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CLT FOR LARGEST EIGENVALUES AND UNIT ROOT TESTING
FOR HIGH-DIMENSIONAL NONSTATIONARY TIME SERIES

BY BO ZHANG∗, GUANGMING PAN∗,1 AND JITI GAO†,2

Nanyang Technological University∗ and Monash University†

Let {Zij } be independent and identically distributed (i.i.d.) random vari-

ables with EZij = 0, E|Zij |2 = 1 and E|Zij |4 < ∞. Define linear processes
Ytj = ∑∞

k=0 bkZt−k,j with
∑∞

i=0 |bi | < ∞. Consider a p-dimensional time

series model of the form xt = �xt−1 + �1/2yt , 1 ≤ t ≤ T with yt =
(Yt1, . . . , Ytp)′ and �1/2 be the square root of a symmetric positive definite
matrix. Let B = (1/p)XX∗ with X = (x1, . . . ,xT)′ and X∗ be the conjugate
transpose. This paper establishes both the convergence in probability and the
asymptotic joint distribution of the first k largest eigenvalues of B when xt is
nonstationary. As an application, two new unit root tests for possible nonsta-
tionarity of high-dimensional time series are proposed and then studied both
theoretically and numerically.

1. Introduction. There have been an increasing interest and significant de-
velopments on the theory and methodologies for handling high-dimensional data
in recent years. Understanding high-dimensional sample covariance matrices, in-
cluding its eigenvalues and eigenvectors, has proved to be extremely useful for
such developments. Indeed, random matrix theory has provided useful estimation
and testing procedures for high-dimensional data analysis. Recent discussions on
this topic can be found in Johnstone [17], Pan, Gao and Yang [23], Paul and Aue
[25] and Yao, Zheng and Bai [34].

Research towards understanding the eigenvalues of sample covariance matri-
ces dates back to as early as the studies of Fisher [13], Hsu [14] and Roy [30],
and has become increasingly active since the publication of the celebrated work of
Marcenko and Pastur [21], in which the authors established a limiting spectral dis-
tribution (MP-type distribution) for a sample covariance matrix for the case where
p and T are comparable. More recent research has been devoted to establishing
asymptotic properties for the eigenvalues and eigenvectors of high-dimensional
sample covariance matrices (see [1]).
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There are currently two main lines of research about asymptotic distributions
of the largest eigenvalues of high-dimensional random matrices. The first line of
research is concerned with the Tracy–Widom law of the largest eigenvalues of ran-
dom matrices. It is well known that limiting distributions of the largest eigenvalues
of high-dimensional random matrices, such as Wigner matrices, follow the Tracy–
Widom law, which was originally discovered by Tracy and Widom in [32] and [33]
for Gaussian Wigner ensembles. The largest eigenvalue of the Wishart matrix was
investigated in Johnstone [16]. Several progresses for general sample covariance
matrices have also been made, and we refer to [5], [12] and [31] among others.

Empirical data from wireless communication, finance and speech recognition
often suggest that some extreme eigenvalues of sample covariance matrices are
well separated from the rest. This intrigues the second line of research about the
spiked eigenvalues, which was first proposed in Johnstone [16]. Significant pro-
gresses have been made in recent years on the behaviour of these spiked eigenval-
ues. For instance, the CLTs of the largest eigenvalues of complex Gaussian sample
covariance matrices with a spiked population were investigated in Baik et al. [3],
which also reported an interesting phase transition phenomenon. Baik and Silver-
stein [4] further considered almost sure limits of the extreme sample eigenvalues
of the general spiked population. Paul [24] established a CLT for the spiked eigen-
values under the Gaussian population and the population spikes being simple. The
fluctuation of the extreme sample eigenvalues of the general spiked population
with arbitrary multiplicity numbers was further reported in Bai and Yao [2].

Most of the above existing studies rely on the assumption that the observations
of high-dimensional data are independent, although dimensional correlation struc-
ture can be allowed. Observations of high-dimensional data in economics and fi-
nance, for example, are often highly dependent across time. In view of this, Zhang
[36] investigated the empirical spectral distribution (ESD) of the sample covari-
ance for the case where the data matrices are of the form A1ZA2, where A1 and A2
are positive semidefinite matrices and Z has independent entries satisfying some
moment assumptions. This model is referred to as the separable covariance model
and allows for some dependence among observations recorded over different time
points. Liu, Aue and Paul [19] studied the ESD of sample covariance matrices and
symmetrized sample autocovariance matrices constructed from a linear process.
Note that their setting also accommodates dependence among observations due to
the fact that linear processes are built from the same innovation vectors. However,
the above two papers considered the ESD only.

To the best of our knowledge, there is no existing work available to deal
with the largest eigenvalues of sample covariance matrices generated from high-
dimensional nonstationary time series data. The main difficulty is that the proper-
ties of the population covariance matrices of the nonstationary data are unknown
yet (even through we may make some assumptions about the error process). This
paper belongs to the second line of research about the spiked eigenvalues. The
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main contribution of this paper is to establish several joint asymptotic distribu-
tions for the first several largest eigenvalues of sample covariance matrices of
high-dimensional nonstationary time series data. An additional contribution of this
paper is to propose two new unit root tests for testing nonstationarity of high-
dimensional dependent time series.

We conclude this section by giving its organization. Section 2 establishes an
asymptotic distributional theory for the first several largest eigenvalues of the
covariance matrix of a high-dimensional dependent time series. Section 3 pro-
poses two new unit root tests that are devoted to testing nonstationarity for high-
dimensional dependent data. Section 4 evaluates both the size and power properties
of the proposed tests. Section 5 gives some concluding remarks. Appendix A es-
tablishes some useful results for truncated versions of sample covariance matrices
by truncating linear processes. Appendix B gives the full proofs of the main the-
orems in Section 3. The proofs of the results listed in Appendix A are given in
Appendix C of a Supplementary Material [35]. Appendix D of the Supplementary
Material [35] discusses some possible extensions of the main models to include a
cointegrating structure and a deterministic trending component.

2. Asymptotic theory. This section first introduces some necessary assump-
tions before we establish new asymptotic properties for the largest eigenvalues of
the covariance matrix of a vector of high-dimensional time series.

2.1. Matrix models. The paper is to consider high-dimensional covariance
matrices for nonstationary time series. Specifically, define the following linear pro-
cesses:

(2.1) Ytj =
∞∑

k=0

bkZt−k,j

with
∑∞

i=0 |bi | < ∞. Suppose that yt = (Yt1, . . . , Ytp)′ is a p-dimensional time
series, where {Zij } are independent and identically distributed (i.i.d.) random vari-
ables with EZij = 0, E|Zij |2 = 1 and E|Zij |4 < ∞. Consider a p-dimensional
time series model of the form

(2.2) xt = �xt−1 + �1/2yt , 1 ≤ t ≤ T ,

where the spectral norm of the coefficient matrix � is bounded by one (0 ≤
‖�‖2 ≤ 1).

Define X̄ = (
∑T

t=1 xt

T , . . . ,
∑T

t=1 xt

T )′ as a T ×p matrix. Introduce the noncentered
and centered sample covariance matrices

(2.3) B = 1

p
XX∗
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and

(2.4) B̄ = 1

p
(X − X̄)(X − X̄)∗

with X = (x1, . . . ,xT )′. Here, we point out that when � = 0, � satisfies some
conditions and Ytj ’s are i.i.d. random variables, the Tracy–Widom distribution
has been established for the large eigenvalue of B in [5]. Also, when � = 0, �

is a block matrix with spiked eigenvalues and Ytj ’s are i.i.d. random variables,
an asymptotic distribution (Gaussian distribution under some conditions) for the
largest eigenvalues of B has been discussed in [24] and [2]. It is not clear yet
how the largest eigenvalues of B may behave when Ytj ’s have some dependence
structure. One case is that � = 0, but � is involved in (2.1). When � = I, (2.2)
becomes nonstationary. The main motivation for considering such a model is the
proposal of two unit root tests to be discussed in the next section.

This paper is to investigate the largest eigenvalues of B and B̄ for the cases
where � = I or ‖�‖2 = ϕ < 1. Throughout the paper, we make the following
assumptions about the coefficients bi and �:

(A1)
∑∞

i=0 i|bi | < ∞.
(A2)

∑∞
i=0 bi = s �= 0.

(A3) There exist two positive constants M0 and M1 such that ‖�‖2 ≤ M0 and
tr(�)

p
≥ M1.

(A4) Let T → ∞ and p → ∞ such that limT ,p→∞
√

p

T
= 0.

Here, ‖ · ‖2 stands for either the spectral norm of a matrix or the Euclidean norm
of a vector. The linear process includes both MA(q) and AR(1) models. Assump-
tion (A2) is easily satisfied. Note that we do not require p and T to be of the same
order, which is being commonly used in the random matrix theory literature. As-
sumption (A3) covers some commonly used �. For example, one may verify that
the identity matrix I and the Toeplitz matrices satisfy it. However, we point out
that Assumption (A3) rules out the case where cross-sectional dependence has a
factor model structure, which leads to very large eigenvalues of �. We also need
to make some assumptions about Zij and x0.

(A5) {Zi,j } are i.i.d. random variables with mean zero, variance one and
bounded fourth moment. Let zt = (Zt1, . . . ,Ztp)′, where t can be either positive
or negative integer (for the purpose of introducing A7 below).

(A6) E‖x0‖2
2 = O(p).

(A7) x0 = ∑∞
k=0 b̃k�

1/2
1 z−k + b̃−1�

1/2
2 z̃ + b̃−2, where ‖�1‖2 ≤ M0, ‖�2‖2 ≤

M0 and z̃ = (Z̃1, . . . , Z̃p)′ is independent of zt for any t , in which {Z̃j } are i.i.d.
random variables with mean zero, variance one and finite fourth moments. The
coefficients satisfy

∑∞
k=0 |b̃k| + |b̃−1| < ∞ and ‖b̃−2‖2 = O(p).



2190 B. ZHANG, G. PAN AND J. GAO

2.2. Main results for noncentered sample covariance matrix B. To character-
ize the limits in probability of the eigenvalues of B, define for k = 1, . . . , T ,

(2.5) λk = 1

2(1 + cos θk)
with θk = 2(T + 1 − k)π

2T + 1

and

(2.6) γk = λk

(
a0 + 2

∞∑
j=1

aj (−1)j cos(jθk)

)
,

where

(2.7) ai =
∞∑

k=0

bkbk+i .

We first characterize the magnitude of λk and γk .

PROPOSITION 1. Let Assumptions (A1) and (A2) hold. For any fixed constant
k ≥ 1, there is a constant ck such that

(2.8) lim
T →∞

γk

T 2 = ck > 0

and

(2.9) lim
T →∞

γk

γ1
= lim

T →∞
λk

λ1
= 1

(2k − 1)2 .

We are now at a position to state the main results; their proofs are given in Ap-
pendix B. The first theorem develops an upper bound in probability for the spectral
norm of B for the stationary case. The second theorem gives a limit in probability
and a joint distribution for the first k largest eigenvalues of B for nonstationary
data.

THEOREM 2.1. Let Assumptions (A1)–(A6) hold. When 0 ≤ ‖�‖2 = ϕ < 1,
we obtain

(2.10) ‖B‖2 = Op

((1 +
√

T
p
)2

(1 − ϕ)2

)
.

THEOREM 2.2. Let Assumptions (A1)–(A5) hold. Let ρk be the kth largest
eigenvalue of B. Let � = I and k is fixed:

(1) If Assumptions (A6) holds, we have

(2.11)
ρk − γk

tr(�)
p

γ1

i.p.−→ 0,

where i.p. means convergence in probability.
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(2) If Assumptions (A7) holds, the random vector

(2.12)
√

p

γ1

(
ρ1 − γ1

tr(�)

p
, . . . , ρk − γk

tr(�)

p

)′

converges weakly to a zero-mean Gaussian vector w = (w1, . . . ,wk)
′ with co-

variance function cov(wi,wj ) = 0 for any i �= j and var(wi) = 2θ
(2i−1)4 with

θ = limp→∞ tr(�2)
p

.

REMARK 1. The result holds for the complex case as well. In fact, when Z is
complex, set

(2.13) Re(Zjk) = ZR
ij , and Im(Zjk) = ZI

ij .

Let ZR
ij and ZI

ij be independent. Then
√

p

γ1
(ρ1 − γ1

tr(�)
p

, . . . , ρk − γk
tr(�)

p
)′

converges weakly to a zero-mean Gaussian vector w = (w1, . . . ,wk)
′ with

var(wi) = 2θ
(2i−1)4 (1 − 2E(ZR

i1)
2E(ZI

i1)
2), in which θ = limp→∞ tr(�2)

p
. When

i �= j , cov(wi,wj ) = 0.

REMARK 2. If Assumption (A7) does not hold but Assumption (A6) is
true, then Theorem 2.2 remains true under Assumptions (A1)–(A3), (A5) and
limT ,p→∞ p

T
= 0.

REMARK 3. We now compare our results with those in [2]. Bai and Yao [2]
needs to assume that the observations are independent and that � has a spiked
structure. In our paper, the observations are highly dependent. Furthermore, we
need not assume a spiked structure of �, since the spiked eigenvalues come natu-
rally from the random walk structure.

2.3. Main results for centered sample covariance matrix B̄. We now consider
the largest eigenvalues of B̄. To characterize the limits in probability of the eigen-
values of B̄, define for k = 1, . . . , T ,

(2.14) λ̄k = 1

2(1 + cos θ̄k)
with θ̄k = (T − k)π

T

and

(2.15) γ̄k = λ̄k

(
a0 + 2

∞∑
j=1

aj (−1)j cos(j θ̄k)

)
.

We below characterize the magnitude of λ̄k and γ̄k . The result is similar to Propo-
sition 1.
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PROPOSITION 2. Let Assumptions (A1) and (A2) hold. For any fixed constant
k ≥ 1, there is a constant c̄k such that

(2.16) lim
T →∞

γ̄k

T 2 = c̄k > 0

and

(2.17) lim
T →∞

γ̄k

γ̄1
= lim

T →∞
λ̄k

λ̄1
= 1

k2 .

We next list the results, which are similar to Theorems 2.1 and 2.2.

THEOREM 2.3. Let Assumptions (A1)–(A6) hold. When 0 ≤ ‖�‖2 = ϕ < 1,
we obtain

(2.18) ‖B̄‖2 = Op

((1 +
√

T
p
)2

(1 − ϕ)2

)
.

THEOREM 2.4. Let Assumptions (A1)–(A5) hold. Let ρ̄k be the kth largest
eigenvalue of B̄. Let � = I and k is fixed. We then have the following results:

(2.19)
ρ̄k − γ̄k

tr(�)
p

γ̄1

i.p.−→ 0,

and the random vector

(2.20)
√

p

γ̄1

(
ρ̄1 − γ̄1

tr(�)

p
, . . . , ρ̄k − γ̄k

tr(�)

p

)′

converges weakly to a zero-mean Gaussian vector w̄ = (w̄1, . . . , w̄k)
′ with co-

variance function cov(w̄i, w̄j ) = 0 for any i �= j and var(w̄i) = 2θ
i4 with θ =

limp→∞ tr(�2)
p

.

REMARK 4. It is noted that Theorem 2.4 does not need Assumptions (A6) and
(A7) due to the structure of B̄.

We are now ready to introduce two new unit root tests for the high-dimensional
time series case before the proofs of the theorems are given in Appendix B below.

3. Unit root testing. This section is to explore an application of the main
results to the proposal of a new unit root test for a high-dimensional time series
setting.

Unit root testing is to check whether time series data are nonstationary or not.
Existing studies on this topic can be found in [11], [6] and [29]. In the past two
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decades, unit root testing in panel data has received much attention. Many re-
searchers (see, e.g., [8] and [20] for proposing the p-value based test indepen-
dently, [18] for establishing the pooled t-test and [15] for considering an averaged
t-test) consider the time series case where the error process is independent across
individuals. There are also some tests (see, e.g., [7], [26] and [28]) proposed for the
case where the error process is cross-sectional dependent. Choi and Chue [10] also
discussed subsampling hypothesis tests for nonstationary panels. [22] discussed
incidental trends and the power of panel unit root tests. In Chapter 7 of a recent
book, [9] provides a comprehensive survey and discussion about various unit-root
tests proposed for the panel data case. Meanwhile, another recent book by [27]
summarizes some recent developments about unit root testing for both time series
and panel data settings. In the above literature, researchers often need to first es-
timate the covariance matrix of a panel of times associated with cross-sectional
dependence. However, when the dimensionality of the time series becomes large,
it is hard to consistently estimate it without imposing some structure on the covari-
ance matrix. We therefore propose two new tests using the covariance matrices of
high-dimensional time series under consideration.

To this end, a key observation is that Theorems 2.2 and 2.4 indicate that the
largest eigenvalues of B and B̄ are of order T 2 in probability (the order of γ1
and γ̄1, which are given in Propositions 1 and 2), while Theorems 2.1, 2.3 and
Assumption (A4) imply that when 0 ≤ ϕ < 1, we have ‖B‖2 = op(T ) and ‖B̄‖2 =
op(T ). This motivates us to propose two new unit root tests based on the largest
eigenvalues.

3.1. The model and test statistics. We consider the following model:

(3.1) xt = (I − �)φ + �xt−1 + �1/2yt , 1 ≤ t ≤ T ,

where φ is a p-dimensional vector. The null hypothesis H0 is � = I and the alter-
native hypothesis H1 is ‖�‖2 < 1.

Theorem 2.2 states that under H0 : � = I, the statistic Lp =
√

p(ρ1−γ1
tr(�)

p
)

γ1
√

2θ
con-

verges weakly to a standard normal variable. Note that γ1
tr(�)

p
and γ1

√
2θ are both

unknown in practice. We would like to emphasize that γ1, tr(�)
p

and θ cannot be
estimated individually. However, it is possible to estimate their product as a whole.
Specifically speaking, an estimator of γ1

λ1

tr(�)
p

is proposed as follows.
Define x̆f,g = (xf − xf −1)

′(xg − xg−1) for 1 ≤ f,g ≤ T . A direct calculation
yields Ex̆f,g = a|f −g| tr(�). Moreover, note that

∑m1
j=1 aj (−1)j cos(jθ1) can be

approximated by
∑m1

j=1 aj for an appropriate m1 to be specified below. In view of

this, we propose an estimator of γ1
λ1

tr(�)
p

as

(3.2) μm1 =
T∑

i=2

x̆i,i

p(T − 1)
+ 2

m1∑
j=1

T −j∑
i=2

x̆i,i+j

p(T − j − 1)
.
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We next find an estimator for γ1

√
2 tr(�2)

p
. The strategy is to find an estima-

tor for the ratio of γ1

√
2 tr(�2)

p
and γ1

tr(�)
p

first and then construct its estimator in

conjunction with μm1 , the estimator of γ1
λ1

tr(�)
p

. To this end, we first find an estima-

tor for a2
0 tr(�2). One may verify that Var(x̆f,g) = (a2|f −g| + a2

0) tr(�2). It is also
noted that a|f −g| = o(|f − g|) due to Assumption (A1) so that the term a|f −g|
in Var(x̆f,g) can be negligible when choosing |f − g| sufficiently large. We then
propose an estimator for a2

0 tr(�2) as follows:

(3.3) Sσ 2,0 =
∑[T/2]

f =2
∑T

g=f +[T/2] x̆2
f,g

(T − 3
2 [T/2])([T/2] − 1)

.

Furthermore, one may verify that√
S

σ2,0
p∑T

i=2
x̆i,i

p(T −1)

−

√
tr(�2)

p

tr(�)
p

i.p.→ 0.

We may then construct Sσ 2,m2
, the estimator of γ1

λ1

√
2 tr(�2)

p
, as follows:

Sσ 2,m2
=

|μm2 |
√

2
S

σ2,0
p∑T

i=2
x̆i,i

p(T −1)

,

where m2 is specified below.
Also, note that γ1/λ1 = γ̄1/λ̄1. Once the two estimators are available, we can

construct the following test statistics, TN and T̄N , of the form

(3.4) TN = √
p

ρ1 − λ1μm1

λ1Sσ 2,m2

and

(3.5) T̄N = √
p

ρ̄1 − λ̄1μm1

λ̄1Sσ 2,m2

,

where λ1 and λ̄1 are given in (2.5) and (2.14), respectively. Let [a] standard for the
integer part of a.

THEOREM 3.1. Let Assumptions (A1)–(A5) hold, m1 = [√p] and m2 tends
to infinity. Under H0 : � = I, we have

(3.6) T̄N
d−→ N(0,1),

where
d−→ stands for convergence in distribution.
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Furthermore, if Assumptions (A7) also holds, under H0 : � = I, we have

(3.7) TN
d−→ N(0,1).

REMARK 5. The conditions imposed on m1 and m2 can be further relaxed. For
example, if there exists a positive integer s such that bi = 0 for any i > s in (2.1),
we find ai = 0 for any i > s in (2.7). So one can choose m1 = m2 = min{s, [√p]}
in this case. This point helps us to simplify the design and the verifications of the
assumptions for the simulation in Section 4 below.

Now we investigate the power of TN and T̄N for the case where {Ytj } in (2.1)
are i.i.d.

THEOREM 3.2. Let Assumptions (A1)–(A5) hold with bi = 0 for i ≥ 1. Con-
sider H1 : � = ϕI for 0 ≤ ϕ < 1. Then under the case of m1 = m2 = 0, we have

(3.8) lim
T →∞P(T̄N > C0|H1) = 1

for some C0 > �α , where �α is the α-level critical value of the standard normal
distribution.

Furthermore, if ‖φ‖2
2 = O(p), then

(3.9) lim
T →∞P(TN > C0|H1) = 1.

REMARK 6. Although T̄N and TN may have the same asymptotic results when
p and T are big enough, there may be differences under the small sample case. In
fact, under H0, x0 affects the largest eigenvalues of B but doesn’t affect the largest
eigenvalues of B̄. So it may affect the size of TN when the sample is small. Under
H1, φ affects the largest eigenvalues of B but does not affect the largest eigenvalues
of B̄. It may affect the power of TN when the sample is small. So T̄N may be more
useful than TN when we don’t have φ or x0. But when we have the condition that
φ = 0 and x0 = 0, γ1 ≈ 4γ̄1 so that TN can have a stronger power than T̄N under
small sample cases.

REMARK 7. There are some well-known panel unit root tests (e.g., [8] and
[18]). They considered the case of � = diag(ϕ1, . . . , ϕN) and used the estimators
of ϕi to test whether � = I. Moreover, when the covariance matrix � is involved,
it has to be estimated in order to test whether � = I (e.g., [7]). So such existing
tests may only work for the finite-dimensional case. By contrast, our test makes the
best use of the properties of the largest eigenvalues of B instead of estimating ϕi .
In addition, we do not impose special structures, such as sparsity on the covariance
matrix �.

Before the proofs of Theorems 3.1–3.2 are given in Appendix B, we evaluate
the finite-sample performance of the proposed tests and also compare them with
two natural competitors in Section 4 below.
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4. Simulation. This section is to conduct some simulations to investigate the
size and power of TN and T̄N .

4.1. The selection of m1 and m2. Recalling Remark 5, we below propose a
method to choose suitable m1 and m2. Note that

ζj =
∑T −j

i=2
x̆i,i+j

p(T −j−1)∑T
i=2

x̆i,i

p(T −1)

i.p.−→ aj

a0

with the rate 1√
pT

. Particularly, ζj = O( 1√
pT

) if aj = 0. Moreover, if there exists
a positive integer s such that bi = 0 for any i > s in (2.1), we find ai = 0 for any
i > s in (2.7). So one can choose m1 = m2 = min{s, [√p]} in this case. In practice,
one can see whether aj = 0 by comparing ζj with p−1/2T −1/4. Here, p−1/2T −1/4

is used as a bound instead of 1√
pT

since the convergence rate of μm1 to γ1
λ1

tr�
p

should be o(p−1/2). In view of this, we propose the following way of selecting m1
and m2:

m̂1 = m̂2

= min
{{

0 ≤ i < [√p] : |ζj | < p−1/2T −1/4, i < j < [√p]} ∪ {[√p]}}.(4.1)

Note that m̂1 and m̂2 work well when p and T are big enough. While when p

and T are small, m̂1 and m̂2 may be affected by aj

a0
. If aj �= 0 but aj

a0
is small, m̂1

and m̂2 may cause some problem when p and T are small.

4.2. The parametric bootstrap method. We also consider a parametric boot-
strap method for our test statistics TN and T̄N . Let �̇ = 1

T

∑T
t=1(xt − xt−1)(xt −

xt−1)
′. If there is a constant Ċ > 0 such that p

T
≤ Ċ, we can find that ‖�̇‖2 =

Op(1) and tr(�̇)
p

= Ṁ1 + Op( 1√
p
), where Ṁ1 > 0. It is easily seen that Assump-

tion (A3) still holds for �̇. We then draw a new sample ẋt = ẋt−1 + �̇
1/2

ẏt where
ẏt is a p-dimensional random vector from N(0, Ip) and ẏt is independent over t .
Note that Assumptions (A1)–(A7) still hold for ẋt . Let Ẋ = (ẋ1, . . . , ẋT )′. We de-
fine ṪN and ˙̄TN from Ẋ, the analogues of TN and T̄N , respectively. It follows from

Theorem 3.1 that ṪN
d−→ N(0,1) and ˙̄TN

d−→ N(0,1). So for any p and T we
can redraw ẋt for many times (e.g., 200 times) to get an empirical distributions for
each of ṪN and ˙̄TN . Then we use the critical values from the empirical distributions
to replace the critical values calculated from N(0,1). When p and T are not big,
the simulations show that ṪN and ˙̄TN based on the critical values from the empiri-
cal distributions perform better than these tests associated with the corresponding
critical values calculated from N(0,1).



CLT FOR LARGEST EIGENVALUES AND UNIT ROOT TEST 2197

4.3. Comparison with the existing tests. There are several existing unit root
tests available for panel data. Some of them consider the case where there is no
cross-sectional dependence (see, e.g., the IPS test proposed in [15]). If there is
cross-sectional dependence, the IPS test does not work. To test for nonstationar-
ity in the panel data case with cross-sectional dependence, [7] showed that the
Bootstrap method with estimation of � performs better for the case where p is
fixed and T is large. [7] also stated that the Bootstrap-OLS performs better than
Bootstrap-GLS when p is large. Furthermore, GLS does not work when p ≥ T .
We therefore compare TN with the t-statistic corresponding to the Bootstrap-OLS
t∗ols and the F -statistic corresponding to Bootstrap-OLS F ∗

ols.
We use the setting yt = zt and � = (�i,j ) = (0.3|i−j |). We compare the size

performance of our test TN with the two tests t∗ols and F ∗
ols under H0 with x0 = 0

and φ = 0. Table 1 reports the results of the three tests based on 1000 replica-
tions, 500 bootstrap replications and different values of p and T . The nominal size
throughout this section is set to be 0.05.

Then we compare our test T̄N with the two tests t∗ols and F ∗
ols under H0 and

x0 = 0,� = (�i,j ) = ( 1
(i−j)2+1

). We sample each element of φ from the standard
normal distribution. The results of the three test statistics based on 1000 replica-
tions, 500 bootstrap replications and different values of p and T are reported in
Table 2.

One can observe that when p becomes large, both t∗ols and F ∗
ols have a poor size

property even though yt is independent over t . This indicates that their asymptotic
distributions may not hold under the null hypothesis when p is large. One of the
reasons is that when p is large and the population covariance matrix does not have
any special structures, we cannot find any consistent estimates for the population
covariance matrix and the unknown parameters involved. As a consequence, their
asymptotic distributions may fail to hold under the null.

TABLE 1
The empirical size of three tests

The test T \ p 5 10 20 40 60 80

TN 40 0.057 0.057 0.041 0.048 0.050 0.040
t∗ols 40 0.045 0.028 0.014 0.000 0.000 0.000
F ∗

ols 40 0.054 0.044 0.027 0.000 0.003 0.001
TN 60 0.053 0.050 0.048 0.055 0.048 0.044
t∗ols 60 0.046 0.031 0.016 0.003 0.000 0.000
F ∗

ols 60 0.044 0.047 0.024 0.007 0.000 0.002
TN 80 0.053 0.048 0.041 0.052 0.048 0.041
t∗ols 80 0.045 0.033 0.023 0.006 0.000 0.000
F ∗

ols 80 0.064 0.035 0.027 0.011 0.003 0.000
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TABLE 2
The empirical size of three tests

The test T \ p 5 10 20 40 60 80

T̄N 40 0.070 0.056 0.062 0.052 0.038 0.043
t∗ols 40 0.036 0.013 0.008 0.001 0.000 0.000
F ∗

ols 40 0.056 0.029 0.014 0.001 0.000 0.000
T̄N 60 0.061 0.060 0.047 0.041 0.045 0.053
t∗ols 60 0.041 0.037 0.011 0.001 0.000 0.000
F ∗

ols 60 0.052 0.054 0.027 0.002 0.000 0.000
T̄N 80 0.055 0.058 0.053 0.048 0.041 0.048
t∗ols 80 0.041 0.043 0.015 0.006 0.000 0.000
F ∗

ols 80 0.041 0.045 0.035 0.008 0.000 0.000

4.4. Simulation results for TN under an MA(1) model. We now consider the
setting where yt = ψzt−1 + zt , ψ = 0.5 and � = (�i,j ) = (0.3|i−j |). To show
the performance with the nondiagonal �, we design the following matrix as an
alternative one:

(�2)ij =

⎧⎪⎪⎨
⎪⎪⎩

0.5, i = j,

0.2, |i − j | = 1,

0, |i − j | ≥ 2.

We consider the performance of TN and set φ = 0. Under H0, we set x0 = 0.
Under H1, we generate the data by (3.1) with t = −51,−50, . . . , T . Using an
asymptotic critical value calculated from N(0,1), the size and power results of
TN based on 1000 replications and different values of p, T and � are reported in
Table 3. We also use the parametric bootstrap method proposed in Section 4.2. The
size and power results of TN based on 1000 replications, 200 bootstrap replications
and different values of p, T and � are reported in Table 4.

4.5. Simulation results for T̄N under an MA(1) model. We still use the setting
in Section 4.4 but sample each element of φ from the standard normal distribution.
In each case, we use the critical value calculated from either N(0,1) or by the
parametric bootstrap method. The size and power results of T̄N based on 1000
replications and different values of p, T and � are reported in Table 6.

When p is small, the size and power results of TN and T̄N based on the criti-
cal value either calculated from N(0,1) or by the bootstrap method are reported
in Tables 7 and 8. From Tables 7 and 8, one can observe that while T̄N and TN

roughly have similar size values, the power of TN is slightly better than that of T̄N .
The power of the statistics of T̄N and TN improves when p and T increase. The
parametric bootstrap (proposed in this paper) based critical value in each case re-
sults in a stable size and better power than using an asymptotic critical value for
the case where p is as small as p = 5 or p = 10.
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TABLE 3
The results for TN and MA(1)

p T I (size) 0.95I (power) 0.9I (power) �2 (power)

20 20 0.019 0.102 0.216 0.510
20 30 0.037 0.109 0.672 0.830
20 40 0.036 0.346 0.951 0.935
20 60 0.043 0.896 1.000 0.997
20 80 0.039 0.997 1.000 1.000
40 20 0.019 0.102 0.580 0.710
40 30 0.028 0.301 0.964 0.938
40 40 0.031 0.752 0.999 0.974
40 60 0.034 0.997 1.000 0.998
40 80 0.033 1.000 1.000 1.000
60 20 0.021 0.100 0.766 0.876
60 30 0.029 0.421 0.998 0.981
60 40 0.033 0.905 1.000 0.989
60 60 0.045 1.000 1.000 0.998
60 80 0.046 1.000 1.000 1.000
80 20 0.020 0.116 0.870 0.932
80 30 0.029 0.561 1.000 0.996
80 40 0.032 0.966 1.000 0.997
80 60 0.036 1.000 1.000 1.000
80 80 0.034 1.000 1.000 1.000

In summary, for the case of p = 5 or p = 10, Tables 7 and 8 show that the size
and power values of TN and T̄N based on the asymptotic critical value of N(0,1)

are much less stable and reasonable than those based on the parametric bootstrap
critical value in each case. Tables 3–6 then show that when p ≥ 20 and T ≥ 20,
there are stable sizes and reasonable power values for both TN and T̄N based on
1000 replications, 200 bootstrap replications and different values of p, T and �.

REMARK 8. In Tables 3–8, one can find that using the bootstrap critical values
also leads to the higher empirical power. The reason is that TN and T̄N under H1

have the order O(
√

p(1 − C(1+
√

T
p

)2

T 2 )) so that the values of TN and T̄N under H1
are not very big when p or T is small. So the change of the critical value may
influence the power very much.

5. Conclusions and discussion. This paper has developed an asymptotic the-
ory for the largest eigenvalues of the covariance matrix of a high-dimensional time
series vector. As an application, a new unit root test developed for testing nonsta-
tionarity in high-dimensional time series vectors has been proposed and then dis-
cussed both theoretically and numerically. The small sample properties discussed
in Section 4 have offered the support to the theory established in Sections 2 and 3.
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TABLE 4
The results for TN and MA(1) with the parametric bootstrap method

p T I (size) 0.95I (power) 0.9I (power) �2 (power)

20 20 0.031 0.144 0.636 0.812
20 30 0.063 0.464 0.974 0.936
20 40 0.051 0.818 0.998 0.992
20 60 0.049 0.992 1.000 1.000
20 80 0.082 1.000 1.000 1.000
40 20 0.061 0.140 0.860 0.838
40 30 0.051 0.578 0.990 0.972
40 40 0.041 0.926 1.000 0.990
40 60 0.052 0.998 1.000 1.000
40 80 0.054 1.000 1.000 1.000
60 20 0.055 0.126 0.930 0.932
60 30 0.048 0.676 1.000 0.994
60 40 0.068 0.972 1.000 0.996
60 60 0.053 1.000 1.000 1.000
60 80 0.056 1.000 1.000 1.000
80 20 0.055 0.132 0.950 0.960
80 30 0.047 0.742 1.000 0.994
80 40 0.056 0.984 1.000 0.996
80 60 0.054 1.000 1.000 1.000
80 80 0.057 1.000 1.000 1.000

One possible extension involves the case where either a deterministic trending
time series component or a factor model structure is included in model (3.1). As a
consequence, it may be more appropriate to compare the corresponding versions
of TN and T̄N with those proposed by [15], [26] and [28]. As suggested by the
referees, another extension of model (3.1) is to take into account certain type of
cointegrating structures. Appendix D of the Supplementary Material [35] gives
some brief discussion about possible extensions, which require developing new
techniques and should be left for future research.

APPENDIX A: RESULTS FOR TRUNCATED MATRICES

This section is to consider the truncated version of the sample covariance matrix.
Let Y = (y1, . . . ,yT )′ be a T × p random matrix. Define

Yij,l =
l∑

k=0

bkZi−k,j

with l = max{p,T }, a truncated version of Ytj in (2.1). However, to simplify no-
tation, we let bi = 0 for all i > l in this section, so that we can still use Yij instead
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TABLE 5
The results for T̄N and MA(1)

p T I (size) 0.95I (power) 0.9I (power) �2 (power)

20 20 0.018 0.018 0.013 0.100
20 30 0.042 0.029 0.124 0.213
20 40 0.043 0.071 0.290 0.383
20 60 0.046 0.264 0.746 0.733
20 80 0.055 0.580 0.959 0.907
40 20 0.016 0.034 0.075 0.176
40 30 0.033 0.081 0.290 0.363
40 40 0.034 0.235 0.584 0.572
40 60 0.044 0.708 0.985 0.919
40 80 0.043 0.968 1.000 0.987
60 20 0.014 0.036 0.144 0.254
60 30 0.029 0.202 0.523 0.518
60 40 0.036 0.408 0.823 0.729
60 60 0.039 0.870 0.999 0.936
60 80 0.042 0.993 1.000 0.998
80 20 0.012 0.064 0.191 0.310
80 30 0.032 0.267 0.661 0.644
80 40 0.037 0.532 0.934 0.800
80 60 0.043 0.945 1.000 0.971
80 80 0.039 0.997 1.000 1.000

of Yij,l . In this way ai defined in (2.7) and Ytj in (2.1), respectively, become

ai =
l−i∑
k=0

bkbk+i , Ytj =
l∑

k=0

bkZt−k,j .

Furthermore, let F = (Fij ) be a T × (T + l) matrix with

(A.1) Fij =
{
bl+i−j , i ≤ j ≤ i + l,

0, otherwise.

It follows that Y = FZp , where Zp is a (T + l) × p random matrix with
(Zp)i,j = Zi−l,j . For the sake of notation simplicity, we below denote Zp by Z
and (Zp)i,j by Zij . Let A = (Aij )T ×T = (a|i−j |)T ×T . We then have A = FF′. We
would like to remind the readers that l depends on T , so that a|i−j | depends on T .

We also assume that x0 = 0 in this section.

A.1. Upper bound of the spectral norm of B for stationary data. This sub-
section is to investigate the upper bound of the spectral norm of B for stationary
data.
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TABLE 6
The results for T̄N and MA(1) with the parametric bootstrap method

p T I (size) 0.95I (power) 0.9I (power) �2 (power)

20 20 0.034 0.144 0.239 0.326
20 30 0.051 0.310 0.606 0.596
20 40 0.061 0.502 0.837 0.782
20 60 0.067 0.824 0.986 0.971
20 80 0.078 0.946 1.000 0.996
40 20 0.040 0.188 0.352 0.412
40 30 0.049 0.412 0.695 0.660
40 40 0.045 0.604 0.873 0.782
40 60 0.054 0.950 0.999 0.972
40 80 0.053 0.994 1.000 0.998
60 20 0.034 0.232 0.452 0.504
60 30 0.049 0.506 0.807 0.704
60 40 0.047 0.728 0.961 0.850
60 60 0.048 0.980 1.000 0.980
60 80 0.062 1.000 1.000 0.998
80 20 0.033 0.276 0.512 0.534
80 30 0.040 0.548 0.903 0.826
80 40 0.046 0.816 0.986 0.910
80 60 0.052 0.990 1.000 0.986
80 80 0.064 1.000 1.000 0.998

PROPOSITION 3. Suppose that Assumptions (A1)–(A5) hold. When 0 ≤
‖�‖2 = ϕ < 1,

lim
T →∞P

(
‖B‖2 ≤ 8

∑
i≥0 |ai |

(1 − ϕ)2 M0

(
1 +

√
T

p

)2)
= 1.

The proof of the proposition is available in the Supplementary Material [35].

A.2. Convergence in probability and CLT of the first k largest eigenvalues
when � = I. Define C = (Cij )1≤i,j≤T to be a T × T lower triangular matrix
with

(A.2) Cij = 0 for j > i and Cij = 1 for 1 ≤ j ≤ i.

In this case, one has

(A.3) B = (1/p)XX∗ = (1/p)CY�Y∗C∗ = (1/p)CFZp�Z∗
pF∗C∗.

PROPOSITION 4. Suppose that Assumptions (A1)–(A5) hold. Let ρk be the

kth largest eigenvalue of B. When � = I,
ρk−γk

tr(�)
p

γ1
→ 0 in probability.
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TABLE 7
The results for TN and small p

p T Critical value I (size) 0.95I (power) 0.9I (power) �2 (power)

5 20 N(0,1) 0.040 0.056 0.008 0.070
bootstrap 0.084 0.114 0.308 0.560

5 30 N(0,1) 0.039 0.014 0.010 0.038
bootstrap 0.077 0.180 0.580 0.762

5 40 N(0,1) 0.051 0.002 0.012 0.030
bootstrap 0.079 0.262 0.772 0.882

5 60 N(0,1) 0.055 0.000 0.006 0.002
bootstrap 0.079 0.570 0.938 0.986

5 80 N(0,1) 0.049 0.000 0.002 0.002
bootstrap 0.076 0.816 0.992 0.992

10 20 N(0,1) 0.023 0.078 0.048 0.202
bootstrap 0.085 0.132 0.462 0.664

10 30 N(0,1) 0.031 0.016 0.142 0.330
bootstrap 0.075 0.240 0.826 0.896

10 40 N(0,1) 0.039 0.042 0.322 0.416
bootstrap 0.077 0.580 0.972 0.966

10 60 N(0,1) 0.037 0.126 0.558 0.502
bootstrap 0.069 0.894 1.000 0.998

10 80 N(0,1) 0.049 0.246 0.678 0.598
bootstrap 0.064 0.982 1.000 1.000

PROPOSITION 5. Suppose that Assumptions (A1)–(A5) hold. Let ρk be the kth
largest eigenvalue of B. When � = I, (

√
p

ρ1−γ1
γ1

, . . . ,
√

p
ρk−γk

γ1
)′ converges weakly

to a zero-mean Gaussian vector w = (w1, . . . ,wk)
′ with covariance cov(wi,wj ) =

δij
θ

(2i−1)4 (2 − 4E(ZR
i1)

2E(ZI
i1)

2) and θ = limp→∞ tr(�2)
p

.

The proofs of the propositions are available in the Supplementary Material [35].

A.3. The results for B̄. The following results for B̄ are similar to those for B.
In view of (A.3), write

(A.4) B̄ = (1/p)HCFZp�Z∗
pF∗C∗H∗,

where H = I − 11′
T

with the p × 1 vector 1 consisting of all one.

PROPOSITION 6. Suppose that Assumptions (A1)–(A5) hold. Let ρ̄k be the

kth largest eigenvalue of B̄. When � = I,
ρ̄k−γ̄k

tr(�)
p

γ̄1
→ 0 in probability.

PROPOSITION 7. Suppose that Assumptions (A1)–(A5) hold. Let ρ̄k be the kth
largest eigenvalue of B̄. When � = I, (

√
p

ρ̄1−γ̄1
γ̄1

, . . . ,
√

p
ρ̄k−γ̄k

γ̄1
)′ converges weakly
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TABLE 8
The results for T̄N and small p

p T Critical value I (size) 0.95I (power) 0.9I (power) �2 (power)

5 20 N(0,1) 0.031 0.014 0.008 0.024
bootstrap 0.046 0.086 0.155 0.238

5 30 N(0,1) 0.039 0.002 0.002 0.006
bootstrap 0.066 0.132 0.284 0.422

5 40 N(0,1) 0.051 0.000 0.000 0.002
bootstrap 0.071 0.170 0.417 0.518

5 60 N(0,1) 0.050 0.000 0.000 0.002
bootstrap 0.063 0.328 0.712 0.754

5 80 N(0,1) 0.053 0.000 0.000 0.000
bootstrap 0.069 0.466 0.896 0.926

10 20 N(0,1) 0.025 0.004 0.009 0.081
bootstrap 0.049 0.098 0.218 0.308

10 30 N(0,1) 0.043 0.002 0.018 0.068
bootstrap 0.056 0.214 0.450 0.471

10 40 N(0,1) 0.046 0.014 0.031 0.108
bootstrap 0.073 0.300 0.653 0.684

10 60 N(0,1) 0.062 0.022 0.117 0.168
bootstrap 0.069 0.560 0.904 0.880

10 80 N(0,1) 0.057 0.022 0.217 0.234
bootstrap 0.075 0.748 0.991 0.960

to a zero-mean Gaussian vector w̄ = (w̄1, . . . , w̄k)
′ with covariance cov(w̄i, w̄j ) =

δij
θ
i4 (2 − 4E(ZR

i1)
2E(ZI

i1)
2) and θ = limp→∞ tr(�2)

p
.

The proofs of the propositions are available in the Supplementary Material [35].

APPENDIX B: PROOFS OF THE MAIN RESULTS

This section is to prove that the results obtained in Section 4 still hold for the
general linear process (without the truncation step performed there) and the general
initial vector x0. We define a T × p matrix X0 = (x0, . . . ,x0)

′ consisting of the
initial vector x0 of the time series. When � = I, we may rewrite X = CY�1/2 +X0

and X̄ = 11′
T

CY�1/2 + X0 so that the sample covariance matrices B and B̄ can be
rewritten as follows:

(B.1) B = 1

p
XX∗ = 1

p
CY�Y∗C∗ + 1

p
CY�1/2X∗

0 + 1

p
X0�

1/2Y∗C∗ + 1

p
X0X∗

0

and

(B.2) B̄ = 1

p
(X − X̄)(X − X̄)∗ = 1

p

(
I − 11′

T

)
CY�Y∗C∗

(
I − 11′

T

)∗
.
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LEMMA 1. Recall the definitions of Y, λk and γk in Section 2. Let l =
max{p,T } and Yl be the truncated matrix of Y in Section 4. Define

γk,l = λk

(
a0,l + 2

∑
1≤j≤T −1

aj,l(−1)j cos(jθk)

)
,

where

(B.3) aj,l = ∑
j≤k≤l

bkbk−j .

Then when � = I,

(B.4)
∥∥∥∥(1/p)C(Y�Y∗ − Yl�Y∗

l )C
∗

γ1,l

∥∥∥∥
2
= op

(
p−1/2)

and

(B.5)
|γk,l − γk|

γ1,l

= o(1).

PROOF. We consider (B.5) first. To this end, observe that Assumption (A1)
implies that

(B.6)
∞∑
i=0

i|ai | < ∞,

because
∞∑
i=0

i|ai | ≤
∞∑
i=0

i

∞∑
k=0

|bk||bk+i | =
∞∑

k=0

|bk|
( ∞∑

i=0

i|bk+i |
)

≤
∞∑

k=0

|bk|
( ∞∑

i=0

i|bi |
)
.

Write

|γk,l − γk|
γ1,l

≤ λk

γ1,l

(∑
k>l

b2
k + 2

T −1∑
j=1

∑
k>l

|bk||bk−j | + 2
∑
j≥T

|aj |
)

≤ λk

γ1,l

(∑
k>l

b2
k + 2

∞∑
j=1

|bj |
∑
k>l

|bk| + 2
∑
j≥T

|aj |
)
.

From (B.6) and Assumption (A1), we obtain that

∑
k>l

b2
k + 2

∞∑
j=1

|bj |
∑
k>l

|bk| + 2
∑
j≥T

|aj | = o(1).

Moreover, Lemma C.2 and Assumption (A1) [or (C.12)] imply that λk

γ1,l
is

bounded. So we conclude (B.5).
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Now, we consider (B.4). Using Lemma C.1 in the Supplementary Material [35],
observe that∥∥∥∥(1/p)C(Y�Y∗ − Yl�Y∗

l )C
∗

γ1,l

∥∥∥∥
2
≤ ‖C‖2

2

γ1,l

∥∥(1/p)
(
Y�Y ∗ − Yl�Y∗

l

)∥∥
2

= λ1

γ1,l

∥∥(1/p)
(
Y�Y∗ − Yl�Y∗

l

)∥∥
2.

As before λ1
γ1,l

is bounded. So we just need to consider ‖(1/p)(Y�Y∗ −
Yl�Y∗

l )‖2. Let K = (Kij )1≤i≤T ,1≤j≤p = Y − Yl. We can obtain that Kij =∑∞
k=l+1 bkZi−k,j and

E|Kij |2 =
∞∑

k=l+1

b2
k .

By Assumption (A1), we can get

E|Kij |2 =
∞∑

k=l+1

b2
k ≤ l−2

∞∑
k=l+1

k2|bk|2 = o
(
l−2)

,

which implies

E

∥∥∥∥ 1√
p

K
∥∥∥∥2

F

= o
(
T l−2)

.

This, together with (C.2), implies that∥∥(1/p)
(
Y�Y∗ − Yl�Y∗

l

)∥∥
2 = ∥∥(1/p)

(
K�Y∗

l + Yl�K∗ + K�K∗)∥∥
2

≤ 2
∥∥∥∥ 1√

p
K

∥∥∥∥
F

‖�‖2

∥∥∥∥ 1√
p

Yl

∥∥∥∥
2
+

∥∥∥∥ 1√
p

K
∥∥∥∥2

F

‖�‖2(B.7)

= op

(
p−1/2)

.

This concludes (B.4). �

PROOF OF THEOREM 2.2. At first we prove (2.11). Recalling (B.1),

B = 1

p
XX∗ = 1

p
CY�Y∗C∗ + 1

p
CY�1/2X∗

0 + 1

p
X0�

1/2Y∗C∗ + 1

p
X0X∗

0.

Assumption (A6) implies that

(B.8)
∥∥∥∥ 1

p
X0X∗

0

∥∥∥∥
2
= Op(T )

and that

(B.9)
∥∥∥∥ 1

p
CY�1/2X∗

0

∥∥∥∥
2
= Op

(
T 1/2

∥∥∥∥ 1

p
CY�Y∗C∗

∥∥∥∥1/2

2

)
.
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We can write (1/p)CY�Y∗C∗
γ1

as

(1/p)CY�Y∗C∗

γ1
= γ1,l

γ1

(1/p)CY�Y∗C∗

γ1,l

= γ1,l

γ1

(1/p)CYl�Y∗
l C∗

γ1,l

(B.10)

+ γ1,l

γ1

(1/p)C(Y�Y∗ − Yl�Y∗
l )C

∗

γ1,l

.

From (B.5), we have limT →∞ γ1,l

γ1
= 1. This, together with (B.1), Proposition 4,

(B.4), (B.8), (B.9) and Lemma C.4 in the Supplementary Material [35] implies
(2.11).

We next prove the CLT. In fact, we just need to prove

(B.11)
∥∥∥∥ 1

p
CY�1/2X∗

0

∥∥∥∥
2
= op

(
p−1/2T 2)

.

Note that equation (B.9) implies that ‖ 1
p

CY�1/2X∗
0‖2 = Op(T 3/2). Remark 2

then follows.
The Assumption (A7) implies that

(B.12)
∥∥∥∥ 1

p
X0X∗

0

∥∥∥∥
2
= Op(T ).

Our aim is to prove (B.11). Note that rank(CY�1/2X∗
0) = 1. Recalling Assump-

tion (A7), we can then find

∥∥∥∥ 1

p
CY�1/2X∗

0

∥∥∥∥
2
=

√
T

p

√√√√√ T∑
t=1

(
t∑

i=1

yi′�1/2x0

)2

,(B.13)

t∑
i=1

yi′�
1/2x0 =

t∑
i=1

yi′�
1/2

∞∑
k=0

b̃k�
1/2
1 z−k +

t∑
i=1

yi′�
1/2b̃−1�

1/2
2 z̃

(B.14)

+
t∑

i=1

yi′�
1/2b̃−2.

By (2.1) and a variable change, we may write

(B.15)
t∑

i=1

yi′ =
t∑

j=1

zj ′

(
t∑

i=j

bi−j

)
+

0∑
j=−∞

zj ′

(
t∑

i=1

bi−j

)
.

Let (c̃−2,1, . . . , c̃−2,p)′ = c̃−2 = �1/2b̃−2. Assumptions (A3) and (A7) imply
‖c̃−2‖2 = O(p). Then

t∑
i=1

yi′�
1/2b̃−2 =

t∑
i=1

yi′ c̃−2.
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It follows that

(B.16) E

(
t∑

i=1

yi′�
1/2b̃−2

)
= 0

and

Var

(
t∑

i=1

yi′�
1/2b̃−2

)

= ‖c̃−2‖2

(
t∑

j=1

(
t∑

i=j

bi−j

)2

+
0∑

j=−∞

(
t∑

i=1

bi−j

)2)

= O(pt),

(B.17)

which imply

(B.18)
t∑

i=1

yi′�
1/2b̃−2 = Op

(
p1/2t1/2)

.

As in (B.15), write

t∑
i=1

yi′�
1/2b̃−1�

1/2
2 z̃ = b̃−1

(
t∑

j=1

zj ′�1/2�
1/2
2 z̃

(
t∑

i=j

bi−j

)

+
0∑

j=−∞
zj ′�1/2�

1/2
2 z̃

(
t∑

i=1

bi−j

))
.

Assumption (A7) implies that z̃ is independent of zt and that b̃−1 is bounded. It
follows that

(B.19)
t∑

i=1

yi′�
1/2b̃−1�

1/2
2 z̃ = Op

(
p1/2t1/2)

.

Now we consider the first term of the right-hand side of (B.14). From (B.15),
write

t∑
i=1

yi′�
1/2

∞∑
k=0

b̃k�
1/2
1 z−k

=
t∑

j=1

∞∑
k=0

zj ′�1/2�
1/2
1 z−kb̃k

(
t∑

i=j

bi−j

)

+
0∑

j=−∞

∞∑
k=0

z′
j�

1/2�
1/2
1 z−kb̃k

(
t∑

i=1

bi−j

)
.
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Direct calculations imply

E

(
t∑

i=1

yi′�
1/2

∞∑
k=0

b̃k�
1/2
1 z−k

)

=
∞∑

k=0

tr
(
�1/2�

1/2
1

)
b̃k

(
t∑

i=1

bi+k

)
= O(p)

(B.20)

and

(B.21) Var

(
t∑

i=1

yi′�
1/2

∞∑
k=0

b̃k�
1/2
1 z−k

)
= O(pt).

Equations (B.18)–(B.21) and Assumption (A4) imply

(B.22)
∥∥∥∥ 1

p
CY�1/2X∗

0

∥∥∥∥
2
= Op

(
max

(
p−1/2T 3/2, T

)) = op

(
p−1/2T 2)

.

The proof of Theorem 2.2 is complete. �

PROOF OF THEOREM 2.1. Define X0� = (�x0, . . . ,�
T x0)

′ and X1� = X −
X0�. Write

B = (1/p)XX∗

= (1/p)X1�X∗
1� + (1/p)X1�X∗

0�(B.23)

+ (1/p)X0�X∗
1� + (1/p)X0�X∗

0�.

Observe that

∥∥(1/p)X∗
0�X0�

∥∥
2 =

∥∥∥∥∥(1/p)

T∑
t=1

�tx0x′
0�

′t
∥∥∥∥∥

2

≤ 1

p(1 − ϕ2)
‖x0‖2.

(B.24)

This, together with Assumption (A6), implies

(B.25)
∥∥(1/p)X∗

0�X0�

∥∥
2 = Op(1).

Recalling (C.1) in the Supplementary Maerial [35], we have

∥∥(1/p)X∗
1�X1�

∥∥
2 ≤ M0

(1 − ϕ)2

∥∥(1/p)Y∗Y
∥∥

2.

We then conclude from (C.1), (C.2) in the Supplementary Material [35] and
(B.7) that

(B.26) lim
T →∞P

(∥∥(1/p)X∗
1�X1�

∥∥
2 ≤ 8

∑
i≥0 |ai |

(1 − ϕ)2 M0

(
1 +

√
T

p

)2)
= 1.
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By Hölder’s inequality,

(B.27)
∥∥(1/p)X0�X∗

1�

∥∥
2 ≤

√∥∥(1/p)X∗
0�X0�

∥∥
2

∥∥(1/p)X∗
1�X1�

∥∥
2.

Thus, equations (B.25)–(B.27) ensure Theorem 2.1. �

The proof of Theorem 2.3 is simple since B̄ = HBH. So ‖B̄‖2 ≤ ‖B‖2 since
‖H‖2 = 1.

Theorem 2.4 are similar to Theorem 2.2. We only need to replace the results of
Appendix A.2 by those in Appendix A.3. Note that we do not need to prove (B.11)
since (B.2) implies that x0 does not affect B̄.

PROOF OF THEOREM 3.1. At first, we prove that the error of the estimator
μm1 is o(p−1/2). Let m1 = [√p]. From (2.5) and (B.6), we have∣∣∣∣

(
a0 + 2

∑
1≤j≤m1

aj (−1)j cos(jθ1)

)

−
(
a0 + 2

∑
1≤j≤∞

aj (−1)j cos(jθ1)

)∣∣∣∣(B.28)

≤ 2
∑

1+m1≤j≤∞
|aj | = o

(
p−1/2)

and ∣∣∣∣
(
a0 + 2

∑
1≤j≤m1

aj (−1)j cos(jθ1)

)
−

(
a0 + 2

∑
1≤j≤m1

aj

)∣∣∣∣
(B.29)

≤ 2
∑

1≤j≤m1

|aj |
(

1 − cos
jπ

2T + 1

)
= O

(
p1/2T −2) = o

(
p−1/2)

.

In view of (2.6), it suffices to prove

(B.30)
∣∣∣∣μm1 −

(
a0 + 2

∑
1≤j≤m1

aj

)
tr(�)

p

∣∣∣∣ = op

(
p−1/2)

.

A direct calculation shows the following mean and variance:

Eμm1 −
(
a0 + 2

∑
1≤j≤m1

aj

)
tr(�)

p
= 0,

Var
( ∑

1≤j≤m1

1

T − j − 1

∑
2≤i≤T −j

y′
i�yi+j

p

)
(B.31)

= ∑
1≤i,j≤m1

∑
2≤f ≤T −i

∑
2≤g≤T −j

Cov(
y′
f �yf +i

p
,

y′
g�yg+j

p
)

(T − i − 1)(T − j − 1)
.
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Moreover, we have

Cov
(y′

f �yf +i

p
,

y′
g�yg+j

p

)

= 1

p

[∑p
i=1 �2

ii

p
E|Zij |4

∞∑
k=0

bkbk+ibk+g−f bk+g−f +j 1(k+g−f ≥0)

+ tr(�2)

p
E|Zij |2(a|f −g|a|f +i−g−j | + a|f +i−g|a|f −g−j |)

]
.

From the above, Assumption (A1) and (B.6), we conclude that

(B.32) Var(μm1) = O
(
p−1m1T

−1) = o
(
p−1)

.

Then (B.31) and (B.32) imply (B.30).
Now we prove √

|S
σ2,0,0|
p∑T

i=2
x̆i,i

p(T −1)

−

√
tr(�2)

p

tr(�)
p

i.p.−→ 0.

Let S̃σ 2,0,0 = Sσ 2,0,0 − a2
0 tr(�2). It is then sufficient to show that

S̃σ 2,0,0

a2
0 tr(�2)

= op(1).

From Assumptions (A2) and (A3), we have for large enough T ,

(B.33) a2
0 tr

(
�2) ≥ a2

0M2
1p,

where we have used the fact that tr(�2) ≥ (tr�)2

p
. When T is large enough,

(B.34)
(
T − 3

2
[T/2]

)([T/2] − 1
) ≥ T 2

9
.

We next expand S̃σ 2,0,0 in terms of Zij and write it a sum of the terms involving
the high order of Zij and the terms involving the low order of Zij . Specifically,
write S̃σ 2,0,0 = S̃σ 2,0,0,h + S̃σ 2,0,0,l , where

S̃σ 2,0,0,h

= 1

(T − 3
2 [T/2])([T/2] − 1)

[T/2]∑
f =2

T∑
g=f +[T/2]

×
( p∑

i1,i2=1

�i1i1�i1i2

T∑
s1,s2=−∞

Z3
s1i1

Zs2i2(bf −s1bg−s1bf +i−s1bg+j−s2(B.35)
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+ bf −s1bg−s1bf +i−s2bg+j−s1 + bf −s1bg−s2bf +i−s2bg+j−s1

+ bf −s2bg−s1bf +i−s1bg+j−s1)

− 3
p∑

i1=1

�2
i1i1

T∑
s1=−∞

Z4
s1i1

bf −s1bg−s1bf +i−s1bg+j−s1

)
.

Note that bk = 0 when k < 0. We can then conclude from Assumption (A1) that

(B.36) E|S̃σ 2,0,0,h| = o
(
p2T −2)

.

(B.33) and (B.36) imply that

(B.37)
E|S̃σ 2,0,0,h|
a2

0 tr(�2)
= o

(
pT −2) = o(1).

It can be derived that(
T − 3

2
[T/2]

)([T/2] − 1
)
ES̃σ 2,0,0,l

=
[T/2]∑
f =2

T∑
g=f +[T/2]

(
ag−f ag−f tr

(
�2) + ag−f ag−f

(
tr(�)

)2)
(B.38)

= o
(
p2T −1)

.

This, together with (B.33) and (B.34), implies that

(B.39)
ES̃σ 2,0,0,l

a2
0 tr(�2)

= o
(
pT −3) = o(1).

By (B.33), (B.34) and the Assumption (A1), one can also verify that

(B.40) Var
(

S̃σ 2,0,0,l

a2
0 tr(�2)

)
= o

(
pT −2 + p−1) = o(1).

This, together with (B.37) and (B.39), shows that

S̃σ 2,0,0

a2
0 tr(�2)

= op(1).

This, together with (B.28)–(B.30), implies that Sσ 2,m2
− a0

√
2 tr(�2)√

p

i.p.−→ 0 when
m2 tends to infinity. Since the two estimators are available, it is easy to complete
the proof with Theorems 2.2 and 2.4. �

PROOF OF THEOREM 3.2. We claim that

(B.41)
T∑

i=2

x̆i,i

p(T − 1)
− 2a0 tr(�)

p(1 + ϕ)

i.p.−→ 0
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and

(B.42) Sσ 2,0 − 2a0

√
2 tr(�2)√

p(1 + ϕ)

i.p.−→ 0.

Indeed, the proofs of (B.41) and (B.42) are similar to that of Theorem 3.1 (replac-
ing m1 = m2 there by 0). Moreover, from Theorem 2.3 we have ρ̄1 = op(T ). This,
together with (B.41) and (B.42), ensures that

(B.43) T̄N +
√

p

2

tr(�)
p√

tr(�2)
p

i.p.−→ 0,

which further yields (3.8).
When ‖φ‖2 = O(p), from Theorem 2.1 we have ρ1 = Op(T ). This, together

with (B.41) and (B.42), ensures that

(B.44) TN +
√

p

2

tr(�)
p√

tr(�2)
p

i.p.−→ 0,

which further implies (3.9). �
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SUPPLEMENTARY MATERIAL

Supplement to “CLT for largest eigenvalues and unit root testing for high-
dimensional nonstationary time series” (DOI: 10.1214/17-AOS1616SUPP;
.pdf). The supplement [35] provides the proofs of the results in Appedix A and
some more discussions about other models.
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