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SEMIPARAMETRIC EFFICIENCY BOUNDS FOR
HIGH-DIMENSIONAL MODELS

BY JANA JANKOVÁ AND SARA VAN DE GEER

ETH Zürich

Asymptotic lower bounds for estimation play a fundamental role in as-
sessing the quality of statistical procedures. In this paper, we propose a
framework for obtaining semiparametric efficiency bounds for sparse high-
dimensional models, where the dimension of the parameter is larger than
the sample size. We adopt a semiparametric point of view: we concentrate
on one-dimensional functions of a high-dimensional parameter. We follow
two different approaches to reach the lower bounds: asymptotic Cramér–Rao
bounds and Le Cam’s type of analysis. Both of these approaches allow us to
define a class of asymptotically unbiased or “regular” estimators for which
a lower bound is derived. Consequently, we show that certain estimators
obtained by de-sparsifying (or de-biasing) an �1-penalized M-estimator are
asymptotically unbiased and achieve the lower bound on the variance: thus in
this sense they are asymptotically efficient. The paper discusses in detail the
linear regression model and the Gaussian graphical model.

1. Introduction. Following the development of numerous methods for high-
dimensional estimation, more recently the need for statistical inference has
emerged. A number of papers have since studied the problem and proposed con-
structions of estimators which are asymptotically normally distributed, and hence
lead to inference. These results naturally give rise to the question of their optimal-
ity. This motivates us to study the question whether we can establish asymptotic
efficiency bounds in high-dimensional models and whether we can construct an
estimator achieving these bounds.

To introduce the setting, suppose that we observe a sample X(1), . . . ,X(n) which
is distributed according to a probability distribution Pβ that depends on an un-
known high-dimensional parameter β ∈ B ⊂ R

p . The dimension p of the param-
eter can be much larger than the sample size n. A major structural assumption
we consider in this paper is sparsity in the high-dimensional parameter. In these
sparse high-dimensional settings, a common approach to estimation is based on
regularized M-estimators, where the regularization is in terms of the �1-penalty.
This approach has been studied extensively, and under several settings, it produces
near-oracle estimators of β under certain sparsity conditions (and some further
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conditions). However, the oracle properties of the regularized estimators come at a
price: the regularization introduces bias by shrinking the estimated coefficients to-
wards zero. Hence, the regularized approach does not easily yield estimators which
are asymptotically normally distributed. This makes it difficult to establish results
for statistical inference.

Several streams of work have emerged that studied “post-regularization infer-
ence”, which focused on construction of methodology for inference, with some
preliminary use of regularized estimators. This was mostly considered for estima-
tion of low-dimensional parameters of the high-dimensional vector. One stream
of work concentrates on “de-sparsifying” or “de-biasing” procedures, which were
studied for the linear model [Zhang and Zhang (2014), van de Geer et al. (2014),
Javanmard and Montanari (2014a, 2014b, 2015)], for generalized linear models
[van de Geer et al. (2014)] and some special cases of nonlinear models, such as
undirected graphical models [Janková and van de Geer (2014, 2017)]; we also re-
fer here to the book van de Geer (2016). This approach uses the �1-regularized
M-estimator as an initial estimator and implements a bias correction step which
may be interpreted as one iteration using the Newton–Raphson method. Another
stream of work studies the use of orthogonalizing conditions to define a new post-
regularization estimator; this approach was considered for general models under
high-level conditions in Chernozhukov, Hansen and Spindler (2015). Further ex-
amples of high-dimensional inference include the works Ren et al. (2015), Gao,
Ma and Zhou (2017) or data splitting methods [Meinshausen and Yu (2009)]. The
work in essence shows an important result: an asymptotically normal estimator for
low-dimensional parameters can be constructed in several of the common models.

Further key questions that were studied concern optimality properties of these
de-sparsified estimators. In particular, what are lower bounds on the rate of conver-
gence in the supremum norm? These questions have been investigated for the lin-
ear regression with random design [Cai and Guo (2017)] and for Gaussian graph-
ical models [Ren et al. (2015)] and other special cases of nonlinear models [Gao,
Ma and Zhou (2017)]. The results in these settings reveal several important find-
ings, which we discuss for the linear regression and graphical models. The mini-
max rates for estimation of single elements (of the vector of regression coefficients
or the precision matrix) are shown to satisfy

(1) inf
T

sup
β∈B

Eβ

∣∣T (
X(1), . . . ,X(n)) − βi

∣∣ ≥ C(1/
√

n + s logp/n),

for some constant C > 0, where βi ∈ R is a single regression coefficient or a single
entry in a precision matrix and the unknown sparsity s is the number of nonzero
entries in the regression vector or, in the case of Gaussian graphical models, in
rows of a precision matrix. The infimum in (1) is taken over all estimators T . The
statement (1) further requires some mild regularity conditions [see Cai and Guo
(2017), Ren et al. (2015)]. Naturally, (1) implies that the parametric rate is optimal:
it cannot be improved in order. On the other hand, if there is insufficient sparsity,
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in particular when the sparsity s satisfies s � n/ logp, the minimax lower bounds
diverge. This is no surprise as the oracle inequalities for certain M-estimators have
only been shown under the condition s = o(n/ logp). In the intermediate sparsity
regime when

√
n/ logp ≤ s < n/ logp, the parametric rate cannot be achieved.

As for the upper bounds, the parametric rate 1/
√

n can be achieved for estima-
tion of single entries. This basically follows directly from the asymptotic normality
of the de-sparsified estimators, if sparsity of β is of small order

√
n/ logp. This

sparsity condition is stronger than the condition necessary for oracle inequalities
[s = o(n/ logp)]. However, as we discuss in Section 8.6, the sparsity condition
s = o(

√
n/ logp) is essentially necessary for asymptotically normal estimation.

To summarize the findings, the analysis of the minimax rates revealed that under
sufficient sparsity of small order

√
n/ logp, the parametric rate of order 1/

√
n is

optimal, and the de-sparsified estimator achieves it (in the above mentioned cases).
In this paper, we attempt to answer further questions that arise concerning the

optimality of asymptotically normal estimators in high-dimensional settings. The
analysis on minimax rates does not address an important question. The derived
lower bound (1) does not reveal any explicit lower bounds on the (asymptotic)
variance. The question of efficiency in the spirit of the famous Cramér–Rao result
thus remains open in the high-dimensional setting. This motivates us to pose the
following questions. Can we establish lower bounds on the variance, similar to the
Cramér–Rao bounds in the (semi)parametric setting, also in the high-dimensional
setting? And if yes, can we construct an estimator that achieves these bounds? We
give an affirmative answer to these questions.

2. Our contributions. Asymptotic efficiency of estimators was thoroughly
studied in the traditional settings; we refer the reader to the books van der Vaart
(1998), Bickel et al. (1993) and the references therein. These results are however
developed for fixed models which do not change with n, and hence they cannot be
applied to high-dimensional settings where the dimension of the parameter may
grow with the sample size.

In this paper, we develop a framework for establishing asymptotic efficiency of
estimators in high-dimensional models changing with n. We concentrate on two
approaches towards deriving the lower efficiency bounds: asymptotic Cramér–Rao
bounds and Le Cam’s approach.

First, we develop an asymptotic version of a semiparametric Cramér–Rao lower
bound for sparse high-dimensional linear and graphical models. To this end, we
propose a strong asymptotic unbiasedness assumption. Loosely speaking, this un-
biasedness assumption measures the rate at which the bias vanishes in shrinking
neighbourhoods of the true distribution of “size” 1/

√
n. We consider the linear

model and the Gaussian graphical model and for each of them, we establish lower
bounds on the variance of any asymptotically unbiased estimator. The proposed
framework might be applicable to other high-dimensional models in a similar
spirit.
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Consequently, for linear regression and Gaussian graphical models, we show
that the de-sparsified estimator is an asymptotically unbiased estimator and is
asymptotically efficient, that is, it reaches the derived lower bound. Thus, com-
pared to previous results, which only showed asymptotic normality or minimaxity
(up to order in n) of the de-sparsified estimator, we show that it is in terms of
variance the best among all asymptotically unbiased estimators: thus in this sense
asymptotically efficient.

In the second approach, we extend some of the classical results of Le Cam on
local asymptotic normality to the high-dimensional setting. The result underlies
a likelihood expansion analysis and involves a careful adjustment of Le Cam’s
arguments to the high-dimensional setting. The result obtained gives us the limiting
distribution of an asymptotically linear estimator under a small perturbation of the
parameter. We next show for the linear model that the de-sparsified estimator is
regular: it converges locally uniformly to the limiting normal distribution with zero
mean, and among all regular estimators it has the smallest asymptotic variance.

The two approaches above are strongly related, but one does not clearly domi-
nate the other. A more detailed comparison is discussed in Section 11.

As a by-product of our analysis, we establish new oracle results for the Lasso.
Typical analysis considers oracle inequalities for the prediction error and the �1-
error which hold with high-probability. We strengthen these oracle inequalities by
showing that they also hold for the mean �1-error and for higher orders of this error.
These oracle inequalities are needed to claim strong asymptotic unbiasedness of
the de-sparsified estimators.

3. Relation to prior work. As pointed out in Section 2, the traditional results
as in, for instance, van der Vaart (1998) or Bickel et al. (1993), are not directly
applicable to the high-dimensional setting. We extend the traditional approach to
semiparametric efficiency to the context of high-dimensional models which re-
quires adjustment of the arguments to a model changing with n and the sparsity
of the model is required to keep remainders in approximate expansions under con-
trol. Our main results show that the lower bounds for high-dimensional models
are analogous to those for parametric models, however, a new message for high-
dimensional models is that to obtain the parametric lower bound, we require that
the “worst possible sub-direction” is sparse. Without this condition, we are unable
to claim asymptotic efficiency of the de-sparsified Lasso estimator.

Regarding the upper bounds, to construct asymptotically efficient estimators,
our work follows the methodology from the works van de Geer et al. (2014) and
Janková and van de Geer (2017), where de-sparsified Lasso estimators are pro-
posed for the linear regression and for undirected graphical models. We borrow
these constructions with some small adjustments. However, the upper bounds de-
rived for the de-sparsified estimators in the mentioned papers are not sufficient
for the present analysis: we need to show a stronger oracle bound which holds
in expectation. Moreover, we extend the results for estimation of single entries as
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considered in van de Geer et al. (2014) and Janková and van de Geer (2017) to
linear functionals.

Asymptotic efficiency of estimators in high-dimensional settings changing with
n was first considered in the paper van de Geer et al. (2014). The paper provides
a formulation of asymptotic efficiency of entries of the de-biased Lasso. The ap-
proach is based on embedding the high-dimensional model into a fixed (i.e., not
changing with n) infinite-dimensional model, for which semiparametric efficiency
bounds are available [see van der Vaart (1998)]. However, such an embedding
requires a very special model structure. In the present paper, we do not use an
embedding but instead directly develop the theory for models changing with n.

4. Organization of the paper. The particular sections of the paper are divided
as follows. In Section 7, we state preliminary results on oracle inequalities for the
mean �1-error of the Lasso estimator. In Section 6, we propose a strong asymptotic
unbiasedness assumption. Section 8 gives lower and upper bounds on the variance
of asymptotically unbiased estimators in the linear model, considering random
design in Section 8.3 and fixed design in Section 8.4. In Section 9, we derive
lower and upper bounds on the variance of asymptotically unbiased estimators in
Gaussian graphical models. Section 10 contains an extension of Le Cam’s lemma
to the high-dimensional setting, which is applicable to general nonlinear models.
Section 11 summarizes the results, conclusions and some open questions. Finally,
the proofs are contained in the Supplementary Material [Janková and van de Geer
(2018)].

5. Notation. For a vector x = (x1, . . . , xp) ∈ R
p , we denote its �p norm by

‖x‖p := (
∑p

i=1 x
p
i )1/p for p ≥ 1. We further let ‖x‖∞ := maxi=1,...,p |xi | and

‖x‖0 = |{i : i ∈ {1, . . . , p}, xi 
= 0}|. For a vector x ∈ R
n, we denote ‖x‖2

n :=
‖x‖2

2/n (with some abuse of notation). By ei , we denote a p-dimensional vec-
tor of zeros with a one at position i. For a matrix A ∈ R

m×n, we denote its
(i, j)th entry by Aij , i = 1, . . . ,m, j = 1, . . . , n. Further, we let ‖A‖∞ :=
maxi=1,...,m,j=1,...,n |Aij |, |||A1||| := maxi=1,...,m

∑n
j=1 |Aij | and we let ‖A‖F de-

note the Frobenius norm of A. We denote its j th column by Aj . By �min(A) and
�max(A) we denote the minimum and maximum eigenvalue of a symmetric matrix
A, respectively. We use tr(A) to denote the trace of the matrix A. We recall here
that for symmetric matrices A,B ∈ R

p×p it holds that vec(A)T vec(B) = tr(AB),
where vec(A) is the vectorized version of a matrix A obtained by stacking columns
of A on each other.

For real sequences fn, gn, we write fn = O(gn) or fn � gn if |fn| ≤ C|gn| for
some C > 0 independent of n for all n. We write fn � gn if both fn = O(gn) and
1/fn = O(1/gn) hold. Finally, fn = o(gn) if limn→∞ fn/gn = 0. For a sequence of
random variables Xn, we write Xn = OP (fn) if Xn/fn is bounded in probability.
We write Xn = oP (1) if Xn converges to zero in probability. We use � to denote
the convergence in distribution. By 1T , we denote the indicator function of the
set T . The identity matrix is denoted by I .
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6. Asymptotic unbiasedness. This section defines the concept of strong
asymptotic unbiasedness that will be needed for the linear and graphical model.
We turn to the linear model in the next section. Consider a probability distribution
Pβ on some observation space X , where the parameter β lies is a p-dimensional
parameter space B ⊂R

p . We consider the parameter set

(2) B(dn) := {
β ∈ B : ‖β‖0 ≤ dn,‖β‖2 ≤ C

}
,

where C > 0 is some universal constant and dn is a known sequence that will be
specified later. We further define an �2-neighbourhood of a point β ∈ B(dn) as
follows:

(3) B(β, ε) := {
β̃ ∈ B(dn) : ‖β̃ − β‖2 ≤ ε

}
.

We remark that all the parameter vectors appearing in this paper are sequences de-
pending on n. In general, we omit the index n, except for situations where omitting
the index could lead to confusion.

Let g : B → R and let the parameter of interest be g(β). Our goal is to derive
an asymptotic lower bound for the variance of an estimator Tn of g(β), which is
in some sense asymptotically unbiased. To this end, we define strong asymptotic
unbiasedness as follows.

DEFINITION 1. Let mn be a sequence such that n = o(mn). We say that Tn

is a strongly asymptotically unbiased estimator of g(β) at β0 (in a neighbourhood
of size c) with a rate mn if it holds that varβ0(Tn) = O(1/n) and for every β ∈
B(β0,

c√
mn

) it holds

lim
n→∞

√
mn

(
EβTn − g(β)

) = 0.

REMARK 1. The reason for requiring unbiasedness to hold in a local neigh-
bourhood β ∈ B(β0,

c√
mn

) in Definition 1 is that it leads to a broader class of esti-
mators. If β was allowed to be in a neighbourhood without the sparsity constraint,
a “strongly asymptotically unbiased” estimator might not exist.

7. Strong oracle inequalities for the Lasso. We present new results on ora-
cle inequalities for the Lasso estimator in linear regression which will be needed
in subsequent sections, but can also be of independent interest. Typical high-
dimensional analysis derives oracle inequalities for the Lasso which hold with
high probability [see Bühlmann and van de Geer (2011) for an overview of such
results]. The paper Bellec and Tsybakov (2016) derives bounds on the expectation
of the prediction error. Here, we derive oracle inequalities for the �1-estimation
error that hold in expectation.

Consider the linear model

(4) Y = Xβ0 + ε,
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where X is the n × p design matrix with independent rows X(i), i = 1, . . . , n,
Y is the n × 1 vector of observations and ε = (ε1, . . . , εn)

T ∈ R
n is the (unob-

servable) error. The error satisfies Eε = 0 and its components εi are indepen-
dent for i = 1, . . . , n. Moreover, the error ε and the design matrix X are in-
dependent. We further denote the Gram matrix by �̂ := XT X/n. The vector
β0 = (β0

1 , . . . , β0
p) ∈ R

p is unknown. The unknown number of nonzero entries of
β0 is denoted by s := ‖β0‖0 and is called the sparsity of β0.

The Lasso estimator with a tuning parameter λ > 0 is defined as follows:

(5) β̂ := arg min
β∈Rp

‖Y − Xβ‖2
n + 2λ‖β‖1.

The known results on oracle inequalities for the Lasso (5) give high-probability
bounds for the prediction error and the �1-error (or under some conditions, for the
�q -error for 1 ≤ q ≤ 2). In particular, for the tuning parameter λ � √

logp/n and
under further conditions that may be found in Bühlmann and van de Geer (2011),
it holds

∥∥X(β̂ − β0)
∥∥2
n + λ‖β̂ − β0‖1 = OP

(
sλ2)

.

Bellec and Tsybakov (2016) show analogous results for the expected prediction
error E‖X(β̂ − β0)‖n for the case of fixed design. We show such results may be
obtained for the expected �1-error, under almost identical conditions. In particular,
Theorem 1 presented below implies that the mean �1-error, Eβ0‖β̂ − β0‖1, is up
to a logarithmic factor of the same order as the oracle error Eβ0‖βora − β0‖1 =
O(s/

√
n), where βora is the oracle maximum likelihood estimator (i.e., a maximum

likelihood estimator applied with the knowledge of true nonzero entries of β0).
Theorem 1 actually shows a more general result since it considers also higher-
order errors, namely the kth order error Eβ0‖β̂ −β0‖k

1 for any fixed k ∈ {1,2, . . . }.
We consider the situation when the errors εi are independent and sub-Gaussian

(with a universal constant) and the design X has independent sub-Gaussian rows
(with a universal constant). To this end, we recall a sub-Gaussianity assumption
on random variables and vectors [see Section 14 in Bühlmann and van de Geer
(2011)].

DEFINITION 2. We say that a random vector Z ∈ R
m has sub-Gaussian entries

with constants K,K2 > 0 if

Ee
Z2

j /K2 ≤ K2, j = 1, . . . ,m.

We say that a random vector Z ∈ R
m is sub-Gaussian with constants K,K2 > 0 if

for all α ∈ R
m such that ‖α‖2 = 1 it holds that

Ee(αT Z)2/K2 ≤ K2.
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In our further analysis, we typically require that the sub-Gaussianity condition
as in Definition 2 is satisfied with universal constants K,K2 > 0. A prime example
of a sub-Gaussian random vector with a universal constant is a Gaussian random
vector with zero mean and covariance matrix �0 that satisfies �max(�0) = O(1).
We formulate the conditions on the error and the design in the following:

(A1) Assume the linear model (4), where the errors εi are independent sub-
Gaussian random variables with universal constants and with Eεi = 0.

(A2) Assume that X is a random n×p matrix independent of ε with indepen-
dent rows X(i), i = 1, . . . , n, with mean zero and with sub-Gaussian entries with
universal constants. We let �0 := E�̂ and suppose that 1/�min(�0) = O(1).

(A2*) Assume that X is a random n×p matrix independent of ε with indepen-
dent sub-Gaussian rows X(i), i = 1, . . . , n, with universal constants, with mean
zero. We let �0 := E�̂ and suppose that 1/�min(�0) = O(1).

Under conditions (A2) or (A2*), we denote the inverse covariance matrix by

0 := �−1

0 and by 
0
j we denote its j th column (j = 1, . . . , p).

THEOREM 1. Suppose that conditions (A1), (A2) are satisfied. Suppose that
‖β0‖2 = O(1), s

√
logp/n = o(1) and let k ∈ {1,2, . . . } be fixed. Consider the

Lasso estimator β̂ defined in (5) with a tuning parameter λ ≥ cτ
√

logp/n,
where c > 0 is a sufficiently large universal constant and τ > 1 satisfies τ 2 >

2k log((
√

sλ2)−1)/ logp. Then there exists a universal constant C1 such that
(
Eβ0‖β̂ − β0‖k

1
)1/k ≤ C1sλ.

Taking k = 1, under the conditions of Theorem 1 we obtain

Eβ0‖β̂ − β0‖1 ≤ C1sλ.

Theorem 1 can also be easily extended to fixed design, under a compatibility
condition [see Section 13 in the Supplementary Material, Janková and van de Geer
(2018)] on the Gram matrix �̂, which substitutes the condition �min(�0) ≥ L > 0,
and under the condition ‖�̂‖∞ =O(1).

We comment on conditions (A1), (A2) and ‖β0‖2 =O(1), ‖β0‖0 = o(
√

n/ logp)

assumed in Theorem 1. Condition ‖β0‖0 = o(
√

n/ logp) together with condi-
tions (A1), (A2) was used to apply the high-probability oracle results for Lasso
as in Bühlmann and van de Geer (2011) to the case of random design. Condi-
tion ‖β0‖2 = O(1) can be justified under an assumption on the boundedness of
the “signal-to-noise ratio”. The “signal-to-noise ratio” is defined as the ratio of
the variance of the signal (observations) and the variance of the noise, that is,∑n

i=1 varβ0(Yi)/
∑n

i=1 var(εi) = 1 + βT
0 �0β0/σ

2
ε , where σ 2

ε := 1
n

∑n
i=1 var(εi).

Hence, under upper-boundedness of 1/�min(�0), the signal-to-noise ratio is up
to a constant lower-bounded by ‖β0‖2

2/σ
2
ε . If we assume that the signal-to-noise
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ratio remains bounded and the variance of the noise σ 2
ε is bounded [as implied by

condition (A1)], then the �2-norm of β0 must also remain bounded.
Finally, the condition τ 2 > 2k log((sλ2)−1)/ logp only guarantees that we

choose sufficiently large regularization parameter λ ≥ cτ
√

logp/n by choosing
τ large enough compared to the order k of the error that we want to control. If
p ≥ n and λ = cτ

√
logp/n, the condition reduces to τ ≥ C

√
k for some constant

C > 0. Then clearly, this condition means that the higher order of error we want to
control, the stronger regularization must be chosen.

8. The de-sparsified Lasso.

8.1. Methodology. As an initial estimator, we consider the Lasso estimator
(5). The Lasso estimator is well understood in terms of prediction and estimation
error bounds, and was shown minimax optimal in terms of the prediction error and
�1-error. However, due to the inclusion of the �1-penalty, the estimator is biased
and its limiting distribution can accumulate a positive mass at zero [Knight and
Fu (2000)]. In view of statistical inference, a de-sparsified or de-biased version of
the Lasso was then considered [see Zhang and Zhang (2014), van de Geer et al.
(2014), Javanmard and Montanari (2014a, 2014b, 2015)], which was shown to be
asymptotically normal for estimation of β0

j .
To construct the de-biased estimator, we further need to construct a surrogate

inverse of �̂, or, in other words, we need to construct an estimator of the inverse
covariance matrix 
0 = �−1

0 . We define 
̂j as an estimate of the column 
0
j

obtained by solving the following program, that will be referred to as nodewise
regression [see Meinshausen and Bühlmann (2006), van de Geer et al. (2014)].
Recall that X is the design matrix with rows X(i), i = 1, . . . , n. The columns of the
design matrix X will be denoted by Xj , j = 1, . . . , p, and by X−j we denote the
n×(p−1) matrix obtained by removing the j th column from X. For j = 1, . . . , p,
we let

(6)
γ̂j := arg min

γ∈Rp−1
‖Xj − X−j γ ‖2

n + 2λj‖γ ‖1,

τ̂ 2
j := ‖Xj − X−j γ̂j‖2

n + λj‖γ̂j‖1,

and we denote the j th column of the nodewise Lasso estimator by

(7) 
̂j := (−γ̂j,1, . . . ,−γ̂j,j−1,1,−γ̂j,j+1, . . . ,−γ̂j,p)T /τ̂ 2
j ,

where λj � √
logp/n for j = 1, . . . , p, uniformly in j . We denote the nodewise

Lasso estimator by 
̂ := (
̂1, . . . , 
̂p). The necessary Karush–Kuhn–Tucker con-
ditions corresponding to the nodewise regression (obtained by replacing deriva-
tives by sub-differentials) imply the condition ‖�̂
̂j − ej‖∞ = OP (λj/τ̂

2
j ) [see

van de Geer et al. (2014)], which will be needed later. We now define the de-
sparsified Lasso introduced in van de Geer et al. (2014),

(8) b̂ := β̂ + 
̂T XT (Y − Xβ̂)/n,
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and we let b̂j denote its j th entry. The motivation for the definition (8) comes from
updating the initial Lasso estimator β̂ by removing the bias due to the �1-penalty.
We briefly summarize the main results on b̂ as derived in van de Geer et al. (2014).
The estimator b̂j can be shown to be asymptotically linear with a remainder term
of small order 1/

√
n, in particular, under conditions (A1), (A2*) and

s = o(
√

n/ logp), max
j=1,...,p

sj = o(
√

n/ logp)

it holds

b̂ − β0 = 
0X
T ε/n + �,

where sj := ‖
0
j‖0 and ‖�‖∞ = oP (1/

√
n). Thus, after normalization by

√
n

and by the (estimated) standard deviation, asymptotic normality of entries of b̂

with zero mean and unit variance follows by the central limit theorem. We now
investigate the question of “regularity” and asymptotic efficiency of this estimator.

We first show that the de-sparsified estimator b̂j satisfies the strong asymp-
totic unbiasedness condition from Definition 1 in Section 6. We then show that b̂j

achieves the lower bound on the variance of any strongly asymptotically unbiased
estimator. Thus, in this sense the de-sparsified estimator is asymptotically efficient.
In Section 8.3, we investigate the case of a random Gaussian design matrix and in
Section 8.4 the case of a fixed design matrix.

8.2. Strong asymptotic unbiasedness of the de-sparsified Lasso. We consider
estimation of linear functionals g(β) = ξT β , where ξ ∈ R

p is a known vector. We
define an estimator of g(β) = ξT β as a linear combination ξ of the de-sparsified
estimator b̂. This yields

(9) b̂ξ := ξT b̂ = ξT β̂ + ξT 
̂XT (Y − Xβ̂)/n.

Then we have the following lemma, which shows strong asymptotic unbiasedness
of b̂ξ for estimation of ξT β .

LEMMA 1. Suppose that conditions (A1), (A2*) are satisfied, β0 ∈ B(dn)

where dn = o(
√

n/logp), maxj sj ≤ dn, ‖ξ‖1 = O(1) and ‖�0‖∞ =O(1). Let b̂ξ

be the estimator defined in (9) with tuning parameters of the Lasso and nodewise
regression λ � λj � √

logp/n uniformly in j = 1, . . . , p. Then b̂ξ is a strongly
asymptotically unbiased estimator of ξT β at β0.

8.3. Main results for random design. We derive lower bounds for the vari-
ance of a strongly asymptotically unbiased estimator. We consider the following
conditions on the error distribution and the design matrix X.

(B1) Assume the linear model (4) with ε ∼ N (0, I ).
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(B2) Assume that X is a random n × p matrix independent of ε with indepen-
dent rows X(i) ∼ N (0,�0) for i = 1, . . . , n. Suppose that the inverse covariance
matrix 
0 := �−1

0 exists, 1/�min(�0) = O(1) and ‖�0‖∞ = O(1).

THEOREM 2. Suppose that conditions (B1), (B2) are satisfied. Suppose that
Tn is a strongly asymptotically unbiased estimator of g(β) at β0 ∈ B(dn) with
a rate mn. Let h ∈ R

p satisfy hT �0h = 1 and β0 + h/
√

mn ∈ B(β0,
c√
mn

) for a

sufficiently large universal constant c. Assume, moreover, that for some ġ(β0) ∈ R
p

it holds

(10)
√

mn

(
g(β0 + h/

√
mn) − g(β0)

) = hT ġ(β0) + o(1).

Then

nvarβ0(Tn) ≥ [
hT ġ(β0)

]2 − o(1).

Theorem 2 yields a lower bound [hT ġ(β0)]2 − o(1) on the variance of an esti-
mator which is a strongly asymptotically unbiased estimator in a direction h, such
that β0 + h/

√
mn remains within the model. By maximizing [hT ġ(β0)]2 over all

feasible h, we obtain the following corollary.

COROLLARY 1. If β0 + 
0ġ(β0)/
√

ġ(β0)T 
0ġ(β0)mn ∈ B(β0,
c√
mn

), then

the lower bound from Theorem 2 is maximized at the value

h0 := 
0ġ(β0)/

√
ġ(β0)T 
0ġ(β0),

and under the conditions of Theorem 2, we get and under the conditions of Theo-
rem 2, we get

nvarβ0(Tn) ≥ ġ(β0)
T 
0ġ(β0) − o(1).

DEFINITION 3. Let g be differentiable at β0 with derivative ġ(β0). We call

c0 := 
0ġ(β0)/ġ(β0)
T 
0ġ(β0)

the worst possible sub-direction for estimating g(β0).

The motivation for the terminology worst possible sub-direction in Definition 3
is given by Corollary 1. The normalization by ġ(β0)

T 
0ġ(β0) is arbitrary but
natural from a projection theory point of view.

As a special case, consider estimation of g(β) = βj for some fixed value of
j ∈ {1, . . . , p}. Then ġ(β) = ej , the j th unit vector in R

p . Clearly, 
0ġ(β0) =

0ej = 
0

j and g(β0)
T 
0ġ(β0) = eT

j 
0ej = 
0
jj , where 
0

j is the j th column of


0 and 
0
jj is its j th diagonal element. It follows that c0

j = 
0
j /
0

jj is the worst
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possible sub-direction for estimating βj . If β0 + 
0
j /

√

0

jjmn ∈ B(β0,
c√
mn

), then
Corollary 1 implies the lower bound

varβ0(Tn) ≥ 
0
jj /n + o(1/n).

REMARK 2. To establish the lower bound, it is crucial that the worst possible
sub-direction lies within the model. For illustration, consider the situation with
the parameter of interest being g(β) = β1. When 
0

1 is not sufficiently sparse,

we are not allowed to take the global maximizer h = 
0
1/

√

0

11 in the maximum
and the lower bound might thus become smaller. In that case, the lower bound is
given via a sparse approximation of the (non-sparse) precision matrix. For a set
M ⊂ {1, . . . , p} and a vector v ∈ R

p , we denote vM as a p-dimensional vector
with entries not in M set to zero. Then we may write

max
β0+h/

√
mn∈B(β0,c/

√
mn)

hT e1

hT �0h

≥ max
M⊂{1,...,p}:

|M|=dn−‖β0‖0

max
h∈Rp :‖hM‖2≤c,

‖β0
M+hM/

√
mn‖2≤C

[hT
Me1]2

hT
M�0hM

.

But if h := (�0
M,M)−1e1 satisfies ‖h‖2 ≤ c and ‖β0

M + h/
√

mn‖2 ≤ C, then the
lower bound is

max
M⊂{1,...,p}:|M|=dn−‖β0‖0

(
�0

M,M

)−1
11 − o(1),

where �0
M,M is the reduction of �0 obtained by keeping only columns and rows

belonging to the set M . If 
0
1 has sparsity dn − ‖β0‖0, then this lower bound

coincides with (�0)
−1
11 − o(1) as before. If 
0

1 is not sufficiently sparse, then the
lower bound is given via a sparse approximation of the precision matrix. Finally,
as will be seen in the following sections, without assuming the sparsity condition
on the worst possible sub-direction, we would not be able to conclude asymptotic
efficiency of the de-sparsified Lasso estimator.

Finally, we show that the de-sparsified estimator b̂j achieves the lower bound
on the variance. Thus, the de-sparsified estimator is strongly asymptotically un-
biased and has the smallest variance among all strongly asymptotically unbiased
estimators. We assume Gaussianity of the error and the design matrix, as the lower
bounds have only been derived for this case.

THEOREM 3. Suppose that conditions (B1), (B2) are satisfied, β0 ∈ B(dn)

with dn = o(
√

n/logp) and maxj sj ≤ dn. Assume that ‖ξ‖1 = O(1). Let b̂ξ be
the estimator defined in (9) with tuning parameters of the Lasso and nodewise
regression λ � λj � √

logp/n, uniformly in j = 1, . . . , p. Then b̂ξ is a strongly
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asymptotically unbiased estimator of ξT β at β0. Let T be any strongly asymptoti-
cally unbiased estimator of ξT β at β0 and assume that β0 +
0ξ/(ξT 
0ξmn)

1/2 ∈
B(β0, c/

√
mn) where n = o(mn). Then it holds

varβ0(T ) ≥ ξT 
0ξ + o(1)

n
, varβ0(b̂ξ ) = ξT 
0ξ + o(1)

n
.

To obtain the result of Theorem 3, we assumed that β0 +
0ξ/(ξT 
0ξmn)
1/2 ∈

B(β0, c/
√

mn), which guarantees that the worst possible sub-direction stays within
the model. Further we assumed that the sparsity in β0 satisfies s = o(

√
n/ logp)

and that the sparsity in the rows of 
0 is of small order
√

n/ logp. Thus, to be
able to claim asymptotic efficiency of the de-sparsified Lasso, we not only require
sparsity in β0, but also sufficient sparsity in the precision matrix. Note that the
sparsity condition on β0 is almost a necessary condition as discussed in Section 8.6
below.

8.4. Main results for fixed design. In this section, we assume that the design
matrix X is fixed (nonrandom). Recall that �̂ = XT X/n is the Gram matrix. The
following theorem is an analogy of Theorem 2 for fixed design.

THEOREM 4. Let X be a fixed n × p matrix and suppose that condition
(B1) is satisfied. Let h ∈ R

p be such that hT �̂h = O(1) and β0 + h/
√

mn ∈
B(β0, c/

√
mn). Suppose that Tn is a strongly asymptotically unbiased estimator

of g(β) at β0 in the direction h with rate mn. Assume moreover that for some
ġ(β0) ∈ R

p it holds that

(11)
√

mn

(
g(β0 + h/

√
mn) − g(β0)

) = hT ġ(β0) + o(1).

Then

nvarβ0(Tn) ≥ [
hT ġ(β0)

]2 − o(1).

For fixed design, the matrix �̂ is not invertible, and thus we cannot use the
reasoning as in Section 8.3. We can however try to remedy this by proposing an
approximate worst possible sub-direction. To this end, we may use an estimator 
̂,
which acts as a surrogate inverse of �̂ in a certain sense. Such an estimate can be
obtained in the same way as for the random design, using the nodewise regression
(7). The necessary Karush–Kuhn–Tucker conditions of the nodewise regression
(obtained by replacing derivatives by sub-differentials) again imply the condition
‖�̂
̂j − ej‖∞ = OP (λj/τ̂

2
j ). The de-sparsified estimator can then be defined in

the same way as for the random design, as in equation (8).
We consider estimation of g(β0) := β0

j , although one could further consider
estimation of linear functionals, similarly as for the random design. Strong asymp-
totic unbiasedness of b̂j for estimation of βj then follows similarly as in Lemma 1
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[with g(β) = βj ] for all β ∈ B(dn), under dn = o(
√

n/logp), if the compatibility
condition is satisfied for �̂ with a universal constant and ‖�̂‖∞ = O(1). For the
definition of the compatibility condition, see Definition 4 in Section 13 of the Sup-
plementary Material [Janková and van de Geer (2018)]. We formulate the asymp-
totic efficiency of b̂j for g(β) := βj in the following theorem.

THEOREM 5. Assume that condition (B1) is satisfied and β0 ∈ B(dn) with
dn = o(

√
n/logp). Let j ∈ {1, . . . , p} and let 
̂j be obtained using the nodewise

regression as in (7) with λj � √
logp/n. Suppose that β0 + 
̂j /(
̂jjmn)

1/2 ∈
B(β0, c/

√
mn) with n = o(mn), ‖
̂j‖2 = O(1), the compatibility condition is sat-

isfied for �̂ with a universal constant and ‖�̂‖∞ = O(1). Then b̂j defined in (8)
using 
̂j and with λ � √

logp/n is a strongly asymptotically unbiased estimator
of βj at β0 and for any strongly asymptotically unbiased estimator T of βj at β0
it holds

varβ0(T ) ≥ 
̂jj + o(1)

n
, varβ0(b̂j ) = 
̂jj + o(1)

n
.

The condition β0 + 
̂j /

√

̂jjmn ∈ B(dn) implies that ‖
̂j‖0 = O(dn). To this

end, we refer to Lemma 12 in Section 14 of the Supplementary Material [Janková
and van de Geer (2018)], which shows that sparsity in 
̂j constructed using node-
wise regression is guaranteed under random design. The condition ‖
̂j‖2 = O(1)

replaces the eigenvalue condition we needed in the case of random design.

8.5. Le Cam’s bounds. In this section, we provide an alternative approach,
which makes another choice in the formulation of asymptotic efficiency. This ap-
proach is based on Le Cam’s arguments [see, e.g., van der Vaart (1998)] rather
than the Cramér–Rao bounds, and it allows us to show that the convergence of the
de-sparsified estimator to the limiting normal distribution with smallest possible
variance is locally uniform in the underlying unknown parameter, and the asymp-
totic variance of the de-sparsified estimator is smallest among the class of asymp-
totically linear estimators. Furthermore, the result identifies the asymptotic bias of
asymptotically linear estimators. A detailed comparison of the two approaches for
deriving the lower bounds is deferred to Section 11.

We consider the setting from Section 8.3, where the design matrix X is random
with the parameter of interest being g(β) = βj .

THEOREM 6. Assume that conditions (B1), (B2) are satisfied, β0 ∈ B(dn) with
dn = o(

√
n/ logp), ‖
0

j‖0 ≤ dn and �max(�0) = O(1). Assume that b̂j is defined

in (8) with tuning parameters λ � λj � √
logp/n. Then for every β̃n ∈ B(β0,

c√
n
)

it holds √
n(b̂j − β̃n)

(
0
jj )

1/2

β̃n�N (0,1).
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Let Tn be an asymptotically linear estimator with an influence function lβ0 :

(12) Tn − β0
j = 1

n

n∑

i=1

lβ0

(
X(i), Y (i)) + oPβ0

(
n−1/2)

,

where Elβ0(X
(i), Y (i)) = 0 and var(lβ0(X

(i), Y (i))) =: Vβ0 < ∞. Assume that for
all h ∈ R

p and i = 1, . . . , n it holds

(13) Elβ0

(
X(i), Y (i))εih

T X(i) − hj = o(1).

Then

Vβ0 ≥ 
0
jj + o(1).

8.6. Discussion of the conditions. We briefly discuss the conditions assumed
to obtain the above results. To establish asymptotic efficiency of the de-sparsified
estimator, we considered conditions analogous to the conditions assumed in van
de Geer et al. (2014). These include a sparsity condition on the parameter β0
of order o(

√
n/ logp), conditions on the covariance matrix �min(�0) = O(1),

‖�0‖∞ = O(1), sparsity of the precision matrix and a Gaussianity assumption
on the rows on the precision matrix. Unlike in van de Geer et al. (2014), we as-
sume Gaussianity of the design matrix and the error; this condition was needed
to derive the lower bounds. In addition to the conditions from van de Geer et al.
(2014), we also assume boundedness of �2-norm of β0, which follows if the signal
to noise ratio is bounded as argued in Section 7. Condition (13) from Theorem 6
is a variant of asymptotic unbiasedness which is known to be satisfied in many
traditional settings [see, e.g., van der Vaart (1998)]. The condition is discussed in
more detail in Section 10 below.

Our analysis requires the sparsity condition s = o(
√

n/ logp). This condition is
essentially necessary in the linear regression setting for construction of an asymp-
totically normal estimator, as argued in the following. First, observe that if the
(slightly weaker) condition s = O(

√
n/ logp) is not satisfied, then there cannot

exist an estimator Tn of βj ∈R and a sequence σn =O(1) such that

(14)
√

n
(
Tn − β0

j

)
/σn �N (0,1).

Suppose that there exists an estimator Tn that satisfies (14). Then necessarily√
n(Tn − β0

j )/σn = OP (1). By similar reasoning as in Ren et al. (2015), we have

under the conditions assumed the minimax rates for E|Tn − β0
j | of order 1√

n
+

s logp
n

. But then necessarily s logp/n = O(1/
√

n), which gives s =O(
√

n/ logp).
This is only slightly weaker than the condition we require, s = o(

√
n/ logp).

Furthermore, for simplicity of presentation, we assumed that the variance of the
noise is fixed at σε = 1. In general, we can include the parameter σε as an unknown
parameter in the model, and by orthogonality of the score corresponding to this
parameter and the score corresponding to β , we can easily extend the arguments.
The noise variance will then appear in both lower and upper bounds.
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9. Gaussian graphical models. In this part, we consider efficient estima-
tion of edge weights in undirected Gaussian graphical models. Gaussian graphi-
cal models have become a popular tool for representing dependencies within large
sets of variables and have found application in areas such as neuroscience, biology
and climate data analysis. In particular, Gaussian graphical models encode condi-
tional dependencies between variables (nodes in the graph) by including an edge
between two variables if and only if they are not independent given all the other
variables. This corresponds to the problem of estimation of the precision matrix of
a multivariate normal distribution, which we now introduce.

(C1) Assume that the n × p matrix X has independent rows X(i), i = 1, . . . , n

which are Np(0,�0)-distributed.

Denote the precision matrix by 
0 := �−1
0 , where the inverse of �0 is assumed

to exist. The matrix 
0 ∈ R
p×p is unknown, but we assume bounds on its row-

sparsity (column-sparsity) sj := ‖
0
j‖0, where 
0

j is the j th column of the preci-
sion matrix.

9.1. Methodology. There have been several methods proposed for estimation
of the precision matrix in the high-dimensional setting when p � n [see Friedman,
Hastie and Tibshirani (2008), Meinshausen and Bühlmann (2006)]. These meth-
ods are based on regularization techniques and lead to estimators that are biased.
De-biasing was then studied similarly as in the linear regression, and it was shown
that de-biasing leads to estimators which are asymptotically normal. For our fur-
ther analysis, we consider the de-sparsified nodewise Lasso estimator proposed in
Janková and van de Geer (2017). We show that this estimator is strongly asymptot-
ically unbiased and reaches the lower bound on the variance derived in the previous
section.

To introduce the methodology, consider again the nodewise Lasso estimator

̂ = (
̂1, . . . , 
̂p) defined in (7). Define the de-sparsified nodewise Lasso [see
Janková and van de Geer (2017)]

(15) T̂ := 
̂ + 
̂T − 
̂�̂
̂.

Furthermore, we write T̂ij := 
̂ij +
̂ji −
̂T
i �̂
̂j for i, j = 1, . . . , p. The method

and its asymptotic properties were studied in Janková and van de Geer (2017). The
estimator 
̂j can be shown to be asymptotically linear with a remainder term of
small order 1/

√
n, in particular, under condition (C1) and under maxj=1,...,p sj =

o(
√

n/ logp) it holds

T̂ − 
0 = −
T
0 (�̂ − �0)
0 + �,

where ‖�‖∞ = oP (1/
√

n). Thus, after normalization by
√

n and by the (esti-
mated) standard deviation, it follows that it is asymptotically standard normal and
minimax optimal [see Ren et al. (2015), Janková and van de Geer (2017)]. We
investigate the question of “regularity” and asymptotic efficiency of the proposed
estimator.
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9.2. Strong asymptotic unbiasedness of the de-sparsified nodewise Lasso.
Suppose that the parameter 
 ranges over a parameter space T ⊂ R

p×p . We then
define the parameter set

G(d1, . . . , dp) := {

 ∈ T : 
 = 
T ,‖
j‖0 ≤ C1dj , j = 1, . . . , p,

1/�min(
) ≤ C2,�max(
) ≤ C3
}
,

for some universal constants C1,C2,C3 > 0. We also need to readjust the defini-
tion of a neighbourhood from (3); hence in this section we let

B(
, ε) := {

̃ ∈ G(d1, . . . , dp) : ‖
̃ − 
‖F ≤ ε

}
.

The following lemma shows that T̂ij is strongly asymptotically unbiased for esti-
mation of 
0

ij .

LEMMA 2. Let i, j ∈ {1, . . . , p}, assume that condition (C1) is satisfied and

0 ∈ G(d1, . . . , dp) with max(di, dj ) = o(

√
n/logp). Let T̂ij be defined in (15),

where 
̂i , 
̂j are the ith and j th columns of the nodewise Lasso estimator with
tuning parameters λi � λj � √

logp/n. Then T̂ij is a strongly asymptotically un-
biased estimator for 
0

ij .

9.3. Main results. We first derive an asymptotic lower bound for the variance
of Tn when Tn is strongly asymptotically unbiased. We restrict our attention to
estimation of linear functionals of the precision matrix 
0, h(
0) = tr(�
0),
where � ∈ R

p×p is a known matrix. We shall consider the case when � is of rank
one, say � = ξ1ξ

T
2 for some vectors ξ1, ξ2 ∈ R

p . This corresponds to estimation
of g(
0) = ξT

1 
0ξ2, where ξ1, ξ2 ∈ R
p are known vectors.

Contrary to previous sections, the high-dimensional parameter is a matrix,
therefore, instead of a vector direction h we shall write the capital letter H to
denote a matrix direction in R

p×p .

THEOREM 7. Assume condition (C1), assume that 
0 ∈ G(d1, . . . , dp) where
maxj=1,...,p dj = o(

√
n/logp) and 
0 + H/

√
mn ∈ B(
0, c/

√
mn) where n =

o(mn). Suppose that Tn is a strongly asymptotically unbiased estimator of g(
) =
ξT

1 
ξ2 at 
0 ∈ G(d1, . . . , dp) in the direction H := 
0(ξ1ξ
T
2 +ξ2ξ

T
1 )
0/σ, where

σ 2 := ξT
1 
0ξ1ξ

T
2 
0ξ2 + (

ξT
1 
0ξ2

)2
.

Then it holds

var
0(Tn) ≥ σ 2 − o(1)

n
.
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As a corollary, consider estimation of g(
0) = 
0
ij for some fixed (i, j) ∈

{1, . . . , p}2. Then the worst sub-direction is given by H := (
0
i (


0
j )

T +

0

j (

0
i )

T )/σ where σ 2 := (
0
ij )

2 + 
0
ii


0
jj and the corresponding lower bound is

((
0
ij )

2 + 
0
ii


0
jj )/n + o(1/n).

We now show that the de-sparsified estimator T̂ij reaches the lower bound on
the variance for the parameter of interest g(
0) = 
0

ij .

THEOREM 8. Suppose that condition (C1) holds, 
0 ∈ G(d1, . . . , dp) where
max(di, dj ) = o(

√
n/logp). Suppose that 
0 + H/

√
mn ∈ B(
0, c/

√
mn) for

H := (
0
i (


0
j )

T + 
0
j (


0
i )

T )/σ, where n = o(mn). Let T̂ij be defined in (15),

where 
̂i , 
̂j are the ith and j th columns of the nodewise Lasso estimator with
tuning parameters λi � λj � √

logp/n. Then T̂ij is a strongly asymptotically un-
biased estimator of 
ij at 
0 and for any strongly asymptotically unbiased esti-
mator T of 
ij at 
0 it holds

var
0(T ) ≥ 
0
ii


0
jj + (
0

ij )
2 + o(1)

n
,

var
0(T̂ij ) = 
0
ii


0
jj + (
0

ij )
2 + o(1)

n
.

The condition 
0 + H/
√

mn ∈ B(
0, c/
√

mn) for H = (
0
i (


0
j )

T +

0

j (

0
i )

T )/σ ensures that perturbation of 
0 along the worst possible sub-
direction H lies within the model. This also implies that ‖Hk‖0 ≤ 2C1dk , k =
1, . . . , p, which in turn implies that necessarily ‖
0

i ‖0 = O(dk), ‖
0
j‖0 = O(dk)

for k = 1, . . . , p. Note that we only require sparsity in the ith and j th column
of the precision matrix. Furthermore, we must have ‖H‖F ≤ c. This is satisfied
under the eigenvalue conditions noting that ‖H‖2

F = tr(HT H) and ‖
0
k‖2 =O(1)

for k = i, j .

9.4. Discussion of the conditions. We comment on the conditions used to ob-
tain the above results. The conditions under which we show asymptotic efficiency
only include eigenvalue conditions on the true precision matrix, sparsity conditions
on columns/rows of the precision matrix and Gaussianity of the observations X(i),
i = 1, . . . , n. These conditions are almost identical to conditions in van de Geer
et al. (2014) and Janková and van de Geer (2017), with the exception of Gaus-
sianity which was used for deriving the lower bounds. In particular, the condition
on row sparsity required is the same as for the linear model: s = o(

√
n/ logp). In

view of the results on minimax rates for estimation of elements of precision ma-
trices [which are derived in Ren et al. (2015)], the condition s = o(

√
n/ logp) is

necessary for asymptotically normal estimation, which follows by similar reason-
ing as for the linear regression.
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10. Le Cam’s bounds for general models. In this section, we provide an
extension to general nonlinear models and a general parameter of interest. This
is achieved via adjustment of Le Cam’s arguments on asymptotic efficiency to
the high-dimensional setting. Let X(1), . . . ,X(n) be i.i.d. with distribution Pβn,0 :
βn,0 ∈ B where B is an open convex subset of Rp . We consider the parameter set

B(dn) := {
β ∈ B : ‖β‖0 ≤ C1dn,‖β‖2 ≤ C2

}
,

where C1,C2 = O(1) and dn is a known sequence that will be specified later. Sup-
pose that the parameter of interest is g(β) for some function g : B → R. Assume
that for an estimator Tn of g(βn,0), we can show asymptotic linearity: there exists
a real-valued function lβn,0 on X (an influence function) and some sequence βn,0
such that

Tn − g(βn,0) = 1

n

n∑

i=1

lβn,0

(
X(i)) + oPβn,0

(
n−1/2)

,

where Pβn,0 lβn,0 = 0 and the variance Vβn,0 := Pβn,0 l
2
βn,0

< ∞. Under the conditions
of the central limit theorem, the asymptotic linearity implies that

(16)
√

n
(
Tn − g(βn,0)

)
/V

1/2
βn,0

βn,0� N (0,1).

For asymptotically linear estimators, we thus have the “asymptotic variance”
Vβn,0 = Pβn,0 l

2
βn,0

. We shall need some conditions on the differentiability of g and
the score function. Furthermore, we shall need a Lindeberg’s condition related to
the influence and score function. Assume that Pβ is dominated by some σ -finite
measure for all β in the parameter space and denote the corresponding probability
densities by pβ . We denote the log-likelihood by �β(x) := logpβ(x) and the score

function by sβ(x) := ∂�β(x)

∂β
for all x ∈ X .

(D1) (Differentiability of g) Suppose that for a given β̃n ∈ B(βn,0,
c√
n
) it holds

√
n
(
g(β̃n) − g(βn,0)

) = hT ġ(βn,0) + o(1),

where h = √
n(β̃n − βn,0).

(D2) (Differentiability of the score) Suppose that the score function β �→ sβ
is twice differentiable and the second derivative satisfies ‖s̈β‖∞ ≤ L for some
universal constant L > 0 and for all β ∈ B(dn). Let Iβn,0 := Pβn,0sβn,0s

T
βn,0

and
assume that �max(Iβn,0) = O(1), 1/�min(Iβn,0) =O(1) and

(17)

∥∥∥∥∥
1

n

n∑

i=1

ṡβn,0 + Iβn,0

∥∥∥∥∥∞
= OP (λ),

for some λ > 0. Suppose that dn = o(max{1/λ,n1/3}).
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(D3) (Lindeberg’s condition) Denote fβn,0(x) := lβn,0(x) + hT sβn,0(x) for x ∈
R

p . Suppose that for all ε > 0

(18) lim
n→∞Pβn,0f

2
βn,0

1|fβn,0 |>ε
√

n = 0,

and assume that Vβn,0 := Pβn,0 l
2
βn,0

= O(1) and 1/Vβn,0 = O(1).

Condition (D1) is a differentiability condition on g; an analogous condition is
assumed in the first approach through Cramér–Rao bounds. Condition (D2) is a
differentiability condition on the score, which is used to obtain a Taylor expansion
of the likelihood. Furthermore, condition (17) guarantees that − 1

n

∑n
i=1 ṡβn,0(X

(i))

is a good estimator of the Fisher information in supremum norm. This can be
verified, for example, for linear regression with λ � √

logp/n. Condition (D2)
further assumes the sparsity dn = o(max{1/λ,n1/3}), which guarantees that the
likelihood ratio expansion approximately holds. Finally, condition (D3) is a Lin-
deberg’s condition which is needed to conclude asymptotic normality of certain
quantities, since in Theorem 9 below we do not require any distributional assump-
tion. This condition can be verified for particular models.

THEOREM 9. Let g : B →R and suppose that for some fixed sequence βn,0 ∈
B(dn) it holds:

(19) Tn − g(βn,0) = 1

n

n∑

i=1

lβn,0

(
X(i)) + oPβn,0

(
n−1/2)

,

where Pβn,0 lβn,0 = 0. For some fixed constant c > 0, let β̃n ∈ B(βn,0,
c√
n
) and de-

note h := √
n(β̃n − βn,0). Suppose that conditions (D1), (D2) and (D3) are satis-

fied. Then it holds:
√

n(Tn − g(βn,0 + h√
n
)) − (Pβn,0(lβn,0h

T sβn,0) − hT ġ(βn,0))

V
1/2
βn,0

βn,0+ h√
n� N (0,1).

The result of Theorem 9 contains a bias term Pβn,0(lβn,0h
T sβn,0) − hT ġ(βn,0)

which depends on h. Now consider that the bias term in the result of the theorem
above vanishes, that is, the following condition on the score function sβn,0 and the
function lβn,0 is satisfied: for every h ∈ R

p it holds that

(20) Pβn,0

(
lβn,0h

T sβn,0

) − hT ġ(βn,0) = o(1).

The condition (20) is a variant of asymptotic unbiasedness which is known to
be satisfied in many traditional settings. If condition (20) is satisfied, then the
Cauchy–Schwarz inequality implies

(
hT ġ(βn,0)

)2 ≤ Vβn,0h
T Iβn,0h + o

(
V

1/2
βn,0

(
hT Iβn,0h

)1/2)
.
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Hence this implies a lower bound on the asymptotic variance Vβn,0 of an asymp-
totically linear estimator as follows:

(21) Vβn,0 ≥ (
hT ġ(βn,0)

)2
/hT Iβn,0h + o

(
V

1/2
βn,0

/
(
hT Iβn,0h

)1/2)
.

Assuming that the inverse of Iβn,0 exists, the right-hand side of (21) is maximized

at h = I−1
βn,0

ġ(βn,0), provided that βn,0 +h/
√

n ∈ B(βn,0, c/
√

n). Hence we obtain
the following lower bound on the asymptotic variance

Vβn,0 ≥ ġ(βn,0)
T I−1

βn,0
ġ(βn,0) + o

(
V

1/2
βn,0

(
ġ(βn,0)

T I−1
βn,0

ġ(βn,0)
)1/2)

.

We summarize this simple claim in the lemma below.

LEMMA 3. Let Tn satisfy (19) with Vβn,0 = O(1), 1/�min(Iβn,0) = O(1) and
for every h ∈ R

p it holds that

(22) Pβn,0

(
lβn,0h

T sβn,0

) − hT ġ(βn,0) = o(1),

then if βn,0 + I−1
βn,0

ġ(βn,0)/
√

n ∈ B(βn,0, c/
√

n), it holds that

Vβn,0 ≥ ġ(βn,0)
T I−1

βn,0
ġ(βn,0) + o(1).

Theorem 9 in conjunction with Lemma 3 gives the result summarized in Corol-
lary 2 below.

COROLLARY 2. Suppose that conditions of Theorem 9 and condition (22) are
satisfied and that βn,0 + I−1

βn,0
ġ(βn,0)/

√
n ∈ B(βn,0, c/

√
n). Then

(23)
√

n
(
Tn − g(βn,0 + h/

√
n)

)
/V

1/2
βn,0

βn,0+h/
√

n� N (0,1),

where

Vβn,0 ≥ ġ(βn,0)
T I−1

βn,0
ġ(βn,0) + o(1).

The corollary implies that asymptotic efficiency is attained by an estimator
which is asymptotically linear with an influence function lβn,0 = ġ(βn,0)

T I−1
βn,0

sβn,0 ,
provided that it satisfies condition (22).

We have already shown how these results can be applied to the linear regression
setting in Section 8.5. We remark that the result of Theorem 9 is not directly ap-
plicable to Gaussian graphical models, where the unknown parameter has overall
sparsity ps, where s = o(

√
n/ logp).

REMARK 3. The sparsity condition dn = o(n1/3) arises when considering
Taylor expansion of the log-likelihood for general models. Hence, when there is
some special structure in the log-likelihood function, weaker sparsity conditions
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might be possible. For instance, for linear regression setting, the Hessian of the
log-likelihood does not depend on the unknown parameter βn,0, hence in that case
by inspection of the likelihood expansion in the proof of Theorem 9, we see that
the condition dn = o(

√
n/ logp) is sufficient.

11. Conclusions. In this paper, we have proposed a framework for studying
asymptotic efficiency in high-dimensional models. We adopted a semiparamet-
ric point of view: we concentrated on one-dimensional functions of a high-
dimensional parameter for which the lower bounds were derived. The semipara-
metric efficiency bounds we obtained correspond to the efficiency bounds for
parametric models. However, the treatment for high-dimensional models required
more elaborate analysis due to the models changing with n and assumed sparsity
of the model.

We further considered construction of estimators attaining the lower bounds.
We showed that indeed construction of asymptotically efficient estimator is possi-
ble: a de-sparsified estimator in linear regression and Gaussian graphical models is
asymptotically efficient for estimation of certain simple functionals. Our analysis
identified the theoretical conditions on the parameter sparsity and further condi-
tions on the model under which asymptotic efficiency may be shown.

Comparison of the two approaches. The analysis was done in two ways: in
the spirit of asymptotic Cramér–Rao bounds and Le Cam’s bounds [van der Vaart
(1998)]. These are strongly related: both define a restricted set of estimators which
are in some sense asymptotically unbiased and claim lower bounds for any estima-
tor in this class.

However, the two lines of work are not directly comparable as they are differ-
ent results under different assumptions. Le Cam’s bounds give a lower bound on
asymptotic variance, while the Cramér–Rao bounds give a bound on the variance
of an estimator. We formulated Le Cam’s approach for a general sparse model,
while the Cramér–Rao bounds were only considered for the linear regression and
Gaussian graphical models. Apart from this, the main results arising from the two
approaches also present some differences in the assumptions. For the Le Cam’s-
type results, we assumed a stronger sparsity condition of order dn = o(n1/3/ logp)

because of the Taylor expansion of the likelihood. However, for the linear regres-
sion setting, the sparsity condition can be improved to dn = o(

√
n/ logp), which is

the same as in the Cramér–Rao bounds. For Gaussian graphical models, Le Cam’s
approach as formulated in this paper cannot be directly used, unlike the approach
through the Cramér–Rao bounds.

Extensions. Our results on upper bounds are presented for the case when the
parameter of interest is a single entry of the high-dimensional parameter or a lin-
ear combination with, for example, bounded �1-norm. It is interesting to note some
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relations to literature on minimax rates. One question is whether asymptotic effi-
ciency can be attained, for example, for estimation of linear functionals in linear
regression when the linear combination ξ is sparse. Our results needed that ‖ξ‖1
remains bounded. Some recent works on high-dimensional models further con-
sider estimation of more complicated, nonsparse functionals [in linear regression
Cai and Guo (2017), for Gaussian sequence models Collier, Comminges and Tsy-
bakov (2015)]. These results are however of a different nature. Consider for in-
stance estimation of

∑p
i=1 β0

i in high-dimensional linear regression. In this case,
the parametric rate cannot be achieved [Cai and Guo (2017)], and thus it remains
unclear what can be said about “asymptotic efficiency”.

Furthermore, we have treated the case of a one-dimensional parameter of in-
terest, though the analysis might be extended to settings when the parameter of
interest is higher dimensional (of a fixed dimension). Finally, our analysis con-
sidered particular examples of de-sparsified estimators, however, other estimators
which are in some sense equivalent to these de-sparsified estimators are applicable.

SUPPLEMENTARY MATERIAL

Supplement to “Semiparametric efficiency bounds for high-dimensional
models” (DOI: 10.1214/17-AOS1622SUPP; .pdf). The supplementary material
contains proofs.
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