−1/2X̃
(
X̃�X̃

)−1

= trE
[
X̃�T−1(T − D)T−1/2(A − P)T−1/2X̃

(
X̃�X̃

)−1]
+ OP

(
(nρn)

−3/2 log1/2 n
)
.

We now evaluate E[Z]. We have

E[Z] = tr X̃�T−3/2
E
[
(T − D)(A − P)

]
T−1/2X̃

(
X̃�X̃

)−1
.

Now the ij th entry of E[(A − P)(T − D)] is of the form

E
[
(aij − pij )(tj − dj )

]= E

[
(aij − pij )

∑
k

(pjk − ajk)

]
=∑

k

E
[
(aij − pij )(pkj − akj )

]= −pij (1 − pij ),
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and hence, with ◦ denoting the Hadamard product of matrices,

(B.47)

nρnE[Z] = −nρn tr X̃�T−3/2(P − P ◦ P)T−1/2X̃
(
X̃�X̃

)−1

= −nρn tr X̃�T−1(T−1/2PT−1/2

− T−1/2(P ◦ P)T−1/2)X̃(X̃�X̃
)−1

= −nρn tr X̃�T−1(X̃X̃� − T−1/2(P ◦ P)T−1/2)X̃(X̃�X̃
)−1

= −nρn tr X̃�T−1X̃ + nρn tr X̃�T−3/2(P ◦ P)T−1/2X̃
(
X̃�X̃

)−1
.

We first consider the term nρn tr X̃�T−1X̃. We have

nρn tr X̃�T−1X̃ = −nρn

∑
i

ρnXiX
�
i

t2
i

= −1

n

∑
i

XiX
�
i

(X�
i μ)2

+ oP(1),

and hence

(B.48) −nρn tr X̃�T−1X̃
a.s.−→ − trE

[
X1X

�
1

(X�
1 μ)2

]
.

Finally, we consider the term nρn tr X̃�T−3/2(P ◦ P)T−1/2X̃(X̃�X̃)−1. We recall
that (X̃�X̃)−1 a.s.−→ 
̃−1 as n → ∞. In addition,

nρnX̃�T−3/2(P ◦ P)T−1/2X̃ = nρ2
nX�T−2(P ◦ P)T−1X

= nρ2
n

∑
i

∑
j

p2
ij

t2
i tj

XiX
�
j

= nρ2
n

∑
i

∑
j

p2
ij

(nρn)3(X�
i μ)2X�

j μ
XiX

�
j + oP(1)

= nρ2
n

∑
i

∑
j

ρ2
n(X�

i Xj )
2

(nρn)3(X�
i μ)2X�

j μ
XiX

�
j + oP(1)

= ρn

∑
i

1

n

∑
j

1

n

X�
i XjX

�
j Xi

(X�
i μ)2X�

j μ
XiX

�
j + oP(1).

We thus conclude

(B.49)

nρnX̃�T−3/2(P ◦ P)T−1/2X̃
(
X̃�X̃

)−1

a.s.−→ ρn trE
[

X�
1 X2X

�
2 X1

(X�
1 μ)2X�

2 μ
X1X

�
2

]

̃−1,



EIGENVECTORS OF NORMALIZED LAPLACIAN MATRICES 2413

where the expectation is taken with respect to X1,X2 being i.i.d. drawn from F .
Combining equation (B.48) and equation (B.49) yield

(B.50)

nρn trE
[
X̃�T−1(T − D)T−1/2(A − P)T−1/2X̃

(
X̃�X̃

)−1]
a.s.−→ ρn trE

[
X�

1 X2X
�
2 X1

(X�
1 μ)2X�

2 μ
X1X

�
2

]

̃−1 − trE

[
X1X

�
1

(X�
1 μ)2

]
.

Equation (3.4) and equation (3.5) then follows directly from equation (B.42), equa-
tion (B.46) and equation (B.50).
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