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ESTIMATING VARIANCE OF RANDOM EFFECTS TO SOLVE
MULTIPLE PROBLEMS SIMULTANEOUSLY

BY MASAYO YOSHIMORI HIROSE1 AND PARTHA LAHIRI2

Institute of Statistical Mathematics and University of Maryland

The two-level normal hierarchical model (NHM) has played a critical
role in statistical theory for the last several decades. In this paper, we propose
random effects variance estimator that simultaneously (i) improves on the
estimation of the related shrinkage factors, (ii) protects empirical best linear
unbiased predictors (EBLUP) [same as empirical Bayes (EB)] of the random
effects from the common overshrinkage problem, (iii) avoids complex bias
correction in generating strictly positive second-order unbiased mean square
error (MSE) (same as integrated Bayes risk) estimator either by the Taylor
series or single parametric bootstrap method. The idea of achieving multiple
desirable properties in an EBLUP or EB method through a suitably devised
random effects variance estimator is the first of its kind and holds promise
in providing good inferences for random effects under the EBLUP or EB
framework. The proposed methodology is also evaluated using a Monte Carlo
simulation study and real data analysis.

1. Introduction. We advance EBLUP/EB theory for the following widely ap-
plied two-level normal hierarchical model.

A two-level normal hierarchical model (NHM). For i = 1, . . . ,m,

Level 1 (sampling model): yi |θi
ind∼ N(θi,Di);

Level 2 (linking model): θi
ind∼ N(x′

iβ,A).

In the above model, level 1 is used to account for the sampling distribution of un-
biased estimates yi . For example [see Morris (1983); Morris and Tang (2011)],
yi could be a sample mean based on ni observations taken from the ith population
(e.g., a small geographic area, a hospital or a school) and Di = σ 2/ni , where the
common σ 2 is either known or accurately estimated using data from all popula-
tions. In some NHM applications when ni’s are moderately large, yi ’s represent
variance stabilizing transformed direct estimates so that Di’s are known; see Efron
and Morris (1975), Carter and Rolph (1974), Casas-Cordero, Encina and Lahiri
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(2015) and others. When ni ’s are small as in many small area estimation prob-
lems, smoothed estimates of Di ’s are obtained using empirical variance modeling
[Fay and Herriot (1979), Otto and Bell (1995)], but assumed known for the sub-
sequent application of NHM. Bell (2008) examined how error in Di estimates can
affect inference of the random effects θi . There are some attempts to incorporate
additional variability in the estimates of Di through variance modeling; see Otto
and Bell (1995), Arora and Lahiri (1997), Arora, Lahiri and Mukherjee (1997),
You and Chapman (2006), Liu, Lahiri and Kalton (2014), Ha, Lahiri and Parsons
(2014) and others. In order to focus on the central theme of this paper, that is, es-
timation of random effects variance of NHM satisfying multiple properties, we do
not entertain the complexity involving the estimation of Di and assume known Di

throughout the paper like many other papers written on NHM.
Level 2 links the random effects θi to a vector of p known auxiliary variables

xi = (xi1, . . . , xip)′, often obtained from various alternative data sources (e.g., ad-
ministrative records, severity index for a hospital, school register, etc.). The pa-
rameters β and A of the linking model, commonly referred to as hyperparameters,
are generally unknown and are estimated from the available data. We assume that
β ∈ Rp , the p-dimensional Euclidian space, and A > 0.

The NHM model can be viewed as the following simple linear mixed model:

(1.1) yi = θi + ei = x′
iβ + vi + ei, i = 1, . . . ,m,

where the vi ’s and ei ’s are independent with vi
i.i.d.∼ N(0,A) and ei

ind.∼ N(0,Di);
see Prasad and Rao (1990). NHM can be also called a Bayesian model where
level 1 and level 2 correspond to the sampling and prior distributions, respectively.
In small area estimation literature [see Rao and Molina (2015)], NHM is com-
monly referred to as the Fay–Herriot model.

NHM is particularly effective in combining different sources of information and
explaining different sources of errors. Some earlier applications of NHM include
the estimation of: (i) false alarm probabilities in New York City [Carter and Rolph
(1974)], (ii) the batting averages of major league baseball players [Efron and Mor-
ris (1975)], and (iii) prevalence of toxoplasmosis in El Salvador [Efron and Morris
(1975)]. More recently, NHM was used: to estimate poverty rates for the US states,
counties, and school districts [Citro and Kalton (2000)] and Chilean municipali-
ties [Casas-Cordero, Encina and Lahiri (2015)], and to estimate proportions at the
lowest level of literacy for states and counties [Mohadjer et al. (2012)].

The MSE of a given predictor θ̂i of θi is defined as Mi(θ̂i) = E(θ̂i − θi)
2, where

the expectation is with respect to the joint distribution of y = (y1, . . . , ym)′ and
θ = (θ1, . . . , θm)′ under the NHM. In the Bayesian terminology, Mi(θ̂i) is called
the integrated Bayes risk under the squared error loss function. The best linear
unbiased predictor (BLUP) θ̂BLUP

i of θi , which minimizes Mi(θ̂i) among all linear
unbiased predictors θ̂i , is given by

θ̂BLUP
i (A) = (1 − Bi)yi + Bix

′
i β̂(A),
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where Bi ≡ Bi(A) = Di/(A + Di) is the shrinkage factor and β̂(A) =
(X′V −1X)−1X′V −1y is the weighted least square estimator of β when A is
known. Here, we use the following notation: X′ = (x1, . . . , xm), a p × m matrix
of known auxiliary variables; V = diag(A + D1, . . . ,A + Dm), a m × m diagonal
matrix. By plugging in an estimator Â for A (e.g., ML, REML, ANOVA) in the
BLUP, one gets an empirical BLUP: θ̂EB

i ≡ θ̂BLUP
i (Â). Note that θ̂EB

i can be also
interpreted as an empirical Bayes estimator of θi . In this paper, we use EB to re-
fer to either empirical BLUP or empirical Bayes. We find it convenient to use the
superscript EB in θ̂EB

i to denote either empirical best linear unbiased predictor or
empirical Bayes estimator of θi .

In the context of an empirical Bayesian approach, Morris (1983) noted that for
making inferences about the random effects θi , estimation of Bi is more important
than that of A because the posterior means and variances of θi are linear in Bi , not
in A, when the hyperparameters β and A are known. He also noted that, even if
an exact unbiased estimator of A is plugged in Bi ≡ Bi(A), one may estimate Bi

with large bias. For that reason, to motivate the James–Stein estimator of θi , Efron
and Morris (1973) used an exact unbiased estimator of B and not maximum likeli-
hood estimator of A. For small m, maximum likelihood estimator of A (even with
the REML correction) frequently produces estimate of A at the boundary (i.e., 0)
resulting in Bi = 1 for all i, even when some of the true Bi are not close to 1. This
causes an overshrinkage problem in EB. That is, for each i, EB of θi reduces to
the regression estimator. To overcome the overshrinkage problem, Morris (1983)
suggested the fraction (m − p − 2)/(m − 1) when estimator of Bi is 1. Li and
Lahiri (2010) and Yoshimori and Lahiri (2014) avoided the overshrinkage prob-
lem by considering strictly positive consistent estimators of A, but did not devise
their estimators of A to obtain nearly unbiased estimator of Bi ; that is, biases of
their estimators of Bi , like all other existing estimators (e.g., ML or REML), are
of the order O(m−1) and not o(m−1). This is an important research gap, which we
will fill in this paper.

An estimator M̂i(θ̂
EB
i ) of Mi(θ̂

EB
i ) is called second-order unbiased if

E[M̂i(θ̂
EB
i )] = Mi(θ̂

EB
i ) + o(m−1), for large m, under suitable regularity con-

ditions. Let Mi;approx(A) be a second-order approximation to Mi(θ̂
EB
i ). That

is, Mi(θ̂
EB
i ) = Mi;approx(A) + o(m−1), for large m, under regularity condi-

tions. Prasad and Rao (1990) proposed a second-order unbiased estimator of
Mi(θ̂

EB
i;MOM), where θ̂EB

i;MOM is EB of θi when method-of-moments (MOM) estima-

tor ÂMOM of A is used and obtained Mi;approx(A) = g1i (A)+ g2i (A)+ g3i;PR(A),
where g1i (A) = ADi/(A + Di), g2i (A) = D2

i x
′
i (X

′V −1X)−1xi/(A + Di)
2,

g3i;PR(A) = 2D2
i tr[V 2]/[m2(A + Di)

3]. They noticed that the simple plug-in es-
timator Mi;approx(ÂMOM) is not second-order unbiased estimator of Mi(θ̂

EB
i;MOM).

They showed that

E
[
Mi;approx(ÂMOM)

] = Mi

[
θ̂EB
i (ÂMOM)

] + O
(
m−1)

,
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for large m, under regularity conditions. Note that the expression for Mi;approx(A)

could be different for different consistent estimators of A. For example, if REML
estimator of A is used, Mi;approx(A) = g1i (A) + g2i (A) + g3i (A), where g3i (A) =
2D2

i /[(A + Di)
3 tr{V −2}]. We stress that Mi;approx(Â) is not second-order unbi-

ased estimator of Mi(θ̂
EB
i ) for any variance component estimators proposed in the

literature. Bias correction is usually applied to achieve second-order unbiasedness.
However, some bias correction can even yield negative estimates of MSE. See
Jiang (2007) and Rao and Molina (2015) for further discussions.

Mimicking a Bayesian hyperprior calculation, Laird and Louis (1987) intro-
duced a parametric bootstrap method for measuring uncertainty of an empiri-
cal Bayes estimator. While their point estimator is identical to EBLUP, their
measure of uncertainty has more of a Bayesian flavor rather than MSE. Butar
(1997) [see also Butar and Lahiri (2003)] was the first to introduce paramet-
ric bootstrap method to produce a second-order unbiased MSE estimator in the
small area estimation context. Since Butar’s work, a number of papers on para-
metric bootstrap MSE estimation methods appeared in the SAE literature; see
Pfeffermann and Glickman (2004), Chatterjee and Lahiri (2007); Hall and Maiti
(2006); Pfeffermann and Correa (2012). Some of them are the second-order un-
biased but not strictly positive. Some adjustments were proposed to make the
second-order unbiased double parametric bootstrap MSE estimators strictly posi-
tive, but adjusted MSE estimators were not claimed to have the dual property of
second-order unbiasedness and strict positivity. As pointed out in Jiang, Lahiri and
Nguyen (2016), a proof is not at all trivial and it is not even clear if the adjustments
for positivity retain the second-order unbiasedness of the MSE estimators.

In this paper, we focus on the estimation of two important area-specific func-
tions of A—the shrinkage factor Bi and the MSE of the EB Mi(θ̂

EB
i ). We propose

an area specific estimator of A, say Âi , that simultaneously satisfies the following
multiple desirable properties under certain mild regularity conditions:

Property 1: Obtain a second-order unbiased estimator of Bi , that is, E(B̂i) =
Bi + o(m−1), among the class of estimators of Bi with identical variance, up to
the order O(m−1), where B̂i = Di/(Âi + Di).

Property 2: 0 < infm≥1 B̂i ≤ supm≥1 B̂i < 1. That is, it protects EB from over-
shrinking to the regression estimator, a common problem encountered in the EB
method.

Property 3: Obtain second-order unbiased Taylor series MSE estimator of EB
without any bias correction, that is, E[Mi;approx(Âi)] = Mi(θ̂

EB
i ) + o(m−1).

Property 4: Produce a strictly positive second-order unbiased single parametric
bootstrap MSE estimator without any bias correction.

Note that the variance component A in the NHM is not area specific, but to satisfy
the above properties simultaneously for a given area, we propose an area specific
estimator of A. This introduces an area specific bias, but interestingly the order
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of bias is O(m−1), same as the bias of the ML estimator of A but higher than
that of REML in the higher-order asymptotic sense. This seems to be a reason-
able approach as our main targets are area specific parameters and not the global
parameter A. Obviously, if A is the main target, we would recommend a standard
variance component method. We stress that in general none of the existing methods
for estimating A satisfies any of all the four properties simultaneously.

In Section 2, we propose a new adjusted maximum likelihood estimator of A

that satisfies all the four desirable properties listed above. The balanced case has
been heavily studied in the literature. We consider the balanced case in Section 3
and show how our results are related to the ones in the literature. In Section 4,
we illustrate our methodology by analyzing a real life data from the U.S. Census
Bureau. Results from a Monte Carlo simulation study are described in Section 5.
All the technical proofs are deferred to the Appendix.

2. A new adjusted maximum likelihood estimator of A. The residual max-
imum likelihood estimator of A is defined as

ÂRE = arg max
A∈[0,∞)

LRE(A),

where LRE(A) is the residual likelihood of A given by

LRE(A) = ∣∣X′V −1X
∣∣− 1

2 |V |− 1
2 exp

(
−1

2
y′Py

)

with P = V −1 − V −1X(X′V −1X)−1X′V −1. Note that ÂRE does not satisfy any
of the four desirable properties listed in the Introduction.

In an effort to find a likelihood-based estimator of A that satisfies all the four de-
sirable properties, we start by deriving an adjusted maximum likelihood estimator
of A defined as

(2.1) Âi = arg max
A∈[0,∞)

hi(A)LRE(A),

where hi(A) is a factor to be suitably chosen so that all the four desirable properties
are satisfied.

We first find hi(A) so that the resulting estimator of A results in a nearly un-
biased estimator of Bi that also protects EB from overshrinking. In other words,
we first find the adjustment factor hi(A) that simultaneously satisfies Properties 1
and 2. Interestingly, it turns out that such an adjusted maximum likelihood estima-
tor also satisfies Properties 3 and 4.

Using Lemma 1 in Appendix A and Taylor series expansion, we have

(2.2) Var(B̂i) = 2D2
i

(A + Di)4 tr[V −2] + o
(
m−1)

,

for large m. We restrict ourselves to the class of estimators of A that satisfies (2.2).
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Using Lemma 1 and Taylor series expansion, we have

E(B̂i) = Bi +
[
∂Bi

∂A

∂ loghi(A)

∂A
+ 1

2

∂2Bi

∂A2

]
2

tr[V −2] + o
(
m−1)

.(2.3)

Thus, Property 1 is satisfied if we have

(2.4)
∂Bi

∂A

∂ loghi(A)

∂A
+ 1

2

∂2Bi

∂A2 = 0.

Now the differential equation (2.4) simplifies to

(2.5)
∂ loghi(A)

∂A
= 1

A + Di

.

Thus, an adjustment factor that satisfies (2.5) is given by

hi0(A) = (A + Di).

This adjustment factor is indeed the unique solution to (2.4) up to the order
O(m−1). If we substitute hi0(A) for hi(A) in (2.1), the resulting estimator Âi

will satisfy Properties 1, 3 and 4 but not 2. To rectify the problem, we propose our
final estimator of A as

Âi;MG = arg max
A∈[0,∞)

h̃i(A)LRE(A),

where h̃i(A) = h+(A)hi0(A) with the additional adjustment h+(A) satisfying
regularity conditions R6 and R7. The choice of h+(A) is not unique in gen-
eral. One can use the choice given in Yoshimori and Lahiri (2014): h+(A) =
{tan−1[tr(Im − B)]}1/m, where B = diag{B1, . . . ,Bm}.

Our proposed estimator of Bi and EB are given by

B̂i;MG = Bi(Âi;MG), θ̂EB
i;MG = θ̂BLUP

i (Âi;MG),

respectively.
Unlike the common practice, we avoid bias correction in obtaining both Tay-

lor series and parametric bootstrap MSE estimators of our proposed EB. Inter-
estingly, our approach ensures the important dual property of MSE estimator—
second-order unbiasedness and strict positivity. This kind of MSE estimators is
the first of its kind in the small area estimation literature.

We obtain our Taylor series estimator of MSE of EB by simply plugging in
the proposed estimator Âi;MG for A in the second-order MSE approximation
Mi;approx(A) and is given by

(2.6) M̂i;MG ≡ Mi;approx(Âi;MG) = g1i (Âi;MG) + g2i (Âi;MG) + g3i(Âi;MG).

Our proposed parametric bootstrap MSE estimator retains the simplicity of
bootstrap originally intended in Efron (1979). It is given by

(2.7) M̂boot
i;MG ≡ E∗

[
θ̂i

(
Â∗

i;MG, y∗) − θ∗
i

]2
,
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where θ∗
i = x′

i β̂(Â1;MG, . . . , Âm;MG) + v∗
i with v∗

i

ind∼ N(0, Âi;MG). Note that the
new bootstrap MSE estimator does not require any bias correction.

The following theorem states that our proposed adjusted maximum likelihood
estimator of A satisfies all the four desirable properties.

THEOREM 2.1. Under the regularity conditions R1–R7, we have, for large m:

(i) Bias(B̂i;MG) = o(1);Var(B̂i;MG) = 2D2
i

(A+Di)
4 tr[V −2] + o(m−1);

(ii) 0 < infm≥1 B̂i;MG ≤ supm≥1 B̂i;MG < 1, for m > p + 2;

(iii) E(M̂i;MG) − Mi(θ̂
EB
i;MG) = o(m−1);

(iv) E(M̂boot
i;MG) − Mi(θ̂

EB
i;MG) = o(m−1).

For the proof of Theorem 2.1, see Appendix B.

3. The balanced case: Di = D,i = 1, . . . ,m. In this section, we show how
the proposed adjusted maximum likelihood estimator of A is related to the prob-
lem of simultaneous estimation of several independent normal means, a topic for
intense research activities, especially in the 1960s, 1970s and 1980s, since the in-
troduction of the celebrated James–Stein estimator [James and Stein (1961)].

Let yi |θi
ind∼ N(θi,1), i = 1, . . . ,m. James and Stein (1961) showed that for

m ≥ 3 the maximum likelihood (also unbiased) estimator of θi is inadmissible
under the sum of squared error loss function L(θ̂, θ) = ∑m

j=1(θ̂j − θj )
2 and

is dominated by the James–Stein estimator: θ̂ JS
i = (1 − B̂JS)yi , where B̂JS =

(m − 2)/
∑m

j=1 y2
j . That is,

E

[
m∑

j=1

(
θ̂ JS
j − θj

)2|θ
]

≤ E

[
m∑

j=1

(yj − θj )
2|θ

]
, ∀θ ∈ Rm,(3.1)

where Rm is the m-dimensional Euclidean space, with strict inequality holding for
at least one point θ . The dominance result, however, does not hold for individual
components.

Efron and Morris (1973) offered an empirical Bayesian justification of the

James–Stein estimator under the prior θi
iid∼ N(0,A), i = 1, . . . ,m. Their model

is indeed a special case of NHM with Di = 1, x′
iβ = 0, i = 1, . . . ,m, and thus the

James–Stein estimator of θi can be also viewed as an EB.
Morris (1983) discussed an empirical Bayesian estimation of θi for a Bayesian

model that is equivalent to the balanced case of NHM, that is, when Di = D im-
plying Bi = B, i = 1, . . . ,m. In this case, he noted that B̂U = (m − p − 2)D/S

is an exact unbiased estimator of B , using the fact that, under NHM, S =∑m
j=1(yj − x′

j β̂ols)
2 ∼ (D + A)χ2

m−p , where β̂ols is the ordinary least square esti-

mator of β . We can write B̂U ≡ B(ÂMorris) = D/(D + ÂMorris), where ÂMorris =
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S/(m − p − 2) − D. One can alternatively estimate B by a simple plug-in estima-
tor: B̂plug ≡ B(ÂU) = D/(D + ÂU ), where ÂU = S/(m − p) − D is an unbiased
estimator of A. Note that for m > p + 4:

E(B̂U − B) = 0, E(B̂plug − B) = 2

m − p − 2
B = O

(
m−1)

,

V (B̂U ) =
(

m − p − 2

m − p

)2
V (B̂plug) ≤ V (B̂plug).

Thus, B̂U is better than B̂plug both in terms of bias and variance properties. We
can write B̂U = B̂plug(m − p − 2)/(m − p). As pointed out by Morris (1983), the
factor (m−p − 2)/(m−p) helps correct for the curvature dependence of B on A.

Consider the following EB of θi :

θ̂EB
i (ÂMorris) = (1 − B̂U )yi + B̂Ux′

i β̂ols.(3.2)

In this case, exact MSE and exact unbiased estimator of MSE can be obtained.
Componentwise, for m ≥ p + 3, we have

E
[(

θ̂EB
i (ÂMorris) − θi

)2] ≤ D.

Thus, θ̂EB
i (ÂMorris) dominates yi in terms of unconditional MSE for m ≥ p + 3.

Such a componentwise dominance property, however, does not hold for conditional
MSE (conditional on θ ); see Morris (1983) for details.

Since B < 1, using Stein’s argument, Morris (1983) suggested the following
estimator of B: B̂Morris = D/(D + Â+

Morris), where Â+
Morris = S/(m − p − 2) − D

if S > (m−p − 2)D and Â+
Morris = 2D/(m − p − 2) otherwise. This improves on

the estimation of both B and θi . It is straightforward to show that in this special
case Â+

Morris satisfies all the four properties. Moreover, under the regularity con-
ditions R6–R8 and m > p + 2, ÂMG, our proposed estimator of A, is unique (see
Appendix C for a proof) and is equivalent to Â+

Morris in the higher-order asymptotic
sense, that is, E(ÂMG − Â+

Morris) = o(m−1).
Let θ̂EB

i = θ̂EB
i (Â) denote an EB of θi , where Â could be ÂMG, Â+

Morris or the
REML ÂRE = max(0, ÂU ). We can write Mi;approx(A) = g1(A) + g2(A) + g3(A)

as the second-order approximation to Mi(θ̂
EB
i ) = MSE(θ̂EB

i ) for any of the three
choices of the estimator of A. The traditional second-order unbiased MSE estima-
tor is obtained by correcting bias of Mi;approx(ÂRE), up to the order O(m−1). It is
given by M̂i,RE = g1(ÂRE) + g2(ÂRE) + 2g3(ÂRE); see Prasad and Rao (1990),
Datta and Lahiri (2000), Das, Jiang and Rao (2004). In this paper, we suggest an
alternative second-order unbiased MSE estimator without bias correction, that is,
M̂i;MG = g1(ÂMG) + g2(ÂMG) + g3(ÂMG).

We can show that

V (M̂i,RE) = am + o
(
m−1)

,

V (M̂i;MG) = bm + o
(
m−1)

,
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where

am =
[
(m − 4 − mqi)(m − p)

m(m − p − 2)

]2 2D2B2

m − p − 4
,

bm =
(

m − 2 − mqi

m

)2 2D2B2

m − p − 4
, qi = x′

i

(
X′X

)−1
xi.

It is straightforward to check that for m > p + 4 and p ≥ 3, bm ≤ am. Thus, in the
higher-order asymptotic sense, M̂i;MG is a better second-order unbiased estimator
of Mi(θ̂

EB
i ) than M̂i,RE.

4. SAIPE data analysis. For purposes of evaluation, we consider the problem
of estimating the percentages of school-age (aged 5–17) children in poverty for the
fifty states and the District of Columbia using the same data set considered by Bell
(1999). We choose two years (1992 and 1993) of state level data from the U.S.
Census Bureau’s Small Area Income and Poverty Estimates (SAIPE) program. In
1992, the REML estimate of A is zero while in year 1993 it is positive. Thus, these
years would provide two different scenarios for evaluating estimation methods.

We assume the standard SAIPE state level model in which survey-weighted
estimates (yi) of the percentages of 5–17-year-old (related) children in poverty
follow the Fay–Herriot model (1.1). The survey-weighted percentages are obtained
using the Current Population Survey (CPS) data with their sampling variances Di

estimated by a Generalized Variance Function (GVF) method, following Otto and
Bell (1995). However, as in any data analysis that use the Fay–Herriot model, we
assume the sampling variances to be known throughout the estimation procedure.
For this application, the small areas are 50 states and the District of Columbia
of the United States and so m = 51. We consider the following p = 5 auxiliary
variables:

x1: A dummy variable for the intercept.
x2: Ratio of the number of child tax exemptions for poor households and the

total number of child tax exemptions.
x3: The tax nonfiler rates tabulated from IRS tax data, defined as the difference

between the estimated population and number of tax exemptions under age 65,
divided by the estimated population under age 65.

x4: The average monthly number of individuals receiving food stamps over a
12-month period, as a percentage of the population.

x5: The residuals obtained by fitting a Fay–Herriot model to the estimates of
children in poverty from the 1990 census, with analogous covariates to those used
here but for the year 1989.

See Bell, Basel and Maples (2015) for more details.
Table 1 displays REML and our proposed estimates (HL) of the shrinkage pa-

rameters Bi and A for Washington DC (DC), Hawaii (HI) and California (CA)
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TABLE 1
Estimates of shrinkage factors Bi for 3 areas (corresponding to minimum, median and max Bi

values) using SAIPE data for 1992 and 1993; REML estimates of A for 1992 and 1993 are 0 and
1.7, respectively; HL area specific estimates of A are given within parenthesis

1992 year 1993 year

States Di RE HL States Di RE HL

DC 31.694 1 0.997 (0.102) DC 38.226 0.957 0.955 (1.819)
HI 11.347 1 0.989 (0.130) OR 12.188 0.878 0.856 (2.045)
CA 1.883 1 0.723 (0.723) CA 2.156 0.559 0.428 (2.876)

for the year 1992 and DC, Oregon (OR) and CA for the year 1993. They have
the largest, median and smallest sampling variances Di among all the states and
DC, respectively. For 1992, REML estimate of A is zero yielding a Bi estimate
of 1 for all the states and DC. This overshrinkage problem reduces EBs for all the
states to regression synthetic estimates. Thus, even for states with reliable direct
estimates (e.g., CA), there is no contribution of direct estimates in the EB formula.
Our proposed estimates of shrinkage parameters offer a sensible solution. For DC,
our shrinkage estimate is very close to 1 (giving nearly zero weight to the survey-
weighted direct estimate in the EB formula), but for California survey estimate
gets considerable weight (about 28%). In 1993, we do not have an overshrinkage
problem for REML estimates of the shrinkage factors, but our proposed estimates
of Bi always give more weights to the survey-weighted direct estimates than the
corresponding REML estimates. Both REML and proposed estimates of Bi for all
the states and DC are displayed in the left panel of Figure 1. Overall, our proposed
estimates of Bi are smaller than REML.

Table 2 displays different MSE estimates of EBs for the selected three states for
both years. The right panel of Figure 1 displays different MSE estimates for all the

TABLE 2
Estimates of MSEs for 3 areas (corresponding to minimum, median and max Bi values) using 1992

and 1993 SAIPE data

States Di naive.RE PB.RE DL.RE Taylor.HL PB.BL PB.HL

1992 data
DC 31.69 1.81 1.80 1.91 2.08 1.19 2.07
HI 11.35 1.19 1.30 1.45 1.48 0.88 1.57
CA 1.88 1.26 1.34 2.82 1.72 1.20 1.37

1993 data
DC 38.23 4.07 4.14 4.23 4.41 4.97 4.33
OR 12.19 3.02 2.91 3.39 3.52 3.13 3.21
CA 2.16 1.64 1.74 2.19 1.87 1.72 1.60
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FIG. 1. Estimates of Bi and MSE using all SAIPE data for 1992 (above) and 1993 (bottom) year; states are arranged in decreasing order of the sampling
variances.
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states in both years, where states are arranged in decreasing order of the sampling
variances. For this study, we included the following MSE estimators of EB:

(a) Naive MSE estimator (naive.RE) given by g1i(ÂRE) + g2i(ÂRE), where ÂRE
denotes the REML estimator of A. This MSE estimator neither incorporates
the extra uncertainty due to the estimation of A nor adjusts bias of the estimator
g1i (ÂRE) and is not second-order unbiased;

(b) Single parametric bootstrap MSE estimator (PB.RE) that is obtained from
(2.7) when REML estimator of A is used in the EB formula and is not a
second-order unbiased.

(c) Two second-order unbiased MSE estimators based on Taylor-series:
(i) DL.RE: g1i (ÂRE) + g2i (ÂRE) + 2g3i (ÂRE); see Datta and Lahiri (2000).

(ii) Taylor.HL: the proposed Taylor series MSE estimator given by (2.6).
(d) Two second-order unbiased single parametric bootstrap MSE estimators:

(i) PB.BL: 2{g1i (ÂRE)+g2i(ÂRE)}−E∗[g1i (Â
∗
RE)+g2i(Â

∗
RE)]+E∗[{θ̂∗

i (yi,

Â∗
RE, β̂(Â∗

RE, yi)) − θ̃∗
i (yi, ÂRE, β̂(ÂRE, yi))}2]; see Butar and Lahiri

(2003).
(ii) PB.HL: our proposed single parametric bootstrap MSE estimator given by

(2.7).

For this application, there is difference between the naive MSE estimates and
some of the MSE estimates that attempt to capture additional variability due to
the estimation of A. In most of the cases, naive MSE estimates are slightly lower
than both the first-order and second-order MSE estimates. The first-order unbiased
MSE estimates (PB.RE) are generally slightly smaller than the second-order unbi-
ased MSE estimates. The PB.BL MSE estimates can take negative values because
of the adjustment needed to make it second-order unbiased. Except for large states
(e.g., CA), MSE estimates for EBs are considerably lower than the corresponding
sampling variances Di indicating possible improvements by EBs over the direct
estimates.

For the year 1992, REML estimate of A is zero. This is probably causing un-
usual behavior for DL.RE or PB.BL MSE estimates. For the same application, Bell
(1999) was the first to point out this problem. For example, DL.RE MSE estimate
for a large state like CA is more than that for a small state DC (similar behavior
can be observed for PB.BL). For CA, the DL.RE MSE estimate is even higher
than the corresponding sampling variance of the direct estimate while all the other
MSE estimates are showing opposite results. Overall, our proposed MSE estimates
appear reasonable for both years.

5. Monte Carlo simulation. In this section, we report results from a Monte
Carlo simulation study. In particular, we evaluate finite sample performances of
two different estimators of A—the commonly used REML ÂRE and the proposed
estimator Âi;MG—in estimating the shrinkage parameters Bi , small area means
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θi and MSE of EBs of θi . To understand the effect of small m on different esti-
mation problems, we set m = 15 and generate {(yi, θi), i = 1, . . . ,m} using the
Fay–Herriot model (1.1).

We use the 1992 SAIPE data described in the previous section to design our
simulation study. The 15 areas correspond to states with largest sampling variances
Di . In the simulation, we use xi and Di for these states from the 1992 SAIPE data
and use A = 15.94, which is the median of Di for the 15 states. The weighted least
squared estimates of β from the real data including all 50 states and DC are treated
as true β for the simulation.

We define the relative bias (RB) and relative root mean squared error (RRMSE)
of an estimator B̂i of Bi as:

RB of B̂i : E(B̂i − Bi)

Bi

× 100;

RRMSE of B̂i :
√

MSE(B̂i)

Bi

× 100,

where MSE(B̂i) = E(B̂i − Bi)
2. The expectations in the definitions of RB and

RRMSE are approximated by the Monte Carlo 1,000 independent samples from
the Fay–Herriot model. The RB and RRMSE of an estimator M̂i of Mi =
MSE(θ̂i) = E(θ̂i − θi)

2, where θ̂i is an estimator of θi , are defined similarly. For
the parametric bootstrap method, we use 1000 bootstrap samples.

Table 3 displays simulated RBs and RRMSEs of two estimators of Bi for three
selected states: DC, North Dakota (ND), Oklahoma (OK) corresponding to max-
imum, median and minimum values of Di . These three states correspond to the
maximum (0.67), median (0.50) and minimum values (0.46) of Bi’s among the 15
states. The two estimators of Bi are simple plug-in estimators—one obtained from
REML ÂRE (denoted by RE) and the other from the proposed estimator Âi;MG
(denoted by HL). For these states, RE consistently overestimates Bi while HL un-
derestimates. The absolute values of the RB for HL are always smaller than those
of RE. Moreover, variation of RBs for different Bi is much lower than that of RE.
In terms of RRMSE, HL outperforms RE, especially for small values of Bi . Fig-
ure 2 displays the RB and RRMSE behavior for RE and HL for all the 15 selected
states demonstrating superiority of HL over RE.

Figure 3 displays the simulated MSEs of two EBs of θi for each of the 15 states,
where two EBs are obtained using the REML ÂRE (RE in the figure) and estimator
Âi;MG (HL in the figure). There is hardly any difference between the simulated
MSEs of the two EBs supporting the theory that these two MSEs are identical up
to the order O(m−1).

Table 4 reports simulated RBs and RRMSEs of different MSE estimators of EB
that uses REML estimator of A. As mentioned earlier, all MSE estimators except
naive.RE and PB.RE are second-order unbiased. The naive estimator naive.RE
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TABLE 3
RB and RRMSE of B̂i for 3 areas (corresponding to minimum, median and maximum values of Bi )

RB RRMSE

States Bi RE HL RE HL

DC 0.67 6.64 −2.86 28.70 28.49
ND 0.50 16.95 −5.28 50.29 41.96
OK 0.46 20.31 −6.09 56.90 44.79

consistently underestimates. All the other MSE estimators improve on naive.RE.
The parametric bootstrap estimator PB.RE that uses REML and does not use
bias correction continues to underestimate. The second-order unbiased parametric
bootstrap MSE estimator PB.BL that uses bias correction also underestimates al-
though the amount of underestimation is generally smaller than that of PB.RE. The
proposed second-order unbiased MSE estimators (Taylor.HL and PB.HL) are quite
competitive to the second-order unbiased Taylor series MSE estimator, DL.RE,
which overestimates for the state with smallest Di . Our single parametric bootstrap
second-order unbiased MSE estimator (PB.HL) that does not involve any bias cor-
rection is remarkably better than single parametric bootstrap MSE PB.RE (without
bias correction) and even second-order unbiased parametric bootstrap MSE esti-
mator PB.BL (with bias correction). All MSE estimators except PB.BL have lower
RRMSE than naive.RE. It is interesting to note that the second-order unbiased
PB.BL has more RRMSE than naive.RE for all the three states. This is probably
due to the poor performance of REML of A that PB.BL uses. The REML of A

produces zero estimates 12.4% of the times although true A is 15.94. The perfor-
mances of DL.RE, Taylor.HL and PB.HL are similar and all are better than PB.RE.
The performances of the MSE estimators of EB using the proposed estimator of A

FIG. 2. RB and RRMSE of B̂i .
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FIG. 3. MSE of EB with RE and HL.

is similar to the results of Table 4; see Table 5. The RB and RRMSE behavior of
all the MSE estimators for all the 15 states are given in Figure 4.

6. Concluding remarks. In this paper, we have solved a set of important
problems for NHM through a suitably devised adjusted maximum likelihood es-
timator of the model variance parameter. Overall, we demonstrated that our pro-
posed method offers reasonable results and it outperforms the existing methods in
estimating shrinkage factors. In the future, we will explore the proposed method-
ology for other NHM with multiple variance components.

TABLE 4
RB and RRMSE of M̂i for MSE of EB with REML; results for 3 areas (corresponding to minimum,

median and maximum values of Bi )

States Bi naive.RE PB.RE DL.RE Taylor.HL PB.BL PB.HL

RB
DC 0.67 −10.10 −4.90 1.52 4.31 −2.01 3.83
ND 0.50 −17.50 −11.81 3.39 −0.35 −6.57 −2.63
OK 0.46 −14.94 −8.41 10.48 4.43 −2.51 1.96

RRMSE
DC 0.67 21.33 20.60 19.07 18.33 26.88 18.30
ND 0.50 25.51 22.54 10.64 12.57 29.28 15.48
OK 0.46 25.68 22.91 13.07 13.52 31.91 16.47
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TABLE 5
RB and RRMSE of M̂i for MSE of EB with HL; results for 3 areas (corresponding to minimum,

median and maximum value Bi )

States Bi naive.RE PB.RE DL.RE Taylor.HL PB.BL PB.HL
RB

DC 0.67 −11.09 −5.95 0.40 3.16 −3.09 2.68
ND 0.50 −18.39 −12.76 2.27 −1.43 −7.57 −3.68
OK 0.46 −14.91 −8.38 10.51 4.46 −2.48 1.99

RRMSE
DC 0.67 21.64 20.66 18.81 17.90 26.68 17.90
ND 0.50 25.98 22.88 10.23 12.51 29.22 15.53
OK 0.46 25.67 22.91 13.10 13.54 31.92 16.48

APPENDIX A: REGULARITY CONDITIONS AND LEMMA 1

R1: rank(X) = p is bounded for large m;
R2: The elements of X are uniformly bounded, implying

sup
j≥1

x′
j

(
X′X

)−1
xj = O

(
m−1);

R3: 0 < infj≥1 Dj ≤ supj≥1 Dj < ∞, A ∈ (0,∞);
R4: loghi(A) is free of y and four times continuously differentiable with re-

spect to A. Moreover, ∂k loghi(A)

∂Ak is of order O(1), respectively, for large m with
k = 0,1,2,3,4;

R5: |Âi | < Cadmλ, where Cad a generic positive constant and λ is small posi-
tive constant.

In addition to R4, the adjustment factor h+(A) satisfy the following regularity
conditions:

R6: logh+(A) is free of y and four times continuously differentiable with re-

spect to A. Moreover, ∂k logh+(A)

∂Ak is of order o(1), for large m with k = 0,1,2,3,4;
R7: h+(A) is a strictly positive on A > 0 satisfying that h+(A)|A=0 = 0 and

h+(A) < C on A > 0 with a generic positive constant C;
R8: In balanced case, that is, Di = D for all i, (A + D)2 ∂ logh+(A)

∂A
is a mono-

tonically decreasing function of A > 0 with limA→+0(A + D)2 ∂ logh+(A)
∂A

= ∞.

When we assume that ∂ logh+(A)
∂A

> 0, then limA→∞(A + D)2 ∂ logh+(A)
∂A

= C for
fixed m, where C is a generic positive constant.

We first present the following lemma that provides properties of Âi of A. The
proof of the theorem is immediate from Theorem 1 of Yoshimori and Lahiri (2014)
and Das, Jiang and Rao (2004).
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FIG. 4. RB and RRMSE of MSE estimators for MSE of EB using REML (above) and HL (bottom); states are arranged in decreasing order of the
sampling variances.
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LEMMA 1. Under the regularity conditions R1–R5, we have, for large m:

(i) E(Âi − A) = ∂ loghi(A)
∂A

2
tr[V −2] + o(m−1);

(ii) E(Âi − A)2 = 2
tr[V −2] + o(m−1);

(iii) E[θ̂EB
i (Âi) − θi]2 ≡ Mi[θ̂EB

i (Âi)] = Mi;approx(A) + o(m−1), where the
logarithm of adjusted maximum likelihood lad(A) = logLRE(A) + loghi(A) and
Mi;approx(A) = g1i (A)+g2i (A)+g3i(A) with g1i (A) = ADi/(A + Di), g2i (A) =
D2

i x
′
i (X

′V −1X)−1xi/(A + Di)
2, g3i (A) = 2D2

i /[(A + Di)
3tr{V −2}].

APPENDIX B: PROOFS OF THEOREM 2.1

B.1. Proof of part (i). First, note that the adjustment factor h̃i(A) satisfies
regularity condition R4. Then part (i) follows from the construction and (2.2).

B.2. Proof of part (ii). It suffices to show the strictly positivity for Âi;MG.
Note that h+(A)hi0(A)LRE(A)|A=0 = 0 and h+(A)hi0(A)LRE(A) ≥ 0 for A ≥ 0
using R6–R7. Thus, we are left to show that

lim
A→∞h+(A)hi0(A)LRE(A) = 0.

Let C be a generic constant. Using regularity conditions and m ≥ 1, we have

h+(A)hi0(A) < C
(
A + sup

i≥1
Di

)
,

LRE(A) < C
(
A + sup

i≥1
Di

)p
2 ∣∣X′X

∣∣− 1
2
(
A + inf

i≥1
Di

)−m
2
,

which imply

0 ≤ h+(A)hi0(A)LRE(A)

< C
(
A + sup

i≥1
Di

)1+p/2(
A + inf

i≥1
Di

)−m/2∣∣X′X
∣∣−1/2 ≈ A− 1

2 (m−p−2),

for large A. Thus, Âi;MG is strictly positive if m > p + 2.

B.3. Proof of part (iii). Using part (iii) of Lemma 1, we get

Mi

(
θ̂EB
i;MG

) = Mi;approx(A) + o
(
m−1)

.

Note that using part (i) of Lemma 1, we have: E[g2i (Âi;MG)] = g2i (A) +
o(m−1),E[g3i(Âi;MG)] = g3i (A) + o(m−1). Since g1i(A) = (1 − Bi)Di , we have
E[g1i (Âi;MG)] = g1i (A) + o(m−1), using part (i). This proves part (iii).
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B.4. Proof of part (iv). Using part (iii), we have

M̂boot
i;MG = g1(Âi;MG) + g2(Âi;MG) + g3(Âi;MG) + R

= Mi(Âi;MG) + R,

where E[|R|] = o(m−1). The result now follows from part (iii).

APPENDIX C: PROOF OF THE UNIQUENESS OF ÂMG IN
BALANCED CASE

In the balanced case, we have

∂ logLRE(A)

∂A
= 1

2(A + D)2

[
y′{Im − X

(
X′X

)−1
X′}y − (m − p)(A + D)

]
.

Thus, (A + D)2 ∂ logLRE(A)
∂A

is a linear function of A. Therefore, our estimate of A

is obtained as a solution of

−(m − p − 2)(A + D) + 2(A + D)2 ∂ logh+(A)

∂A

+ y′{Im − X
(
X′X

)−1
X′}y = 0.

Define K(A) as the left-hand side of (C.1). For A > 0, using the regularity condi-
tions R6–R8 and m > p+2, we show that limA→+0 K(A) = ∞, limA→∞ K(A) =
−∞ and K(A) is a strictly monotonically decreasing function of A on A > 0.
Hence, there exist A+ and A− such that K(A+) = −ε and K(A−) = ε with small
ε > 0 and 0 < A− < A+ < ∞. Thus, using the intermediate value theorem, we
conclude that the adjustment term h+(A) leads to a unique estimate of A on A > 0.
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