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AN MCMC APPROACH TO EMPIRICAL BAYES INFERENCE AND
BAYESIAN SENSITIVITY ANALYSIS VIA EMPIRICAL PROCESSES

BY HANI DOSS1 AND YEONHEE PARK

University of Florida and MD Anderson Cancer Center

Consider a Bayesian situation in which we observe Y ∼ pθ , where
θ ∈ �, and we have a family {νh,h ∈ H} of potential prior distributions on �.
Let g be a real-valued function of θ , and let Ig(h) be the posterior expectation
of g(θ) when the prior is νh. We are interested in two problems: (i) selecting
a particular value of h, and (ii) estimating the family of posterior expectations
{Ig(h),h ∈ H}. Let my(h) be the marginal likelihood of the hyperparameter
h: my(h) = ∫

pθ (y)νh(dθ). The empirical Bayes estimate of h is, by defi-
nition, the value of h that maximizes my(h). It turns out that it is typically
possible to use Markov chain Monte Carlo to form point estimates for my(h)

and Ig(h) for each individual h in a continuum, and also confidence inter-
vals for my(h) and Ig(h) that are valid pointwise. However, we are interested
in forming estimates, with confidence statements, of the entire families of
integrals {my(h),h ∈ H} and {Ig(h),h ∈ H}: we need estimates of the first
family in order to carry out empirical Bayes inference, and we need estimates
of the second family in order to do Bayesian sensitivity analysis. We establish
strong consistency and functional central limit theorems for estimates of these
families by using tools from empirical process theory. We give two applica-
tions, one to latent Dirichlet allocation, which is used in topic modeling, and
the other is to a model for Bayesian variable selection in linear regression.

1. Introduction. This paper is concerned with two related problems. In the
first, there is a function B : H →R, where H is a subset of some Euclidean space,
and we wish to obtain confidence sets for arg maxh∈H B(h). For each h, the expres-
sion for B(h) is analytically intractable; however, we have at our disposal a family
of functions {fh,h ∈ H} and a sequence of random variables θ1, . . . , θn (these
are i.i.d. or the initial segment of an ergodic Markov chain) such that the random
function Bn(h) := (1/n)

∑n
i=1 fh(θi) satisfies Bn(h)

a.s.−→ B(h) for each h. We are
interested in how we can use Bn to form both a point estimate and a confidence set
for arg maxh∈H B(h).

This problem appears in empirical Bayes analysis and under many forms in
likelihood inference. In empirical Bayes analysis, the application that is the focus
of this paper, it arises as follows. Suppose we are in a standard Bayesian situation
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in which we observe a data vector Y whose distribution is Pθ (with density pθ

with respect to some dominating measure) for some θ ∈ �. We have a family of
potential prior densities {νh,h ∈ H}, and because the hyperparameter h can have a
great impact on subsequent inference, we wish to choose it carefully. Selection of
h is often guided by the marginal likelihood of the data under the prior νh, given
by

(1.1) my(h) =
∫

pθ(y)νh(θ) dθ, h ∈ H.

By definition, the empirical Bayes choice of h is arg maxh my(h). Unfortunately,
analytic calculation of my(h) is not feasible except for a few textbook examples,
and estimation of my(h) via Monte Carlo is notoriously difficult—for example,
the “harmonic mean estimator” introduced by Newton and Raftery (1994) typi-
cally converges at a rate which is much slower than n1/2 [Wolpert and Schmidler
(2012)].

It is very interesting to note that if c is a constant, then the information regard-
ing h given by the two functions my(h) and cmy(h) is the same: the same value of
h maximizes both functions, and the second derivative matrices of the logarithm
of these two functions are identical. In particular, the Hessians of the logarithm
of these two functions at the maximum (i.e., the observed Fisher information) are
the same and, therefore, the standard point estimates and confidence regions based
on my(h) and cmy(h) are identical. This is a very useful observation because it
turns out that it is usually easy to estimate the entire family {cmy(h),h ∈ H} for
a suitable choice of c. Indeed, for any h ∈ H, let νh,y denote the posterior cor-
responding to νh, let h1 be fixed but arbitrary, and suppose that θ1, . . . , θn are
either independent and identically distributed according to the posterior νh1,y , or
are the initial segment an ergodic Markov chain with invariant distribution νh1,y .
Let �y(θ) = pθ(y) be the likelihood function. Note that my(h) given by (1.1) is the
normalizing constant in the statement “the posterior is proportional to likelihood
times the prior,” that is,

(1.2) νh,y(θ) = �y(θ)νh(θ)/my(h).

We have

1

n

n∑
i=1

νh(θi)

νh1(θi)

a.s.−→
∫

νh(θ)

νh1(θ)
νh1,y(θ) dθ

= my(h)

my(h1)

∫
νh,y(θ)

νh1,y(θ)
νh1,y(θ) dθ = my(h)

my(h1)
,

(1.3)

in which the first equality follows from (1.2) and cancellation of the likelihood.
Let B(h) = my(h)/my(h1). Since my(h1) is a fixed constant, as noted above, the
two functions my(h) and B(h) give exactly the same information about h. If we
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let fh = νh/νh1 , then Bn(h) = (1/n)
∑n

i=1(νh(θi)/νh1(θi))—this quantity is com-
putable, since it involves only the priors and not the posteriors—so we have pre-
cisely the situation discussed in the first paragraph of this paper. Other examples
of this situation arising in frequentist inference, and in particular in missing data
models, are given in Sung and Geyer (2007) and Doss and Tan (2014).

In Bayesian applications, it is rare that Monte Carlo estimates of posterior quan-
tities can be based on i.i.d. samples; in the vast majority of cases they are based on
Markov chain samples, and that is the case that is the focus of this paper. We show
that, under suitable regularity conditions,

(1.4) arg max
h

Bn(h)
a.s.−→ arg max

h

B(h)

and

(1.5) n1/2
(
arg max

h

Bn(h) − arg max
h

B(h)
)

d→N (0,�),

where � can be estimated consistently. Now, in general, almost sure convergence
of Bn(h) to B(h) pointwise is not enough to imply that arg maxh Bn(h) converges
to arg maxh B(h) under any mode of convergence, and in fact it is trivial to con-
struct a counterexample in which gn and g are deterministic functions defined on
[0,1], gn(h)

n→∞−→ g(h) for every h ∈ [0,1], but arg maxh gn(h) does not converge
to arg maxh g(h). To obtain results (1.4) and (1.5) above, some uniformity in the
convergence is needed. We establish the necessary uniform convergence and show
that (1.4) and (1.5) are true under certain regularity conditions on the sequence
θ1, θ2, . . . , the functions fh, and the function B . Result (1.5) enables us to obtain
confidence sets for arg maxh B(h).

The second problem we are interested in pertains to the Bayesian framework
discussed earlier and is described as follows. Suppose that g is a real-valued func-
tion of θ , and consider Ig(h) = ∫

g(θ)νh,y(θ) dθ , the posterior expectation of g(θ)

given Y = y, when the prior is νh. Suppose that h1 ∈ H is fixed but arbitrary, and
that θ1, θ2, . . . is an ergodic Markov chain with invariant distribution νh1,y . A very
interesting and well-known fact, which we review in Section 2.3, is that for any
h ∈H, if we define

w
(h)
i = [νh(θi)/νh1(θi)]∑n

l=1[νh(θl)/νh1(θl)] ,

then

(1.6) Îg(h) =
n∑

i=1

g(θi)w
(h)
i

is a consistent estimate of Ig(h). Clearly, Îg(h) is a weighted average of the g(θi)’s.
Under additional regularity conditions on the Markov chain and the function g, we
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even have a central limit theorem (CLT): n1/2(Îg(h)− Ig(h))
d→ N (0, σ 2(h)), and

we can consistently estimate the limiting variance. Thus, with a single Markov
chain run, using knowledge of only the priors and not the posteriors, we can esti-
mate and form confidence intervals for Ig(h) for any particular value of h. Now in
Bayesian sensitivity analysis applications, we will be interested in viewing Ig(h)

for many values of h. For example, in prior elicitation settings, we may wish to
find those aspects of the prior that have the biggest impact on the posterior, so that
the focus of the effort is spent on those important aspects. We may also want to
determine whether differences in the prior opinions of many experts have a signif-
icant impact on the conclusions. [For a discussion of Bayesian sensitivity analysis,
see Berger (1994) and Kadane and Wolfson (1998).] In these cases, we will be
interested in forming confidence bands for Ig(·) that are valid globally, as opposed
to pointwise.

A common feature of the two problems we study in this paper is the need for
uniformity in the convergence: to obtain confidence intervals for arg maxh∈H B(h)

we need some uniformity in the convergence of Bn(·) to B(·), and to obtain con-
fidence bands for Ig(·) we need functional CLTs for the stochastic process Îg(·).
Empirical process theory is a body of results that can be used to establish uniform
almost sure convergence and functional CLTs in very general settings. However,
the results hold only under strong regularity conditions; and these conditions are
often hard to check in practical settings—indeed the results can easily be false if
the conditions are not met. Empirical process theory is fundamentally based on
an i.i.d. assumption, whereas in our setting, the sequence θ1, θ2, . . . is a Markov
chain. In this paper, we show how empirical process methods can be applied to our
two problems when the sequence θ1, θ2, . . . is a Markov chain, and we also show
how the needed regularity conditions can be established.

The rest of the paper is organized as follows. In Section 2, we state our the-
oretical results, the main ones—those that pertain to the Markov chain case—
being as follows. Theorem 3 asserts uniform convergence of Bn to B when
the sequence θ1, θ2, . . . is a Harris ergodic Markov chain, under certain regu-
larity conditions on the family {fh,h ∈ H} (the precise details are spelled out
in the statement of the theorem), and we show how these regularity conditions
can be checked with relative ease in standard settings. We then give a simple
result which says that under a mild regularity assumption on B , the condition
suph |Bn(h)−B(h)| a.s.−→ 0 entails arg maxh Bn(h)

a.s.−→ arg maxh B(h). Theorem 4
establishes that under certain regularity conditions, we have asymptotic normality
of n1/2(arg maxh Bn(h) − arg maxh B(h)). Theorem 6 establishes almost sure uni-
form convergence of Îg(·) to Ig(·), and also functional weak convergence: the pro-
cess {n1/2(Îg(h)− Ig(h)), h ∈ H} converges weakly to a mean 0 Gaussian process
indexed by h ∈ H. We also show how this result can be used to construct confi-
dence bands for Ig(·) that are valid globally. A by-product is functional weak con-
vergence of {n1/2(Bn(h) − B(h)), h ∈ H} to a mean 0 Gaussian process indexed
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by h ∈ H, and construction of corresponding globally valid confidence bands for
B(·). In Section 3, we give two illustrations on Bayesian models in which seri-
ous consideration needs to be given to the effect of the hyperparameter and its
choice. The first is to the latent Dirichlet allocation topic model, where we show
how our methodology can be used to do sensitivity analysis, and the second is to a
model for Bayesian variable selection in linear regression, where we show how our
methodology can be used to select the hyperparameter. In Doss and Park (2018),
we provide the proofs of all the theorems except for Theorem 3; additionally, we
show how the regularity conditions in Theorem 1 and Theorem 3 would typically
be checked, and we verify these conditions in a simple setting.

2. Convergence of Bn(·) as a process and convergence of the empirical
argmax. This section consists of three parts. Section 2.1 deals with uniform con-
vergence of Bn for the i.i.d. case, and introduces the framework that will enable
us to obtain results for the Markov chain case; this framework will be used in
Section 2.1 and in the rest of the paper. Section 2.2 deals with point estimates
and confidence sets for arg maxh B(h), and Section 2.3 deals with uniform con-
vergence and functional CLTs for estimates of posterior expectations. Throughout,
uniformity refers to a class of functions indexed by h ∈ H.

2.1. Uniform convergence of Bn(·). Let � be a measurable subset of Rd for
some d ≥ 1, and let P be a probability measure on (�,B), where B is the Borel
sigma-field on �. We assume that θ1, . . . , θn are independent and identically dis-
tributed according to P , and we let Pn be the empirical measure that they induce.
We assume that H is a convex compact subset of Rk for some k ≥ 1, and that for
each h ∈ H, fh : � → R is measurable. The strong law of large numbers (SLLN)
states that

(2.1)
1

n

n∑
i=1

fh(θi)
a.s.−→

∫
fhdP if

∫
|fh|dP < ∞.

Since we will be interested in versions of (2.1) that are uniform in h, there will
exist measurability difficulties, so we have to be careful in dealing with measura-
bility issues. Before proceeding, we review some terminology and standard facts
from the theory of empirical processes. We will use the following standard empir-
ical process notation: for a signed measure μ on � and a μ-integrable function
f : � → R, μ(f ) denotes

∫
f dμ. Let Q be an arbitrary probability measure on

�, suppose that ξ1, ξ2, . . . are independent and identically distributed according
to Q, and let Qn be the empirical measure induced by ξ1, . . . , ξn. If V is a class
of functions mapping � to R, and μ is a signed measure on �, we use the no-
tation ‖μ‖V = supv∈V |μ(v)|. We say that V is Glivenko–Cantelli if ‖Qn − Q‖V
converges to 0 almost surely; sometimes we will say V is Q-Glivenko–Cantelli,
to emphasize the dependence on Q. Let F = {fh,h ∈ H}. Our goal is to establish
that F is P -Glivenko–Cantelli, which is exactly equivalent to the statement that
the convergence in (2.1) holds uniformly in h.
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The i.i.d. case.

THEOREM 1 [Theorem 6.1 and Lemma 6.1 in Wellner (2005)]. Suppose that
θ1, θ2, . . . are independent and identically distributed according to P . Suppose that
f·(·) : H×� →R is continuous in h for P -almost all θ . If suph |fh| is measurable
and satisfies

∫
suph |fh|dP < ∞, then the class F is P -Glivenko–Cantelli.

Let Bn(h) = (1/n)
∑n

i=1 fh(θi) and B(h) = EP (fh(θ)) (the subscript to the
expectation indicates that θ ∼ P ). Then the conclusion of the theorem is the state-
ment suph∈H |Bn(h) − B(h)| a.s.−→ 0.

The integrability condition
∫

suph |fh|dP < ∞ seems strong, and an even
stronger integrability condition is imposed in Theorem 3. We discuss this issue
in Remark 1 following the statement of Theorem 3, where we explain that in fact
the two conditions are fairly easy to check in practice.

The next theorem also establishes that the class F is Glivenko–Cantelli. In the
theorem, the integrability condition on suph |fh| is replaced by an integrability
condition on suph ‖∇hfh‖ (here, ∇hfh is the gradient vector of fh with respect
to h, and ‖ · ‖ is Euclidean norm). The condition on the gradient is sometimes
easier to check. We include the theorem in part because a component of its proof
is a key element in the proofs of Theorems 5 and 6 of this paper.

THEOREM 2. Suppose that θ1, θ2, . . . are independent and identically dis-
tributed according to P , and that for each h ∈ H,

∫ |fh|dP < ∞. Assume also
that for P -almost all θ ∈ �, ∇hfh exists and is continuous on H. If suph ‖∇hfh‖ is
measurable and satisfies

∫
suph ‖∇hfh‖dP < ∞, then the class F is P -Glivenko–

Cantelli.

The Markov chain case. Suppose now that the sequence θ1, θ2, . . . is a Mar-
kov chain with invariant distribution P , and that it is Harris ergodic [i.e., it is
irreducible, aperiodic, and Harris recurrent; see Meyn and Tweedie (1993), Chap-
ter 17, for definitions]. Suppose also that

∫ |fh|dP < ∞ for all h ∈ H. The best
way to deal with the family of averages (1/n)

∑n
i=1 fh(θi), h ∈ H, is through the

use of “regenerative simulation.” A regeneration is a random time at which a
stochastic process probabilistically restarts itself; therefore, the “tours” made by
the process in between such random times are i.i.d. For example, if the stochastic
process is a Markov chain on a discrete state space �, and if θ0 ∈ � is any point
to which the chain returns infinitely often with probability one, then the times of
return to θ0 form a sequence of regenerations. This i.i.d. structure will enable us
to establish uniform convergence of the family (1/n)

∑n
i=1 fh(θi), h ∈ H. Before

we explain this, we first note that for most of the Markov chains used in MCMC
algorithms, the state space is continuous, and there is no point to which the chain
returns infinitely often with probability one. Fortunately, Mykland, Tierney and
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Yu (1995) provided a general technique for identifying a sequence of regeneration
times 1 = τ0 < τ1 < τ2 < · · · that is based on the construction of a minorization
condition. This construction is reviewed at the end of this subsection, and gives
rise to regeneration times with the property that

(2.2) E(τr − τr−1) < ∞.

Suppose now that there exists a regeneration sequence 1 = τ0 < τ1 < τ2 < · · ·
which satisfies (2.2). Such a Markov chain will be called regenerative. For any
h ∈H, consider (1/n)

∑n
i=1 fh(θi). Let

(2.3) S(h)
r =

τr−1∑
i=τr−1

fh(θi), r = 1,2, . . .

be the sum of fh over the r th tour. Also, let Nr = τr − τr−1, r = 1,2, . . . , de-
note the length of the r th tour. The Nr ’s do not involve h. Note that the pairs
{(Nr, S

(h)
r )}∞r=1 are i.i.d. If we run the chain for R regenerations, then the total

number of cycles is given by

n =
R∑

r=1

Nr = τR.

Also,
∑n

i=1 fh(θi) = ∑R
r=1 S

(h)
r . We have

EP

(
fh(θ)

) a.s.←−
∑n

i=1 fh(θi)

n
(2.4)

=
∑R

r=1 S
(h)
r∑R

r=1 Nr

= (
∑R

r=1 S
(h)
r )/R

(
∑R

r=1 Nr)/R

a.s.−→ E(S
(h)
1 )

E(N1)
.

In (2.4), the convergence statement on the left follows from Harris ergodicity of
the chain. The convergence statement on the right follows from two applications
of the SLLN: By (2.2), (1/R)

∑R
r=1 Nr

a.s.−→ E(N1) and this, together with the
convergence statement on the left, entails convergence of (1/R)

∑R
r=1 S

(h)
r . The

SLLN then implies that E(|S(h)
1 |) < ∞ [if E(|S(h)

1 |) = ∞ then the SLLN im-

plies that lim sup(1/R)
∑R

r=1 S
(h)
r = ∞ with probability one]. We conclude that

E(S
(h)
1 ) = EP (fh(θ))E(N1). Note that continuity in h of S

(h)
1 for almost all se-

quences θ1, θ2, . . . follows from continuity in h of fh for almost all θ ∈ �, since
with probability one, S

(h)
1 is a finite sum. Suppose in addition that suph |S(h)

1 |
is measurable and satisfies E(suph |S(h)

1 |) < ∞. Then by Theorem 1, we have

suph |(∑R
r=1 S

(h)
r )/R − E(S

(h)
1 )| a.s.−→ 0. Since (

∑R
r=1 Nr)/R

a.s.−→ E(N1), we ob-
tain

sup
h

∣∣∣∣(
∑R

r=1 S
(h)
r )/R

(
∑R

r=1 Nr)/R
− E(S

(h)
1 )

E(N1)

∣∣∣∣ a.s.−→ 0,
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that is,

(2.5) sup
h

∣∣∣∣
∑n

i=1 fh(θi)

n
− EP

(
fh(θ)

)∣∣∣∣ a.s.−→ 0.

We summarize this in the following theorem.

THEOREM 3. Suppose that θ1, θ2, . . . is a Harris ergodic Markov chain with
invariant distribution P for which there exists a regeneration sequence 1 = τ0 <

τ1 < τ2 < · · · satisfying E(τ1 − τ0) < ∞. Suppose also that f·(·) : H× � → R is
continuous in h for P -almost all θ . For each h ∈ H, let S

(h)
r , r = 1,2, . . . be defined

by (2.3). If suph |S(h)
1 | is measurable and satisfies E(suph |S(h)

1 |) < ∞, then (2.5)
holds.

REMARK 1. We now discuss the integrability condition E(suph |S(h)
1 |) < ∞,

and our discussion encompasses the weaker condition
∫

suph |fh|dP < ∞ as-
sumed in Theorem 1. Suppose that

∫ |fh|dP < ∞ for all h ∈ H. In Doss and Park
(2018) we show that, because H is assumed to be compact, it is often possible to
prove that for some d ≥ 1,

there exist h1, . . . , hd ∈H and constants c1, . . . , cd such that

sup
h

∣∣fh(θ)
∣∣ ≤

d∑
j=1

cj

∣∣fhj
(θ)

∣∣ for all θ ∈ �.
(2.6)

In this case, since |S(h)
1 | ≤ ∑τ1−1

i=τ0
|fh(θi)|, we obtain

sup
h

∣∣S(h)
1

∣∣ ≤
τ1−1∑
i=τ0

sup
h

∣∣fh(θi)
∣∣ ≤

τ1−1∑
i=τ0

d∑
j=1

cj

∣∣fhj
(θi)

∣∣.
Hence,

E
(
sup
h

∣∣S(h)
1

∣∣) ≤
d∑

j=1

E

(
τ1−1∑
i=τ0

cj

∣∣fhj
(θi)

∣∣) =
d∑

j=1

cjEP

(∣∣fhj
(θ)

∣∣)E(N1),

which is finite. Thus, checking that E(suph |S(h)
1 |) < ∞ reduces to establish-

ing (2.6). In Doss and Park (2018), we consider the Bayesian framework discussed
in Section 1, in which fh = νh/νh∗ , where {νh,h ∈ H} is a family of priors, and
P = νh∗,y , the posterior distribution corresponding to the prior νh∗ , where h∗ ∈ H
is fixed. We show that if {νh,h ∈ H} is an exponential family, then condition (2.6)
holds. Therefore, the integrability condition E(suph |S(h)

1 |) < ∞ is satisfied in a
large class of examples. Moreover, the method we use for establishing (2.6) can be
applied to other examples as well.
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REMARK 2. The idea to transform results for the i.i.d. case to the Markov
chain case via regeneration has been around for many decades. Levental (1988)
also obtained a Glivenko–Cantelli theorem for the Markov chain setting. In
essence, the difference between his approach and ours is that his starting point is
a Glivenko–Cantelli theorem for the i.i.d. case which requires a condition involv-
ing the minimum number of balls of radius ε in L1(P ) that are needed to cover
F—he is using metric entropy. This condition is very hard to check. By contrast,
our starting point is a Glivenko–Cantelli theorem for the i.i.d. case which is based
on bracketing entropy—in brief, the main regularity condition is implied by the
continuity condition in Theorem 3. This continuity condition is trivial to verify:
the parametric families that we are working with in our Bayesian setting satisfy it
automatically.

The minorization construction. We now describe a minorization condition that
can sometimes be used to construct regeneration sequences. Let Kθ(A) be the
transition function for the Markov chain θ1, θ2, . . . . The construction described
in Mykland, Tierney and Yu (1995) requires the existence of a function s : � →
[0,1), whose expectation with respect to P is strictly positive, and a probability
measure Q on (�,B), such that K satisfies

(2.7) Kθ(A) ≥ s(θ)Q(A) for all θ ∈ � and A ∈ B.

This is called a minorization condition and, as we describe below, it can be used
to introduce regenerations into the Markov chain driven by K . Define the Markov
transition function G·(·) by

Gθ(A) = Kθ(A) − s(θ)Q(A)

1 − s(θ)
.

Note that for fixed θ ∈ �, Gθ is a probability measure. We may therefore write

Kθ = s(θ)Q + (
1 − s(θ)

)
Gθ,

which gives a representation of Kθ as a mixture of two probability measures, Q

and Gθ . This provides an alternative method of simulating from K . Suppose that
the current state of the chain is θn. We generate δn ∼ Bernoulli(s(θn)). If δn = 1,
we draw θn+1 ∼ Q; otherwise, we draw θn+1 ∼ Gθn . Note that if δn = 1, the next
state of the chain is drawn from Q, which does not depend on the current state.
Hence the chain “forgets” the current state and we have a regeneration. To be more
specific, suppose we start the Markov chain with θ1 ∼ Q and then use the method
described above to simulate the chain. Each time δn = 1, we have θn+1 ∼ Q and
the process stochastically restarts itself; that is, the process regenerates. Mykland,
Tierney and Yu (1995) provided a very widely applicable method, the so-called
“distinguished point technique,” for constructing a pair (s,Q) that can be used to
form a minorization scheme which satisfies (2.2).
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For any fixed h ∈ H, consider now the expression

(
∑R

r=1 S
(h)
r )/R

(
∑R

r=1 Nr)/R

in (2.4). The bivariate CLT gives

(2.8) R1/2

⎛
⎜⎜⎜⎜⎜⎝

(
R∑

r=1

S(h)
r

)/
R − EP

(
fh(θ)

)
E(N1)(

R∑
r=1

Nr

)/
R − E(N1)

⎞
⎟⎟⎟⎟⎟⎠

d→ N (0,�h),

where �h = Cov((S
(h)
1 ,N1)

�). [We have ignored the moment conditions on S
(h)
1

and N1 that are needed, but we will return to these conditions in Section 2.3, where
we give a rigorous development of a functional version of the CLT (2.8), in which
the left side of (2.8) is viewed as a process in h.] The delta method applied to the
function g(x, y) = x/y gives the CLT

R1/2
(

(
∑R

r=1 S
(h)
r )/R

(
∑R

r=1 Nr)/R
− EP

(
fh(θ)

)) d→ N
(
0, σ 2

h

)
,

where σ 2
h = (∇g)��h∇g [and ∇g is evaluated at the vector of means in (2.8)].

Moreover, σ 2
h can be estimated in a simple manner using a plug-in estimate.

Whether or not this method gives estimates of variance that are useful in the
practical sense depends on whether or not the minorization condition we construct
yields regenerations which are sufficiently frequent. Successful constructions of
minorization conditions have been developed for widely used chains in many pa-
pers [we mention in particular Mykland, Tierney and Yu (1995), Roy and Hobert
(2007), Tan and Hobert (2009), and Doss et al. (2014)]; nevertheless, successful
construction of a minorization condition is the exception rather than the norm. In
this context, we point out that here regenerative simulation is notable primarily as
a device that enables us to prove the theoretical results in the present paper and
to arrive at informative expressions for asymptotic variances, but it may be possi-
ble to estimate these variances by other methods; this point is discussed further in
Section 2.2.

REMARK 3. The main regularity assumption in Theorem 3 is the condition
E(suph |S(h)

1 |) < ∞. Without giving the details, we mention that in analogy with
Theorem 2, it is possible to give a version of Theorem 3 in which this condition is
replaced with the condition E(suph ‖∇hS

(h)
1 ‖) < ∞.
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2.2. A consistent estimator and confidence sets for arg maxh B(h). This sec-
tion pertains to arg maxh Bn(h) as an estimator of arg maxh B(h). After estab-
lishing that (2.5) entails that arg maxh Bn(h) is consistent, we show that un-
der additional regularity conditions, (i) n1/2(arg maxh Bn(h) − arg maxh B(h)) is
asymptotically normal, and (ii) we can consistently estimate the asymptotic vari-
ance. Results (i) and (ii) enable us to form asymptotically valid confidence sets for
arg maxh B(h).

LEMMA 1. Suppose that H is a compact subset of Euclidean space, and let
fn,n = 1,2, . . . and f be deterministic real-valued functions defined on H . Sup-
pose further that f is continuous and has a unique maximizer, and that for each
n the maximizer of fn exists and is unique. If fn converges to f uniformly on H ,
then the maximizer of fn converges to the maximizer of f .

The proof of Lemma 1 is routine and is given in Doss and Park (2018). Con-
sider now Bn(h) = (1/n)

∑n
i=1 fh(θi) and B(h) = EP (fh(θ)). By Lemma 1, if B

is continuous and its maximizer is unique, then suph |Bn(h) − B(h)| a.s.−→ 0 im-

plies arg maxh Bn(h)
a.s.−→ arg maxh B(h). Thus, under continuity of B and unique-

ness of its maximizer, any conditions that imply (2.5)—in particular the condi-
tions of Theorems 1, 2 or 3—are also conditions that imply strong consistency of
arg maxh Bn(h) as an estimator of arg maxh B(h).

Before stating the next theorem, we need to set some notation and assumptions.
We assume that each of B and Bn,n = 1,2, . . . has a unique maximizer, and we
denote h0 = arg maxh B(h) and hn = arg maxh Bn(h). For a function g : H → R,
∇hg(h) denotes the gradient vector and ∇2

hg(h) denotes the Hessian matrix. We
will assume that for every θ , ∇hfh(θ) and ∇2

hfh(θ) exist and are continuous for

all h. Recall that S
(h)
r is defined by (2.3). The Markov chain will be run for R

regenerations, and in the asymptotic results below, R → ∞. We will use the nota-
tion N̄ = (

∑R
r=1 Nr)/R, S̄(h) = (

∑R
r=1 S

(h)
r )/R, ∇hS̄

(h) = (
∑R

r=1 ∇hS
(h)
r )/R, etc.

For almost any realization θ1, θ2, . . . , the random variable S
(h)
r is a finite sum, and

therefore ∇hS
(h)
r = ∑τr−1

i=τr−1
∇hfh(θi). Similarly, ∇2

hS
(h)
r = ∑τr−1

i=τr−1
∇2

hfh(θi). We
will assume that the family {fh,h ∈H} is such that the interchange of the order of
integration and either first or second order differentiation is permissible, that is,

(2.9) ∇h

∫
fh dP =

∫
∇hfh dP and ∇2

h

∫
fh dP =

∫
∇2

hfh dP.

For h ∈ H, let

J (h) = ∇2
hB(h), Jn(h) = ∇2

hBn(h),

τ 2(h) = [
E(N1)

]−2([∇hS
(h)
1 − N1EP

(∇hfh(θ)
)]

× E
[∇hS

(h)
1 − N1EP

(∇hfh(θ)
)]�)

,
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and

τ 2
n (h) = 1

RN̄2

R∑
r=1

(∇hS
(h)
r − Nr∇hS̄

(h)/N̄
)(∇hS

(h)
r − Nr∇hS̄

(h)/N̄
)�

.

Suppose that X1,X2, . . . is a Markov chain on the measurable space (X,B) and
has π as an invariant probability measure. Let Kn(x,A) be the n-step Markov tran-
sition function. Recall that the chain is called geometrically ergodic if there exist
a constant c ∈ [0,1) and a function M : X → [0,∞) such that for n = 1,2, . . . ,

sup
A∈B

∣∣Kn(x,A) − π(A)
∣∣ ≤ M(x)cn for all x ∈ X.

If Q(θ) is a k × k matrix, then a statement of the sort E(|Q(θ)|) < ∞ will mean
E(|Qi,j (θ)|) < ∞ for i, j = 1, . . . , k. We will refer to the following conditions:

A1 The chain {θi}∞i=0 is geometrically ergodic.
A2 For every h ∈ H, there exists ε > 0 such that EP (‖∇hfh(θ)‖2+ε) < ∞.
A3 The function B is twice continuously differentiable and the k × k matrix

J (h0) is nonsingular.
A4 suph |S(h)

1 | is measurable and E(suph |S(h)
1 |) < ∞.

A5 suph |∇2
hS

(h)
1 | is measurable and E(suph |∇2

hS
(h)
1 |) < ∞.

A6 suph |∇hfh| is measurable and E(suph |∇hfh|) < ∞.
A7 (suph |∇hS

(h)
1 |)(suph |∇hS

(h)
1 |)� is measurable and has finite expectation.

THEOREM 4. Suppose that θ1, θ2, . . . is a regenerative Markov chain with in-
variant distribution P . Let

(2.10) v2 = J (h0)
−1τ 2(h0)J (h0)

−1.

1. Under A1–A5

(2.11) R1/2(hn − h0)
d→ N

(
0, v2)

as R → ∞,

and consequently

(2.12) n1/2(hn − h0)
d→ N

(
0,E(N1)v

2)
as R → ∞.

2. Under A1–A7, for large R the matrix Jn(hn) is invertible, and the variance
estimate

v2
n = [

Jn(hn)
]−1

τ 2
n (hn)

[
Jn(hn)

]−1

is a strongly consistent estimate of v2.

REMARK 4. In the expression for the asymptotic variance given by (2.10),
the term τ 2(h0) is the variance of a certain function of the Markov chain, and the
term J (h0)

−1 measures the inverse of the curvature of B at its maximum (B is
a deterministic function and does not involve the Markov chain): the flatter the
surface B at its maximum, the higher is the asymptotic variance.
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REMARK 5. The integrability condition in Assumption A4 was discussed in
Remark 1, where we showed that it is satisfied whenever there exist h1, . . . , hd ∈H
such that suph |fh(θ)| ≤ ∑d

j=1 |fhj
(θ)| for all θ ∈ � [cf. (2.6), in which without

loss of generality we take the constants cj to be equal to 1]. The integrability
conditions in A5–A7 are satisfied under (2.13) and (2.14) below, which are very
similar to (2.6). To make our explanation notationally less cumbersome and easier
to follow, we will assume that dim(H) = 1, so that ∇hS

(h)
1 , ∇hfh(θ), ∇2

hS
(h)
1 , and

∇2
hfh(θ) are all scalars. Assume that there exist h1, . . . , hd ∈ H and constants

c1, . . . , cd such that

sup
h

∣∣∇hfh(θ)
∣∣ ≤

d∑
j=1

cj

∣∣∇hfhj
(θ)

∣∣ for all θ ∈ �,(2.13)

sup
h

∣∣∇2
hfh(θ)

∣∣ ≤
d∑

j=1

cj

∣∣∇2
hfhj

(θ)
∣∣ for all θ ∈ �.(2.14)

The integrability condition in A5, E(suph |∇2
hS

(h)
1 |) < ∞, follows from (2.14)

using an argument identical to the one we used to show that the integrability con-
dition in A4 follows from (2.6). Clearly, A6 follows immediately from (2.13).

We now deal with A7 and consider (suph |∇hS
(h)
1 |)2 = suph(∇hS

(h)
1 )2. Let

F(θ) = ∑d
j=1 cj |∇hfhj

(θ)|, and let T1 denote the set of indices that comprise the

first tour. Since ∇hS
(h)
1 = ∑

i∈T1
∇hfh(θi), we have∣∣∇hS

(h)
1

∣∣ ≤ ∑
i∈T1

∣∣∇hfh(θi)
∣∣ ≤ ∑

i∈T1

F(θi),

where the second inequality is from (2.13). Therefore, (∇hS
(h)
1 )2 ≤

(
∑

i∈T1
F(θi))

2, and hence

(2.15) sup
h

(∇hS
(h)
1

)2 ≤
(∑

i∈T1

F(θi)

)2
.

Now by A2 and the Minkowski inequality, EP (F 2+ε(θ)) < ∞. This integrability
condition, together with geometric ergodicity of the chain (cf. A1), enables us to
apply Theorem 2 of Hobert et al. (2002) to conclude that E[(∑i∈T1

F(θi))
2] < ∞

which, by (2.15), implies that E[suph(∇hS
(h)
1 )2] < ∞, which is the integrability

condition in A7.

REMARK 6. To see why convergence statement (2.12) is a consequence
of (2.11), note that n = ∑R

r=1 Nr , so n/R = (
∑R

r=1 Nr)/R
a.s.−→ E(N1).

So from (2.11) and Slutsky’s theorem, we have (n/R)1/2R1/2(hn − h0)
d→

N (0,E(N1)v
2), which is statement (2.12).
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REMARK 7. We now step back and put Theorem 4 in the context of frequen-
tist inference. We do not require that the number of components of our data vector
Y goes to infinity, or even that the components are i.i.d. We observe Y = y, which
induces a marginal likelihood surface my(·), and Theorem 4 pertains to estima-
tion of this surface and its argmax, with the asymptotics referring to the Markov
chain length n going to infinity. In this regard, it is natural to ask what are the
frequentist properties of inference based on this argmax. A very general result,
known as the Bernstein–von Mises theorem, asserts that under certain regularity
conditions, if Y1, Y2, . . . are i.i.d. with distribution Qθ0 , and if θ̂m is the maxi-
mum likelihood estimate of θ based on Y(m) = (Y1, . . . , Ym), then for any h ∈ H,

‖νh,y(m)
− φ

θ̂m,i−1(θ0)/m
‖

TV

m→∞−→ 0, [Qθ0]-a.s. Here, φa,V denotes the normal dis-
tribution with mean vector a and covariance matrix V , i(θ) is the Fisher infor-
mation at θ , and the subscript TV denotes total variation norm. In particular, the
usual Bayesian 95% credible region coincides with the usual 95% confidence re-
gion and, therefore, has asymptotic frequentist coverage probability equal to 0.95.
Theorem 1 of Petrone, Rousseau and Scricciolo (2014) goes further, and states that
the Bernstein–von Mises theorem holds when we use h0, the maximum marginal
likelihood estimate of h. There are regularity conditions; see Petrone, Rousseau
and Scricciolo (2014), which also contains references for precise statements of the
Bernstein–von Mises theorem. To conclude, if n is sufficiently large, 95% credi-
ble sets based on νhn,y(m)

have asymptotic frequentist coverage probability equal
to 0.95.

We now discuss the role of regenerative simulation in our development. Broadly
speaking, the existence of regenerative sequences is guaranteed under very general
conditions—here we note not only the distinguished point technique of Mykland,
Tierney and Yu (1995) mentioned earlier, but also the fact that for any chain satisfy-
ing our minimal regularity condition of Harris ergodicity, there exists a j ≥ 1 such
that there is a minorizing pair (s,Q) for the j -step Markov transition function Kj

[Meyn and Tweedie (1993), Section 5.2]. However, it is often very difficult to con-
struct a useful minorization condition, that is, one that gives rise to regenerations
that are frequent enough so that law of large numbers and CLT approximations
are valid for reasonable sample sizes. If we do succeed in obtaining a useful re-
generation sequence, then we can estimate variances and construct confidence sets
using the estimate given in Part 2 of Theorem 4, and it is widely recognized that
estimation of variances using regeneration—when it is feasible—outperforms es-
timation using other methodologies [Flegal and Jones (2010)]. Additionally, it has
the advantage that because we start the chain at a regeneration point (i.e., θ1 ∼ Q),
the issue of burn-in does not even exist.

It is very interesting to note that we have used regenerative simulation in a
theoretical manner: our proof of asymptotic normality of n1/2(hn−h0) [see (2.12)]
requires only the existence of a regeneration sequence, and does not require that
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we go through a laborious trial and error process to construct one that is useful in
the practical sense. Very briefly, to obtain asymptotic results regarding hn, we need
uniformity in the convergence of Bn to B . Empirical process theory gives us results
on uniformity, but only in the i.i.d. setting, and regenerative simulation bridges
the gap between the Markov chain setting and the i.i.d. setting. Once we have
established the asymptotic normality of n1/2(hn − h0), we are free to estimate the
asymptotic variance and form confidence sets using other methods, for example,
batching, which we now discuss.

Batching is implemented by breaking up the sequence θ1, . . . , θn into M consec-
utive pieces of equal lengths called batches. For m = 1, . . . ,M , batch m is used to
produce an estimate h[m]

n in the obvious way. If M is fixed, then under the regularity

conditions of Theorem 4, (2.12) states that for each m, (n/M)1/2(h[m]
n − h0)

d→
N (0, σ 2), where σ 2 = E(N1)v

2. If the batch length is large enough relative to
the “mixing time” of the chain, then the h[m]

n ’s are approximately independent.
If the independence assumption was exactly true rather than approximately true,
then the sample variance of (n/M)1/2h[1]

n , . . . , (n/M)1/2h[M]
n would be a valid

estimator of σ 2. Standard theoretical results regarding batching deal with the sit-
uation in which g is a P -integrable function, and the Markov chain θ1, . . . , θn is
used to estimate

∫
g dP via (1/n)

∑n
i=1 g(θi). These results, which assume that

n1/2((1/n)
∑n

i=1 g(θi) − ∫
g dP )

d→ N (0, σ 2(g)), state that under regularity con-
ditions which include M → ∞ at a certain rate, the batch-based estimate of σ 2(g)

is strongly consistent; see Flegal, Haran and Jones (2008) and also Jones et al.
(2006), who recommend using M = n1/2. Our situation is different in that our es-
timate hn is not an average, but is the argmax of a function based on θ1, . . . , θn.
Nevertheless, the method applies, with the minor modification that when we form
the “sample variance,” the centering value is based on hn rather than on the av-
erage of the h[m]

n ’s. As is clear from the description above, batch-based estimates
of variance are very easy to program. However, it is generally acknowledged that
they are outperformed by estimates based on regeneration or spectral methods.

2.3. Convergence of estimate of posterior expectation. This section concerns
the Bayesian framework discussed earlier, in which {νh,h ∈ H} is a family of
prior densities on θ ; for each h, νh,y is the posterior corresponding to νh; h1 ∈ H
is fixed but arbitrary, and θ1, θ2, . . . is an ergodic Markov chain with invariant
distribution νh1,y . Suppose that g is a real-valued function of θ and consider
Ig(h) = ∫

g(θ)νh,y(θ) dθ , the posterior expectation of g(θ) given Y = y, when
the prior is νh. We have

(2.16)
1

n

n∑
i=1

g(θi)
νh(θi)

νh1(θi)

a.s.−→
∫

g(θ)
νh(θ)

νh1(θ)
νh1,y(θ) dθ = my(h)

my(h1)
Ig(h),
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in which the first equality follows from (1.2) and cancellation of the likelihood.
Therefore,

Îg(h) := (1/n)
∑n

i=1 g(θi)[νh(θi)/νh1(θi)]
(1/n)

∑n
i=1[νh(θi)/νh1(θi)]

a.s.−→ [my(h)/my(h1)]Ig(h)

my(h)/my(h1)
(2.17)

= Ig(h),

where the convergence of the numerator and the denominator in the expression
for Îg(h) follow from (2.16) and (1.3), respectively. In the original expression
given in (1.6), Îg(h) is a weighted average of the g(θi)’s (with weights all equal
to 1/n if νh = νh1 , and becoming more disparate as νh and νh1 become more
dissimilar). The definition of Îg(h) given in (2.17) clearly matches the original
expression, so we see that Îg(h) may be represented either as a weighted average or
as a ratio of two ordinary averages. To establish almost sure uniform convergence
and functional weak convergence results for Îg(h), we will work with the latter
representation, because doing so will enable us to use tools from empirical process
theory. With this in mind, recall that in the present framework fh = νh/νh1 . We
will work with the classes of functions F = {fh,h ∈ H} and G = {gfh,h ∈ H}.
We will later assume that the sequence θ1, θ2, . . . is a Markov chain satisfying
certain conditions, and Theorem 6 pertains to that case; however, in order to give
an overview of our results, it is convenient to first assume that the θi’s form an i.i.d.

sequence: θi
i.i.d.∼ P := νh1,y . Recall that Pn is the empirical measure that gives

mass 1/n to each of θ1, . . . , θn, and that for a signed measure μ and a function
f , μ(f ) denotes

∫
f dμ. In the present specialized Bayesian context, fh ≥ 0; thus

the L1(P ) norm of fh is simply
∫

fh dP . Our goal is to establish that under certain
conditions:

1. We have the Glivenko–Cantelli results

sup
h∈H

∣∣(Pn − P)(fh)
∣∣ a.s.−→ 0 and sup

h∈H
∣∣(Pn − P)(gfh)

∣∣ a.s.−→ 0.

2. We have the “Donsker results”

(2.18) n1/2(Pn − P)(f·)
d→ F(·) and n1/2(Pn − P)(gf·)

d→G(·),
where F and G are mean 0 Gaussian processes indexed by H.

By applying the delta method to the function q(u, v) = u/v, we then obtain the
Glivenko–Cantelli and Donsker results

3. sup
h∈H

∣∣Îg(h) − Ig(h)
∣∣ a.s.−→ 0,

4. (2.19) n1/2(
Îg(·) − Ig(·)) d→ Ig(·),

where Ig is a mean 0 Gaussian process indexed by H.
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We now give some definitions we will need in order to explain what is meant
by (2.18) and (2.19). Define Xn = n1/2(Pn − P). Let V be any set of real-valued
functions defined on � and let l∞(V) denote the space of bounded functions from
V to R equipped with the supremum norm. Assume that

sup
V ∈V

∣∣V (θ) − P(V )
∣∣ < ∞ for every θ ∈ �.

Under this condition, the empirical process {Xn(V ),V ∈ V} can be viewed as a
map from �n into l∞(V). Any measurable function Z : �n → l∞(V) induces
a distribution on l∞(V). Although the functions we will be working with will
in general be measurable, in order to properly state the relevant definitions and
theorems from empirical process theory, in our definitions we will deal with
functions which are not necessarily measurable. For an arbitrary map M from
an arbitrary probability space (�,E,μ) to the extended real line R̄, E∗(M) de-
notes the outer integral of M with respect to μ. [The outer integral is defined by
E∗(M) = inf{∫ Y dμ : Y is E-measurable, Y ≥ M}.] Suppose Z1,Z2, . . . and Z are
maps into l∞(V), and that Z is measurable. We say that Zn converges weakly to Z,

and we write Zn
d→ Z, if E∗(φ(Zn)) → E(φ(Z)) for every bounded, continuous,

real function φ on l∞(V).
We now return to the empirical process Xn = n1/2(Pn − P). A class V is called

a Donsker class if Xn
d→ X in l∞(V), where the limit X is a mean 0 Gaussian

process with covariance function

Cov
(
X(V1),X(V2)

) = P(V1V2) − P(V1)P (V2), V1,V2 ∈ V,

and has paths which are uniformly continuous with respect to the semi-metric ρP

on l∞(V) defined by ρ2
P (f1, f2) = VarP (f1(θ) − f2(θ)). Sometimes we will say

V is P -Donsker, to emphasize the dependence on P .
We say that a class V of measurable functions V : � → R is P -measurable if

for every n and every vector (e1, . . . , en) ∈ R
n, the function

(θ1, . . . , θn) → sup
V ∈V

∣∣∣∣∣
n∑

i=1

eiV (θi)

∣∣∣∣∣
is measurable on the completion of (�n,Bn,P n).

Because F and G are simply parametric families indexed by h ∈ H, we will
slightly abuse terminology and take the two convergence statements in (2.18) to

mean Xn
d→ X in l∞(F) and Xn

d→ X in l∞(G), respectively. The limit F is a
mean 0 Gaussian process indexed by h ∈H and covariance function

Cov
(
F

(
h′),F(

h′′)) = P(fh′fh′′) − P(fh′)P (fh′′) for any h′, h′′ ∈H.
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Similarly, G is a mean 0 Gaussian process indexed by h ∈ H and covariance func-
tion

Cov
(
G

(
h′),G(

h′′)) = P
(
g2fh′fh′′

) − P(gfh′)P (gfh′′) for any h′, h′′ ∈ H,

and we will discuss the covariance function of the limit Ig in (2.19) later. For δ > 0,
let Fδ = {φ − ψ : φ,ψ ∈ F,‖φ − ψ‖P,2 < δ} and let F2∞ = {ξ2 : ξ ∈ F∞}.

Before we state the next theorem, we need to lay down preparations for its fourth
part, which regards functional weak convergence of the process n1/2(Îg(·)−Ig(·)).
Let C(H) be the space of all continuous functions x : H → R, with the topol-
ogy induced by the sup norm metric ρ: for x, y ∈ C(H), ρ(x, y) = ‖x − y‖∞ =
suph |x(h) − y(h)|. Clearly, functional weak convergence of n1/2(Îg(·) − Ig(·))
cannot take place in a space of the type l∞(V) for some set of functions V , and
in fact, as we will see, the weak convergence will take place in the space C(H).
[As usual, if μn,n = 1,2, . . . and μ are probability measures on C(H), we say that

μn
d→ μ if

∫
�dμn → ∫

�dμ for all functions � : C(H) →R which are bounded
and continuous.]

We now define the expression for the covariance function and give motivation
for its form. For any h′, h′′ ∈ H, the multivariate CLT states that

(2.20)

⎛
⎜⎜⎝

U1
U2
U3
U4

⎞
⎟⎟⎠ := n1/2

⎛
⎜⎜⎝

Pn(gfh′) − P(gfh′)
Pn(fh′) − P(fh′)

Pn(gfh′′) − P(gfh′′)
Pn(fh′′) − P(fh′′)

⎞
⎟⎟⎠ d→ N

(
0,�

(
h′, h′′)),

where �(h′, h′′) is the 4 × 4 matrix given by �(h′, h′′)ij = Cov(Ui,Uj ), i, j =
1,2,3,4. Consider the function φ : R4 → R

2 defined by φ(u1, u2, u3, u4) =
(u1/u2, u3/u4). Then, if we apply the delta method to (2.20) using φ, we get

(2.21) n1/2

(
Îg

(
h′) − Ig

(
h′)

Îg

(
h′′) − Ig

(
h′′)

)
d→ N

(
0,M

(
h′, h′′)),

where M(h′, h′′) = (∇φ)��(h′, h′′)∇φ, and ∇φ (viewed as a 4 × 2 matrix) is
evaluated at the vector of means (P (gfh′),P (fh′),P (gfh′′),P (fh′′)). The matrix
M(h′, h′′) describes the covariance structure for the process Ig(·). [Expressions for
∇φ and M(h′, h′′) are given in Park (2015).]

THEOREM 5. Assume that θ1, . . . , θn are independent and identically dis-
tributed according to P .

1. (a) Suppose that f·(·) : H × � → R is continuous in h for P -
almost all θ . If suph∈H fh is measurable and

∫
suph∈H fh dP < ∞, then F is

P -Glivenko–Cantelli.
(b) Suppose that (gf·)(·) : H×� →R is continuous in h for P -almost all θ . If

suph∈H |gfh| is measurable and
∫

suph∈H |gfh|dP < ∞, then G is P -Glivenko–
Cantelli.
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2. Assume the conditions of Part 1 of the theorem, and also that for every
θ ∈ �, ∇hfh exists and is continuous on H. Then

(2.22) sup
h∈H

∣∣Îg(h) − Ig(h)
∣∣ a.s.−→ 0.

3. (a) Suppose that the classes F , Fδ, δ > 0, and F2∞ are all P -
measurable. Assume also that for P -almost all θ ∈ �, ∇hfh exists and is con-
tinuous on H. If (1) suph∈H ‖∇hfh‖ is measurable and (2) the functions fh,h ∈H
and suph∈H ‖∇hfh‖ are all square integrable with respect to P , then the class F
is P -Donsker.

(b) Suppose that the classes G, Gδ, δ > 0, and G2∞ are all P -measurable. As-
sume also that for P -almost all θ ∈ �, ∇h(gfh) exists and is continuous on H.
If (1) suph∈H ‖∇h(gfh)‖ is measurable and (2) the functions gfh,h ∈ H and
suph∈H ‖∇h(gfh)‖ are all square integrable with respect to P , then the class G
is P -Donsker.

4. Under the conditions of Part 3 of the theorem, we have

n1/2(
Îg(·) − Ig(·)) d→ Ig(·) in C(H),

where Ig is a Gaussian process indexed by H with mean 0 and covariance function

Cov
(
Ig

(
h′), Ig(

h′′))

=
P(g2fh′fh′′) − P(gfh′fh′′)(P (gfh′′ )

P (fh′′ ) + P(gfh′ )
P (fh′ ) ) + P(gfh′ )P (gfh′′ )

P (fh′ )P (fh′′ ) P (fh′fh′′)

P (fh′)P (fh′′)
.

Part 1(a) is, of course, simply a restatement of Theorem 1; we have repeated
it here only to clarify the structure of our results. The P -measurability conditions
cannot be omitted. However, in all the problems we have encountered, the relevant
functions are not only measurable, but are actually continuous.

In Remark 8, which follows the statement of Theorem 6, we develop a con-
struction of confidence bands for Ig(·) and we explain why Theorem 6 shows that
these bands are valid globally. Theorem 6 pertains to Markov chains, but the same
construction and arguments can be applied to the i.i.d. case—we use Theorem 5
instead of Theorem 6.

The next result is a version of Theorem 5 that applies to Markov chains. Recall
that Nr = τr − τr−1 is the length of the r th tour and that S

(h)
r is defined by (2.3).

Similarly, define T
(h)
r = ∑τr−1

i=τr−1
g(θi)fh(θi), r = 1,2, . . . . Let F = {S(h)

1 , h ∈ H}
and G = {T (h)

1 , h ∈ H}. Part 3 of Theorem 6 asserts that under certain conditions
the classes F and G are Donsker, and before stating the theorem, it is necessary
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to be very clear regarding what these classes are, and what “Donsker” means. Let
P be the distribution of the Markov chain θ1, θ2, . . . . For any h ∈ H, S

(h)
1 is a

function mapping the measure space (�∞,B∞,P) into R+. To see this, it may
be helpful to imagine that we are dealing with the very simple case of a regen-
erative chain which has an “proper atom” at a singleton. That is, there exists a
point α ∈ � which has positive probability under the invariant measure. Thus, with
probability one the chain returns to α infinitely often, and the times of return to α

are regeneration times τ0, τ1, τ2, . . . . In this case (with probability one), the se-
quence θ1, θ2, . . . itself determines τ0 and τ1. Then S

(h)
1 : �∞ →R+ is defined by

S
(h)
1 (θ1, θ2, . . .) = ∑τ1−1

i=τ0
fh(θi), and we have a similar definition for T

(h)
1 . Chains

which have a proper atom at a singleton are quite rare, and we consider them only
for exposition. We remark on the case of a general regenerative Markov chain at
the end of the proof of Theorem 6. To clarify, F and G are classes of functions on
�∞, in contrast to F and G, which are classes of functions on �. These classes
will be P-Donsker, and we note that P is a distribution on the infinite product space
�∞, to be distinguished from P , which is a distribution on �.

As we will see, Parts 3 and 4 of Theorem 6 are functional CLTs that con-
cerns certain stochastic processes indexed by h ∈ H. In order to motivate them,
we need to first understand the version of these parts of the theorem that
pertains to the very simple situation in which we are considering a single
value of h. Thus, let h ∈ H be fixed. We now consider CLTs for averages
formed from the sequences S

(h)
1 , S

(h)
2 , . . . and T

(h)
1 , T

(h)
2 , . . . . We have E(S

(h)
1 ) =

EP (fh(θ))E(N1) and E(T
(h)

1 ) = EP (g(θ)fh(θ))E(N1) [see (2.4)]. Under A1 and
the conditions EP (f 2+ε

h (θ)) < ∞ and EP [(gfh)
2+ε(θ)] < ∞, the expectations

E[(S(h)
1 )2], E[(T (h)

1 )2], and E(N2
1 ) are all finite [Theorem 2 of Hobert et al.

(2002)]. Therefore, the simple multivariate CLT gives

(2.23) R1/2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
R∑

r=1

T (h)
r

)/
R − EP

(
g(θ)fh(θ)

)
E(N1)(

R∑
r=1

S(h)
r

)/
R − EP

(
fh(θ)

)
E(N1)(

R∑
r=1

Nr

)/
R − E(N1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

d→ N (0,Vh),

where Vh = Cov((T
(h)
1 , S

(h)
1 ,N1)

�). We apply the delta method to (2.23) three
times, using the functions q1(u, v,w) = v/w, q2(u, v,w) = u/w, and
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q3(u, v,w) = u/v to obtain three CLTs:

R1/2
(∑R

r=1 S
(h)
r∑R

r=1 Nr

− EP

(
fh(θ)

)) d→ N
(
0, (∇q1)

�Vh∇q1
)
,

R1/2
(∑R

r=1 T
(h)
r∑R

r=1 Nr

− EP

(
g(θ)fh(θ)

)) d→ N
(
0, (∇q2)

�Vh∇q2
)
,

R1/2
(∑R

r=1 T
(h)
r∑R

r=1 S
(h)
r

− Ig(h)

)
d→ N

(
0, (∇q3)

�Vh∇q3
)
.

(2.24)

With the relationships n = ∑R
r=1 Nr ,

∑R
r=1 S

(h)
r = ∑n

i=1 fh(θi),
∑R

r=1 T
(h)
r =∑n

i=1 g(θi)fh(θi), and the fact that n/R
a.s.−→ E(N1), (2.24) may be restated as

n1/2
(∑n

i=1 fh(θi)

n
− EP

(
fh(θ)

)) d→ N
(
0,E(N1)(∇q1)

�Vh∇q1
)
,

n1/2
(∑n

i=1 g(θi)fh(θi)

n
− EP

(
g(θ)fh(θ)

))
(2.25)

d→ N
(
0,E(N1)(∇q2)

�Vh∇q2
)
,

n1/2
(∑n

i=1 g(θi)fh(θi)∑n
i=1 fh(θi)

− Ig(h)

)
d→ N

(
0,E(N1)(∇q3)

�Vh∇q3
)

(with the understanding that here, n is random). Of course, under geometric ergod-
icity and the moment conditions EP (f 2+ε

h (θ)) < ∞ and EP [(gfh)
2+ε(θ)] < ∞,

asymptotic normality of the three quantities on the left side of (2.25) is already
known [corollary to Theorem 18.5.3 of Ibragimov and Linnik (1971)]. The point
of obtaining (2.25) as we did above is that the method enables us to get functional
versions of the three statements in (2.25) [i.e., weak convergence of the three quan-
tities on the left side of (2.25) as processes in h] if we can show that the classes
F and G are Donsker. This is precisely what Part 3 of Theorem 6 asserts. The
theorem will refer to the following conditions:

B1 For every h ∈ H, there exists ε > 0 such that EP (f 2+ε
h (θ)) < ∞.

B2 For every h ∈ H, there exists ε > 0 such that EP [(gfh)
2+ε(θ)] < ∞.

THEOREM 6. Assume that θ1, θ2, . . . is a Harris ergodic Markov chain with
invariant distribution P for which there exists a regeneration sequence 1 = τ0 <

τ1 < τ2 < · · · satisfying E(τ1 − τ0) < ∞.

1. (a) Suppose that f·(·) : H × � → R is continuous in h for P -almost all
θ . Suppose also that suph S

(h)
1 is measurable and integrable. Then (2.5) holds.
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(b) Suppose that (gf·)(·) : H × � → R is continuous in h for P -almost all θ .
Suppose also that suph |T (h)

1 | is measurable and integrable. Then in analogy
with (2.5), we have

sup
h

∣∣∣∣∣1

n

n∑
i=1

g(θi)fh(θi) − EP

(
g(θ)fh(θ)

)∣∣∣∣∣ a.s.−→ 0.

2. Assume the conditions of Part 1 of the theorem, and also that for every θ ∈ �,
∇hfh exists and is continuous on H. Then

(2.26) sup
h∈H

∣∣Îg(h) − Ig(h)
∣∣ a.s.−→ 0.

3. (a) Suppose that the classes F , Fδ, δ > 0, and F 2∞ are all P-measu-
rable. Suppose also that for almost all θ ∈ �, ∇hfh exists and is continuous on H.
Under A1, B1 and the condition that suph∈H ‖∇hS

(h)
1 ‖ is measurable and square

integrable with respect to P, the class F is P-Donsker.
(b) Suppose that the classes G , Gδ, δ > 0, and G 2∞ are all P-measurable. Sup-

pose also that for almost all θ ∈ �, ∇h(gfh) exists and is continuous on H. Un-
der A1, B2 and the condition that suph∈H ‖∇hT

(h)
1 ‖ is measurable and square

integrable with respect to P, the class G is P-Donsker.
4. Under the conditions of Part 3 of the theorem, we have

(2.27) R1/2(
Îg(·) − Ig(·)) d→ I

∗
g(·) in C(H),

where I∗g is a Gaussian process indexed by H with mean 0 and covariance function

Cov
(
I
∗
g

(
h′), I∗g(

h′′)) = [
P
(
S

(h′)
1

)
P
(
S

(h′′)
1

)]−1
[
P
(
T

(h′)
1 T

(h′′)
1

)

− P
(
S

(h′)
1 T

(h′′)
1

)(P(T
(h′′)

1 )

P(S
(h′′)
1 )

+ P(T
(h′)

1 )

P(S
(h′)
1 )

)

+ P(T
(h′)
1 )P(T

(h′′)
1 )

P(S
(h′)
1 )P(S

(h′′)
1 )

P
(
S

(h′)
1 S

(h′′)
1

)]
.

Consequently,

(2.28) n1/2(
Îg(·) − Ig(·)) d→ Ĩg(·) in C(H),

where Ĩg is a Gaussian process indexed by H with mean 0 and covariance function

Cov
(
Ĩg

(
h′), Ĩg(

h′′)) = E(N1)Cov
(
I
∗
g

(
h′), I∗g(

h′′)).
In (2.27), Îg(h) is interpreted as Îg(h) = (

∑R
r=1 T

(h)
r )/

∑R
r=1 S

(h)
r , and the limit

is as R → ∞, whereas in (2.28) Îg(h) and the limit are interpreted differently:
Îg(h) = (

∑n
i=1 g(θi)fh(θi))/

∑n
i=1 fh(θi), and n = ∑R

r=1 Nr is random.
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REMARK 8. Here, we discuss how to form globally valid confidence bands for
I (·) (we drop the subscript “g” to lighten the notation). We would like to proceed

as follows. Having established that n1/2(Î (·) − I (·)) d→ Ĩ(·), we find the distri-
bution of suph |Ĩ(h)|. If sα is the (1 − α)-quantile of this distribution, then the
band Î (h) ± n−1/2sα has asymptotic coverage probability equal to 1 − α. Unfor-
tunately, except for very unusual cases, the distribution of suph |Ĩ(h)| cannot be
obtained analytically. Spectral methods can be used for the problem of forming
confidence intervals for I (h) for a single value of h, but not for the problem of
forming confidence bands. We know of no way to use regenerative simulation to
construct confidence bands. However, the method of batching works, as follows.

For a positive integer M , the sequence θ1, . . . , θn is broken up into M con-
secutive pieces, each of length n/M (we are ignoring divisibility issues). For
m = 1, . . . ,M , let Î (m)(h) be the estimate of I (h) based on batch m, and let

Im = sup
h

(
n

M

)1/2∣∣Î (m)(h) − Î (h)
∣∣, Īm = sup

h

(
n

M

)1/2∣∣Î (m)(h) − I (h)
∣∣.

[The difference between Im and Īm is that the latter is not computable, because
it involves the unknown function I (·).] Let Ī[1] ≤ Ī[2] ≤ · · · ≤ Ī[M] be the order
statistics of the sequence Ī1, . . . , ĪM and, similarly, let I[1] ≤ I[2] ≤ · · · ≤ I[M] be
the order statistics of the sequence I1, . . . ,IM . Now suppose that M → ∞ in such
a way that n/M → ∞. Below is the outline of an argument which shows that the
band Î (h) ± n−1/2I[(1−α)M] has coverage probability that is asymptotically equal
to 1 − α.

1. For every m, we have Īm
d→ suph |Ĩ(h)| by Theorem 6, and if the distribution

of suph |Ĩ(h)| is continuous, then Ī[(1−α)M] converges in distribution to δsα , the
point mass at sα .

2. Therefore, the (uncomputable) band Î (h) ± n−1/2Ī[(1−α)M] has coverage
probability that converges to 1 − α.

3. The difference between Im and Īm is small uniformly in m; more precisely,

we have max1≤m≤M |Im − Īm| P→ 0. Therefore, the band Î (h) ± n−1/2I[(1−α)M]
also has coverage probability that converges to 1 − α.

Details are given in Park (2015).

REMARK 9. We have seen that for any h1 ∈H, if θ1, θ2, . . . is a Markov chain
with invariant distribution νh1,y then, under certain regularity conditions, the esti-
mates Bn(h) and Îg(h) are consistent and asymptotically normal. These estimates
can be unstable, however, if h is far from h1, and there may not exist a single
value of h1 that gives rise to estimates that are stable for all h ∈ H. Serial tem-
pering [Geyer and Thompson (1995), Marinari and Parisi (1992); see also Geyer
(2011) for a review, and Tan (2017) for recent developments] can be very effective
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in handling this problem. A very brief description of the method in the present
context is as follows. We select m points h1, . . . , hm ∈ H; these should be taken
to “cover” H in the sense that every h in H is “close” to at least one of the hj ’s.
Let L = {1, . . . ,m}; the elements of L are called “labels.” For each j ∈ L, let �j

be a Markov transition function with invariant distribution νhj ,y . A Markov chain
running on the state space L × � is generated as follows. If the current state of
the chain is (j, θ), a new label j ′ is generated, and θ ′ is generated from the distri-
bution �j ′(θ, ·). The mechanism for generating the labels is set up in such a way
that the θ -sequence has invariant distribution

∑m
j=1 αjνhj ,y , where the αj ’s are all

nearly equal to 1/m. From the θ -sequence, the quantities B(h) and Ig(h) can be
estimated in a stable manner for any h which is “close” to at least one of the hj ’s,
or more precisely, for any h such that νh is “close” to at least one of νh1, . . . , νhm .
The results of this paper do not require that the sequence θ1, θ2, . . . have invariant
distribution equal to νh1,y for some h1 ∈ H, and in fact the invariant distribution
can be a mixture

∑m
j=1 αjνhj ,y , for judiciously chosen h1, . . . , hm, as described

above, for example.

3. Illustrations. Here, we present two illustrations. The first deals with the so-
called latent Dirichlet allocation model, which is used for organizing and searching
electronic documents. The version of the model we discuss is indexed by a two-
dimensional hyperparameter. Our focus will be on obtaining globally-valid confi-
dence sets for a certain posterior expectation of interest. For the data set we study,
the amount of time it takes to run the Markov chain is a significant issue because
each cycle has a length of 7788. We will use the results of Section 2.3 to determine
the minimal Markov chain length that is needed to obtain acceptably narrow con-
fidence regions. The second illustration deals with a model for Bayesian variable
selection in linear regression. For this situation, our interest will be on hyperparam-
eter selection, and we will use the results of Section 2.2. We will see that for the
data set we use, a very modest Markov chain length is all that is needed to produce
narrow confidence sets for the empirical Bayes choice of the hyperparameters.

3.1. Sensitivity analysis in the latent Dirichlet allocation model. Probabilis-
tic topic modeling is an area of machine learning that deals with methods for
understanding, summarizing and searching large electronic archives. Traditional
keyword-based searches are very fast, but have important deficiencies. Suppose
we are interested in searching for all statistical papers that deal with censored data.
A search using the keywords “censored data” will not return papers that use the
expression “incomplete data.” In topic-based searches, we do a search based on a
concept or topic. A topic is not an expression; it is, by definition, a distribution
over a set of expressions. Thus the topic mentioned above gives a lot of mass to
expressions like “Kaplan–Meier,” “censored data” and “incomplete data” and little
mass to expressions like “spectral decomposition.”
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Latent Dirichlet allocation [LDA, Blei, Ng and Jordan (2003)] is by far the most
used topic model. We will consider the version of the model that deals only with
individual words, as opposed to expressions consisting of several words. Suppose
we have a corpus of documents, for example, a set of articles from The New York
Times, and these span several different topics, such as sports, medicine, politics,
etc. The words in the documents come from a vocabulary V , which is a set consist-
ing of V words u1, . . . , uV . For each document, the data we have for that document
is a sequence of length V consisting of the number of times that word uv occurs,
for v = 1, . . . , V . In LDA, we imagine that for each word in each document, there
is a latent (i.e., unobserved) variable indicating a topic from which that word is
drawn. LDA enables us to make inference on these latent variables and, therefore,
on the topics that are covered by each document as a whole. Therefore, LDA en-
ables us to cluster together documents which are similar, that is, documents which
share common topics. By its very nature, LDA is completely automatic in how it
defines the topics: these are distributions over the vocabulary, and are themselves
latent variables. To be more precise, in LDA there is no such thing as a topic called
“sports.” Instead, there is a distribution on V which gives most of its mass to words
like “homerun,” “marathon” and “NBA.” A human is then free to call this distri-
bution “sports” if he/she wishes.

We now give more detail. The vocabulary V is taken to be the union of all the
words in all the documents of the corpus, after removing uninformative words
(like “the” and “of”). There are D documents in the corpus, and for d = 1, . . . ,D,
document d has nd words, wd1, . . . ,wdnd

. The order of the words is viewed as
uninformative, so is neglected. Each word is represented as an index 1 × V vector
with a 1 at the sth element, where s denotes the term selected from the vocabulary.
Thus, document d is represented by the vector wd = (wd1, . . . ,wdnd

) and the cor-
pus is represented by the vector w = (w1, . . . ,wD). The number of topics, K , is
finite and known. By definition, a topic is a point in SV , the (V − 1)-dimensional
simplex. For d = 1, . . . ,D, for each word wdi , zdi is an index 1 × K vector which
represents the latent variable that denotes the topic from which wdi is drawn. The
distribution of zd1, . . . , zdnd

will depend on a document-specific variable θd which
indicates a distribution on the topics for document d . We will use DirL(a1, . . . , aL)

to denote the finite-dimensional Dirichlet distribution on the L-dimensional sim-
plex. Also, we will use MultL(b1, . . . , bL) to denote the multinomial distribution
with number of trials equal to 1 and probability vector (b1, . . . , bL). We will form a
K ×V matrix β , whose t th row is the t th topic (how β is formed will be described
shortly). Thus, β will consist of vectors β1, . . . , βK , all lying in SV . Formally,
LDA is described by the following hierarchical model, in which η,α ∈ (0,∞) are
hyperparameters:

1. βt
i.i.d.∼ DirV (η, . . . , η), t = 1, . . . ,K .

2. θd
i.i.d.∼ DirK(α, . . . , α), d = 1, . . . ,D, and the θd ’s are independent of the

βt ’s.
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3. Given θ1, . . . , θD , zdi
i.i.d.∼ MultK(θd), i = 1, . . . , nd, d = 1, . . . ,D, and the

D vectors (z11, . . . , z1n1), . . . , (zD1, . . . , zDnD
) are independent.

4. Given β and the zdi ’s, wdi are independently drawn from the row of β indi-
cated by zdi, i = 1, . . . , nd, d = 1, . . . ,D.

From the model statement, we see that there is a latent topic variable for ev-
ery word that appears in the corpus. Thus it is possible that a document spans
several topics. However, because there is a single θd for document d , the model
encourages different words in the same document to have the same topic. Also
note that the hierarchical nature of LDA encourages different documents to share
the same topics. This is because β is chosen once, at the top of the hierarchy, and
is shared among the D documents. Let θ = (θ1, . . . , θD), zd = (zd1, . . . , zdnd

) for
d = 1, . . . ,D, z = (z1, . . . ,zD), and let ψ = (β, θ,z). The model is indexed by
the hyperparameter vector h = (η,α). For any given h, lines 1–3 induce a prior
distribution on ψ , which we denote by νh. Line 4 gives the likelihood. The words
w are observed, and we are interested in νh,w , the posterior distribution of ψ given
w corresponding to νh.

The hyperparameter h has a strong effect on the distribution of the parameters of
the model. For example, when η is large, the topics tend to be probability vectors
which spread their mass evenly among many words in the vocabulary, whereas
when η is small, the topics tend to put most of their mass on only a few words.
Also, when α is large, each document tends to involve many different topics; on
the other hand, in the limiting case where α → 0, each document involves a single
topic, and this topic is randomly chosen from the set of all topics.

In the literature, the following choices for h = (η,α) have been presented:
hGS = (0.1,50/K), used in Griffiths and Steyvers (2004); hA = (0.1,0.1), used
in Asuncion et al. (2009); and hRS = (1/K,1/K), used in the Gensim topic
modelling package [Řehůřek and Sojka (2010)], a well-known package used in
the topic modeling community. These choices are ad hoc, and not based on any
principle; nevertheless, they do get used. Blei, Ng and Jordan (2003) propose
h0 = arg maxh mw(h), as we do, but their approach for estimating h0 is quite a
bit different from ours, and involves a combination of the EM algorithm and “vari-
ational inference.” Very briefly, w is viewed as “observed data,” and ψ is viewed as
“missing data.” Because the “complete data likelihood” ph(ψ,w) is available, the
EM algorithm is a natural candidate for estimating arg maxh mw(h), since mw(h)

is the “incomplete data likelihood.” But the E-step in the algorithm is infeasible
because it requires calculating an expectation with respect to the intractable distri-
bution νh,w . Blei, Ng and Jordan (2003) substitute an approximation to this expec-
tation. Unfortunately, because there are no useful bounds on the approximation,
and because the approximation is used at every iteration of the algorithm, there
are no results regarding the theoretical properties of this method. Determination of
the hyperparameter is currently an open problem in LDA modeling [Wallach et al.
(2009)].
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We illustrate our methodology on a corpus of documents from the English Wiki-
pedia, originally created by George (2015). When a Wikipedia article is created, it
is typically tagged to one or more categories, one of which is the “primary cate-
gory.” The corpus consists of 8 documents from the category Leopardus, 8 from the
category Lynx and 7 from Prionailurus, and we took K = 3, as in George (2015).
There are 303 words in the vocabulary, and the total number of words in the cor-
pus is 7788. The data set is relatively small. However, it is challenging to analyze
because the topics are very close to each other, so in the posterior distribution there
is a great deal of uncertainty regarding the latent topic indicator variables, and this
is why we chose this data set.

A reader of a given article may wish to look at related articles, so a question of
interest is whether the topics for two given documents are nearly the same. One
way to word this question precisely is to ask what is the posterior probability that
‖θi − θj‖ ≤ ε, where i and j are the indices of the documents in question and ε is
some user-specified small number. Here, ‖ ·‖ denotes ordinary Euclidean distance.
This posterior probability will of course depend on h, and we would like to view
the estimates of the posterior probability as h varies, together with (simultaneous)
error margins.

To this end, we used the methodology developed in Section 2.3 for simulta-
neous estimation of posterior expectations (here the posterior expectations of the
indicator of a set). The warning given in Remark 9 regarding the high variance of
the simple single-chain estimate (1.3) applies, and we use instead a serial temper-
ing chain (cf. Remark 9), the details of which are given in the next paragraph. We
consider documents 7 and 8, which are the articles “Pampas cat” and “Pantanal
cat” under the Wikipedia category Leopardus, and we are interested in the poste-
rior probability of the event ‖θ7 − θ8‖ ≤ 0.05. Our estimate of arg maxh mw(h) is
hn = (ηn,αn) = (0.915,0.245), and the estimate of the posterior probability un-
der the empirical Bayes choice of h is νhn,w(‖θ7 − θ8‖ ≤ 0.05) = 0.7039. For the
other choices of h, we have νhGS,w(‖θ7 −θ8‖ ≤ 0.05) = 0.1619, νhA,w(‖θ7 −θ8‖ ≤
0.05) = 0.1498, and νhRS,w(‖θ7 − θ8‖ ≤ 0.05) = 0.1298, and we see that all three
are far from the estimate based on the empirical Bayes choice of h. We also cal-
culated the ratio of the marginal likelihood of hn to the marginal likelihood of
each of hGS, hA and hRS and noted that each ratio is astronomically large. There-
fore, none of these values of h are deemed even remotely plausible, and as these
choices of h do not have any theoretical basis, there is no credibility to poste-
rior probability estimates based on them. Figure 1 gives a plot of the estimate of
νh,w(‖θ7 − θ8‖ ≤ 0.05), together with a globally valid confidence set of level 0.95
over a relatively small region centered at hn. The figure shows that the posterior
probabilities vary greatly with h, ranging from 0.553 to 0.972, even over a small
h-region, underscoring the fact that the choice of hyperparameter should be made
carefully.

Our serial tempering chain is based on the “augmented collapsed Gibbs sam-
pler” developed in George (2015), and which runs on the entire set of latent vari-
ables (β, θ,z). A single cycle of this Markov chain runs over 7788 nodes. To form
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FIG. 1. Estimates with confidence region for I (h) = νh,w(‖θ7 − θ8‖ ≤ 0.05), the posterior proba-
bility that the topics for documents 7 and 8 of the Wikipedia corpus are “very close.” The plot shows
that this posterior probability varies considerably with h, and suggests that care be taken in choosing
the hyperparameter.

the confidence region, we used the construction described in Remark 8. We took
the grid size for the chain (“m” in Remark 8) to be 105, with the 105 reference
values evenly spaced over the h-region. With this choice, the chain gives very sta-
ble estimates. The length of the chain was 500,000, and the number of batches
was 707 (roughly the square root of the chain length). With this chain length the
confidence region is adequately narrow, and with a length of only 50,000 it was
not.

3.2. Hyperparameter choice for Bayesian variable selection in linear regres-
sion. The most commonly used setup for variable selection in Bayesian linear
regression is described as follows. We have a response vector Y = (Y1, . . . , Ym)�
and a set of potential predictors X1, . . . ,Xq , each a vector of length m. Every
subset of predictors is identified with a binary vector γ = (γ1, . . . , γq)

� ∈ {0,1}q ,
where γj = 1 if Xj is included in the model and γj = 0 otherwise. For every γ ,
we have a model given by

Y = 1mβ0 + Xγ βγ + ε,

where 1m is the vector of m 1’s, Xγ is the design matrix whose columns con-
sist of the predictor vectors corresponding to γ , βγ is the vector of coefficients
for that subset, and ε ∼ Nm(0, σ 2I ). For this setup, the unknown parameter is
θ = (γ, σ,β0, βγ ), which includes the indicator of the subset of variables that go
into the regression model. The prior on θ is a hierarchy in which we first select
the variables that go into the regression model, then a “noninformative prior” is
given to (σ 2, β0), and given γ and σ , we choose βγ from some proper distribu-
tion. The specific instance of this model that we will consider is indexed by two
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hyperparameters, w ∈ (0,1) and g > 0, and is given in detail as follows:

given γ,σ,β0, βγ , Y ∼Nm

(
1mβ0 + Xγ βγ ,σ 2I

)
,(3.1a)

given γ,σ, βγ ∼Nqγ

(
0, gσ 2(

X�
γ Xγ

)−1)
,(3.1b) (

σ 2, β0
) ∼ p

(
β0, σ

2) ∝ 1/σ 2,(3.1c)

γ ∼ p(γ ) = wqγ (1 − w)q−qγ .(3.1d)

The prior on γ given by (3.1d) is the so-called independence Bernoulli prior, in
which every variable goes into the model with probability w, independently of all
the other variables. In (3.1b), qγ = ∑q

j=1 γj is the number of predictors that go
in the regression, and the prior on βγ is Zellner’s g-prior [Zellner (1986)]. Be-
cause (σ 2, β0) is given an improper prior [line (3.1c)], the prior on θ is improper;
however, it turns out that the posterior distribution of θ is proper. Models of the
type (3.1) were introduced by Mitchell and Beauchamp (1988) and have been stud-
ied in dozens of papers; see Liang et al. (2008) for a review.

The hyperparameter h = (w,g) plays a critical role: if w is small and g is large,
the prior νh concentrates its mass on models with few variables and large coeffi-
cients, while if w is large and g is small, νh concentrates its mass on models with
many variables and small coefficients. [To appreciate the importance of the role
played by h, note that George and Foster (2000) have shown that for the slightly
different version of (3.1) in which σ 2 is assumed known, h can be chosen so that
the highest posterior probability model is exactly the best model under the AIC/Cp ,
BIC, or RIC criteria.] Thus, h effectively determines the method that is used to
carry out variable selection, so it is important to choose it properly.

Unless q is relatively small (q less than 20 or 25), the posterior distribution of
θ = (γ, σ,β0, βγ ) is intractable, because to compute it we need to calculate 2q in-
tegrals [George and Foster (2000)]. Smith and Kohn (1996) developed a Markov
chain algorithm which runs only on γ , the other variables being integrated out.
Their chain is a simple Gibbs sampler which runs on the vector (γ1, . . . , γq)

�,
updating one component at a time. This chain does not fit into our framework,
which requires a Markov chain that runs on θ = (γ, σ,β0, βγ ). Buta (2010) devel-
oped a Markov chain, based on the Smith and Kohn (1996) chain, which runs over
(γ, σ,β0, βγ ). [She proved that for her Markov chain, the rate of convergence to
the posterior distribution of θ is exactly the same as the rate of convergence to the
posterior distribution of γ for the Smith and Kohn (1996) chain, where conver-
gence is in terms of the absolute deviation norm.] We will use the chain developed
by Buta (2010) for the analysis below.

To implement the methods of this paper, we need a “ratio of densities νh1/νh2 ”
[cf. equation (1.3)]. Note that the prior distributions are not absolutely continuous
with respect to the product of counting measure on {0,1}q and Lebesgue measure
on (0,∞) ×R+ ×R

q+1 (the dimension of βγ is not fixed). The “ratio of densities
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νh1/νh2 ” then needs to be replaced by the Radon–Nikodym derivative. To be pre-
cise, let ν̄h be the distribution on θ induced by (3.1d), (3.1c) and (3.1b). Then (1.3)
becomes

1

n

n∑
i=1

[
dν̄h

dν̄h1

]
(θi)

a.s.−→
∫ [

dν̄h

dν̄h1

]
(θ)ν̄h1,y(dθ) = my(h)

my(h1)
.

The Radon–Nikodym derivative was obtained in Doss (2007) and is given by[
dν̄h1

dν̄h2

]
(θ) =

(
w1

w2

)qγ
(

1 − w1

1 − w2

)q−qγ × φqγ (βγ ;0, g1σ
2(X′

γ Xγ )−1)

φqγ (βγ ;0, g2σ 2(X′
γ Xγ )−1)

,

where φd(u;a,V ) is the density of the d-dimensional normal distribution with
mean a and covariance V , evaluated at u.

For our illustration, we consider the ragweed data of Stark et al. (1997), who
were interested in determining how meteorological variables can be used to fore-
cast ragweed pollen levels. The response variable is the ragweed level (grains/m3)
for 335 days in Kalamazoo, Michigan, USA. Although the data set contains other
predictors, we restrict our analysis to two: day (day number in the current ragweed
pollen season) and wind (wind speed forecast in knots for following day). Follow-
ing Ruppert, Wand and Carroll (2003), we take the square root of the ragweed level
as the response. Figure 2 gives separate plots of the response versus each of the
two predictors. From the figure, we see that the effect of day is certainly nonlinear,
but whether wind acts nonlinearly is not clear.

We fit each of the two predictors nonparametrically via cubic regression splines
involving 10 equally spaced knots. Hence the model we use has the form

Yi = β0 + α1dayi + α2day2
i + α3day3

i +
10∑
t=1

αt+3(dayi − d̃t )
3+

+ β1windi + β2wind2
i + β3wind3

i +
10∑
t=1

βt+3(windi − w̃t )
3+ + εi,

FIG. 2. Scatterplots of response against each of two predictors for the ragweed data set.
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for i = 1, . . . ,335, where d̃1 < · · · < d̃10 represent the knots for the day explana-
tory variable, w̃1 < · · · < w̃10 the knots for the wind explanatory variable, and
(x)+ = max{0, x}. Note that there are 26 coefficients that could be set to 0, of
which 20 correspond to knots along the domain of the two predictors. Our plan is
to carry out the following two steps:

1. We form a point estimate and confidence region for arg maxh my(h) by run-
ning a Markov chain.

2. We estimate the posterior distribution of θ when the prior is νhn , where hn

is the estimate of arg maxh my(h) obtained in Step 1, by running another Markov
chain.

For Step 1, we ran a Markov chain of length 40,000, using h1 = (0.3,100),
from which we formed the surface Bn(h), shown on the left panel of Figure 3.
The argmax of the surface is (0.23,176), and the 95% confidence region for
arg maxh my(h) is the ellipse shown in the right panel of Figure 3. For Step 2,
we ran a new Markov chain, of length 105. For this chain, the highest probability
model is the model which selects the variables wind, day2, day3, (day − d̃3)

3+ and
(day − d̃5)

3+. Interestingly, this model is the same as the model selected by the
lasso, when we choose the tuning parameter by cross-validation.

Let E denote the ellipse. Our theory tells us that we are 95% confident that
arg maxh B(h) ∈ E , so we should run chains with posterior distributions νh,y ,
h ∈ E , and determine the highest posterior probability models for all h ∈ E . By
checking a few points on the boundary of the ellipse, we saw that the ellipse is
narrow enough so that the highest probability model is the same for all h ∈ E . Had
this not been the case, we would have run the Step 1 chain for more cycles, getting
an ellipse that is more narrow.

FIG. 3. Left Panel: Estimate of the marginal likelihood my(h) (up to a multiplicative constant). The
argmax is (wn,gn) = (0.23,176), and the small value of wn suggests a sparse model. Right Panel:
Confidence region for arg maxh my(h). The tight region indicates that the small Markov chain length
used is adequate.
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The value of w that is selected is small, which reflects sparsity: a small model
is adequate for fitting the data. We now put our approach in the context of the
existing literature. Liang et al. (2008) review methods for selecting g in the ver-
sion of model (3.1) in which w is fixed at 1/2. The literature has several data-
independent choices [e.g., g = max(m,q2)], but these generally do not perform
well. As a data-dependent choice, they propose ĝ = arg maxg my(g), and to obtain
it suggest an EM algorithm in which the model indicator γ is viewed as missing
data. Unfortunately, the M-step in the algorithm involves a sum of 2q terms. Un-
less q is relatively small, complete enumeration is not possible, and Liang et al.
(2008) propose summing only over the most significant terms. However, determin-
ing which terms these are may be very difficult in some problems. Our approach
provides a feasible way of obtaining the maximizer of the likelihood, and this for
the model in which both w and g are unknown.
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SUPPLEMENTARY MATERIAL

Supplement to “An MCMC approach to empirical Bayes inference and
Bayesian sensitivity analysis via empirical processes” (DOI: 10.1214/17-
AOS1597SUPP; .pdf). In the supplement Doss and Park (2018), we provide proofs
of Theorems 2, 4, 5 and 6, and Lemma 1. We also show that the key regularity con-
dition (2.6), which is needed in the theorems in this paper, is satisfied in a large
class of examples.
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