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PARETO QUANTILES OF UNLABELED TREE OBJECTS

BY ELA SIENKIEWICZ AND HAONAN WANG!
Colorado State University

In this paper, we consider a set of unlabeled tree objects with topological
and geometric properties. For each data object, two curve representations are
developed to characterize its topological and geometric aspects. We further
define the notions of topological and geometric medians as well as quan-
tiles based on both representations. In addition, we take a novel approach to
define the Pareto medians and quantiles through a multi-objective optimiza-
tion problem. In particular, we study two different objective functions which
measure the topological variation and geometric variation, respectively. An-
alytical solutions are provided for topological and geometric medians and
quantiles, and in general, for Pareto medians and quantiles, the genetic algo-
rithm is implemented. The proposed methods are applied to analyze a data
set of pyramidal neurons.

1. Introduction. When studying functional aspects of the brain, the hip-
pocampus region is of particular interest. It is associated with long term mem-
ory and learning, and it is highly sensitive to pathological changes (e.g., disease,
brain injuries). There is an ongoing effort to understand the dynamic behavior of
hippocampal neuron cells, specifically their connectivity and firing activity (also
known as spike trains). The information transmission between two regions of the
hippocampus, CA3 (input) and CA1 (output), has been extensively modeled in an
effort to develop, among others, a neural prosthesis [36]. Morphological aspects
of neurons in these two regions have also been studied; see Johnston and Wu [18],
Vida [37], Migliore and Shepherd [23] among others. Neural morphology is an
important determinant of neural functions. Different types of neurons, or even the
same type of neurons from different brain regions, show distinct forms of mor-
phologies.

Pyramidal neurons from the hippocampus typically consist of a soma, an axon
and two types of dendrites (see Figure 1). The tree-like dendritic structures, also re-
ferred to as arborizations, are commonly associated with the functional complexity
of the brain. The current “synaptotropic hypothesis,” as stated in Cline and Haas
[10], describes the growth of dendritic branches as “dynamic and exploratory.”
The branches can live for as short as 10 minutes, as they “sample the environ-
ment to detect the appropriate cells” [10]. This dynamic process cannot be directly
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FI1G. 1. Graphical display of a pyramidal neuron cell, named after its pyramid-like shape. All
arborizations grow out of the soma, which is depicted in black. Other components include the axon
shown in grey, apical dendrites shown in magenta and basal dendrites shown in green (two shades
of green are used to depict two disjoint arborizations). The basal dendrites often form a forest of
several disjoint binary trees. The axon is ignored in our analysis.

observed, and the data available for analysis usually provide one snapshot in the
lifetime of a neuron. However, mathematical models capable of quantifying and
generating neural morphologies are needed; see Ascoli et al. [4], Hendrickson et
al. [17]. Given a set of static reconstructions of neural cells with different topolog-
ical and geometric properties, our goal is to characterize the distribution of these
properties in the population of neurons, and thus provide a quantitative description
of neural morphology. This could potentially lead to the establishment of a novel
bio-marker for diagnosis of various neural diseases and damages. It can also serve
as a tool that identifies subtle differences between morphologies under normal and
abnormal conditions, which may potentially enable the disease diagnosis at early
phases. For instance, changes in neural structure were observed in degenerative
brain disorders, such as Alzheimer’s and Parkinson’s diseases; see [15, 24, 34] for
details.

In statistical modeling, each neuron can be regarded as a data object, a complex
entity that is generally outside the scope of classical statistics. The class of data
objects can include images, trees, graphs and often curves; see Marron and Alonso
[22] for a recent review of objects and related statistical methods. The term Object
Oriented Data Analysis, a class of tools for the analysis of complex data objects,
was introduced to statistics by Wang and Marron [39]. Since then, there has been
a great deal of research to extend traditional statistical methods, for example, re-
gression and principal component analysis, to the space of complex data objects
[9, 31, 40].

In classical statistics, descriptive measures, such as mean and deviation from the
mean, have been widely used to describe and summarize information from data.
But those statistics may not be sufficient to highlight the characteristics of complex
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data objects. For instance, neurons from different brain regions exhibit topological
“heterogeneity.” The multitude of shapes, sizes and branching patterns observed
in neural cells calls for a more comprehensive depiction of the population distri-
bution. For a univariate random variable, a comprehensive characterization can be
established through a quantile function, which provides an intuitive, probabilis-
tic way to measure centrality, dispersion, skewness and the tail behavior of the
distribution. In particular, the quantile function is defined through the cumulative
distribution function. However, the definition of quantiles becomes nontrivial for a
multivariate random vector due to the lack of a natural order in high-dimensional
space. Liu [20] introduced the notion of simplicial depth and showed that it can
be used as an analog of multivariate order statistics. Serfling [30] provided a sur-
vey of different approaches to multivariate quantile definitions and useful criteria
for their evaluation. The most notable methods are based on depth function and
norm minimization. Functional data provide even more challenges, because stan-
dard approaches for a finite dimension do not translate well to functional space.
Walter [38] offered a thorough study of the properties of functional quantiles and
their empirical analogs backed up by a case study of financial data. In that study,
the author employed pointwise quantiles, which are biased estimators of popula-
tion quantiles, but they are consistent under some weak conditions.

The challenges increase even more for complex data objects, such as tree data,
which can be characterized as extremely non-Euclidean; see Wang and Marron
[39]. There have been previous attempts to define a median of a population of such
objects. Some examples come from the work on classification trees [6, 25]. The
tree-structured data objects discussed in these papers are of a binary form, and their
nodes can be uniquely labeled for correspondence between trees. The median tree
is thus defined as a majority tree, that is, a tree consisting of nodes found in the
majority of trees in the set. Node labels are important and natural for classification
trees or phylogenetic trees [7], but for some tree-structured objects, for example,
brain arteries or neural dendrites, there is no established labeling scheme. The
labeling of nodes can be crucial in answering many important research questions,
but different labeling choices could lead to different results; see Aydin et al. [5] for
a discussion on thickness correspondence and descendant correspondence between
brain artery systems.

In this paper, we propose a novel approach to evaluate quantiles of tree ob-
jects that does not rely on labeling of nodes or edges. We base our approach on
a stochastic process view of a tree, which can be interpreted as a birth and death
process. The connection between a tree and a stochastic process has been exam-
ined before. For instance, Harris [16] studied curves generated by the depth-first
traversal of trees. Such curves were instrumental in producing asymptotic results,
for example, related to a convergence of a stochastic process, but are not very well
suited for comparing trees [31].

As noted by Wang and Marron [39], a tree-structured data object can have both
topological and geometric attributes. Topological attributes can be described gen-
erally as branching patterns, for example, the number of nodes at any specific level.
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Geometric attributes could include distances between nodes, radiuses of edges or
angles between edges. In this paper, we focus our attention on the length of edges.
Here, we propose two functional representations of each tree-structured object
encompassing its topological and geometric properties, respectively. We define
a quantile of tree objects by taking both properties into account; in particular, the
quantile can be formulated as a solution of a multi-objective optimization problem.
We also find empirical quantiles of tree distributions using a genetic algorithm.

This paper is organized as follows. In Section 2, we introduce two new func-
tional representations for each unlabeled tree-structured object, which summarize
the topological and geometric properties. In Section 3.1, we define topological
and geometric median trees through optimization problem. In Section 3.2, we in-
troduce a novel notion of a Pareto median tree object as solutions to the multi-
objective optimization problem. Next, in Section 3.3, we extend this idea to define
Pareto quantiles of tree objects. In Section 3.4, we discuss the genetic algorithm
used to find the solutions of the optimization problems. In Section 4, we examine
our proposed method through a simulation study. Finally, Section 5 provides a case
study of a set of neurons using our proposed methods. The proofs and additional
data analysis results, as well as details about simulation strategies, are included in
the Supplementary Material [33].

2. Data object and its curve representation.

2.1. Data. In this paper, our motivating example is a set of neuron cells from
the brains of rodents. The original dataset consists of digital reconstructions of neu-
rons obtained from the online inventory site neuromorpho.org [2], which includes
more than 8000 neurons from various brain regions. For details on the data and
data collection process, see Pyapali et al. [27], Pyapali and Turner [28, 29]. Our
primary interest centers on pyramidal neurons from two areas of the hippocampus,
regions CA1 and CA3. Here, a set of n = 187 pyramidal neurons, including 119
and 68 from CA1l and CA3 regions, respectively, is used. It is known that neu-
rons from the CA3 region receive input signals from other cells in the brain, while
neurons from the CA1 region form the output from the hippocampus.

A sample of neurons from CA1 and CA3 regions is shown in Figure 12. Each
subplot depicts a pyramidal neuron which has three major components, apical den-
drites (colored in magenta), basal dendrites (colored in green) and a soma (colored
in black) in between. The soma can be a single point or a line, and it is very small
compared with apical and basal dendrites. In addition, the top row of Figure 12
shows three neurons from CA1, and the bottom row shows three neurons from
CA3. From all six subplots, the basal dendrites seem to be shorter than the apical
dendrites; whereas the difference in branching of both groups of neurons is appar-
ent. In particular, the initial segments of apical and basal dendrites are shorter for
CA1 neurons than those of CA3 neurons, and basal structures of CA3 neurons are
larger than those in CA1 neurons.
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In Section 2.2, we will discuss a tree representation of dendritic structures and
further propose two new curve representations in Section 2.3.

2.2. Graph as a data object. In mathematical graph theory, a tree is a simple
graph with a set of nodes and edges, and there is a unique sequence of edges
between any two nodes. A forest is a collection of trees. For any rooted tree, the
root is a specific node which can be designated based on the application. The level
of a node is the number of edges of the path to the root node. For any two adjacent
nodes connected by an edge, the node that is closer to the root node is called a
parent node, and the other node is a child node. A node with no children is called
a leaf node or a terminal node. For a tree object, if each node has at most two
children, namely a left child and a right child, it is called a binary tree, and, if it
has exactly two children, it is called a full binary tree.

In many scientific applications, binary trees have been used to model tree-
structured objects. For instance, Wang and Marron [39] proposed to use binary
trees to represent human brain blood vessel systems. In our study, as can be seen
in Figure 1, the apical dendrites emerge from the apex of a soma, and branch like
a single tree. Basal dendrites are somewhat different; in general, several dendritic
trees grow out of the base of a soma and form the basal dendrites. Here, we model
the apical dendrites as a binary tree and the basal dendrites as a forest of binary
trees. The term forest is referring to a disjoint union of binary trees. The construc-
tion of tree objects from the data is discussed in Section A of the Supplementary
Material [33]. The procedure is straightforward, but ambiguity may arise when
identifying the left and right child nodes. Most recent work on tree-structured ob-
jects has focused on sets of labeled trees. The term labeled tree refers to a tree
in which each node has a well-specified label. In practice, as suggested by Aydin
et al. [5] and followed by Wang et al. [40], two approaches can be considered to
establish a labeling system, namely, thickness correspondence and descendant cor-
respondence. In the first approach, at each split point the thicker dendritic segment
is denoted as the left child node of its parent node. Alternatively, in the second
approach the dendritic segment with more subsequent segments is denoted as the
left child node. These two approaches may lead to two distinct curves; see an ex-
ample in Section B of the Supplementary Material [33]. The distinct resulting data
objects may potentially lead to different scientific conclusions.

In this paper, our main focus is a set of rooted unlabeled trees or forests which
has not been addressed before.

2.3. Curve representations for unlabeled trees and forests. For labeled bi-
nary trees, dyadic tree representation provides an intuitive way to visualize the
topological property. Such representation may not be suitable to depict a sample
of tree-structured objects due to space limitation. In probability literature, tree-
structured objects are usually modeled as branching processes. Harris [16] estab-
lished a correspondence, called Harris correspondence, between trees and random
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walks; see Section B of the Supplementary Material [33] for examples. The Harris
path provides insightful information regarding the topological property of a sin-
gle tree-structured object. An alignment issue arises when comparing Harris paths
obtained from a set of trees. Shen et al. [31] proposed the modified Harris path
and the branch length representation (BLR) to overcome this problem. Those au-
thors conducted principal component analysis on the set of Dyck paths and the
set of branch length curves, and certain important scientific findings have been
reported. The success of their approach relies on the descendant correspondence
and the corresponding labeling system of binary trees. However, we might reach
different conclusions using the same data and different types of correspondence.
This issue becomes even more serious when the data objects are forests. When
comparing two forests with different numbers of tree components, a well-defined
order is usually not available. To circumvent this problem, we propose two new
tree/forest representations, which are independent of the choice of correspondence
and the labeling system. Moreover, certain nodal attributes, for example, the length
of segments, can also be incorporated.

For a rooted tree, we introduce a function g(x), x € [0, o0) defined as the num-
ber of distinct segments at distance x from the root. An illustrative example is
given in panel (C) of Figure 2. Such function g(x) provides a geometric curve
representation of a tree-structured object. Note that g(x) is a piecewise constant
function with g(0) = 0 and g(oco) = 0. In particular, g(x) is left continuous on
(0, 00). If we further assume that no two segments start or end at the same dis-
tance from the root, the size of a jump is either 1 or —1. One can also notice, in
panel (C), that the number of jumps in the range (0, co) represents the number of
nodes in the tree, a positive jump corresponds to an internal node, a negative jump
corresponds to a leaf.

25 55 6570 8085

FIG. 2. An example of a tree object (A) and its corresponding length-scaled tree (D). There are
two curve representations of the tree in (A): the topological curve (B) and the geometric curve (C).
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Next, to describe the topological property, we introduce the length-scaled tree
for tree-structured data object. That is, we assume all segments have length equal
to 1. An illustrative example is given in panel (D) of Figure 2, which is the length-
scaled tree for the tree object depicted in panel (A). The topological tree represen-
tation, denoted by £(x), x € [0, o0) is defined as the number of distinct segments
at distance x from the root in the corresponding length-scaled tree; see panel (B)
of Figure 2. The number of nodes in the tree can be retrieved as ) ;, £(i), which
is always an odd number. In contrast to the Harris path, the tree curve mimics the
breadth-first search algorithm in graph theory in the sense that we would like to
count the number of branches at any given radius x. For a forest with k distinct
binary trees, the curve representation is defined as the sum of g™ (x), ..., g® (x),
where g (x) is the curve representation associated with the ith tree. Note that
such representations depend only on the counts of branches at a distance from the
root, so they can be extended to more general rooted trees or forests.

In our study, we will represent both apical and basal dendrites using tree curves.
For our convenience, we will display a joint tree curve for both apical and basal
dendrites. Specifically, we show a tree curve for the apical dendrites and the mirror-
view of a tree curve for the basal dendrites in one plot. An example of joint tree
curves is given in Figure 3. Here, the raw data is depicted in the upper panel, the
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F1G. 3. A graphical display of a joint geometric tree curve (middle) and a joint topological (bottom)
for the corresponding neuron object (top) with apical dendrites (colored in magenta) and basal
dendrites (colored in green).
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corresponding (joint) geometric and topological tree curves are depicted in the
middle and the bottom panels.

2.4. Equivalence classes of topology and geometry. For each tree or forest, the
geometric tree curve provides a functional representation which, in fact, is not a
one-to-one mapping from the space of binary trees or forests, labeled or unlabeled,
to the space of (piecewise constant) functions. In Figure 2, given a tree curve g(x)
in panel (C), we can reconstruct a tree; however, such reconstruction is generally
not unique. Two trees, say #| and fp, are geometrically equivalent if they have
the same geometric tree curve, and hence can be written as £ £ t2. The geometric
equivalence class of tree ¢ is the set of trees that are equivalent to ¢ and is denoted
by [t]c. Analogously, we define the topological equivalence class of a tree ¢, and
denote it by [¢]r. All trees in [t]g and [¢]r have the same number of nodes, which
is equal to 2m; + 1, including m; internal nodes and m; + 1 leaves.

Next, we will define an operation, called implant, for trees and forests. In par-
ticular, for any tree (or forest) z, an implant of t is defined by swapping any two
subtrees at the same distance from the root. Note that, for topological equivalence,
the level plays a role of a distance. It can be seen that two trees (forests) are equiv-
alent if and only if one tree (forest) can be obtained by a sequence of implant op-
erations from the other. Thus, there may not be a unique tree reconstruction from a
tree curve, or even from geometric and topological curves combined. In this paper,
we often reconstruct a tree with the procedure as described in Section E.1 of the
Supplementary Material [33].

3. Methodology.

3.1. Median trees and L distance. The notion of median tree has been previ-
ously studied by Phillips and Warnow [25], Banks and Constantine [6] and Wang
and Marron [39]. Median trees have been developed for classification trees [6] and
phylogenetic trees [25]. Wang and Marron [39] took the first step to consider a set
of tree-structured objects motivated by medical imaging analysis. In particular, for
a sample of labeled binary trees, 71, ..., f;, the authors proposed a (topological)
median as the minimizer tree of

n

3.1 min di(t,t),

(3.1) ; ; (t. 1)

where dj is the integer tree metric defined in (3.1) of Wang and Marron [39] for
labeled binary trees. This metric is, essentially, the cardinality of a symmetric dif-
ference of two sets of node indices. This notion of center point in tree space can
be viewed as a special case of the Fréchet median [40]. For general metric space,
Fréchet [13] proposed to define the center point, or Fréchet median, as the mini-
mizer of (3.1) for any given metric.
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In Section 2.3, two curve representations, topological and geometric tree curves,
have been proposed for unlabeled trees. Consequently, an intuitive idea to measure
the distance between two unlabeled trees is to use the L| metric between the cor-
responding curves. Note that each equivalence class has a unique curve represen-
tation. Thus the L metric between tree curves in fact provides a distance between
equivalence classes of trees.

Let T be the collection of all full labeled binary trees, as considered in Wang
and Marron [39]. We further assume that no two segments start or end at the same
distance from the root.

First, we will consider topological tree curves. Note that the equivalence classes
form a partition of 7. For any two trees s, t € 7 with topological tree curves £ (x)
and ¢;(x), the distance between the equivalence classes [s]r and [¢]r is defined as

(3.2) d([s1e. [112) = 165 — &1l = /0 165 (x) — €(x)] .

Such distance metric is independent of any labeling. Theorem 3.1 establishes the
connection between the L distance in (3.2) and the integer tree metric of [39].

THEOREM 3.1. For any two trees s,t € T, we have

(3.3) d([s]. [1lr) = min  d;(s'.7).

S,G[S]T,Z,G[Z’]T

From now on, let {¢{,...,%,} be a random sample of trees, and let ¢; (x) be
the topological curve representation of #;. Similar to (3.1), we can formulate the
median tree through an optimization problem described as

n
(3.4) argmin » _ [l€ — 41,
L

i=1

where £(-) runs over the collection of topological tree curves.

If we relax the constraint in (3.4) and consider all possible functions £(-), the so-
lution is the pointwise median function, that s, mo(x) = median{€{(x), ..., £, (x)}.
When 7 is odd, such pointwise median function is always unique. When 7 is even,
the pointwise median function may not be unique for some x, and mq(x) takes the
smallest value to break the tie. In Theorem 3.2, we will prove that such pointwise
median function mq(x) corresponds to an equivalence class in which all elements
are called topological median trees.

THEOREM 3.2. Assume that {t|, ..., t,} is a sample of trees with finite levels,
that is, the number of edges to the root node. Let £;(x) be the topological curve
representation of t;. The pointwise median mo(x) corresponds to an equivalence
class of trees, and hence is the minimizer of (3.4).
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Our primary interest is a sample of trees with nodal attributes, for example,
the lengths of dendritic segments. In the literature, for trees with nodal attributes,
Wang and Marron [39] proposed a median-mean tree whose topology is deter-
mined by the topological median and whose nodal attributes can be obtained by
averaging corresponding nodal attributes. For a set of unlabeled trees, their notion
of “median-mean” cannot be generalized. In this paper, enlightened by (3.4), for
a sample of trees f1, ..., 1, with geometric tree curves gi(x), ..., g,(x), respec-
tively, the geometric median tree can be defined through

n
(3.5) argmin ) _ ||g; — g,
& =l
where g(-) runs over all possible geometric tree curves. Similar to Theorem 3.2,
we will show that the pointwise median, denoted as m(x), is a geometric tree
curve.

THEOREM 3.3. A pointwise median of a finite sample of geometric tree curves
gi (x) represents a valid tree class.

To better illustrate the topological and geometric median trees, we will consider
two examples, as shown in Figures 4 and 5. In each figure, a sample of three tree-
structured objects are depicted in the top row (panels A—C). In Figure 4, the three

1.5

topological median geometric median

FIG. 4. A graphical display of the topological median (lower-left panel) and the geometric median
(lower-right panel) of a sample of three tree-structured objects (top row). The number associated
with each branch segment is the segment length, and is referred to as a geometric attribute. Here,
both median trees have the same topological structure with three branch segments.
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topological median geometric median

FIG. 5. A graphical display of the topological median and the geometric median of a sample of
three tree-structured objects. Here, the topological median and the geometric median have different
topologies.

trees have the same topological structure, including one root segment and two
offspring segments among which one is relatively longer than the other one. The
topological and geometric median trees are displayed in the lower-left and lower-
right panels. It can be seen that the topological median also has the same topology
as all three trees. From the geometric median tree, it can be seen that two offspring
segments have unequal length. In Figure 5, trees A and B have the same topology,
and tree C has more segments than the other two trees. Surprisingly, the topological
median and geometric median have different tree structures. The reason is that
the topological median only characterizes the centrality of topological properties,
while the geometric median tree is influenced by the length of segments.

In the next section, we will introduce a new notion of median, called Pareto
median, which will take both topological and geometric information into consid-
eration.

3.2. Pareto median trees—a multi-objective approach. We continue to let
{t1,...,t,} be a random sample of trees. Let £;(x) and g;(x) be the topological
and geometric curve representations of a tree ¢;, respectively.

In panel (A) of Figure 6, a sample of 21 trees is depicted. All trees have the same
simple topology, a trunk and two branches, and randomly generated geometric
attributes. The topological and geometric median trees are shown in panels (B)
and (C), respectively. It can be seen that the geometric median has a more complex
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FI1G. 6. (A) Graphical display of a sample of 21 simulated trees with the same topology and differ-
ent geometric attributes; (B) topological median tree; (C) geometric median tree.
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topological structure than the topological median. The complexity of the geometric
median reflects the diversity of geometric attributes of the tree set. By contrast,
the topological median is the manifestation of the topological homogeneity of the
data. Preferably, we would like to find a median tree that takes into account both
topological and geometric attributes together. In other words, we would like to
find a tree to minimize both (3.4) and (3.5) simultaneously, which, in fact, is a
multi-objective optimization problem. Mathematically, it can be formulated as

(3.6) argmin(7,(t), G, (1)),
t

where ¢ runs over the space of binary trees,

n n
L) =Y It —¢lh and Gy =) llg — gl

i=1 i=1

Here, ¢,(-) and g;(-) are the topological and geometric tree curves of ¢, respec-
tively.

In multi-objective optimization, there is no guarantee of the existence of a so-
lution which minimizes both 7,,(¢) and G,(¢). An alternative is the Pareto opti-
mum; see Coello Coello, Lamont and Van Veldhuizen [11] for a formal definition.
A Pareto set contains all feasible solutions such that there is no other solution that
improves one of the criteria without worsening another. In other words, a Pareto
optimal set is a set of feasible solutions which are not dominated by any other
solution.
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In our problem considered here, for any two trees s and s’, s” is dominated by
s if T,(s) < T, (s") and G, (s) < G,(s’), and at least one inequality is strict. In
addition, a tree is Pareto optimal or a Pareto median tree if it is not dominated
by any other trees. Let P be the collection of all Pareto median trees. There are
two trivial Pareto median trees, namely, the topological Pareto median and the
geometric Pareto median trees. For the topological Pareto median, we minimize
G, (t) among the subclass of trees whose topological tree curves minimize 7, ().
On the other hand, for the geometric Pareto median, we minimize 7, (¢) among the
subclass of minimizer trees of G, (¢). If a common solution exists, it is called an
ideal tree.

Recall that, in Section 3.1, the topological median trees and the geometric me-
dian trees are defined by minimizing 7,,(¢) and G, (¢), respectively. The geometric
medians and the geometric Pareto medians have the same geometric curve; how-
ever, in terms of topology, the former is less restrictive than the latter. This is due
to the fact that the geometric Pareto median minimizes 7,, within a subclass of
trees possessing the same geometric tree curve. Similarly, the topological medians
and the topological Pareto medians have the same topology, but the former can
have any geometric properties or attributes, and the latter has the geometry that
minimizes G, in a subclass of trees possessing the same topological curve.

For the example in Figure 6, there are four elements in the Pareto optimal set. All
four Pareto median trees are shown in Figure 7. In particular, the first tree (panel A)
is the geometric Pareto median, and the last tree (panel D) is the topological Pareto
median. In addition, for each Pareto median tree, the corresponding values of 7},
and G, are depicted as a point in Figure 7. In this example, there is a unique tree
corresponding to each pair of 7;, and G, but it is not the case in general.

topological A B
0 / Pareto
5 K median

D
3
S
o geometric A €(0,0.0001) A€ (0.0001, 0.004)
Pareto
q] C median c D
® A
e B i
£ T T T T T T T
0 5 15 25 35 45 55 65
T, A\ €(0.004, 0.009) A€ (0.009, 1)

FI1G. 7. A graphical display of the T, -values (horizontal axis) and Gy -values (vertical axis) for all
Pareto median trees. The solutions form a Pareto front. In particular, the tree objects corresponding
to those values are shown in panels (A)—(D). Each Pareto median is also the solution of (3.7) with
corresponding values of A.
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The geometric Pareto medians can be found efficiently using convex optimiza-
tion techniques; see Antoniou and Lu [1]. However, the number of topologies
grows with the number of nodes in the tree. Finding an optimal topology can
be viewed as a combinatorial problem of high dimension, which, for small and
medium size trees, can be efficiently solved using a genetic algorithm. In general,
computation for a multi-objective optimization problem (3.6) can be very compli-
cated. However, as will be seen in Section 3.4, this problem can also be solved
with a genetic algorithm.

In the literature, a widely used approach to multi-objective optimization is the
weighted-sum method [11]. Specifically, consider the following optimization prob-
lem, for0 < A < 1,

(3.7) minAZ, (1) + (1= )G ().

This criterion is a linear combination of 7,, and G,,. The solution takes both topo-
logical and geometric information into consideration. Moreover, note that the so-
lutions of (3.7) are Pareto optimal of (3.6), hence are Pareto median trees. For a
preselected A, (3.7) is a single-objective optimization problem, which can be ef-
ficiently solved using a standard genetic algorithm. In addition, a range of A may
correspond to a single Pareto optimal solution. This can be observed in Figure 7,
where for each of four Pareto median trees, the corresponding range of X is speci-
fied. In particular, the topological Pareto median corresponds to the largest values
of A, and the geometric Pareto median corresponds to the smallest values of A.
However, the multi-objective optimization in (3.6) may not be equivalent to the
single-objective optimization in (3.7); that is, some Pareto optimal trees may not
be solutions of (3.7) regardless of the choice of A. In the literature, given a pre-
selected A, the weighted sum method is often referred to as an a priori method,
in contrast to the a posteriori method that finds many Pareto solutions and selects
the best solution after the search is completed [11]. In this paper, given enough
computing time, our approach will yield all or most of the Pareto solutions. More
details are available in Section 3.4.

3.3. Pareto quantiles of unlabeled trees. In this section, we will extend the
notion of Pareto median trees to Pareto quantile trees. To motivate our discussion,
we first consider a random variable X. Finding the sample quantile of X based on
a random sample {X1, ..., X,;} can be formulated as the optimization problem

n
argmin ) _ pr (X; — x),

ri=1

where p;(z) =z(t — I(z < 0)) and 7 € (0, 1). See Koenker and Hallock [19] for
more details.
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Here, we consider a set of random tree objects rather than random variables.
Enlightened by the problem above, we can generalize the formulation in (3.6) and
define the Pareto quantiles through a multi-objective optimization problem; that is,

(3.8) argmin(7,’ (), G} (1)),
t
where

TP (1) = Z/OOO pr(i(x) — £,(x))dx and
i=1

Gl =" /0 pe(2i(x) — gr(0)) dx.
i=1

In the special case of T = 0.5, this problem is equivalent to (3.6), and yields the
Pareto median trees. Here as well, we take the smallest value to break the tie, thus
ensuring the uniqueness of the quantiles. The formulation of the sample Pareto
quantiles in (3.8) can be generalized to the population by replacing the finite sum-
mation with the expectation in 7, (t) and G}, (¢).

Similar to the topological and geometric medians, we first minimize 7,; (t) and
G/ (1) individually to obtain topological and geometric quantiles. The analogs of
Theorems 3.2 and 3.3 also hold, and are stated as follows. Both theorems play
essential roles in the identification of Pareto quantiles.

THEOREM 3.4. Assume that {t|, ..., t,} is a sample of trees with finite levels,
that is, the number of edges to the root node. Let £;(x) be the topological curve
representation of t;. The pointwise topological quantile of £; (x) represents a valid
tree class.

THEOREM 3.5. A pointwise quantile of a finite sample of geometric tree
curves gi(x) represents a valid tree class.

In general, for a sample of forests, it can be shown that a pointwise quantile
represents a valid forest. Next, as in (3.6), the existence of the minimizer of (3.8)
is not guaranteed. Here, we intend to find the Pareto optimal set for (3.8). Each
element in this Pareto optimal set is called a 100t th Pareto quantile. As with the
topological and geometric Pareto medians, there are two trivial elements in the
Pareto optimal set of (3.8), namely, the topological Pareto quantile and the geo-
metric Pareto quantile. For illustration, the Pareto optimal sets for the 25th and
75th quantiles for the example from Figure 6 are depicted in Figure 8. Both sets
consist of just two solutions, the geometric Pareto quantile and the topological
Pareto quantile. Note that for this toy example, all solutions can be obtained using
the weighted sum method in a similar fashion as defined in (3.7).
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FI1G. 8. Top row: Pareto set for the 25th quantile; bottom row: Pareto set for the T15th quantile. Trees
A and C are the geometric Pareto quantiles, and trees B and D are the topological Pareto quantiles.

3.4. Genetic algorithm. A genetic algorithm provides a useful tool to solve
combinatorial problems that do not have an analytic solution. By imitating the
mechanism of genetic selection acting on chromosomes and genes, the algorithm
finds the fittest elements in the population. The interpretation of fitness depends on
the optimization goal. In single-objective optimization, there is generally one best
element. In multi-objective optimization, there is a set of best elements defined
through nondominance, as discussed in Section 3.2. The algorithm starts with an
initial population of objects, designed to provide sufficient genetic diversity for the
natural selection to work, and creates new individuals stochastically via random
crossovers and mutations applied to the fittest (and occasionally less fit) elements
of the previous generation. Theoretical results regarding the convergence of the ge-
netic algorithm are based on the schema theory [14]. Practical advice on algorithm
design is available in Sivanandam and Deepa [35]. In general, a genetic algorithm
performs better than a random search, and it does so by exploiting accumulated
information about the features that improve the overall capabilities of the chromo-
somes.

The implementation of a genetic algorithm is generally nontrivial, but one can
usually find a suitable, configurable framework in the programming language of
choice. Some important elements of the design are required, including the encod-
ing of data as chromosomes, and the definitions of crossover and mutation. Here,
we employ a genetic algorithm to solve the optimization problem (3.6). Recall
that the geometric curves are piecewise constant functions on a finite set of jump
points. Therefore, a solution can be found among piecewise constant functions on
the finite set of jump points formed by the union of all jump points of tree curves
in the sample. We encode the population of geometric tree curves as chromosome-
like strings, and we define crossover and mutations over those tree curves. Note



PARETO QUANTILES OF UNLABELED TREE OBJECTS 1529

topological
+—— Pareto
median
D

5.440397

n

O]
g | c geometric
3 l Pareto
© B median
.. A

5.440393

3.54 3.56 3.58 T 3.60 3.62 3.64

n

F1G. 9. A graphical display of the subset of a Pareto set for the median of apical dendritic trees
from CA1. The solutions form a Pareto front. The geometric Pareto median (A) and topological
Pareto median (D) as well as two other Pareto medians, (B) and (C), are highlighted. All four are
depicted in Figure 15. Here, both axes are shown in log-scale.

that a mutation can create, delete or move a single branch, and a crossover can
swap two subtrees from two parents. For details regarding these operations on tree
objects, see Sienkiewicz [32].

For the toy example in Figure 6, the genetic algorithm finds the entire Pareto set
of median trees (Figure 7) as well as the 25th and the 75th quantile trees (Figure 8).
For the real data, the problem is much more complex. Figure 9 shows a collection
of solutions found in a single run of the algorithm.

We outline the algorithm as follows:

1. Generate the initial population, including 100pth geometric quantiles of the
real data, for p in the neighborhood of 7.

2. Encode each individual (a geometric curve) in the population as a “chromo-
some,” for example, using a sequence of counts from a geometric curve.

3. For each generationi =1,2,..., K
(1) For each individual ¢, calculate two scores: G, (t) and T, (¢).
(2) Calculate a rank of each individual, for example, the number of individuals

dominating it (in the Pareto sense) from the same generation.

(3) Repeat until the generation i + 1 is created:

(a) Draw two members from the population i with probability inversely
proportional to the ranks.

(b) Perform a crossover of these individuals at a random location creat-
ing two new individuals.

(c) For each of the two new individuals, perform a mutation with a prob-
ability p, which increases or decreases a count by one.

(d) Add these new individuals to the generation i + 1.

(4) Copy all individuals with rank O from generation i to i + 1.
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The number of iterations K used in step 3 is user-specific and can be tuned for
particular trees. The minimum values of 7, and G, correspond to the topological
and geometric quantiles, respectively, and can be computed using Theorems 3.4
and 3.5. The value of K can be increased if the algorithm does not produce trees
with sufficiently small 7,7 (). Note that the above algorithm can also be used to
find solutions for the optimization problem (3.7). In particular, we can calculate
the weighted score in Step (3—1).

4. Simulation study.

4.1. Simulation methods. In this section, we conduct a simulation study to
demonstrate the performance of our proposed method. The first step is to simulate a
population of trees with topological and geometric characteristics corresponding to
those in the real data. Specifically, we focus on neurons from CA1 region. In Sec-
tion D of the Supplementary Material [33], we describe two simulation methods in
detail, Topology-Geometry Strategy (fopo-geo) and Geometry-Topology Strategy
(geo-topo), named after the order in which properties are generated. To summa-
rize, in the topo-geo strategy, we first randomly generate a tree topology, and then,
for each tree branch, we assign a length (weight) generated from an appropriate
distribution. Here, we use a Gamma distribution, with the parameters estimated
from the data for each tree level se parately. In the geo-topo strategy, we consider
a doubly stochastic Poisson process (also known as a Cox process), which governs
the splits and terminations of branches as a function of the distance from the root of
the tree. Then, for the established tree geometry, we randomly select a compatible
tree topology.

For tree topology, we consider conditioned binary Galton—Watson trees, which
are trees with fixed number of nodes; see [26] for the introduction. Here, the size of
a tree is characterized by the number of internal nodes m, and it can be determined
by data-driven methods. In the geo-fopo method, each realization of the randomly
stopped Cox process determines the size of the resulting tree. In the topo-geo
method, we estimate the tree size using the probability mass function estimation
proposed by Canale and Dunson [8]. Without considering topological equivalence,
there are C,, full binary trees with m internal nodes, where C,, = (2’7'1")/ m+1)
is the Catalan number. The number of different equivalence classes, denoted by
T, is much smaller. For comparison, Table 1 contains a list of the first 10 Catalan
numbers C,, and corresponding T,,.

A tree topology can be randomly selected from one of the C,, topologies ac-
cording to an underlying tree distribution. Two distributions are commonly dis-
cussed in the literature, a uniform tree distribution (each tree is equally likely), and
a distribution of binary-search trees; see Mikinen [21], Flajolet et al. [12] among
others. We also adapted the distribution of binary search trees to the collection
of full binary trees. We refer to this new distribution as leaf-uniform distribution.
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TABLE 1
Comparison of Cy, and Ty, for m =1,...,10. Here, Cy, represents the Catalan number, and T,
represents the number of topological equivalence classes

m 1 2 3 4 5 6 7 8 9 10
Cm 1 2 5 14 42 132 429 1430 4862 16,796
T 1 1 2 3 5 9 16 28 50 89

More discussions, including the differences between these distributions, the sim-
ulation methods and the results of model fits, can be found in Section C of the
Supplementary Material [33].

In this section, we will present the results from the fopo-geo method. The sim-
ulation algorithm for the fopo-geo method is outlined as follows:

1. Randomly generate the tree size according to the probability mass function
estimated from the data.

2. For a given tree size, generate tree topology using the uniform distribution
for apical trees and leaf-uniform tree distribution for basal trees.

3. Assign weights (lengths) to tree branches by drawing from a Gamma distri-
bution, with parameters estimated from the data for each tree level.

The results from the geo-topo method are provided in the Supplementary Material
[33].

4.2. Simulation results. Here, our goal is to examine sample-to-sample vari-
ation in Pareto quantiles of a finite set of trees. First, we generate a population
of N =1000 trees {t1, 2, ..., tx} using methods described in Section 4.1 and in
the Supplementary Material [33]. Consider a random element following a uniform
distribution on this set of trees. Similar to (3.8), the population Pareto quantiles
can be defined as

argmin(7y (1), G} (1)),
t

which can be obtained using the algorithms discussed in Section 3.4 with K = 200.
In our simulation study, the population Pareto medians serve as the target “param-
eters” and are shown in black dashed linetype in Figure 10. Additional Pareto
quantiles are depicted in Figures S.10 and S.11 of the Supplementary Material
[33].

A study with 100 repetitions is conducted. For each repetition, a sample of
n = 200 tree objects is drawn from the population. The sample topological and
geometric Pareto quantiles are calculated based on our proposed methods. Fig-
ure 10 shows sample-to-sample variation in calculated medians. Panels (A) and
(B) of Figure 10 depict two tree curves corresponding to the geometric Pareto
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F1G. 10. Top row: topological (A) and geometric (B) tree curves corresponding to the geometric
Pareto median for the population (black) and each sample (grey). Bottom row: topological (C) and
geometric (D) tree curves corresponding to the topological Pareto median for the population (black)
and each sample (grey).

median tree. Panels (C) and (D) depict two tree curves corresponding to the topo-
logical Pareto median tree. Note that the topological tree curve of the geometric
Pareto quantile (panel A) shows far more sample-to-sample variability than the
topological tree curve in panel (C). There is no such difference in variability for
the geometric tree curves in panels (B) and (D). Overall, the topological Pareto
median shows less sample-to-sample variation than the geometric Pareto median.

4.3. Discussion. As a comparison, we consider an alternative method for ob-
taining the median tree based on node labeling using descendant correspondence
[31]. In Figure 11, three different topological medians for each sample from the
simulated tree population are depicted, including BLR (panel A), the topological
Pareto median (panel B) and the geometric Pareto median (panel C) using our
proposed method. The modified Harris path method was excluded due to its in-
feasibility for such large data. The plot shows the number of dendritic branches
(y-axis) at each level (x-axis) in each estimated median in each sample, and the
number of branches in the population. It can be seen that BLR for labeled trees
yield trees with more dendritic segments in lower levels and fewer dendritic seg-
ments in higher levels, which may potentially underestimate the topological com-
plexity.

From the computational perspective, the BLR median is evaluated per each node
label. As a consequence, it is fast to compute; however, the results in Figure 11
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F1G. 11. Topology for the simulated trees: BLR labeled method (A), topological Pareto quantile
calculated with our proposed method (B), geometric Pareto quantile calculated with our proposed
method (C). The number of branches in the population is depicted with a black dotted line in each
image. Here, the x-axis represents tree levels and the y-axis represents the number of branches at
any given level x.

show a rather large discrepancy with the population median. The computation of
Pareto medians is carried out using stochastic optimization, which may require
more time depending on the size of the sample and the length of the curves. In our
case, the computation of each quantile for a single set of neurons varies between
5-30 minutes.

5. Real data analysis. In this section, our proposed methods are applied to a
set of pyramidal neurons as described in Section 2.1. This data set consists of 119
digital reconstructions of neurons from the CA1 region (three of these are depicted
in the top row of Figure 12) and 68 from the CA3 region of the hippocampus (three
of these are depicted in the bottom row of Figure 12). In general, each neuron
consists of approximately 3000 interconnected voxels, and each voxel is associ-
ated with a type (soma, axon, basal dendrite, apical dendrite) and a radius (not
used in this study). The first step of the analysis involves the extraction of the tree
object for both dendritic structures of every neuron. The geometric properties of
each branch can be extracted in multiple ways. Ascoli and Krichmar [3] provided a
comprehensive survey of studies of the relationship between branch length, branch
radius at bifurcation points and branching angles. The authors pointed out that ap-
proximating a branch length by a straight line between the bifurcation points leads
to a much smaller tree. An alternative approach is to approximate the branch length
by summing the distances between voxels in each branch, which could potentially
lead to a larger tree. Here, we take the latter approach. The topological and geomet-
ric curve representations can be constructed based on the digitally reconstructed
neurons.

Figure 13 shows both geometric (left column) and topological (right column)
curve representations for neurons in CA1 (top row) and CA3 (bottom row). In each
panel, joint tree curves, as defined in Section 2.3, are depicted. It can be observed
that neurons from the CA3 region have a much more developed basal section (left
portions of the tree curves) than neurons from CA1. The apical sections of neurons
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FI1G. 12. Graphical display of six neurons. Top row: three neurons from the CAl region of the
hippocampus; Bottom row: three neurons from the CA3 region of the hippocampus. In each subplot,
apical dendrites are shown in magenta, and basal dendrites are shown in green.

from both regions differ substantially. For instance, in panels (A) and (C), the
geometric apical tree curves from CA1 (the right portions of the curves) seem to
be longer than the ones form CA3. In fact, many CA1 tree curves are longer than
1000 (in units of micrometers), whereas most CA3 tree curves are less than that.
In addition, the largest branch counts for tree curves from CAl, on the y-axis, are
bigger than the branch counts for tree curves from CA3. The topological curves of
the apical trees, in panels (B) and (D), indicate that apical trees from CA1 are taller
than those from CA3. Specifically, many CA1 curves reach levels 30 or higher,
while all apical trees from CA3 end before level 20.

For each choice of 7, we implement the genetic algorithm as discussed in Sec-
tion 3.4 to obtain quantiles of apical and basal dendritic trees, with the number
of iterations K = 200. In Figure 9, the Pareto set for the median apical dendritic
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FI1G. 13. (A) Joint geometric curves for all neurons from the CA1 region; (B) joint topological
curves for all neurons from the CA1 region; (C) joint geometric curves for all neurons from the CA3
region; (D) joint topological curves for all neurons from the CA3 region.

trees is depicted. Each element in the Pareto set will correspond to a Pareto me-
dian tree. In particular, the topological Pareto median and geometric Pareto me-
dian are highlighted in Figure 9, and their corresponding tree representations are
included in Figure 14. The branching angles of reconstructed tree objects, depicted
in Figure 14 and subsequent figures, are selected for better visualization of a large
number of branches, given limited space.

Recall that each Pareto solution consists of two curves, a topological curve and
a geometric curve, and for each pair a tree can be reconstructed following the pro-
cedure outlined in Section E.1 of the Supplementary Material [33]. The geometric
curves corresponding to both Pareto medians, in panels (B) and (F) of Figure 14,
are very similar. The topological curves, in panels (A) and (E), reveal some topo-
logical differences between Pareto medians; in particular, around level 10, the geo-
metric Pareto median tree tends to have more branches than the topological Pareto
median.

In panel (B) of Figure 14, the joint curves for the geometric Pareto median trees
from CA1 (solid line) and CA3 (dashed line) are compared. The median basal
dendrites from both regions are of the same overall length, but basal dendrites from
CA3 have substantially more branches in the middle section. In fact, the maximal
number of branches for both basal dendrites occurs roughly at the same distance
from the root. For the apical dendrites, the median geometric curves (the positive
portions in panel B) are closer in maximum branch count (y-axis) as well as tree
height (x-axis). The CAl median tree is only slightly longer, and the maximal
numbers of branches for both apical dendrites are aligned at the same distance.
This observation is quite interesting compared with the depiction of raw data in
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FI1G. 14. Graphical display of topological and geometric tree curves, as well as corresponding tree
objects, for the geometric Pareto median (top row) and the topological Pareto median (bottom row).
(A) topological tree curves for the geometric Pareto median from CA1 (solid) and CA3 (dashed);
(B) geometric curves for the geometric Pareto median from CA1 (solid) and CA3 (dashed); (C) tree
object for the CA1 geometric Pareto median; (D) tree object for the CA3 geometric Pareto median;
(E) topological tree curves for the topological Pareto median from CAl (solid) and CA3 (dashed);
(F) geometric curves for the topological Pareto median from CA1 (solid) and CA3 (dashed); (G) tree
object for the CA1 topological Pareto median; (H) tree object for the CA3 topological Pareto median.

Figure 13, which implied that apical dendrites from CA1 seem to be longer. Panels
(C) and (D) contain simplified depictions of the geometric Pareto median trees
from CA1 and CA3.

In panel (E), the topological Pareto median curves from CA1 (solid line) and
CA3 (dashed line) are compared. The basal topological median trees have the same
height (x-axis), but CA3 maxima are larger than CA1 maxima. In fact, the median
basal dendrites for both CA1 and CA3 are forests with three and four trees, respec-
tively. In contrast, the apical dendrites differ considerably in topology. The CA3
apical median tree is much shorter, but fuller, and it reaches the maximum number
of branches at about level 5, and from there, the number drops steeply. The CA1
median tree exhibits a different growth pattern. The branch maximum is lower
than that of CA3, but the number diminishes slowly, which results in a much taller
tree. Panels (G) and (H) contain simplified depictions of the topological Pareto
median trees from CA1 and CA3. Our observations regarding differences in apical
topologies and similarities in apical geometries match the conclusions reached by
Vida [37]. Figure 14 shows two members of the Pareto optimal set, the geometric
Pareto median and the topological Pareto median. Figure 15 shows two additional
reconstructed Pareto median trees from region CA1. All trees are indeed similar.

Next, we implement our proposed method to compute both topological and ge-
ometric Pareto quantiles. Figures S.13 and S.14 in the Supplementary Material
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FI1G. 15. Pareto median trees from CAl, including the geometric Pareto median (panel A), the
topological Pareto median (panel D), and two other Pareto median trees (panels B and C). The Ty,
and Gy, values for these four median trees are highlighted in Figure 9.

[33] show the 10th and 90th Pareto quantiles of neurons from the CA1 and CA3
regions.

To summarize, our proposed quantiles highlight the difference in distributions
of populations of neurons from CA1 and CA3. In fact, the geometric and topolog-
ical differences between dendritic trees from CA1l and CA3 can be observed by
analyzing the 10th, 50th and 90th Pareto quantiles of both regions. For instance,
the basal dendrites from both regions are very similar geometrically and topologi-
cally, from very small and simple trees to larger and more complex trees. The basal
trees from CA3 appear to be forests with more component trees than basal forests
from CALl. The apical parts reveal bigger differences between the two regions.
Apical trees from CA1 are slightly longer, and they exhibit a different branching
pattern compared to the apical trees from CA3. The apical trees from CA3 have
more branches at lower levels. The apical trees from CA1 have fewer branches
at lower levels, and more branches at higher levels, and topologically, they form
much taller trees.

6. Potential application and discussion. In this paper, we developed a notion
of Pareto quantiles of sets of unlabeled tree-structured objects. Such development
was based on two functional representations for trees, preserving their topologi-
cal and geometric properties. The driving example was a set of pyramidal neurons
from the hippocampus, particularly regions CA1 and CA3. Our proposed method-
ology enables automatic, computer-aided classification, which has not been stud-
ied previously.

Another potential application is related to neuromorphological disorders or dis-
eases. There is an ongoing research to compare regions of the brain and individual
neurons in groups of human subjects suffering from degenerative brain diseases,
for example, Parkinson’s, Creutzfeldt-Jakob’s or Alzheimer’s; see [15, 24, 34,
41] for details. A major challenge in those studies was to distinguish changes, in-
cluding morphological changes, related to normal aging from changes related to
diseases, which often, as for instance Alzheimer’s disease, predominantly affect
older individuals. The reduction of neuronal density in regions CAl and CA3 of
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the hippocampus was observed. In addition, Padurariu et al. [24] reported “reduc-
tion in dendritic branching,” Simi¢ et al. [34] noticed “structural degeneration of
neurons,” and Grutzendler et al. [15] observed “abrupt branching endings,” “break-
age of nearby dendrites” and sprouting “unusually long, thin and not resembling
dendritic sprouting.” These type of changes in neural structure could be observed
early using our methodology, before the disease impairs cognitive functions of af-
fected individuals. The empirical evidence can be strengthened by adopting more
rigorous statistics for complex tree data. Our proposed tree quantiles provide an
essential toolkit to meet the demand for the diagnosis of degenerative brain dis-
eases.
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Pareto quantiles of unlabeled tree objects” (DOI: 10.1214/
17-AOS1593SUPP; .pdf). This document includes the description of the data ob-
ject construction, proofs, and additional details regarding simulation and data anal-
ysis.
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