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CURVATURE AND INFERENCE FOR MAXIMUM LIKELIHOOD
ESTIMATES1

BY BRADLEY EFRON

Stanford University

Maximum likelihood estimates are sufficient statistics in exponential
families, but not in general. The theory of statistical curvature was introduced
to measure the effects of MLE insufficiency in one-parameter families. Here,
we analyze curvature in the more realistic venue of multiparameter families—
more exactly, curved exponential families, a broad class of smoothly defined
nonexponential family models. We show that within the set of observations
giving the same value for the MLE, there is a “region of stability” outside of
which the MLE is no longer even a local maximum. Accuracy of the MLE
is affected by the location of the observation vector within the region of sta-
bility. Our motivating example involves “g-modeling,” an empirical Bayes
estimation procedure.

1. Introduction. The modern theory of maximum likelihood estimation
(MLE) evolved in three increasingly nuanced papers by R. A. Fisher. His 1922
paper considered MLEs to be sufficient statistics in smoothly defined probability
models. This was amended in 1925 to sufficiency holding within what are now
called exponential families and, moreover, to the MLE being more efficient than
competitors such as minimum chi-squared even in nonexponential families. The
final step, in 1934, was the most subtle: in nonexponential families, two data sets
giving the same value of the MLE may nevertheless differ greatly in their estima-
tion accuracy, making conditional estimates of accuracy necessary.

There are two distinct themes here. The first, and the most studied in subsequent
work, concerns the efficiency of maximum likelihood estimation. Fisher claimed
that even when not a sufficient statistic, the MLE lost less information than its com-
petitors. Rao (1961, 1962, 1963) developed the theory of “second-order efficiency”
to verify Fisher’s claim. The concept of “statistical curvature” was introduced in
Efron (1975), justifying the Fisher–Rao theory in geometric terms.

Almost all of this work concerned one-parameter families. Amari’s seminal
1982 paper used the full power of differential geometry to extend statistical cur-
vature to multiparameter families. A multivariate version of Fisher–Rao theory
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was developed. Amari’s paper launched the thriving field of information geome-
try: “GSI2017,” the third conference on geometric science of information, lists 28
separate topic areas, most of them far outside the confines of statistical inference.
For statisticians, Kass and Vos’ 2011 book Geometric Foundations of Asympototic
Inference is a key reference.

This paper concerns Fisher’s second main theme: that data sets having the same
MLE θ̂ may still vary in how accurately the true value θ is being estimated. To
this end, he recommended using the observed information, the second derivative
of the log likelihood function evaluated at θ̂ , rather than its expectation (the more
familiar “expected Fisher information”) to assess θ̂ ’s accuracy.

Efron (1978) showed that the relationship between observed and expected in-
formation depended directly on the statistical curvature, larger curvatures implying
larger differences. Again, this applied only to one-parameter families.

The goal of this paper is to examine curvature and information in multiparam-
eter families—more precisely, in multiparameter curved exponential families, as
defined in Section 2. Figure 1 illustrates a toy example of our situation of interest.
Independent Poisson random variables have been observed:

(1.1) yi
ind.∼ Poi(μi) for i = 1,2, . . . ,7.

FIG. 1. Toy example of a curved exponential family, (1.1)–(1.3); Poisson observations yi (dots)
are assumed to follow linear model μi = α1 + α2xi for xi = −3,−2, . . . ,3; heavy line is MLE fit
α̂ = (7.86,2.38). Light dashed line is penalized MLE of Section 4.
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We assume that

(1.2) μi = α1 + α2xi, x = (−3,−2,−1,0,1,2,3).

The vector of observed values yi was

(1.3) y = (1,1,6,11,7,14,15).

Direct numerical maximization yielded

(1.4) α̂ = (7.86,2.38)

as the MLE of α = (α1, α2).
If, instead of (1.2), we had specified log(μi) = α1 + α2xi , a generalized linear

model (GLM), the resulting MLE α̂ would be a sufficient statistic. Not so for model
(1.1)–(1.2). In Section 3, we will see that the set of observation vectors y giving
MLE α̂ = (7.86,2.38) lies in a 5-dimensional linear subspace, passing through
the point μ̂ = (· · · α̂1 + α̂2xi · · · ); and that the observed Fisher information matrix
−l̈α̂(y) (minus the second derivative matrix of the log likelihood function with
respect to α) varies in a simple but impactful way as y ranges across its subspace.

The motivating example for this paper concerns empirical Bayes estimation: “g-
modeling” Efron (2016) proposes GLM models for unseen parameters θ̂i , which
then yield observations Xi , say by normal, Poisson, or binomial sampling, in which
case the Xi follow multiparameter curved exponential families. Our paper’s second
goal is to assess the stability of the ensuing maximum likelihood estimates, in the
sense of Fisher’s arguments.

The paper proceeds as follows. Section 2 reviews one-parameter curved expo-
nential families. Section 3 extends the theory to multiparameter families. Some
regularization may be called for in the multiparameter case, modifying our results
as described in Section 4. Section 5 presents the analysis of a multiparameter g-
modeling example. Some proofs and remarks are deferred to Section 6.

Our results here are obtained by considering all one-parameter subfamilies of
the original multiparameter family. By contrast, Amari’s 1982 work and that of
Madsen (1979) use full multiparametric differential geometry to attack the prob-
lem of MLE efficiency [carried on in the information geometry literature, for ex-
ample in Hayashi and Watanabe (2016)]. This paper does not concern the accuracy
of the MLE compared to competitors, but, rather, changes in its own accuracy as
the observed data varies within the space of constant θ̂—what might be called con-
ditional rather than marginal accuracy. The two concerns are, in a technical sense
mentioned at the end of Section 3, orthogonal to each other.

2. One-parameter curved families. After introducing some basic notation
and results, this section reviews the curvature theory for one-parameter families.
We begin with a full n-parameter exponential family:

(2.1) gη(y) = eη′y−ψ(η)g0(y),
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η and y n-vectors; η is the natural or canonical parameter vector, taking values in
a convex set �, and y the sufficient data vector; ψ(η) is the normalizing value that
makes gη(y) integrate to one with respect to the carrier g0(y). The mean vector
and covariance matrix of y given η are

(2.2) μη = Eη{y} and V η = covη{y},
which can be obtained by differentiating ψ(η): μη = (∂ψ/∂ηi), V η = (∂2ψ/

∂ηi∂ηj ).
Now suppose η is a smoothly defined function of a p-dimensional vector α,

(2.3) η = ηα,

and define the p-parameter subfamily of densities for y

(2.4) fα(y) = gηα
(y) = eη′

αy−ψ(ηα)g0(y).

For simplified notation, we write

(2.5) μα = μηα
and V α = Vηα

.

It is assumed that ηα stays within the convex set of possible η vectors �, say α ∈ A.
The family

(2.6) F = {
fα(y), α ∈ A

}
is by definition a p-parameter curved exponential family. In the GLM situation
where ηα = Mα for some given n × p structure matrix M , F is an (uncurved)
p-parameter exponential family, not the case for family (1.1)–(1.2).

Let η̇α denote the n × p derivative matrix of ηα with respect to α,

(2.7) η̇α = (∂ηαi
/∂αj ),

i = 1,2, . . . , n and j = 1,2, . . . , p; and η̈α the n × p × p array of second deriva-
tives,

(2.8) η̈α = (
∂2ηαi

/∂αj∂αk

)
.

The log likelihood function corresponding to (2.4) is

(2.9) lα(y) = log
[
fα(y)

] = η′
αy − ψ(ηα).

Its derivative vector with respect to α (the “score function”) is

(2.10) l̇α(y) = η̇′
α(y − μα).

The MLE equations l̇α̂(y) = 0 for curved exponential families reduce to

(2.11) η̇′
α̂(y − μα̂) = 0,

0 here indicating a p-vector of zeroes. For convenient discussion, solutions α̂ to
(2.11) will sometimes be referred to as “the MLE,” even though they may not be
global maximums.
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From (2.10), we see that the Fisher information matrix Iα for α is

(2.12) Iα = η̇′
αV αη̇α.

We will be particularly interested in the second derivative matrix of the log like-
lihood: l̈α(y) = (∂2lα(y)/∂αj∂αk). Some calculation (see Remark A in Section 6)
gives the important result

(2.13) −l̈α(y) = Iα − η̈′
α(y − μα),

where η̈′
α(y − μα) is the p × p matrix having jkth element

(2.14)
n∑

i=1

∂2ηαi

∂αj∂αk

(yi − μαi).

The observed Fisher information matrix Î (y) is defined to be −l̈α(y) evaluated at
α = α̂,

(2.15) Î (y) = I α̂ − η̈′
α̂(y − μα̂).

In the one-dimensional case, p = 1, η̇α and η̈α are each vectors of length n.
Figure 2 illustrates the geometry of maximum likelihood estimation: Fμ is the
one-dimensional curve of possible expectations μα in Rn,

(2.16) Fμ = {
μα = Eα{y}, α ∈ A

}
.

The set of observation vectors y that yield MLE α̂ (2.11) lies in the (n − 1)-
dimensional hyperplane passing through μα̂ orthogonally to η̇α̂ ,

(2.17)
⊥
L(η̇α̂) = {

y : η̇′
α̂(y − μα̂) = 0

}
,

denoted more simply as
⊥
Lα̂ .

We see from (2.15) that the observed Fisher information Î (y) is a linear function
of y, equaling I α̂ at y = μα̂ . A quantitative description of this function is provided
by the curvature theory of Efron (1975, 1978). Let

(2.18) ν11 = η̇′
α̂V α̂η̇α̂, ν12 = η̇′

α̂V α̂η̈α̂ and ν22 = η̈′
α̂V α̂η̈α̂ .

[Notice that ν11 = I α̂ (2.12).] The statistical curvature of F at α = α̂ is then
defined to be

(2.19) γα̂ = (
ν22 − ν2

12/ν11
)1/2

/ν11.

The residual of η̈α̂ after linear regression on η̇α̂ , working in the V α̂ inner prod-
uct,

(2.20) 〈η1,η2〉 = η′
1V α̂η2,
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FIG. 2. Maximum likelihood estimation in a one-parameter curved exponential family (2.16). Ob-

served vector y in
⊥
Lα̂ (2.17) gives MLE α̂; the observed Fisher information Î (y) (2.15) varies lin-

early in
⊥
Lα̂ , equaling zero along the critical boundary Bα̂ (2.26). Closest point cα̂ is Mahalanobis

distance 1/γα̂ from μα̂ . Region of stability Rα̂ (2.27) is the set of y values below Bα̂ ; α̂ is a local
maximum of the likelihood only for y ∈Rα̂ .

is

(2.21)
⊥
ηα̂ = η̈α̂ − ν12

ν11
η̇α̂ .

The direction vector vα̂ in Figure 2 is

(2.22) vα̂ = V α̂

⊥
ηα̂/(Iα̂γα̂);

see Remark B of Section 6. It satisfies

(2.23) η̇′
α̂vα̂ = 0 and v′

α̂V −1
α̂

vα̂ = 1;

that is, μα̂ + vα̂ lies in
⊥
Lα̂ , at Mahalanobis distance 1 from μα̂ .

THEOREM 1. Let r be any vector such that η̇′
α̂
r = η̈′

α̂
r = 0. Then the observed

Fisher information at y = μα̂ + bvα̂ + r is

(2.24) Î (μα̂ + bvα̂ + r) = Iα̂(1 − bγα̂)

(dropping the boldface notation for Î and Iα̂ in the one-parameter case).
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Theorem 1 is a slight extension of Theorem 2 in Efron (1978), and a special
case of multiparametric result (3.23) in the next section.

Define the critical point cα̂ ,

(2.25) cα̂ = μα̂ + vα̂/γα̂,

and the critical boundary

(2.26) Bα̂ = {
y = cα̂ + r, η̇′

α̂r = η̈′
α̂r = 0

}
(indicated by the dashed line in Figure 2). Above Bα̂ , α̂ is a local minimum of the
likelihood rather than a local maximum. We define the region below Bα̂ ,

(2.27) Rα̂ = {y = μα̂ + bv + r, b < 1/γα̂}
as the region of stability. Only for y in Rα̂ does the local stability equation η̇′

α̂
(y −

μα̂) = 0 yield a local maximum.
Some comments on Theorem 1:

• If F is a genuine (uncurved) exponential family then γα̂ is zero, in which case

cα̂ is infinitely far from μα̂ and Rα̂ is all of
⊥
Lα̂ . Otherwise γα̂ is > 0, larger

values moving Bα̂ closer to μα̂ .
• The point y = μα̂ + bvα̂ is Mahalanobis distance

(2.28)
[
(y − μα̂)′V −1

α̂
(y − μα̂)

]1/2 = b

from μα̂ , which is the minimum distance for points μα̂ + bvα̂ + r .
• The usual estimate for the standard deviation of α̂ is

(2.29) sd(α̂)
.= 1/I1/2

α̂
.

Fisher suggested instead using the observed information,

(2.30) sd(α̂)
.= 1/Î 1/2;

see Efron and Hinkley (1978) for some justification; (2.30) is smaller than (2.29)
for b negative in (2.24), and larger for b positive, approaching infinity—total
instability—as b approaches 1/γα̂ .

• Asymptotically, as Iα̂ goes to infinity,

(2.31) Î (y)/Iα̂ −→ N
(
1, γ 2

α

);
see Remark 2 of Efron (1978), Section 5. A large value of the curvature implies
possibly large differences between Î (y) and Iα̂ .

• A large value of γα̂ is worrisome from a frequentist point of view even if y is in
Rα̂ . It suggests a substantial probability of global instability, with observations
on the far side of Bα̂ producing wild MLE values, undermining (2.29).
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• For preobservational planning, before y is seen, large values of γα over a rel-
evant range of α warn of eccentric behavior of the MLE. Penalized maximum
likelihood estimation, Sections 4 and 5, can provide substantially improved per-
formance.

• Theorem 1 involves three different inner products a′Db: D equal V α̂ , V −1
α̂

, and
the identity. As discussed in the next section, we can always transform F to
make V α̂ the identity, simplifying both the derivations and their interpretation.

Figure 2 assumes this to be the case, with vα̂ lying along
⊥
ηα̂ (2.21), and Bα̂

orthogonal to vα̂ .

3. Regions of stability for multiparameter families. Figure 2 pictures the
region of stability Rα̂ for the MLE α̂ in a one-parameter curved exponential family

(2.28) as a half-space of the hyperplane
⊥
L(η̇α) (2.17). Here, we return to multipa-

rameter curved families F = {fα(y), α ∈ A} (2.6) where α has dimension p > 1.
Now the region of stability Rα̂ , naturally defined, will turn out to be a convex

subset of
⊥
L(η̇α), though not usually a half-space.

The definition and computation of Rα̂ is the subject of this section. All of this
is simplified by transforming coordinates in the full family gη(y) (2.1). Let

(3.1) M = V
1/2
α̂

,

a symmetric square root of the n×n covariance matrix V α̂ at α = α̂ (2.5), assumed
to be of full rank, and define

(3.2) η† = Mη and y† = M−1(y − μα̂).

With α̂ considered fixed at its observed value, gη(y) transforms into the n-
parameter exponential family

(3.3) g
†
η†

(
y†) = eη†′

y†−ψ†(η†)[eη†′
M−1μα̂ g

†
0

(
y†)]

,

where ψ†(η†) = ψ(M−1η†).
The curved family F (2.6) can just as well be defined by

(3.4) η†
α = Mηα,

with the advantage that y has mean vector 0 and covariance matrix the identity In

at α = α̂. In what follows, it will be assumed that the mean vector and covariance
matrix are

(3.5) μα̂ = 0 and V α̂ = In;
that is, that (η,y) have already been transformed into the convenient form (3.5).
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We will employ one-parameter subfamilies of F to calculate the p-parameter
stable region Rα̂ . Let u be a p-dimensional unit vector. It determines the one-
parameter subfamily

(3.6) Fu = {fα̂+uλ, λ ∈ �},
where � is an interval of the real line containing 0 as an interior point.

Looking at (2.4), Fu is a one-parameter curved exponential family having nat-
ural parameter vector

(3.7) ηλ = ηα̂+uλ,

with MLE λ = 0. We will denote ηλ=0 by ηu in what follows, and likewise η̇u and
η̈u for the derivatives of ηλ at λ = 0, thus

(3.8) η̇u = η̇α̂u,

(2.7), and similarly

(3.9) η̈u = u′η̈α̂u,

η̈u having ith component
∑

j

∑
k η̈α̂ijkujuk . Using (3.8), the Fisher information

Iu, at λ = 0 in Fu, is

(3.10) Iu = u′η̇′
α̂η̇α̂u = u′I α̂u

[from (2.12), remembering that V α̂ = In].
There is a similar expression for the observed Fisher information Îu(y) in Fu:

LEMMA 1.

(3.11) Îu(y) = u′Î (y)u.

PROOF. Applying (2.15) to Fu,

Îu(y) = Iu − η̈′
uy = u′I α̂u − (

u′η̈α̂u
)′y

= u′(Iα − η̈′
α̂y

)
u = u′Î (y)u,

(3.12)

the bottom line again invoking linearity. �

We can apply the one-parameter curvature theory of Section 2 to Fu: with V α̂ =
In in (2.18),

(3.13) νu11 = η̇′
uη̇u, νu12 = η̇′

uη̈u and νu22 = η̈′
uη̈u,

νu11 = Iu (3.10), giving

(3.14)
⊥
ηu = η̈u − νu12

νu11
η̇u
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as at (2.21), and curvature (2.19)

(3.15) γu = (
νu22 − ν2

u12/νu11
)1/2

/νu11.

The direction vector vα̂ (2.22) in Figure 2 is

(3.16) vu = ⊥
ηu/(Iuγu).

It points toward cu = vu/γu (2.25), lying on the boundary Bu at distance 1/γu

from the origin (“distance” now being ordinary Euclidean distance).

Observation vectors y in
⊥
L(η̇α̂) lying beyond Bu have Îu(y) < 0 and so

(3.17) u′Î (y)u < 0

according to Lemma 1. Such points will be excluded from our definition of the
multiparameter stable region Rα̂ . It remains to compute what the excluded region

of
⊥
L(η̇α̂) looks like.
Figure 3 illustrates the geometry. Three orthogonal linear subspaces are pic-

tured: L(η̇u), dimension 1; L(η̇α̂) ∩ ⊥
L(η̇u), the (p − 1)-dimensional subspace of

FIG. 3. Curvature effects in multiparametric curved exponential families: p-dimensional unit vec-
tor u determines one-parameter curved subfamily Fu and direction η̇u (3.6)–(3.8) as well as cur-

vature γu and critical vector vu/γu (3.15)–(3.16), tilted at angle θu to the nearest point in
⊥
L(η̇α̂);

critical boundary Bu, corresponding to Bα̂ in Figure 2, intersects
⊥
L(η̇α̂) in hyperplane

⊥
Bu at dis-

tance du = ‖δu‖ from 0; see Lemma 2. Ru is the half-space of
⊥
L(η̇α̂) below

⊥
Bu. Intersection of all

possible Ru’s gives Rα̂ , the region of stability.
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L(η̇α) orthogonal to L(η̇u); and
⊥
L(η̇α̂), the (n−p)-dimensional space of y vectors

giving MLE α̂. The critical point vu/γu, corresponding to cα̂ in Figure 2, is shown

at angle θu to
⊥
L(η̇α̂), this being the angle between vu and its projection into

⊥
L(η̇α̂),

that is, the smallest possible angle between vu and a vector in
⊥
L(η̇α̂).

LEMMA 2. Bu intersects
⊥
L(η̇α̂) in a (n−p − 1)-dimensional hyperplane, say

⊥
Bu; δu, the nearest point to the origin in

⊥
Bu, is at distance

(3.18) du = 1/(γu cos θu),

and lies along the projection of vu into
⊥
L(η̇α̂).

The geometry of Figure 2 provides heuristic support for Lemma 2. A more
analytic justification appears in Remark C of Section 6.

Let
⊥
P be the projection matrix into

⊥
L(η̇α̂),

(3.19)
⊥
P = In − η̇α̂I−1

α̂
η̇′

α̂

(
I α̂ = η̇′

α̂η̇α̂

)
.

Since vu is a unit vector, we obtain

(3.20) cos θu = (
v′
u

⊥
P vu

)1/2

for use in (3.18).
A version of Theorem 1 applies here. Let wu be the unit projection of vu into

⊥
Lη̇α̂

,

(3.21) wu = ⊥
P vu/ cos θu.

THEOREM 2. Let r be any vector in
⊥
L(η̇α̂) orthogonal to wu. Then for

(3.22) y = bwu + r

we have

(3.23) Îu(y) = Iu(1 − bγu cos θu),

which by Lemma 1 implies

(3.24) u′Î (y)u = u′I α̂u(1 − bγu cos θu).

Choosing b = du = 1/(γu cos θu) as in Lemma 2 gives u′Î (y)u = 0.
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FIG. 4. Schematic illustration showing construction of the region of stability Rα̂ . Each dot repre-
sents critical point δu for a particular choice of u, with its tangent line representing the boundary⊥
Bu. The intersection of the half-spaces Ru containing 0 determines Rα̂ .

Remark D in Section 6 verifies Theorem 2.

Now let Ru denote the half-space of
⊥
L(η̇α̂) lying below

⊥
Bu, that is, containing

the origin. We define the region of stability for the multiparameter MLE α̂ to be
the intersection of all such regions Ru, a convex set,

(3.25) Rα̂ = ⋂
u∈Sp

Ru,

Sp the unit sphere in p dimensions. The construction is illustrated in Figure 4.
The p × p information matrix I α̂ = η̇′

α̂
η̇α̂ is positive definite if η̇α̂ is of rank p,

now assumed to be the case.

THEOREM 3. For y in
⊥
Lα̂ , the observed information matrix −l̈α̂(y) = Î (y)

(2.15) is positive definite if and only if y ∈ Rα̂ , the region of stability.

PROOF. If y is not in some Ru then b in (3.22) must exceed 1/(γu cos θu), in
which case (3.24) implies u′Î (y)u < 0. However, for y in Rα̂ , b must be less than
1/(γu cos θu) for all u, implying

(3.26) u′Î (y)u > 0 for all u ∈ Sp,

verifying the positive definiteness of Î (y). �
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In the toy example of Figure 1, the equivalent of Figure 4 (now in dimension
n − p = 5) was computed for u in (3.6) equaling

(3.27) u(t) = (cos t, sin t),

t = kπ/100 for k = 0,1, . . . ,100. See Remark E in Section 6. In this special situ-
ation, the unit direction vector wu in (3.22) was always the same,

(3.28) wu = (−0.390,0.712,0.392,0.145,−0.049,−0.210,−0.347),

though the distance to the boundary du (3.18) varied. Its minimum was

(3.29) du = 2.85 at u = (0,1).

The stable region Rα̂ was a half-space of the 5-dimensional hyperplane
⊥
L(η̇α̂), the

boundary Bα̂ having minimum distance 2.85 from 0.
The constancy of wu (3.29) was perhaps surprising given that vu (3.16) varied

with u. Constancy is not the case in the more elaborate example of Section 5,
though even there the wu vary only slightly, again allowing the region of stability
Rα̂ to extend infinitely in certain directions, as suggested by Figure 4. The author
has not found an example of bounded Rα̂ .

The information matrix in the toy example was

(3.30) I α̂ =
(

2.63 −5.75
−5.75 19.00

)
.

The observed information matrix Î (bwu) decreases toward singularity as b in-
creases; it becomes singular at b = 2.85, at which point its lower right corner
equals zero. Further increases of b reduce other quadratic forms u(t)′Î (bwu)u(t)

to zero, as in (3.24). Boundary distance 2.85 is small enough to allow substantial
differences between Î (y) and I α̂ . For example, in a Monte Carlo simulation of
model (1.1)–(1.2), with α = α̂, the ratio of lower right corner elements Î 22/I α̂22
averaged near 1.0 (as they should) but with standard deviation 0.98.

Stability theory can be thought of as a complement to more familiar accuracy
calculations for the MLE α̂. The latter depend primarily on L(η̇α̂), as seen in the
covariance approximation

(3.31) cov(α̂)
.= I−1

α̂
= (

η̇′
α̂η̇α̂

)−1
,

while stability refers to behavior in the orthogonal space
⊥
L(η̇α̂). The full differ-

ential geometric developments in Amari (1982) and Madsen (1979) aim toward
second-order accuracy expressions for assessing cov(α̂), and in this sense are or-
thogonal to the considerations here.
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4. Penalized maximum likelihood. The performance of maximum likeli-
hood estimation can often be improved by regularization, that is, by adding a
penalty term to the log likelihood so as to tamp down volatile behavior of α̂. This
is the case for empirical Bayes “g-modeling” [Efron (2016)], our motivating ex-
ample discussed in Section 5.

We define the penalized log likelihood function mα(y) to be

(4.1) mα(y) = lα(y) − sα,

where lα(y) is the usual log likelihood logfα(y), and sα is a nonnegative penalty
function that penalizes undesirable aspects of α. The idea goes back at least to
Good and Gaskins (1971), where sα penalized roughness in density estimates.
Ridge regression [Hoerl and Kennard (1970)] takes sα = c‖α‖2 in the context
of ordinary least squares estimation, while the lasso [Tibshirani (1996)] employs
c‖α‖1. Here, we will use

(4.2) sα = c

[ p∑
1

α2
j

]1/2

for our example, as in Efron (2016), though the development does not depend on
this choice.

The penalized maximum likelihood estimate (pMLE) is a solution to the local
maximizing equations ṁα̂(y) = 0,

(4.3) α̂ : ṁα̂(y) = η̇′
α̂(y − μα̂) − ṡα̂ = 0,

where ṡα̂ is the p-dimensional gradient vector (∂sα/∂αj ). For a given value of α̂,
the set of observation vectors y satisfying (4.3) is an (n − p)-dimensional hyper-
plane

(4.4)
⊥
Mα̂ = {

y : η̇′
α̂(y − μα̂) = ṡα̂

};
⊥
Mα̂ lies parallel to

⊥
Lα̂ = ⊥

L(η̇α̂) in Figure 2, but offset from μα̂ .

The nearest point to μα̂ in
⊥
Mα̂ , say yα̂ , is calculated to be

(4.5) yα̂ = μα̂ + η̇α̂

(
η̇′

α̂η̇α̂

)−1
ṡα̂,

at squared distance ‖yα̂ − μα̂‖2 = ṡ′
α̂
(η̇′

α̂
η̇α̂)−1ṡα̂ . From now on, we will revert to

the transformed coordinates (3.5) having μα̂ = 0 and V α̂ = In, for which η̇′
α̂
η̇α̂

equals the Fisher information matrix I α̂ (2.12), and

(4.6) yα̂ = η̇α̂I−1
α̂

ṡα̂ with ‖yα̂‖2 = ṡ′
α̂I

−1
α̂

ṡα̂ .

By analogy with the observed information matrix Î (y) = −l̈α̂(y) (2.15), we
define

Ĵ (y) = −m̈α̂(y) = Î (y) + s̈α̂

= I α̂ − η̈′
α̂y + s̈α̂,

(4.7)
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s̈α̂ being the p ×p second derivative matrix (∂2sα/∂αj∂αk). Ĵ (y) plays a key role
in the accuracy and stability of the pMLE. For instance the influence function of
α̂, the p × n matrix (∂α̂j /∂yk), is

(4.8)
dα̂

dy
= Ĵ (y)−1η̇′

α̂;
see Remark F in Section 6.

We can think of −sα in (4.1) as the log of a Bayesian prior density for α, in
which case exp{mα(y)} is proportional to the posterior density of α given y. Ap-
plying Laplace’s method, as in Tierney and Kadane (1986), yields the normal ap-
proximation

(4.9) α |y ∼̇Np

(
α̂, Ĵ (y)−1)

.

This supports the Fisherian covariance approximation cov(α̂)
.= Ĵ (y)−1/2, similar

to (2.30).
Determination of the region of stability Rα̂—now defined as those vectors y in

⊥
Mα̂ having Ĵ (y) positive definite—proceeds as in Section 3. For a one-parameter
subfamily Fu (3.6), the observed penalized information Ĵu(y) = −∂2m(α̂ +
uλ)/∂λ2|0 obeys the analogue of Lemma 1:

LEMMA 3.

(4.10) Ĵu(y) = u′Ĵ (y)u.

PROOF. Let

(4.11) ṡu = u′ṡα̂ and s̈u = u′s̈α̂u,

so ṡu = ∂s(α̂ + uλ)/∂λ|0 and s̈u = ∂2s(α̂ + uλ)/∂λ2|0. Then, applying (3.10),
(3.11), (4.11) and (4.7),

(4.12)
Ĵu(y) = Iu − η̈′

uy + s̈u

= u′I α̂u − (
u′η̈α̂u

)′y + u′s̈α̂u = u′Ĵ (y)u. �

Most of the definitions in Section 3 remain applicable as stated: η̇u (3.8), νu11,

etc. (3.13),
⊥
ηu (3.14), curvature γu (3.15), information Iu (3.10), and

(4.13) vu = ⊥
ηu/(Iuγu),

the unit vector whose direction determines the critical boundary Bu. The set of
vectors y giving α̂ as the pMLE in family Fu lies in the (n − 1)-dimensional
hyperplane

(4.14)
⊥
Mu = {

y : η̇′
uy = ṡu

}
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FIG. 5. Penalized maximum likelihood estimation:
⊥
Mα̂ is the (n − p)-dimensional hyperplane

containing those observation vectors y having pMLE = α̂ (4.3); it is orthogonal to η̇α̂ , passing

through yα̂ , its closest point to the origin;
⊥
Mu is the (n − 1)-dimensional hyperplane of pMLE

solutions for a one-parameter subfamily Fu (3.6), orthogonal to η̇u, passing through closest point

yu; difference �u = yu −yα̂ is in
⊥
L(η̇u)∩L(η̇α̂); direction vector vu (4.13) determines the boundary

Bu as in Figure 3.

passing through its nearest point to the origin

(4.15) yu = η̇uI−1
u ṡu

at squared distance ṡ ′
uI−1

u ṡu, (4.5)–(4.6).
Since ṁα̂(y) = 0 implies ṁu(y) = 0 [because ṁu(y) = u′ṁα̂(y)] the (n − p)

space
⊥
Mα̂ (4.4) is contained in the (n − 1) space

⊥
Mu. Figure 5 illustrates the

relationship. The vector � connecting the two respective nearest points,

(4.16) �u = yu − yα̂ = η̇uI−1
u ṡu − η̇α̂I−1

α̂
ṡα̂,

lies in
⊥
L(η̇u) ∩ L(η̇α̂); �u = 0 for an unpenalized MLE, but plays a role in deter-

mining the stable region for the pMLE.

As in Figure 2, there is a linear boundary Bu in
⊥
Mu at which Ĵu(y) is zero.

LEMMA 4. For any vector r in
⊥
Mu orthogonal to the unit vector vu,

(4.17) Ĵu(yu + bvu + r) = Iu(1 − bγu) − νu12

νu11
ṡu + s̈u;
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Ĵu(yu + bvu + r) equals 0 for b = cu,

(4.18) cu = 1

γu

(
1 − νu12

ν2
u11

ṡu + s̈u

νu11

)
.

The boundary Bu of vectors y having Ĵu(y) = 0 is an (n − 2)-dimensional hyper-

plane in
⊥
Mu passing through cuvu orthogonally to vu.

PROOF. From (4.7), applied to Fu, and (4.15), we get

Ĵu(yu) = Iu − η̈′
uyu + s̈u = Iu − η̈′

uη̇uI−1
u ṡu + s̈u

= Iu − νu12

νu11
ṡu + s̈u

(4.19)

(remembering that Iu = νu11). Also

(4.20) Ĵu(yu + bvu + r) = Ĵu(yu) − η̈′
u(bvu + r).

But

(4.21) η̈′
u(bvu + r) = b

⊥
η

′
uvu = bIuγu

using (4.13). Then (4.19) and (4.20) yield (4.17), the remainder of Lemma 4 fol-
lowing directly. �

Each choice of u produces a bounding hyperplane
⊥
Bu in

⊥
Mα̂ , the boundary

being the intersection of Bu with
⊥
Mα̂ (as in Lemma 2). Each

⊥
Bu defines a stable

half-space Ru, and their intersection
⋂Ru defines the stable region Rα̂ for the

pMLE [(3.25) and Figure 4]. The location of
⊥
Bu is obtained as an extension of

Theorem 2. Let wu = ⊥
P vu/ cos θu as in (3.21), the unit projection of vu into

⊥
Mα̂ .

THEOREM 4. For

(4.22) y = yα̂ + bwu + r,

where r is any vector in
⊥
Mα̂ orthogonal to wu, we have

(4.23) Ĵu(y) = Iuγu

(
cu − b cos θu + �′

uvu

)
,

cu from (4.18); Ĵu(y) equals 0 for b = du,

(4.24) du = (
cu + �′

uvu

)
/ cos θu.
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PROOF.

(4.25) Ĵu(yα̂ + bwu + r) = Ĵu(yu) − η̈′
u(bwu + �u + r)

as at (4.20). Since wu, �u, and r are orthogonal to η̇u, we can substitute
⊥
ηu =

(Iuγu)vu for η̈u in (4.25). Then

η̈′
u�u = (Iuγu)v′

u�u(4.26)

and

η̈′
ubwu = b

⊥
η

′
uwu = b‖⊥

ηu‖ cos θu = bIuγu cos θu.(4.27)

Also

(4.28) Ĵu(yu) = Iu − νu12

νu11
ṡu + s̈u = Iuγucu.

Putting (4.24)–(4.28) together verifies (4.23), and solving for Ĵu(y) = 0 in (4.23)
gives (4.24). �

THEOREM 5. Assume that I α̂ is positive definite. Then −m̈α̂(y) = Ĵ (y) is
positive definite if and only if y is in the region of stability

(4.29) Rα̂ = ⋂
u∈Sp

Ru,

which is (3.25).

Proof is the same as for Theorem 3.
Suppose that even though we are employing penalized maximum likelihood we

remain interested in −l̈α̂(y) = Î (y) rather than Ĵ (y). The only change needed is to
remove the s̈/νu11 term in the definition of cu (4.18), after which Îu(y) can replace
Ĵu(y) in (4.23), with an appropriate version of Theorem 5 following. The boundary
distance du (4.24) will then be reduced from its previous value.

The toy example of Figure 1 was rerun now with penalty function (4.2) c =
1. This gave pMLE = (6.84,2.06) and the dashed regression line in Figure 1,
rather than the MLE α̂ = (7.86,2.38). Again the stable region was a half-space,
minimum distance 2.95 compared with 2.85 at (3.28). There is no particular reason
for regularization here, but it is essential in the g-modeling example of Section 5.

5. An empirical Bayes example. Familiar empirical Bayes estimation prob-
lems begin with a collection 
1,
2, . . . ,
N of unobserved parameters sampled
from an unknown density function g(θ),

(5.1) 
i
ind.∼ g(θ) for i = 1,2, . . . ,N.
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Each 
i independently produces an observation Xi according to a known proba-
bility density kernel p(x | θ),

(5.2) Xi | 
i
ind.∼ p(Xi | 
i),

for example,

(5.3) Xi ∼ N (
i,1).

Having observed X = (X1,X2, . . . ,XN), the statistician wishes to estimate all of
the 
i values.

If g(·) were known, then the Bayes posterior distribution g(
i | Xi) would pro-
vide ideal inferences. Empirical Bayes methods attempt to approximate Bayesian
results using only the observed sample X. Efron (2016) suggested “g-modeling”
for this purpose: a multiparameter exponential family of possible prior densities
g(·) is hypothesized,

(5.4) G = {gα(θ), α ∈ A}.
It induces a family of marginal densities fα(x) for the Xi ,

(5.5) F =
{
fα(x) =

∫
p(x | θ)gα(θ)dθ,α ∈ A

}
,

the integral taken over the sample space of 
. The marginal model

(5.6) Xi
ind.∼ fα(xi) for i = 1,2, . . . ,N,

yields an estimate α̂ by maximum likelihood. This gives gα̂(θ) as an estimate of
the unknown prior, which can then be plugged into Bayes formula for inferential
purposes.

Except in the simplest of situations, the convolution step (5.5) spoils exponential
family structure, making F into a multiparameter curved exponential family. G-
modeling was the motivating example for this paper. Does its application lead to
large regions of stability Rα̂ , or to dangerously small ones where Î (y) and I α̂ can
be strikingly different—or, worse, where y may be prone to falling outside of Rα̂?
Here, we present only a single example rather than a comprehensive analysis.

A diffusion tensor imaging study (DTI) compared six dyslexic children with
six normal controls at 15,443 brain voxels [Schwartzman, Dougherty and Tay-
lor (2005); see also Efron (2010), Section 2.5]. Each voxel produced a statistic
Xi comparing dyslexics with normals. Model (5.3), Xi ∼ N (
i,1), is reasonable
here, the 
i being the true voxel-wise effect sizes we wish to estimate.

For our example, we consider only the N = 477 voxels from the extreme back of
the brain. Smaller sample size exacerbates curvature effects, making them easier
to examine; see Remark G in Section 6. A histogram of the N Xi’s appears in
Panel A of Figure 6. Superimposed is an estimate of the prior density g(θ) (5.1),
including a large atom of probability at 
 = 0, as explained below.
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FIG. 6. Panel A: Histogram of the 477 observations Xi , and the estimated prior density gα̂ based
on spike and slab prior (5.16); it estimates Pr{
 = 0} = 0.644. Panel B: Histogram of critical dis-
tances du (4.24) for 5000 randomly selected vectors u (5.17). Panel C: Angular distances in degrees
of the 5000 direction vectors wu (3.21) from their average vector w̄. Panel D: Maximum proportional
distance to the boundary of stable region Rα̂ for 4000 bootstrap observation vectors y∗; triangular
point indicates maximum proportional distance for actual observation y.

Description of the g-modeling algorithm is simplified by discretizing both 


and X. We assume that 
i can take on m possible values,

(5.7) θ = (θ(1), θ(2), . . . , θ(m));
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for the DTI example θ = (−2.4,−2.2, . . . ,3.6) with m = 31. The Xi were dis-
cretized by placement in n = 37 bins of width 0.2, having center points

(5.8) x = (−3.2,−3.0, . . . ,4.0).

Define yk to be the number of Xi’s in bin k, so that the count vector y,

(5.9) y = (y1, y2, . . . , yn),

gives the heights of the histogram bars in Panel A. We will work with data vector
y rather than X, ignoring the slight loss of information from binning.

In the discrete formulation (5.7), the unknown prior g(θ) is described by a vec-
tor g,

(5.10) g = (g1, g2, . . . , gm),

with gk = Pr{
i = θ(k)} for k = 1,2, . . . ,m. Our exponential family model G de-
fines the components gα by

(5.11) gαk = eQ′
kα/Cα,

where Qk is a given p-dimensional vector and α is an unknown p-dimensional
parameter vector; Cα = ∑m

1 exp{Q′
kα}. The m×p structure matrix Q, having kth

row Q′
k , determines the exponential family of possible priors (5.4).

Define

(5.12) pkj = Pr{Xi ∈ bink | 
i = θ(j)},
and P as the n × m matrix

(5.13) P = (pkj , k = 1,2, . . . , n and j = 1,2, . . . ,m).

The marginal density fα(x) in (5.5) is given by the n-vector f α ,

(5.14) f α = Pgα.

A flow chart of empirical Bayes g-modeling goes as follows:

(5.15) α −→ gα = eQ′α/Cα −→ f α = Pgα −→ y ∼ Multn(N,f α),

the last indicating a multinomial distribution on n categories, sample size N , prob-
ability vector f α . [This assumes independence as in (5.1) and (5.2), not actually
the case for the DTI data; see Remark H in Section 6.]

The estimate of g(θ) shown in Panel A was based on a p equals 8-dimensional
“spike and slab” prior:

(5.16) Q = (
I0,poly(θ ,7)

);
here, I0 represents a delta function at 
 = 0 [vector (. . .0,1,0, . . . ), 1 in the 13th
place in (5.7)] while poly(θ ,7) was the m × 7 matrix provided by the R function
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poly. Model (5.16) allows for a spike of “null voxels” at 
 = 0, and a smooth
polynomial distribution for the nonnull cases.

For this data set, the MLE estimate gα̂ put probability 0.644 on 
 = 0; the
remaining 0.356 probability was distributed bimodally—most of the nonnull mass
was close to 0, but with a small mode of possibly interesting voxels around 
 = 2;
see Panel A. Efron (2016) gives simple formulas for the standard errors of gα̂ , but
our interest here is in questions of stability: what does the region of stability Rα̂

look like, and how close to or far from its boundary is the observed data vector y?
Exponential family model (5.11) leads to simple expressions for η̇α and η̈α ,

(2.7)–(2.8), the necessary ingredients for calculating α̂ and Rα̂ , the stable re-
gion. See Remark I in Section 6. G-modeling was carried out based on y ∼
Multn(N,f α), as in (5.15), giving pMLE α̂ [with c = 1 in (4.1)–(4.2)]. Panel
A of Figure 6 shows the estimated prior gα̂ .

The calculations for Rα̂ were done after transformation to standardized coor-
dinates having μα̂ = 0 and V α̂ = In (3.5), this being assumed from now on. The
construction of Rα̂ pictured in Figure 4 was carried out, here in 29 dimensions
(n−p = 37−8). This brings up the problem of choosing the one-parameter bound-
ing families Fu (3.6), with u 8-dimensional rather than the two dimensions of the
toy example (3.27).

Five thousand u vectors were chosen randomly uniformly from S8, the surface
of the unit sphere in eight dimensions,

(5.17) u1, u2, . . . , u5000.

Each u yielded a direction vector wu (3.21) in the 29-dimensional space
⊥
Mα̂ (4.4),

and a distance du to the critical boundary (4.24). The points duwu are the high-
dimensional equivalent of the dots in Figure 4. Here, the origin 0 is yα̂ (4.6).

Panel B of Figure 6 is a histogram of the 5000 du values,

(5.18) 20.2 ≤ du ≤ 678.

The minimum of du over all of S8 was 20.015, found by Newton–Raphson mini-
mization (starting from any point on S8).

Let w̄ = ∑
wuh/5000 be the average wu direction vector. Panel C is a histogram

of the angle in degrees between wuh and w̄. We see a close clustering around w̄,
the mean angular difference being only 3.5 degrees.

The stable region Rα̂ (3.25) has its boundary more than 20 Mahalanobis dis-
tance units away from the origin. Is this sufficiently far to rule out unstable behav-
ior? As a check, 4000 parametric bootstrap observation vectors Y ∗ were generated,

(5.19) Y ∗
i ∼ Mult37(477,f α̂) (i = 1,2, . . . ,4000)

and then standardized and projected into vectors y∗
i in the 29-dimensional space

⊥
Mα̂ (4.4); see Remark J in 6. For each y∗

i we define

(5.20) mi = max
h

{
y∗′
i wuh/duh,h = 1,2, . . . ,5000

}
,
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this being the maximum proportional distance of y∗
i to the linear boundary

⊥
Buh

(the tangent lines in Figure 4); mi > 1 would indicate y∗
i beyond the boundary of

Rα̂ .
In fact, Panel D of Figure 6 shows mi ≤ 0.161 for all i. For the actual obser-

vation vector y, m equaled 0.002. In this case, we need not worry about stability
problems. Observed and expected Fisher information are almost the same for y,
and would be unlikely to vary much for other possible observations y∗. And there
is almost no possibility of an observation falling outside of the region of stabil-
ity Rα̂ . G-modeling looks to be on stable ground in this example. (But see the
cautionary note in Remark M.)

Panel D shows that 18% of the 4000 y∗
i vectors gave mi less than zero. That

is, y∗
i had negative correlation with all 5000 wuh direction vectors (it was in their

“polar cone”). This implies that Rα̂ is open, as in Figure 4. A circular polar cone
that included 18% of the unit sphere in 29-dimensional space would have angular
radius 73.9 degreees (see Remark L in Section 6) so the polar opening is substan-
tial.

6. Remarks. This section presents comments, details and proofs relating to
the previous material.

REMARK A [Formula (2.13)]. Result (2.13) is obtained by differentiating
l̇α(y) = η̇′

α(y − μα) (2.10),

(6.1) l̈α(y) = η̈′
α(y − μα) − η̇′

α

dμα

dα
.

Since μη = dψ(η)/dη and V η = d2ψ(η)/dη2 give dμη/dη = V η, we get
dμα/dα = V αη̇α and

(6.2) l̈α(y) = η̈′
α(y − μα) − η̇′

αV αη̇α = η̈′
α(y − μα) − Iα,

which is (2.13).

REMARK B [Formula (2.22)]. Suppose first that we have transformed to stan-
dardized coordinates (3.2) where μα̂ = 0 and V α̂ = In (3.5). Then the projection

of η̈
†
α̂

into
⊥
L

†

α̂ in Figure 2 is, by the usual OLS calculations,

(6.3)
⊥
η

†

α̂ = η̈
†
α̂

− ν12

ν11
η̇

†
α̂
,

with length

(6.4)
∥∥⊥
η

†

α̂

∥∥ = ν22 − ν2
12/ν11 = Iα̂γα̂,

so v†
α̂

= ⊥
η

†

α̂/Iα̂γα̂ has unit length.
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Notice that Iα̂ , γα̂ , ν11, ν12, ν22 are all invariant under the transformations (3.2)
as is the observed information,

(6.5) −l̈α̂(y) = Iα̂ − η̈′
α̂(y − μα̂) = Iα̂ − η̈′†

α̂
y†.

Also

(6.6) vα̂ = V α̂

⊥
ηα̂/Iα̂γα̂ = Mv†

α̂

satisfies

(6.7) v′
α̂(y − μα̂) = v′†

α̂
y†.

We can rewrite (6.5) in terms of vα̂ (2.22):

(6.8) −l̈α̂(y) = Iα̂ − Iα̂γα̂v′
α̂(y − μα̂) = Iα̂ − Iα̂γα̂v′†

α̂
y†.

This justifies the use of vα̂ in (2.24), and quickly leads to verification of Theorem 1.

REMARK C (Lemma 2). By rotations,

(6.9) η −→ �η and y −→ �′y,

where � = (γ1, γ2, . . . , γn) is an n × n orthogonal matrix, we can simplify cal-
culations relating to Figure 3: select γ1 to lie along L(η̇u) and γ2, γ3, . . . , γp to

span L(η̇α̂) ∩ ⊥
L(η̇u). (Notice that y still has mean 0 and covariance In.) For any

n-vector z, write

(6.10) z = (z1, z2, z3),

where z1 is the first coordinate, z2 coordinates 2,3, . . . , p, and z3 coordinates p+1
through n. Then

(6.11)
vu = (0, vu2, vu3) and

y = (0,0, y3),

the zeros following from vu ∈ ⊥
L(η̇u) and y ∈ ⊥

L(η̇α̂).

The projection
⊥
P vu of yu into

⊥
L(η̇α̂) must equal (0,0, vu3), giving

cos θu = ‖vu3‖/‖vu‖
= ‖vu3‖.

(6.12)

Also wu (3.21) in
⊥
L(η̇α̂) equals

(6.13) wu = (0,0,wu3) = (0,0, vu3/ cos θu),

wu being the unit projection of vu into
⊥
L(η̇α̂).
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The vector δu = wu/(Iuγu cos θu) lies on the hyperplane Bu, which is defined
by

(6.14) δ′
uvu = 1/γu,

since w′
uvu = ‖vu3‖2/ cos θu = cos θu, and it has length ‖δu‖ = du = 1/(γu cos θu)

(3.18). Suppose δu + r is any vector in
⊥
L(η̇α̂), r = (0,0, r3), that is also in Bu.

Then (δu + r)′vu = 1/γu implies r ′vu = 0 and so, from (6.13), r ′δu = 0. This

verifies that δu is the nearest point in
⊥
Bu to 0 as claimed in Lemma 2.

REMARK D (Theorem 2). For y = bwu + r ,

η̈′
uy = ⊥

η
′
uy = Iuγuv′

uy

= Iuγuv′
u(bwu + r) = Iuγu cos θu · b.

(6.15)

Then (3.23) follows from Îu(y) = Iu − η̈′
uy.

REMARK E (The toy model). For models (1.1)–(1.2), it is easy to show that
η̇α̂ has ith row (1, xi)/μα̂i , and η̈α̂ has ith matrix

(6.16) η̈α̂i = − 1

μ2
α̂i

(
1 xi

xi x2
i

)
.

REMARK F [Influence function (4.8)]. From

(6.17) η̇′
α̂+dα(y − μα̂+dα) = ṡα̂+dα

(4.3), we get the local relationship

(6.18) (η̇α̂ + η̈α̂dα)′(y − η̇α̂dα − dy) = ṡα̂ + s̈α̂dα,

where we have used μα̂ = 0, V α̂ = In, and dμ/dη = V η. This reduces to

(6.19)
(
η̈′

α̂y − I α̂ − s̈α̂
)
dα = η̇′

α̂dy

(using η̈α̂ijk = η̈α̂ikj ), which yields (4.8).
The linear expansion (4.8) suggests the covariance approximation

cov(α̂)
.= Ĵ (μα̂)−1η̇′

α̂V α̂ η̇α̂Ĵ (μα̂)−1

= (I α̂ + s̈α̂)−1Iα̂(Iα + s̈α̂)−1
(6.20)

for the pMLE [Efron (2016), Theorem 2], in contrast with the Bayesian covariance
estimate Ĵ (y)−1 in (4.9).
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REMARK G (Sample size effects). Curvature γu decreases at order O(N−1/2)

as sample size N increases [Efron (1975)]. This suggests that the distance du to
the boundary of Rα̂ should increase as O(N1/2), (3.18) and (4.24). Doubling the
sample size in the DTI example (by replacing the count vector y with 2y) increased
the minimum distance from 20.02 to 30.3; doubling again gave 47.6, increasing
somewhat faster than predicted.

REMARK H (Correlation). The Xi observations for the DTI study of Section 5
suffer from local correlation, nearby brain voxels being highly correlated, as illus-
trated in Section 2.5 of Efron (2010) and discussed at length in Chapters 7 and 8 of
that work. This does not bias g-modeling estimates α̂, but does increase variability
of the count vectors y. The effect is usually small for local correlation models—as
opposed to the kinds of global correlations endemic to microarray studies—and
can sometimes be calculated by the methods of Efron (2010). In any case, corre-
lation has been ignored here for the sake of presenting an example of the stability
calculations.

REMARK I (η̇α̂ and η̈α̂ for g-models). Section 2 of Efron (2016) calculates η̇α̂

and η̈α̂ for model (5.15): define

(6.21) wkj (α) = gαj

(
pkj

fαk

− 1
)
,

giving the m × n matrix W (α) = (wkj (α)), having kth column W k(α) =
(wk1(α), . . . ,wkm(α))′. Then

(6.22) η̇α̂ = W (α)′Q,

where Q is the m × p g-modeling structure matrix. The n × p × p array η̈α̂ has
kth p × p matrix

(6.23) Q′[diagW k(α) − W k(α)W k(α)′ − W k(α)gα − gαW k(α)′
]
Q,

diagW k(α) being the diagonal matrix with diagonal element wkj (α).
These formulas apply to the original untransformed coordinates. Transforma-

tions (3.21) to standardized form employ

(6.24) μα̂ = Nf α̂ and M = diag(Nf α̂)1/2

(see Remark J), changing the previous expressions to

(6.25) η̇†
α̂

= Mη̇α̂ and η̈†
α̂

= Mη̈α̂;
Mη̈α̂ indicates the multiplication of each n-vector (η̈α̂kjh, k = 1,2, . . . , n) by M .
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REMARK J (Multinomial standardization). Transformation (5.19)–(5.20) was

(6.26) y∗
i = diag(Nf α̂)−1/2(

Y ∗
i − μ̂α̂

)
,

diag(Nf α̂)−1 being a pseudo-inverse of the singular multinomial covariance ma-
trix N [diag(f α̂) − f α̂f ′

α̂]. This gives

(6.27) cov(y∗
i ) = I −

√
f α̂

N

√
f ′

α̂

N
,

which represents identity covariance matrix in the (n−1)-dimensional linear space
of y∗

i ’s variability, justifying (6.24).
The multinomial sampling model at the end of (5.15), y ∼ Multn(N,f α) can

be replaced by a Poisson model

(6.28) yk
ind.∼ Poi(μαk) for k = 1,2, . . . , n,

where μαk = βfαk , with β a free parameter. This gives maximum likelihood
β̂ = N and α̂ the same as before [an application of “Lindsey’s method,” Lindsey
(1974)]. The choice M = diag(Nf α̂)1/2 in (6.24) is obviously correct for the Pois-
son model.

REMARK K (Original coordinates). By inverting transformations (3.2) we can
express our results directly in terms of the original coordinates of Section 2.
Various forms may be more or less convenient. For instance in (3.18), du =
1/(γu cos θu), γu still follows expression (3.15) but now having νu11 = η̇′

uV α̂ η̇u,
and likewise for νu12 and νu22, and with η̇u and η̈u still given by (3.8)–(3.9); cos θu

can be computed from

(6.29) sin2 θu = 1 − cos2 θu = (
⊥
η

′
uV α̂η̇α̂)I−1

α̂
(η̇′

α̂
V α̂

⊥
ηu)

(Iuγu)2 ,

Iu = νu11.

REMARK L (Areas on the sphere). A spherical cap of radius ρ radians on the
surface of a unit sphere in Rd has (d − 1)-dimensional area, relative to the full
sphere,

(6.30) cd

∫ ρ

0
sin(r)d−2 dr

(
cd = 1√

π

�(d/2)

�[(d − 1)/2]
)
.

REMARK M. All of our results concerning the observed likelihood Î (y), or
Ĵ (y), are exact. What is not exact are the probability consequences of statements
like “the boundary distance is at Mahalanobis distance 2.85.” Such statements re-

late, at least formally, to conditional distributions within
⊥
L(η̇α̂) or

⊥
M(η̇α̂), and
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can be delicate; see Figure 5 in Efron (1975), and Barndorff–Nielsen’s discussion
following Efron and Hinkley (1978). Notice that the development here at (5.19)–
(5.20) avoids conditioning by using the simpler approach of projection.
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