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We consider the problem of recovering linear image Bx of a signal x

known to belong to a given convex compact set X from indirect observa-
tion ω = Ax + σξ of x corrupted by Gaussian noise ξ . It is shown that un-
der some assumptions on X (satisfied, e.g., when X is the intersection of K

concentric ellipsoids/elliptic cylinders), an easy-to-compute linear estimate is
near-optimal in terms of its worst case, over x ∈ X , expected ‖ · ‖2

2-loss. The
main novelty here is that the result imposes no restrictions on A and B. To
the best of our knowledge, preceding results on optimality of linear estimates
dealt either with one-dimensional Bx (estimation of linear forms) or with the
“diagonal case” where A, B are diagonal and X is given by a “separable”
constraint like X = {x :∑i a2

i x2
i ≤ 1} or X = {x : maxi |aixi | ≤ 1}.

1. Introduction. In this paper, we address one of the most basic problems of
high-dimensional statistics, specifically, as follows: given indirect noisy observa-
tion

ω = Ax+σξ
[
A : m×n, ξ ∼N (0, Im)

]
of unknown “signal” x known to belong to a given convex compact subset X of Rn,
we want to recover the image w = Bx ∈ Rν of x under a given linear mapping. We
focus on the case where the quality of a candidate recovery ω �→ ŵ(ω) is quantified
by its worst case, over x ∈ X , expected ‖ · ‖2

2-error, that is, by the risk

Risk[ŵ|X ] = sup
x∈X

[
Eξ

{∥∥ŵ(Ax + σξ) − Bx
∥∥2

2

}]1/2
.

The simplest and the most studied type of recovery is affine one: ŵ(ω) = HT ω+h;
assuming X symmetric w.r.t. the origin, we lose nothing when passing from affine
estimates to linear ones—those of the form ŵH (ω) = HT ω. Starting from the
pioneering works of Kuks and Olman (1971, 1972), linear estimates received
much attention in the statistical literature [see, e.g., Arnold and Stahlecker (2000),
Christopeit and Helmes (1996), Drygas (1996), Pilz (1986), Rao (1973, 1976) and
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references therein]. An advantage of linear estimates, from the computational point
of view, is that under favorable circumstances (e.g., when X is an ellipsoid), min-
imizing risk over linear estimates is an efficiently solvable problem. On the other
hand, linear estimates are also of major importance to statistical theory. For in-
stance, a huge body of results on rate-optimality of linear estimates on various sig-
nal classes (which arise from some classes of regular functions) form the backbone
of classical nonparametric statistics [see, e.g., Ibragimov and Has’minskiı̆ (1981),
Tsybakov (2009), Wasserman (2006)]. Furthermore, for several important signal
classes, linear estimates occur to be near-optimal on the class of all possible esti-
mates. This is, for instance, the case for signal recovery from direct observations
(the case of B = A = I ) in the situation where the set X of signals is an ellipsoid
or a box. The case of ellipsoidal X was studied first by M. S. Pinsker [see Pinsker
(1980)], who showed that in the problem of recovery of the signal x ∈ X from di-
rect observation ω = x + σξ , X being a “Sobolev ellipsoid” of the form {x ∈ Rn :∑

j j2αx2
j ≤ L2}, the ratio of the risk of a properly selected linear estimate to the

minimax risk Riskopt[X ] := infŵ(·) Risk[ŵ|X ] (the infimum is taken over all esti-
mates, not necessarily linear) tends to 1, as σ → +0, and this happens uniformly
in n, α and L being fixed. Similar “asymptotic optimality” results are also known
for ellipsoids related to classes of analytic functions [Golubev, Levit and Tsybakov
(1996)] and for “diagonal” case, where X is the above ellipsoid/box and A, B are
diagonal matrices [Efromovich and Pinsker (1996)] [see also Efromovich (1999)
for a modern presentation of that approach]. The results on nonasymptotic near-
optimality of linear estimates (up to a factor 1.11. . . ) are also available for the case
where A = B = I and X is an ellipsoid (X = {x ∈ Rn :∑j a2

j x
2
j ≤ 1} for given aj )

or a box (X = {x ∈ Rn : maxj |ajxj | ≤ 1}) [see, e.g., Donoho, Liu and MacGibbon
(1990)] (the corresponding argument can be easily extended to the case of diagonal
A and B). Note that the situation is quite different for the problem of estimation of
a linear form w = bT x (i.e., the case of one-dimensional Bx). An exceptional from
several points of view “general” (i.e., not imposing severe restrictions on how the
geometries of X , A and B are linked to each other) result on optimality of linear
estimates in this case is due to D. Donoho who proved [Donoho (1994)] that when
recovering a linear form, the best, over all linear estimates, risk is within the factor
1.11. . . of the minimax risk.

The goal of this paper is to establish a rather general result on near-optimality
of properly built linear estimates as compared to all possible estimates. Note that
a result of this type is bounded to impose some restrictions on X , since there are
cases (e.g., the one of a high-dimensional ‖ · ‖1-ball X ) where linear estimates are
by far suboptimal. Our restrictions on the family of sets (we call them ellitopes) X
reduce to the existence of a special type representation of X and are satisfied, for
example, when X is the intersection of K < ∞ ellipsoids/elliptic cylinders:

(1) X = {
x ∈ Rn : xT Skx ≤ 1,1 ≤ k ≤ K

} [
Sk 	 0,

∑
k

Sk 
 0
]
.
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In particular, X can be a symmetric w.r.t. the origin compact polytope given by
2K linear inequalities −1 ≤ sT

k x ≤ 1, 1 ≤ k ≤ K . Another instructive example is
a set of the form X = {x : ‖Sx‖p ≤ L}, where p ≥ 2 and S is a matrix with trivial
kernel. It should be stressed that while imposing some restrictions on X , we require
nothing from A and B . Our main result (Theorem 2.1) states, in particular, that in
the case of X given by (1) and arbitrary A, B , the risk of properly selected linear
estimate ŵH∗ , with both H∗ and the risk being efficiently computable, satisfies the
bound

Risk[ŵH∗ |X ] ≤ O(1)

√√√√ln
(

O(1)‖B‖2K2κ−1

Risk2
opt[X ]

)
Riskopt[X ], (∗)

where ‖B‖ is the spectral norm of B , κ is the minimal eigenvalue of
∑

k Sk ,
Riskopt[X ] is the minimax risk and O(1) stands for an absolute constant. It should
be mentioned that technique used to construct lower bound for optimal risks leads
to more precise oracle inequalities when imposing constraints on the structure of
the signal class X and matrices A, B; in particular, it allows to reproduce clas-
sical “asymptotic” optimality results, for example, in the situation considered in
Efromovich and Pinsker (1996), Pinsker (1980). On the other hand, we do not
know if the bound (∗) can be significantly improved in some important “simple
cases,” for instance, in the case where B = I and X is an ellipsoid, without im-
posing any restrictions on A. In this work, however, we prefer to see our approach
as “operational”—the provably nearly optimal estimate itself, its risk and even the
lower risk bound involved are all given by an efficient computation, which is sup-
posed to provide precise near-optimality guaranties for each set of the problem
data. From this point of view, the oracle inequality (∗) can be viewed as a general
indication of a “goodness” of linear estimates in a certain context, namely, where
the signal set is an intersection of “not too large” number of ellipsoids/elliptic
cylinders. This is in sharp contrast with traditional results of nonparametric statis-
tics, where near-optimal estimates and their risks are given in a “closed analytical
form,” at the price of severe restrictions on the structure of the “data” X , A and
B .3 This being said, it should be stressed that one of the crucial components of our
construction is completely classical—this is the idea, going back to Pinsker (1980)
to bound from below the minimax risk via Bayesian risk associated with properly
selected Gaussian prior.4

The main body of the paper is organized as follows. Section 2 contains problem
formulation (Section 2.1), construction of the linear estimate we deal with (Sec-

3Since this paper has been submitted, the proposed approach has been further developed in Juditsky
and Nemirovski (2016). For instance, it is shown that similar near-optimality guaranties for linear
estimators can be obtained for more general risks (e.g., �p-loss with 1 ≤ p ≤ 2) and slightly more
general sets X , which are solution sets of systems of quadratic matrix inequalities, for deterministic
bounded noises, etc.

4Pinsker (1980) addresses the problem of ‖ · ‖2-recovery of a signal x from direct observations
(A = B = I ) in the case where X is a high-dimensional ellipsoid with “regularly decreasing half-
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tion 2.2) and the central result on near-optimality of this estimate (Section 2.3).
Section 3 contains some extensions. Specifically, we present a version of our main
result for the case when the usual worst case expected ‖ · ‖2

2-risk is replaced with
properly defined relative risk (Section 3.1) and provide a robust, w.r.t. uncertainty
in A, B , version of the estimate (Section 3.2). In Section 3.3, we show that the key
argument underlying the proof of our main result can be used beyond the scope of
statistics, specifically, when quantifying the approximation ratio of the semidefi-
nite relaxation bound on the maximum of a quadratic form over an ellitope. Proofs
are relegated to the Supplementary Material [Juditsky and Nemirovski (2018)].

2. Situation and main result.

2.1. Situation and goal. Given ν × n matrix B , consider the problem of es-
timating linear image Bx of unknown signal x known to belong to a given set
X ⊂ Rn via noisy observation

(2) ω = Ax + σξ,

where an m × n matrix A and σ>0 are given, and ξ ∼ N (0, Im) is the standard
Gaussian observation noise. From now on, we assume that X ⊂ Rn is a set given
by

(3) X = {
x ∈ Rn : ∃(y ∈ Rn̄, t ∈ T

) : x = Py,yT Sky ≤ tk,1 ≤ k ≤ K
}
,

where:

• P is an n × n̄ matrix,
• Sk 	 0 are n̄ × n̄ matrices with

∑
k Sk 
 0,

• T is a nonempty computationally tractable5 convex compact subset of RK+ in-
tersecting the interior of RK+ and such that T is monotone, meaning that the
relations 0 ≤ τ ≤ t and t ∈ T imply that τ ∈ T .6 Note that under our assump-
tions intT �= ∅.

We assume that BP �= 0, since otherwise one has Bx = 0 for all x ∈X and the es-
timation problem is trivial. In the sequel, we refer to a set of the form (3) with data

axes,” like X = {x ∈ Rn : ∑j j2αx2
j ≤ L2} with α > 0. In this case, Pinsker’s construction shows

that as σ → +0, the risk of properly built linear estimate is uniformly in n, (1 + o(1)) times the
minimax risk. This is much stronger than (∗), and it seems quite unlikely that a similarly strong
result may hold true in the general case underlying (∗).

5For all practical purposes, it suffices to assume that T is given by an explicit semidefinite repre-
sentation

T = {
t : ∃w : A(t,w) 	 0

}
,

where A(t,w) is a symmetric and affine in t , w matrix.
6The latter relation is “for free”—given a nonempty convex compact set T ⊂ RK+ , the right-hand

side of (3) remains intact when passing from T to its “monotone hull” {τ∈ RK+ :∃t ∈ T : τ ≤ t},
which already is a monotone convex compact set.
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[P, {Sk,1 ≤ k ≤ K},T ] satisfying just formulated assumptions as to an ellitope,
and to (3)—as to ellitopic representation of X . Here are instructive examples of
ellitopes (in all these examples, P is the identity mapping):

• when K = 1, T = [0,1] and S1 
 0, X is the ellipsoid {x : xT S1x ≤ 1};
• when K ≥ 1, T = {t ∈ RK : 0 ≤ tk ≤ 1, k ≤ K}, and X is the intersection⋂

1≤k≤K

{
x : xT Skx ≤ 1

}
of centered at the origin ellipsoids/elliptic cylinders. In particular, when U is
a K × n matrix of rank n with rows uT

k , 1 ≤ k ≤ K , and Sk = uku
T
k , X is

symmetric w.r.t. the origin polytope {x : ‖Ux‖∞ ≤ 1};
• when U , uk and Sk are as in the latter example and T = {t ∈ RK+ :∑k t

p/2
k ≤ 1}

for some p ≥ 2, we get X = {x : ‖Ux‖p ≤ 1}.
It should be added that the family of ellitope-representable sets is quite rich: this
family admits a “calculus,” so that more ellitopes can be constructed by taking
intersections, direct products, linear images (direct and inverse) or arithmetic sums
of “basic ellitopes” given by the above examples. In fact, the property to be an
ellitope is preserved by all basic operations with sets preserving convexity and
symmetry w.r.t. the origin; see Section B of the Supplementary Material [Juditsky
and Nemirovski (2018)].

As another instructive, in the context of nonparametric statistics, example of an
ellitope, consider the situation where our signals x are discretizations of functions
of continuous argument running through a compact d-dimensional domain D, and
the functions f we are interested in are those satisfying a Sobolev-type smooth-
ness constraint—an upper bound on the Lp(D)-norm of Lf , where L is a linear
differential operator with constant coefficients. After discretization, this restriction
can be modeled as ‖Lx‖p ≤ 1, with properly selected matrix L. As we already
know from the above example, when p ≥ 2, the set X = {x : ‖Lx‖p ≤ 1} is an
ellitope, and as such is captured by our machinery. Note also that by the outlined
calculus, imposing on the functions f in question several Sobolev-type smooth-
ness constraints with parameters p ≥ 2, still results in a set of signals which is an
ellitope.

Estimates and their risks. In the outlined situation, a candidate estimate is a Borel
function ŵ(·) : Rm → Rν ; given observation (2) we recover w = Bx as ŵ(ω). In
the sequel, we quantify the quality of an estimate by its worst-case, over x ∈ X ,
expected ‖ · ‖2

2 recovery error:

Risk[ŵ|X ] = sup
x∈X

[
Eξ∼N (0,Im)

{∥∥ŵ(Ax + σξ) − Bx
∥∥2

2

}]1/2

and define the optimal, or the minimax, risk as

Riskopt[X ] = inf
ŵ(·) Risk[ŵ|X ],

where inf is taken over all Borel candidate estimates.



1608 A. JUDITSKY AND A. NEMIROVSKI

Our initial observation is that when replacing matrices A and B with AP and
BP , respectively, we pass from the initial estimation problem of interest—one
where the signal set X is given by (3), and we want to recover Bx, x ∈ X , via
observation (2), to the transformed problem, where the signal set is

Y = {
y ∈ Rn̄ : ∃t ∈ T : yT Sky ≤ tk,1 ≤ k ≤ K

}
,

and we want to recover [BP ]y, y ∈ Y , via observation

ω = [AP ]y + σξ.

It is obvious that the considered families of estimates (the family of all linear and
the family of all estimates), same as the risks of the estimates, remain intact under
this transformation; in particular,

Risk[ŵ|X ] = sup
y∈Y

[
Eξ

{∥∥ŵ([AP ]y + σξ
)− [BP ]y∥∥2

2

}]1/2
.

Therefore, to save notation, from now on and unless mentioned otherwise, we
assume that matrix P is identity, so that X is the ellitope

(4) X = {
x ∈ Rn : ∃t ∈ T , xT Skx ≤ tk,1 ≤ k ≤ K

}
.

The Main goal of what follows is to demonstrate that a linear in ω estimate

(5) ŵH (ω) = HT ω

with properly selected efficiently computable matrix H is near-optimal in terms of
its risk. We start with building this estimate.

2.2. Building linear estimate. Restricting ourselves to linear estimates (5), we
may be interested in the estimate with the smallest risk, that is, associated with a
ν × m matrix H which is an optimal solution to the optimization problem:

min
H

{
R(H) := Risk2[ŵH |X ]}.

We have

R(H) = max
x∈X Eξ

∥∥HT ω − Bx
∥∥2

2

= Eξ

∥∥HT ξ
∥∥2

2 + max
x∈X

∥∥HT Ax − Bx
∥∥2

2

= σ 2 Tr
(
HT H

)+ max
x∈X xT (HT A − B

)T (
HT A − B

)
x.

As the maximum over x of convex quadratic functions of H , R(H) is itself convex.
However, as the maximum over X of a quadratic in x function, R(H) is typically
hard to compute.7 For this reason, we use a linear estimate yielded by minimizing

7For instance, when X is a unit cube {x ∈ Rn : ‖x‖∞ ≤ 1}, computing R(0) in the case of general-
type B is equivalent to maximizing over X a general-type convex quadratic form; it is known that
solving the latter problem already within 4% accuracy is NP-hard.
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an efficiently computable convex upper bound on R(H) which is built as follows.
Let φT be the support function of T :

φT (λ) = max
t∈T λT t : RK → R.

Observe that whenever λ ∈ RK+ and H are such that

(6)
(
B − HT A

)T (
B − HT A

)�∑
k

λkSk,

for x ∈ X it holds

(7)
∥∥Bx − HT Ax

∥∥2
2 ≤ φT (λ).

Indeed, in the case of (6) and with x ∈ X , there exists t ∈ T such that xT Skx ≤ tk

for all t , and consequently the vector t̄ with the entries t̄k = xT Skx also belongs
to T , whence∥∥Bx − HT Ax

∥∥2
2 = ∥∥Bx − HT Ax

∥∥2
2 ≤∑

k

λkx
T Skx = λT t̄ ≤ φT (λ),

which combines with (4) to imply (7).
From (7), it follows that if H and λ ≥ 0 are linked by (6), then

Risk2[x̂H |X ] = max
x∈X E

{∥∥Bx − HT (Ax + σξ)
∥∥2

2

}
= σ 2 Tr

(
HT H

)+ max
x∈X

∥∥[B − HT A
]
x
∥∥2

2

≤ σ 2 Tr
(
HT H

)+ φT (λ).

We see that the efficiently computable convex function

R̂(H) = inf
λ

{
σ 2 Tr

(
HT H

)+φT (λ) : (B −HT A
)T (

B −HT A
)�∑

k

λkSk, λ ≥ 0
}

(which clearly is well defined due to compactness of T combined with
∑

k Sk 

0) is an upper bound on R(H).8 Therefore, the efficiently computable optimal

8It is well known that when K = 1 (i.e., X is an ellipsoid) the above bounding scheme is exact:
R(·) ≡ R̂(·). For more complicated X ’s, R̂(·) could be larger than R(·), although the ratio R̂(·)/R(·)
is bounded by O(log(K)); see Section 3.3.
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solution (H∗, λ∗) to the (clearly solvable) convex optimization problem

(8)

Opt = min
H,λ

{
σ 2 Tr

(
HT H

)+ φT (λ) :
(
B − HT A

)T (
B − HT A

)�∑
k

λkSk, λ ≥ 0
}

= min
H,λ

⎧⎨⎩σ 2 Tr
(
HT H

)+ φT (λ) :
⎡⎣
∑
k

λkSk BT − AT H

B − HT A Iν

⎤⎦	 0, λ ≥ 0

⎫⎬⎭
yields a linear estimate ŵH∗ with the risk upper-bounded by

√
Opt.

2.3. Lower-bounding optimal risk and near-optimality of ŵH∗ . Let us con-
sider the convex optimization problem

Opt∗ = max
Q,t

{
ϕ(Q) := Tr

(
B
[
Q − QAT (σ 2Im + AQAT )−1

AQ
]
BT ),

(9)
Q 	 0, t ∈ T ,Tr(QSk) ≤ tk,1 ≤ k ≤ K

}
= max

Q,t

{
Tr
(
BQBT )− Tr(G) :

[
G BQAT

AQBT σ 2Im + AQAT

]
	 0,

(10)

Q 	 0, t ∈ T ,Tr(QSk) ≤ tk,1 ≤ k ≤ K

}
.

Note that the function ϕ(Q) has a transparent statistical interpretation. Specifically,
given an n × n matrix Q 	 0, consider two independent Gaussian random vectors,
ξ ∼ N (0, Im) and η ∼ N (0,Q). We claim that

(11) ϕ(Q) = inf
G(·):Rm→Rν

E[ξ,η]
{∥∥G(σξ + Aη) − Bη

∥∥2
2

}
.

Indeed, by the normal correlation theorem [see, e.g., Liptser and Shiryayev (1977),
Theorem 13.1], the optimal, in terms of expected ‖ ·‖2

2-error, recovery G∗(·) of Bη

via observation σξ +Aη—the conditional, given σξ +Aη, expectation of Bη—is
linear, and the corresponding expected ‖ · ‖2

2-error is exactly ϕ(Q).
In the sequel, we set

Q = {
Q ∈ Sn : Q 	 0,∃t ∈ T : Tr(QSk) ≤ tk,1 ≤ k ≤ K

}
.

Note that Q is a convex compact set due to
∑

k Sk 
 0 combined with compactness
of T .

Observe that if (Q, t) is feasible for (9), then the Gaussian random vector
η ∼ N (0,Q) belongs to X “on average”—it satisfies the constraints E{ηT Skη} =
Tr(QSk) ≤ tk, k = 1, . . . ,K , and t ∈ T . The lower bounding scheme we intend
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to implement goes back to Pinsker (1980) and heavily relies upon this fact—it
bounds from below the minimax, over x ∈ X , risk of estimating Bx by compar-
ing this risk to the risk of optimal recovery of Bη in the Gaussian problem, where
η ∈X with “high probability,” as is the case when Q ∈ ρQ with appropriate ρ < 1.
Specifically, we have the following result.

LEMMA 2.1. Given a positive semidefinite n×n matrix Q and δ ∈ (0,1/5], let
η ∼N (0,Q) and ξ ∼ N (0, Im) be independent from each other Gaussian vectors.
Assume that

Prob{η /∈ X } ≤ δ ≤ 1/5.

Then

(12) ϕ(Q) ≤ Risk2
opt[X ] + [

M∗ + √
2q1−δ/2

√
Tr
(
BQBT

)]2
δ,

where qα is the α-quantile of the standard normal distribution:

1√
2π

∫ qα

−∞
e−s2/2 ds = α,

and

(13) M∗ =
√

max
Q∈QTr

(
BQBT

)
.

Further, if Q ∈ ρQ for some ρ ∈ (0,1], then

ϕ(Q) ≤ Risk2
opt[X ] + [1 +√

2ρq1−δ/2]2M2∗δ.

For proof, see Section A.1.1 of the Supplementary Material [Juditsky and Ne-
mirovski (2018)].

The second principal component of the construction of the lower bound for
Riskopt is provided by the following statement.

LEMMA 2.2. In the premise of this section, (10) is a conic problem which is
strictly feasible and solvable, with the conic dual problem equivalent to (8). As a
consequence, one has

(14) Opt∗ = Opt .

Let now (Q, t) be an optimal solution to (9), and let for 0 < ρ ≤ 1, Qρ = ρQ.
Note that ϕ(Qρ) ≥ ρϕ(Q) = ρ Opt (recall that ϕ is concave9 with ϕ(0m×m) = 0),

9Concavity of ϕ can be verified directly; a transparent alternative verification is to notice that (11)
implies that

ϕ(Q) = min
H

E[ξ,ζ ]∼N (0,Im+n)

{([
B − HT A

]
Q1/2ζ + HT σξ

)T ([
B − HT A

]
Q1/2ζ + HT σξ

)}
= min

H

[
Tr
([

B − HT A
]T

Q
[
B − HT A

])+ σ 2 Tr
(
HT H

)]
is a minimum of affine functions of Q and as such is concave.
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and

Tr
(
BQρBT )= ρ Tr

(
BQBT )≤ ρM2∗ .

In view of Lemma 2.1 as applied with Qρ in the role of Q, whenever ρ ∈ (0,1]
and there exists δρ ≤ 1/5 such that Probη∼N (0,Qρ){η /∈ X } ≤ δρ , we have

(15) ρ Opt ≤ ϕ(Qρ) ≤ Risk2
opt[X ] + [1 +√

2ρq1−δρ/2]2M2∗δρ.

To proceed, we need an upper bound δρ on the probability Probη∼N (0,Qρ){η /∈ X }.
It is given by the following simple result.

LEMMA 2.3. Let S and Q be positive semidefinite n × n matrices with ρ :=
Tr(SQ) ≤ 1, and let η ∼ N (0,Q). Then

(16)
Prob

{
ηT Sη > 1

}≤ inf
0≤γ<mini (2si )

−1

{
exp

(
−1

2

n∑
i=1

ln(1 − 2γ si) − γ

)}

≤ e− 1−ρ+ρ ln(ρ)
2ρ ,

where si are the eigenvalues of Q1/2SQ1/2.

Now we are done. Indeed, note that the matrix Qρ satisfies Tr(SkQρ) ≤ ρtk for
some t ∈ T ; applying Lemma 2.3 and taking into account (4), we conclude that

Probη∼N (0,Qρ){η /∈ X } ≤
K∑

k=1

Prob
{
ηT Skη > tk

}≤ K exp
{
−1 − ρ + ρ ln(ρ)

2ρ

}
,

so we can set

(17) δρ := min
[
K exp

{
−1 − ρ + ρ ln(ρ)

2ρ

}
,1
]
.

It is straightforward to verify that with the just-defined δρ , for 0 < ρ < 1 it holds

(18) [1 +√
2ρq1−δρ/2]2δρ ≤ 8K exp

{−(3ρ)−1}.
Assuming that δρ ≤ 1/5, the latter bound combines with (15) to yield

(19) ρ Opt ≤ Risk2
opt[X ] + 8KM2∗ exp

{−(3ρ)−1}.
Let us choose

ρ̄−1 = 3 ln
(

8KM2∗
Risk2

opt[X ]
)

so that

8KM2∗ exp
{−(3ρ̄)−1}≤ Risk2

opt[X ].
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Observe that by evident reasons M2∗ ≥ Risk2
opt[X ], whence ρ̄−1 ≥ 3 ln(8K), which

in view of (17) implies that δρ̄ ≤ 1/5, so that (19) is applicable to ρ = ρ̄, thus
implying that

Opt ≤ 2

ρ̄
Risk2

opt[X ] = 6 ln
(

8KM2∗
Risk2

opt[X ]
)

Risk2
opt[X ].

Recalling that
√

Opt upper-bounds Risk[ŵH∗ |X ], we have arrived at our main re-
sult.

THEOREM 2.1. The efficiently computable linear estimate ŵH∗(ω) = HT∗ ω

yielded by an optimal solution to the optimization problem (8) is nearly optimal in
terms of its risk:

(20) Risk[ŵH∗ |X ] ≤
√

Opt ≤
√√√√6 ln

(
8M2∗K

Risk2
opt[X ]

)
Riskopt[X ]

with M∗ given by (13).10

2.4. Discussion. The result of Theorem 2.1 merits few comments.

1. Simplifying expression for nonoptimality factor. Relation (20) states that
when X is an ellitope (3), the risk

√
Opt of the efficiently computable linear es-

timate yielded by (8) is just by a logarithmic in M2∗K

Risk2
opt[X ] factor worse than the

optimal risk Riskopt[X ]. A minor shortcoming of (20) is that the “nonoptimality
factor” is expressed in terms of unknown to us optimal risk. This can be easily
cured. For example, setting

ρ̄−1 = 6 ln
(

17KM2∗
Opt

)
,

it is immediately seen that

ρ̄

2
Opt ≥ 6KM2∗ exp

{−(3ρ̄)−1},
and δρ̄ as given by (17) with ρ = ρ̄ is ≤ 1/5, implying by (19) that 1

2 ρ̄ Opt ≤
Risk2

opt[X ], whence

(21) Risk2
opt[X ] ≥

[
12 ln

(
17KM2∗

Opt

)]−1
Opt .

10Note that in the case of X defined as in (1), (20) implies the bound (∗) announced in the Intro-
duction. Indeed, in this case for Q ∈ Q it holds κ Tr(Q) ≤ Tr([∑k Sk]Q) ≤ K (recall that κ is the
smallest eigenvalue of

∑
k Sk ), implying that Tr(Q) ≤ Kκ−1. Hence M2∗ = maxQ∈Q Tr(BQBT ) ≤

‖B‖2 maxQ∈Q Tr(Q) ≤ ‖B‖2Kκ−1, so that (20) indeed implies (∗).
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Note that all the quantities in the right-hand side of (21) are efficiently computable
given the problem data, and that

√
Opt is an upper bound on Risk[ŵH∗ |X ].

Furthermore, if a simple though less precise expression of the factor in terms of
this data is required, it can be obtained as follows. Recall that two points x = x+
and x = −x+ of X can be distinguished through the observation Ax + σξ with
maximal probability of error 0 < α < 1 only if ‖Ax‖2 ≥ cασ , cα > 0;11 by the
standard argument one conclude that the risk of estimation of Bx satisfies, for
some absolute constant c > 0:

(22) Risk2
opt[X ] ≥ max

{‖Bx‖2 : ‖Ax‖2 ≤ cσ, x ∈ X
}
.

Now let B = I , and consider two typical for the traditional nonparametric statistics
types of X :

• X is the ellipsoid {x ∈ Rn : ∑i a
2
i x

2
i ≤ 1} with 0 < a1 ≤ a2 ≤ · · · ≤ an (for

properly selected ai this set models the restriction onto a regular n-point grid of
functions from a Sobolev ball). Here, K = 1, T = [0,1], S1 = Diag{a2

1, . . . , a2
n}.

When choosing x = te1, where e1 is the first basic orth and t ∈]0,1], using (22)
we get Riskopt[X ] ≥ min[1/a1, cσ/‖[A]1‖2] where [A]1 is the first column of
A. On the other hand, we have M2∗ = a−2

1 , and the simplified risk bound reads

Risk[ŵH∗ |X ] ≤ O(1)

√
ln
(

1 + ‖[A]1‖2

σa1

)
Riskopt[X ].

• X is the box {x ∈ Rn : ai |xi | ≤ 1,1 ≤ i ≤ n}, where, as above, 0 < a1 ≤ a2 ≤
· · · ≤ an. Here, K = n, T = [0,1]n, xT Skx = a2

kx
2
k , resulting in M2∗ =∑

i a
−2
i ≤

na−2
1 . The same bound Riskopt[X ] ≥ min[1/a1, cσ/‖[A]1‖2] holds in this case

and, consequently,

Risk[ŵH∗ |X ] ≤ O(1)

√
lnn + ln

(
1 + ‖[A]1‖2

σa1

)
Riskopt[X ].

Now let B be a general-type matrix, and assume for the sake of simplicity that B

has trivial kernel. We associate with the data the following quantities:

• size of T , T = maxt∈T
∑

k tk , and κ—the minimal eigenvalue of
∑

k Sk . Note
that for any x ∈ X ,

∑
k xT Skx ≤ T , thus the radius r(X ) = maxx∈X ‖x‖2 of X

satisfies r(X ) ≤ √
T/κ ;

• �1/�∞-condition number of T

Cond(T ) =
√

T

maxt∈T mink≤K tk
=
√

maxt∈T
∑

k tk

maxt∈T mink≤K tk
;

by our assumptions, T intersects the interior of RK+ and thus
√

K ≤ Cond(T ) <

∞;

11In fact, one can choose cα = q1−α , the 1 − α-quantile of the standard normal distribution.
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• condition number of B: Cond(B) = σmax(B)
σmin(B)

, where σmax(B) and σmin(B) are,
respectively, the largest and the smallest singular values of B .

COROLLARY 2.1. In the situation of this section,

Risk[ŵH∗ |X ]
(23)

≤ O(1)

√
ln
(
KCond2(B)

[
Cond2(T ) + ‖A‖2T

σ 2κ

])
Riskopt[X ];

here and in what follows, O(1) stands for a properly selected positive absolute
constant.

It is worth to note that, surprisingly, the logarithmic factor in (23) does not depend
of the structure of singular spectrum of A, the entity which, as far as the role of A

is concerned, is primarily responsible for Riskopt[X ].
2. Relaxing the symmetry requirement. Sets X of the form (3)—we called them

ellitopes—are symmetric w.r.t. the origin convex compacts of special structure.
This structure is rather flexible, but the symmetry is “built in.” We are about
to demonstrate that, to some extent, the symmetry requirement can be relaxed.
Specifically, assume instead of (3) that for some α ≥ 1 it holds{

x ∈ Rn : ∃(y ∈ Rn̄, t ∈ T
) : x = Py & yT Sky ≤ tk,1 ≤ k ≤ K

}︸ ︷︷ ︸
X

⊂ X ⊂ αX ,

with Sk and T possessing the properties postulated in Section 2.1. Let Opt and
H∗ be the optimal value and optimal solution of the optimization problem (8)
associated with the data S1, . . . , SK,T and matrices Ā = AP , B̄ = BP in the role
of A, B , respectively. It is immediately seen that the risk Risk[ŵH∗ |X ] of the linear
estimate ŵH∗(ω) is at most α

√
Opt. On the other hand, we have Riskopt[X ] ≤

Riskopt[X ], and by Theorem 2.1 also
√

Opt ≤
√

6 ln(
8M2∗K

Risk2
opt[X ])Riskopt[X ]. Taken

together, these relations imply that

(24) Risk[ŵH ∗ |X ] ≤ α

√√√√6 ln
(

8M2∗Kα

Risk2
opt[X ]

)
Riskopt[X ].

In other words, as far as the “level of nonoptimality” of efficiently computable
linear estimates is concerned, signal sets X which can be approximated by elli-
topes within a factor α of order of 1 are nearly as good as the ellitopes. To give
an example: it is known that whenever the intersection X of K elliptic cylin-
ders {x : (x − ck)

T Sk(x − ck) ≤ 1}, Sk 	 0, concentric or not, is bounded and
has a nonempty interior, X can be approximated by an ellipsoid within the factor
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α = K +2
√

K .12 Assuming w.l.o.g. that the approximating ellipsoid is centered at
the origin, the level of nonoptimality of a linear estimate is bounded by (24) with
O(1)K in the role of α. Note that bound (24) rapidly deteriorates when α grows,
and this phenomenon to some extent “reflects the reality.” For example, a perfect
simplex X inscribed into the unit sphere in Rn is in-between two centered at the
origin Euclidean balls with the ratio of radii equal to n (i.e., α = n). It is immedi-
ately seen that with A = B = I , in the range σ ≤ nσ 2 ≤ 1 of values of n and σ ,
we have

Riskopt[X ] ≈ √
σ, Riskopt[ŵH∗ |X ] = O(1)

√
nσ,

with ≈ meaning “up to logarithmic in n/σ factor.” In other words, for large nσ

linear estimates indeed are significantly [albeit not to the full extent of (24)] out-
performed by nonlinear ones.

Another “bad for linear estimates” situation suggested by (20) is that where
the description (3) of X , albeit possible, requires a huge value of K . Here again,
(20) reflects to some extent the reality: when X is the unit �1 ball in Rn, (3) takes
place with K = 2n−1; consequently, the factor at Riskopt[X ] in the right-hand side
of (20) becomes at least

√
n. On the other hand, in the range σ ≤ nσ 2 ≤ 1 of values

of n, σ , and with A = B = I , the risks Riskopt[X ], Riskopt[ŵH∗ |X ] are basically
the same as in the case of X being the perfect simplex inscribed into the unit sphere
in Rn, and linear estimates indeed are “heavily nonoptimal” when nσ is large.

2.5. Numerical illustration. Observe that inequality (15) taken together with
an efficiently computable upper bound δρ for the probability that η /∈ X for η ∼
N (0,Qρ) yields a single-parametric family of lower bounds on Riskopt[X ]:

Risk2
opt[X] ≥ ρ Opt−[1 +√

2ρq1−δρ/2]2M2∗δρ.

We can compute the right-hand side for several values of ρ, take the largest of the
resulting lower bounds on Riskopt[X ] and compare the result with the risk

√
Opt

of the efficiently computable linear estimate yielded by the optimal solution to
(8). In this way, we hopefully will end up with less pessimistic assessment of the
level of nonoptimality of linear estimates than the one yielded by (20). On the
other hand, better lower bounds can be computed using directly inequality (12) of
Lemma 2.1 along with an efficiently computable approximation of the constraint
Prob{η /∈ X } ≤ δ on the distribution N (0,Q) of η. Indeed, given 0 < δ ≤ 1/5,
suppose that Qδ is a convex subset of the positive semidefinite cone such that for

12Specifically, setting F(x) = −∑K
k=1 ln(1 − (x − ck)

T Sk(x − ck)) : intX → R and denoting by
x̄ the analytic center argminx∈intX F(x), one has{

x : (x − x̄)T F ′′(x̄)(x − x̄) ≤ 1
}⊂X ⊂ {

x : (x − x̄)T F ′′(x̄)(x − x̄) ≤ [K + 2
√

K]2}.
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any Q ∈ Qδ and η ∼ N (0,Q) one has Prob{η /∈ X } ≤ δ. Then, according to (12),
the quantity

(25) Optδ −[M∗ + √
2q1−δ/2

∥∥BQ
1/2
δ

∥∥
2

]2
δ,

where

Optδ = max
Q∈Qδ

ϕ(Q)

and Qδ is the corresponding optimal solution, is a lower bound on Riskopt[X ].
We have conducted two experiments aimed to compare the suboptimality factors

obtained numerically with their theoretical counterparts. In both experiments, B

and P are set to be n × n identity matrices, and n × n sensing matrix A is a
randomly rotated matrix with singular values λj , 1 ≤ j ≤ n, forming a geometric
progression, with λ1 = 1 and λn = 0.01. In the first experiment, the signal set X1
is an ellipsoid

X1 =
{
x ∈ Rn :

n∑
j=1

j2x2
j ≤ 1

}
,

that is, K = 1, S1 =∑n
j=1 j2ej e

T
j (ej are basic orths), and T = [0,1]. With two

natural implementations of the outlined bounding scheme (for the sake of com-
pleteness, the details of the lower bound computation are provided in Section C
of the Supplementary Material [Juditsky and Nemirovski (2018)], we arrived at
simulation results presented on Figures 1 and 2. It is worth to mention that the the-
oretical estimation of the “suboptimality factor” computed according to (21) varies
in the interval [31.6,73.7] in this experiment.

FIG. 1. Recovery on ellipsoids: risk bounds as functions of the noise level σ , dimension n = 32. Left
plot: upper bound of the risk of linear recovery (solid blue line); red dash line and magenta dash-dot
line—lower bounds utilizing two implementations of the bounding scheme. Right plot: suboptimality
ratios.
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FIG. 2. Recovery on ellipsoids: risk bounds as functions of problem dimension n, noise level
σ = 0.01. Left plot: upper bound of the risk of linear recovery (solid blue line), red dash line and ma-
genta dash-dot line—lower bounds on Riskopt utilizing two implementations of the bounding scheme.
Right plot: suboptimality ratios.

In the second experiment, the signal set X is the box circumscribed around the
above ellipsoid:

X = {
x ∈ Rn : j |xj | ≤ 1,1 ≤ j ≤ n

}
[
K = n,Sk = k2eke

T
k , k = 1, . . . ,K,T = [0,1]K ].

In this case, only one implementation of the bounding scheme is used. The simu-
lation results of the second experiment are given on Figures 3 and 4. In this exper-
iment also, the theoretical estimation of the nonoptimality of the linear estimate is
very conservative—for different values of parameters the factor in the bound (21)
varies between 73.2 and 115.4.

FIG. 3. Recovery on a box: risk bounds as functions of the noise level σ , dimension n = 32. Left
plot: upper bound of the risk of linear recovery (solid blue line) and lower risk bound (red dash line).
Right plot: suboptimality ratios.
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FIG. 4. Recovery on a box: risk bounds as functions of problem dimension n, noise level σ = 0.01.
Left plot: upper bound of the risk of linear recovery (solid blue line) and lower bound on Riskopt (red
dash line). Right plot: suboptimality ratio.

3. Extensions.

3.1. Estimation in relative scale. In this section, we consider the setting as
follows. Assume that, same as in Section 2, we are given a ν × n matrix B , and a
noisy observation

ω = Ax + σξ, ξ ∼ N (0, Im),

of a signal x ∈ X with known m × n matrix A and σ > 0, and we aim to recover
w = Bx. We are given a positive semidefinite symmetric n × n matrix S, and we
quantify the quality of a candidate estimate ŵ(·) by its S-risk—the quantity

RiskS[ŵ|X ] = inf
{√

τ : E
{∥∥ŵ(Ax + σξ) − Bx

∥∥2
2

}≤ τ
(
1 + xT Sx

)
(26)

∀x ∈ X
}
.

The S-risk can be seen as risk with respect to the scale given by the “regularity
parameter” xT Sx of the unknown signal x. In particular, when S = BT B , squared
S-risk can be thought of as relative risk—the worst, over x ∈ Rn, expected ‖ · ‖2

2-
error of recovering Bx scaled by ‖Bx‖2

2; when S = 0, we arrive at the usual risk
Risk[ŵ|X ].

As is the same as in Section 2, we assume w.l.o.g. that X is an ellitope given
by (4).13 Besides this, we assume that B �= 0—otherwise the estimation problem
is trivial.

We are about to prove that in the situation in question, efficiently computable
linear estimate is near-optimal.

13To reduce the general case (3) to this one with P = I it suffices to “lift” A, B , S to the y-

space according to A �→ Ā = AP , B �→ B̄ = BP , S �→ S̄ = PT SP and then replace X with the set
Y = {y ∈ Rn̄ : ∃t ∈ T : yT Sky ≤ tk,1 ≤ k ≤ K}.
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3.1.1. Building linear estimate. Given a linear estimate ŵH (ω) = HT ω and
τ ≥ 0, let λ ≥ 0 be such that [B − HT A]T [B − HT A] �∑

k λkSk + τS [see (3)],
implying that for all x ∈ X , there exists t = tx ∈ T such that

Eξ

{∥∥ŵH (Ax) − Bx
∥∥2

2

}≤ xT
[∑

k
λkSk + τS

]
x + σ 2 Tr

(
HT H

)
≤∑

k

tkλk + xT Sx + σ 2 Tr
(
HT H

)
,

so that for all x ∈ X

Eξ

{∥∥ŵH (Ax + σξ) − Bx
∥∥2

2

}≤ φT (λ) + τxT Sx + σ 2 Tr
(
HT H

)
,

where φT is the support function of T . As a result, whenever H , τ ≥ 0 and λ ≥ 0
are such that

σ 2 Tr
(
HT H

)+ φT (λ) ≤ τ,
(
HT A − B

)T (
HT A − B

)�∑
k

λkSk + τS,

we have

RiskS[ŵH |X ] ≤ √
τ .

We arrive at the convex problem

(27) Opt = min
τ,H,λ

⎧⎪⎪⎨⎪⎪⎩
τ :

⎡⎣
∑
k

λkSk + τS BT − AT H

B − HT A Iν

⎤⎦	 0,

σ 2 Tr
(
HT H

)+ φT (λ) ≤ τ, λ ≥ 0

⎫⎪⎪⎬⎪⎪⎭ .

The H -component H∗ of an optimal solution to this problem yields linear estimate
ŵH∗(ω) = HT∗ ω with S-risk ≤ √

Opt.

3.1.2. Lower-bounding the optimal S-risk and near-optimality of ŵH∗ . Con-
sider the problem
(28)

Opt∗ = max
W,G,s,v

⎧⎪⎪⎪⎨⎪⎪⎪⎩Tr
(
BWBT )− Tr(G) :

[
G BWAT

AWBT σ 2sIm + AWAT

]
	 0,

W 	 0,Tr(WSk) ≤ vk,1 ≤ k ≤ K,

Tr(WS) + s ≤ 1, [v; s] ∈ T

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where

(29) T = cl
{[t; τ ] ∈ RK × R : τ > 0, τ−1t ∈ T

}⊂ RK+1+

is a closed and pointed convex cone in RK+1 with a nonempty interior. We have
the following counterpart of Lemma 2.2 for the present setting.
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LEMMA 3.1. Problem (28) is strictly feasible and solvable. Furthermore, if
(W,G, [v; s]) is an optimal solution to (28), then s > 0, and

(30) Opt = Opt∗ = Tr
(
B
[
W − WAT (σ 2sIm + AWAT )−1

AW
]
BT ).

Now let W , v and s stem from an optimal solution to (28). Then, as we have
seen, s > 0, and we can set t = v/s, so that t ∈ T . Let also ρ ∈ (0,1], and let us
put Qρ = ρW/s and η ∼ N (0,Qρ). We have S−1W 	 0 and Tr(s−1WSk) ≤ tk ,
k ≤ K , so that s−1W ∈ Q and, therefore, Qρ ∈ ρQ. Hence, same as in the case of
the usual risk, by Lemma 2.3,

(31) Prob{η /∈ X } ≤ δρ := min
[
K exp

{
−1 − ρ + ρ ln(ρ)

2ρ

}
,1
]
.

We also have the following analog of Lemma 2.1.

LEMMA 3.2. Given ρ ∈ (0,1], Q ∈ ρQ and δ ≤ 1/5, let η ∼ N (0,Q) and
ξ ∼ N (0, Im) be independent from each other Gaussian vectors. Assume that

Prob{η /∈ X } ≤ δ.

Then

(32) ϕ(Q) ≤ RiskS2
opt[X ](1 + Tr(QS)

)+ [1 +√
2ρq1−δ/2]2M2∗δ,

where M∗ is given by (13), qα , same as in Lemma 2.1, is the α-quantile of the
standard normal distribution, and

RiskSopt[X ] = inf
ŵ(·) RiskS[ŵ|X ]

is the minimax S-risk associated with X .

For the proof, see Section A.1.1 of the Supplementary Material [Juditsky and
Nemirovski (2018)].

Now note that

ϕ(Qρ) = Tr
(
B
[
Qρ − QρAT (σ 2Im + AQρAT )−1

AQρ

]
BT )

= ρ

s
Tr
(
B
[
W − ρWAT (sσ 2Im + ρAWAT )−1

AW
]
BT )

≥ ρ

s
Opt∗ = ρ

s
Opt

[we have used (30) and the positivity of s]. Thus, when applying Lemma 3.2 with
Qρ and δρ in the role of Q and δ, we obtain for all 0 < ρ ≤ 1 such that δρ ≤ 1/5

ρ

s
Opt ≤ RiskS2

opt[X ](1 + Tr(QρS)
)+ [1 +√

2ρq1−δρ/2]2M2∗δρ

(33)

= RiskS2
opt[X ]

(
1 + ρ

s
Tr(WS)

)
+ [1 + √

ρq1−δρ/2]2M2∗δρ.
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Similar to Section 2.3, setting

ρ̄−1 = 3 ln
(

8KM2∗
RiskS2

opt[X ]
)

we ensure that

8KM2∗ exp
{−(3ρ̄)−1}≤ RiskS2

opt[X ].
Now, same as in the case of usual risk, we clearly have M2∗ ≥ RiskS2

opt[X ], whence

δρ̄ ≤ exp{− 1
3ρ̄

} ≤ 1/5, see (31), so that (33) is applicable with ρ = ρ̄, thus imply-
ing that

ρ̄

s
Opt ≤ RiskS2

opt[X ]
(

1 + ρ̄

s
Tr(WS)

)
+ 8KM2∗ exp

{
− 1

3ρ̄

}
and

ρ̄ Opt ≤ RiskS2
opt[X ](s + ρ̄ Tr(WS)

)+ 8sKM2∗ exp
{
− 1

3ρ̄

}

≤ RiskS2
opt[X ] + 8KM2∗ exp

{
− 1

3ρ̄

}
= 2 RiskS2

opt[X ]
[note that s + ρ̄ Tr(WS) ≤ s + Tr(WS) ≤ 1 by constraints in (28)]. Recalling that√

Opt upper-bounds RiskS[ŵH∗ |X ], we arrive at the following.

PROPOSITION 3.1. The efficiently computable linear estimate ŵH∗(ω) =
HT∗ ω yielded by an optimal solution to the optimization problem in (27) is nearly
optimal in terms of S-risk:

RiskS[ŵH∗ |X ] ≤
√

6 ln
(

8KM2∗
RiskS2

opt[X]

)
RiskSopt[X],

where M∗ is given by (13).

3.1.3. The case of X = Rn. The problem of minimizing the worst case, over
x ∈ X , S-risk over linear/all possible estimates makes sense for unbounded X ’s as
well as for bounded ones. We intend to consider the case where X = Rn and to
show that in this case an efficiently computable linear estimate is exactly optimal.

Similar to (27), the problem of building the best, in terms of its worst case over
x ∈ Rn S-risk, linear estimate reads

(34) Opt = min
τ,H

{
τ :

[
τS BT − AT H

B − HT A Iν

]
	 0, σ 2 Tr

(
HT H

)≤ τ

}
;

a feasible solution (τ,H) to this problem produces an estimate ŵH (ω) = HT ω

with RiskS[ŵH |Rn] ≤ √
τ . We are about to demonstrate the following.
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PROPOSITION 3.2. Assuming problem (34) feasible, the problem is solvable,
and its optimal solution (Opt,H∗) induces linear estimate ŵH∗ which is minimax
optimal:

(35) RiskS
[
ŵH∗ |Rn]=√

Opt = inf
ŵ(·) RiskS

[
ŵ(·)|Rn].

It may be interesting to compare the optimal S-risk RiskS[ŵH∗ |Rn] = √
Opt to

the maximal risk Risk[ŵH ∗ |XS] of the optimal linear estimation of Bx over the
ellipsoid XS = {x ∈ Rn : xT Sx ≤ 1}, so that H ∗ is the optimal solution to (8) with
K = 1, S1 = S and T = [0,1]; note that in this case the optimal value in (8) is
exactly Risk[ŵH ∗ |XS], and not just an upper bound on this risk. When comparing
(8) with (34), one can easily see that both risks are equivalent up to a factor

√
2:

RiskS
[
ŵH∗ |Rn]≤ Risk[ŵH ∗ |XS] ≤ √

2 RiskS
[
ŵH∗ |Rn].

Note also that by the definition of S-risk, we have

Risk[ŵH∗ |XS] ≤ √
2 RiskS[ŵH∗ |XS] ≤ √

2 RiskS
[
ŵH∗ |Rn],

which combines with the above inequalities to imply that

Risk[ŵH∗ |XS] ≤ √
2 Risk[ŵH ∗ |XS].

However, the estimate ŵH∗ cannot be seen as adaptive over the family of “coax-
ial” ellipsoids X κ

S = {x ∈ Rn : xT Sx ≤ κ}, κ ∈ K ⊂ R+; see, for example, Lepskiı̆
(1990). For instance, the maximal over X κ

S risk Risk[ŵH∗ |X κ
S ] does not scale cor-

rectly for κ � 1 and κ � 1.

3.1.4. Numerical illustration. In the above considerations, we treated matrix
S as part of the data. In fact, we can make S a variable restricted to reside in a given
computationally tractable convex subset S of the positive semidefinite cone, and
look for minimal, over linear estimates and matrices S ∈ S , S-risk. This can be
done as follows. We consider a parametric family of problems with τ in (27) being
a parameter rather than a variable, and S being a variable restricted to reside in S ;
then we apply bisection in τ to find the smallest value of τ for which the problem
is feasible. With S and linear estimate yielded by this procedure, the S-risk of the
estimate clearly possesses near-optimality properties completely similar to those
we have just established for the case of fixed S.

As an illustration of these ideas, consider the following experiment. Let [r;v]
be state of pendulum with friction—the 2-dimensional continuous time dynamical
system obeying the equations

ṙ = v,

v̇ = −ν2r − κv + w,

where w is the external input. Assuming this input constant on consecutive time
intervals of duration �, the sequence zτ = [r(τ�);v(τ�)], τ = 0,1, . . ., obeys
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finite-difference equation

zτ = Pzτ−1 + Qwτ , τ = 1,2, . . .

with

P = exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩�

ϑ︷ ︸︸ ︷[
0 1

−ν2 −κ

]⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

Q =
∫ �

0
exp{sϑ}

[
0
1

]
ds;

here, wτ is the value of w(·) on the (continuous-time) interval ((τ − 1)�, τ�).
Assume that we are observing corrupted by noise positions rτ = r(τ�) of the pen-
dulum on the discrete-time horizon 1 ≤ τ ≤ T and want to recover the inputs ws ,
T − K + 1 ≤ s ≤ T . Denoting by x = [z0;w1;w2; . . . ;wT ] the “signal” underly-
ing our observations, we can easily build a T × (T + 2) matrix A and 1 × (T + 2)

matrices Bt such that the trajectory r := [r1; . . . ; rT ] of pendulum’s positions is
given by r = Ax, and wt = Btx. Given noisy observations

ω = Ax + σξ, ξ ∼N (0, IT )

of pendulum’s (discrete time) trajectory, we want to recover inputs wt , 1 ≤ t ≤ T ,
and their collections wK = [wT −K+1;wT −K+2; . . . ;wT ] = B(K)x.14

We intend to process our estimation problems by building the best, in terms of
its S-risk taken over the entire space RT +2 of signals, estimate; in our design, S is
not fixed in advance, but is instead restricted to be positive semidefinite with trace
≤ 1. Thus, the problems we want to solve are of the form [cf. (34)]:

(36) Opt[B] = min
τ,H,S

⎧⎪⎨⎪⎩τ :
[

τS BT − AT H

B − HT A IT

]
	 0,

σ 2 Tr
(
HT H

)≤ τ, S 	 0,Tr(S) ≤ 1

⎫⎪⎬⎪⎭ ,

where B depends on what we want to recover (B = Bt when recovering wt , and
B = B(K) when recovering wK ). By Proposition 3.2, the linear estimate HT

B,∗ω
yielded by an optimal solution (Opt[B],HB,∗, SB,∗) to the above (clearly solv-
able) problem is minimax optimal in terms of its S-risk RiskS[·|RT +2] taken
with respect to S = SB,∗, and the corresponding minimax optimal risk is exactly√

Opt[B].

14Note that estimating wK is not the same as a “stand alone” estimation of each individual entry in

wK .
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The rationale behind restricting S to have its trace ≤ 1 is as follows. Imagine that we
have reasons to believe that the entries in x “are of order of 1;” the simplest way to
model this belief is to assume that x is uniformly distributed over the sphere S of radius√

dimx = √
T + 2. Under this assumption, the claim that an estimate ŵ(·) has S-risk,

taken over the entire space w.r.t. a matrix S 	 0 with Tr(S) ≤ 1, at most
√

τ means that

Eξ∼N (0,IT )

{∥∥ŵ(Ax + σξ) − BKx
∥∥2

2
}≤ τ

(
1 + xT Sx

) ∀x.

This relation, after taking expectation over the uniformly distributed over S signal x,
implies that the expectation, over both ξ and x, of the squared recovery risk is at most
2τ . Thus, optimising the S-risk over the linear estimates and S 	 0, Tr(S) ≤ 1, can be
interpreted as safe minimization of the Bayesian risk taken w.r.t. a specific Bayesian
prior (uniform distribution on S). In this context, “safety” means that along with guar-
antees on the Bayesian risk, we get some meaningful upper bound on the expected
‖ · ‖2

2-error of recovery applicable to every individual signal.
In view of the above considerations, with some terminology abuse, below we refer to
the optimal value of (36) as to the Bayesian risk of recovering Bx.

In the experiment, we are about to report that we use � = 1, κ = 0.05 and se-
lect ν to make the eigenfrequency of the pendulum equal to 1/8; free motion of
the pendulum in the (r, v)-coordinates is shown on Figure 5. We used σ = 0.075,
T = 32, and solved problem (36) for several “B-scenarios.” The results are pre-
sented on Figure 5(b)–(d). Plots (b) and (c) show the bound

√
2 Opt[B] (see above)

on the Bayesian risk along with the optimal value of the risk of optimal linear re-
covery of Bx for signals x from the ball X of radius

√
T + 2, as given by the

optimal values of (8) (blue). Plot (b) shows what happens when recovering indi-
vidual inputs (B = Bt , t = 1,2, . . . , T ) and displays the risks as functions of t ;
plot (c) shows the risks of recovering blocks uK = B(K)x of inputs as functions of
K = 1,2,4, . . . ,32. Finally, plot (d) shows the eigenvalues of the S-components
of optimal solutions to problems (36) with B = B(K).15

3.2. Adding robustness. In this section, we address the situation where the
data A, B of problems (8) and (27) is not known exactly, and we are looking
for estimates which are robust w.r.t. the corresponding data uncertainties. We lose
nothing when restricting ourselves with problem (27), since (8) is the particular
case S = 0 of (27), with ellitope X given by (3). We intend to focus on the simplest
case of unstructured norm-bounded uncertainty

[A;B] :=
[
A

B

]
∈ Ur

(37)
= {[A;B] = [A∗;B∗] + ET �F : � ∈ Rp×q,‖�‖ ≤ r

};
15With B = Bt , S-components of optimal solutions to (36) turn out to be of rank 1 for all t .
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FIG. 5. Numerical illustration, Section 3.1.4. (a): free motion (w ≡ 0) of pendulum in (r, v)-plane
in continuous (dashed line) and discrete (circles) time. (b): Bayesian (blue) and worst case (ma-
genta) risks of recovering wt vs. t = 1,2, . . . ,32. (c): Bayesian (blue) and worst-case (magenta)
risks of recovering wK := [wT −K+1;wT −K+2; . . . ;wT ] vs. K . (d): eigenvalues λi(SK) of SK

(K = 32—black, K = 16—magenta, K = 8—red, K = 4—green, K = 2—cyan, K = 1—blue); we
plot 10 largest eigenvalues of the S-matrices; the preceding 24 eigenvalues for all these matrices
vanish.

here A∗ ∈ Rm×n, B∗ ∈ Rν×n are given nominal data, and E ∈ Rp×(m+ν), F ∈
Rq×n are given matrices.16 Our goal is to solve the robust counterpart

(38) RobOpt = min
τ,H,λ

⎧⎪⎪⎨⎪⎪⎩
τ :

⎡⎣
∑
k

λkSk + τS BT − AT H

B − HT A Iν

⎤⎦	 0,∀[A;B] ∈ U

σ 2 Tr
(
HT H

)+ φT (λ) ≤ τ, λ ≥ 0

⎫⎪⎪⎬⎪⎪⎭
16Recall that in the case of P �= I we have to replace matrices A, B and S with AP , BP and PT SP ,

respectively, and modify the definition of Ur accordingly: namely, when [A;B] runs through the set
Ur , [AP ;BP ] runs through

U r = {[A;B] = [A∗P ;B∗P ] + ET �FP : � ∈ Rp×q,‖�‖ ≤ r
};

where A∗, B∗ E and F are as in (37).
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of problem (27). Plugging into (38) the parameterization of [A;B] via �, the
uncertainty-affected semidefinite constraint becomes

M(λ, τ,H) + ET [H ]�F +FT �T E[H ] 	 0 ∀(� : ‖�‖ ≤ r
)
,

M(λ, τ,H) =
⎡⎣
∑
k

λkSk + τS BT∗ − AT∗ H

B∗ − HT A∗ Iν

⎤⎦ ,(39)

E[H ] = [0p×n,EB − EAH ], F = [F,0q×ν],
where

E = [EA,EB]
is the partitioning of the p × (m + ν)-matrix E into the blocks comprised by the
first m and the last ν columns. A well-known result of Boyd et al. (1994) [see also
Ben-Tal, El Ghaoui and Nemirovski (2009), Section 8.2.1] states that when F �= 0
(this is the only nontrivial case), the semi-infinite Linear Matrix Inequality in (39)
holds true if and only if there exists μ such that[

M(λ, τ,H) − r2μFT F
[
E[H ]]T

E[H ] μIp

]
	 0.

It follows that the semi-infinite convex problem (38) is equivalent to the explicit
convex program

RobOpt = min
τ,H,λ,μ

{
τ : G(H,μ, τ) 	 0,

(40)
σ 2 Tr

(
HT H

)+ φT (λ) ≤ τ, λ ≥ 0
}
,

where

G(H,μ, τ) =

⎡⎢⎢⎢⎣
∑
k

λkSk + τS − μr2FT F BT∗ − AT∗ H

B∗ − HT A∗ Iν ET
B − HT ET

A

EB − EAH μIp

⎤⎥⎥⎥⎦ .

The H -component of optimal solution to (40) yields robust w.r.t. uncertainty (37)
estimate HT ω of Bx via observation Ax +σξ , and the expected ‖ · ‖2

2-error of this
estimate does not exceed RobOpt, whatever be x ∈ X and [A;B] ∈ U .

3.3. Byproduct on semidefinite relaxation. A byproduct of our main obser-
vation (Section 2.3) we are about to present has nothing to do with statistics; it
relates to the quality of the standard semidefinite relaxation. Specifically, given a
quadratic from xT Cx and an ellitope X represented by (3), consider the problem:

(41) Opt∗ = max
x∈X xT Cx = max

y∈Y yT P T CPy.
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This problem can be NP-hard (this is already so when X is the unit box and C is
positive semidefinite); however, Opt admits an efficiently computable upper bound
given by semidefinite relaxation as follows: whenever λ ≥ 0 is such that

P T CP �
K∑

k=1

λkSk,

for y ∈ Y we clearly have

[Py]T CPy ≤∑
k

λky
T Sky ≤ φT (λ)

due to the fact that the vector with the entries yT Sky, 1 ≤ k ≤ K , belongs to T . As
a result, the efficiently computable quantity

(42) Opt = min
λ

{
φT (λ) : λ ≥ 0,P T CP �∑

k

λkSk

}
is an upper bound on Opt∗. We have the following.

PROPOSITION 3.3. Let C be a symmetric n × n matrix and X be given by
ellitopic representation (3), and let Opt∗ and Opt be given by (41) and (42). Then

(43)
Opt

2 lnK + 2
√

lnK + 1
≤ Opt∗ ≤ Opt .

SUPPLEMENTARY MATERIAL

Proofs and auxiliary materials (DOI: 10.1214/17-AOS1596SUPP; .pdf). In
the supplement, we provide full proofs of the results appearing in Sections 2 and 3.
Because some of the proofs heavily rely upon Conic Duality, for the reader’s con-
venience we present a brief outline of the related background. Other sections pro-
vide details of the calculus of ellitopes, and computations behind numerical lower
bounds of Section 2.5.
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