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BALL DIVERGENCE: NONPARAMETRIC TWO SAMPLE TEST
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Sun Yat-sen University∗ and Yale University†

In this paper, we first introduce Ball Divergence, a novel measure of the
difference between two probability measures in separable Banach spaces, and
show that the Ball Divergence of two probability measures is zero if and only
if these two probability measures are identical without any moment assump-
tion. Using Ball Divergence, we present a metric rank test procedure to de-
tect the equality of distribution measures underlying independent samples.
It is therefore robust to outliers or heavy-tail data. We show that this multi-
variate two sample test statistic is consistent with the Ball Divergence, and
it converges to a mixture of χ2 distributions under the null hypothesis and
a normal distribution under the alternative hypothesis. Importantly, we prove
its consistency against a general alternative hypothesis. Moreover, this result
does not depend on the ratio of the two imbalanced sample sizes, ensuring
that can be applied to imbalanced data. Numerical studies confirm that our
test is superior to several existing tests in terms of Type I error and power.
We conclude our paper with two applications of our method: one is for vir-
tual screening in drug development process and the other is for genome wide
expression analysis in hormone replacement therapy.

1. Introduction. To distinguish two unknown samples among multivariate
data is important but can be difficult. Student’s t is the classic test for the equality
of the means in two normally distributed samples. Hotelling’s T 2 test emerged as
the multivariate analog to the simple t test. The normality assumption for multi-
variate data, however, is usually difficult to validate. Efforts have been made to
extend Hotelling’s T 2 to relax the normality assumption. Van Der Laan and Bryan
[24] and Kosorok and Ma [14] proved the uniformity of population mean and the
convergence of p dimensional marginal statistics. Chen and Qin [5] proposed a
two-sample test for high-dimensional data.

We should note that the statistics extended from Hotelling’s T 2 focus on the
equality of means of two populations, but not the distributions that may depend
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on parameters of interest besides the means. To this end, rank-based methods such
as generalized Wilcoxon test [9], multivariate Kolmogorov–Smirnov test [13], or
multivariate Cramér–Von Mises test [6] have been developed.

Intuitively, like the one-dimensional case, it is ideal if we can characterize the
difference between two sample distributions of any dimension and use it as the
basis of a two-sample test. Divergence is such a concept that is often used in both
statistical learning and information theory. It measures the discrepancy between
two probabilities. The so-called F-divergence is the most commonly used family
of divergence measures, and it includes Kullback–Leibler divergence, Jeffreys di-
vergence and exponential divergence. In particular, Kullback–Leibler divergence
plays a fundamental role in the two-sample test of homogeneity and association
[18]. Unlike distance or metrics, divergence does not need to be symmetric or sat-
isfy the triangle inequality. The weaker conditions for divergence make it more
broadly applicable while more challenging to study its properties.

Generally, the existing two-sample multivariate tests require the moment as-
sumption and overlook the extreme imbalance cases in which the one sample size
is disproportionately larger than the other. Since imbalanced data arise from a va-
riety of applications, they have attracted a great deal of attention and interest in
recent studies. It is important to develop a powerful two-sample multivariate test
that takes into account the imbalanced designs. Chen, Dou and Qiao [4] proposed
an ensemble sub-sampling nonparametric multivariate test using the nearest neigh-
borhoods (ESS-NN) for imbalanced data. This method copes well for imbalanced
data, and the power of the test increases as the size of the larger group increases by
fixing the size of the smaller group. Gretton et al. [10] introduced the maximum
mean discrepancy (MMD) for the two-sample problem. The MMD is particularly
appealing because it can distinguish multivariate distributions for graph data and
is robust for imbalanced data. However, the efficiency of ESS-NN and MMD tests
are limited by various factors such as the number of neighbors k in ESS-NN and
the kernel parameter in MMD despite the efforts to gauge the tuning parameters
for optimal performance [4, 10].

In this paper, we introduce Ball Divergence (BD), which is a new concept to
measure the difference between two probability distributions in separable Banach
space. This concept relies on the fact that two Borel probability measures are iden-
tical if they agree on all balls in a separable Banach space [17]. Like energy dis-
tance [23], the BD of two probability measures is shown to be zero if and only if
they are identical. However, BD is preferable to energy distance because the latter
requires the moment condition, and hence not robust to heavy-tail data or outliers.
Importantly, many Banach spaces are not of strong negative type, or even negative
type. For example, Rn with �p metric is not of negative type whenever 3 ≤ n ≤ ∞
and 2 < p ≤ ∞. This fact limits the application of energy distance. Thus, we use
BD to derive a two-sample metric rank test that can deal with the heavy-tail data.
We shall demonstrate that this test performs well with respect to both the power
and the type I error.
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Specifically, our empirical BD statistic is defined from the difference between
the averages of the metric ranks. Thus, we avoid estimating the multivariate prob-
ability function, which is a major difficulty in utilizing divergence based methods.
We show that the empirical BD statistic converges to the BD. We also obtain the
asymptotic distributions of our test statistic under both the null and alternative hy-
potheses. Importantly, we prove its consistency against alternative hypothesis, set-
ting the stage for testing imbalanced data. Furthermore, through simulation studies,
we verify the desirable properties of the BD statistic in a variety of representative
settings.

In the following section, we introduce the BD and its sample version – the em-
pirical BD statistic. In Section 3, we examine the properties of the BD statistic.
Monte Carlo studies supporting the performance of the BD statistic are presented
in Section 4, followed by the analysis of two real datasets in Section 5. A brief
conclusion is provided in Section 6. Some of the technical details are deferred to
the Appendix.

2. Nonparametric two-sample test based on Ball Divergence. Let (V,‖ · ‖)
be a Banach space, where the norm ‖ · ‖ induces a metric ρ via ρ(u, v) = ‖u − v‖
for two points u, v ∈ V. And let B be the Borel σ -algebra, which is the smallest
σ -algebra in V that contains all closed (or open) subsets of V. Denoted by B0 the
collection: {B̄(u, r) : u ∈ V, r ≥ 0}, where B̄(u, r) is a closed ball with the center
u and the radius r . In order for measures μ and ν to coincide on B in μ and ν on
a separable Banach space V, it is sufficient that they are coincide on B0 [17]. This
leads us to define some Cramér–Von Mises-type criteria for testing the difference
between μ and ν over these balls, although additional conditions are needed for
those criteria such that they equal zero if and only if μ and ν are equal. We will
give a sufficient condition, which is referred to as Ball Divergence.

2.1. Ball Divergence.

DEFINITION 2.1. The Ball Divergence of two Borel probability measures μ

and ν is defined as an integral of the square of the measure difference between μ

and ν over a given closed ball collection B as following:

(2.1) D(μ,ν) =
∫∫

V×V
[μ − ν]2(

B̄
(
u,ρ(u, v)

))(
μ(du)μ(dv) + ν(du)ν(dv)

)
.

The following two theorems are the keystone to our testing procedure.

THEOREM 1. Given two Borel probability measures μ and ν on a finite di-
mensional Banach space V, then D(μ,ν) ≥ 0 where the equality holds if and only
if μ = ν.
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The proof of this theorem depends on the covering theorem (see Theorem 3.1 in
Jackson and Mauldin [12]). With the covering theorem, we can prove the following
lemma, which is analogous to Corollary 5.8.2 in Bogachev [3].

LEMMA 2.1. Let μ be a probability measure on a finite dimensional Banach
space V, BC a collection of nondegenerate closed balls, and VC the set of their
centers such that for every v ∈ VC and every ε > 0, BC contains a ball B̄(v, r)

with r < ε. Then, for every nonempty open set U ⊂ V, there is at most a countable
collection of disjoint balls B̄j ∈ BC such that

∞⋃
j=1

B̄j ⊂ U and μ

(
(Vc ∩ U) \

∞⋃
j=1

B̄j

)
= 0.

The proof of Theorem 1 follows.

PROOF OF THEOREM 1. It is obvious that D(μ,ν) ≥ 0 and if μ = ν, then
D(μ,ν) = 0. Next, we shall verify that if D(μ,ν) = 0, then μ = ν; that is, μ(B) =
ν(B) for B ∈ B0.

Let Sμ be the support of μ consisting of the points such that every of their open
neighborhoods has positive measure, and Sν the support of ν. Then Sc

μ = V/Sμ is
the union of all μ-null open sets. Also, since V is separable, μ(Sc

μ) = 0. D(μ,ν) =
0 implies that ∫∫

Sμ×Sμ

[μ − ν]2(
B̄

(
u,ρ(u, v)

))
μ(du)μ(dv) = 0.

Since [μ − ν]2(B̄(u,ρ(u, v))) is nonnegative, we have

[μ − ν]2(
B̄

(
u,ρ(u, v)

)) = 0 a.s.

According to the definition of the support set, we know that no μ-null set is con-
tained in Sμ. Therefore, μ = ν on B̄(u,ρ(u, v)) if u, v ∈ Sμ. The equality also
holds for u, v ∈ Sν .

Next, for u ∈ Sμ and r ≥ 0, let rμ = sup{ρ(u, v) : v ∈ Sμ ∩ B̄(u, r)}. Since
Sμ ∩ B̄(u, r) is closed, there exists v0 ∈ Sμ ∩ B̄(u, r) such that rμ = ρ(u,

v0), thus μ(B̄(u, r)) = μ(B̄(u, rμ)) = ν(B̄(u, rμ)) ≤ ν(B̄(u, r)). Analogously,
ν(B̄(u, r)) ≤ μ(B̄(u, r)) if u ∈ Sν .

Finally, we shall show that μ = ν on B̄(u, r) if u ∈ V and r ≥ 0. Given ε >

0, there exists an open cover Uε such that μ(Uε \ (Sμ ∩ B̄(u, r))) < ε, ν(Uε \
(Sμ ∩ B̄(u, r))) < ε. by Lemma 2.1, we can find an at most countable collection
of disjoint balls B̄ε,j with the ball center in Sμ ∩ B̄(u, r) such that

∞⋃
j=1

B̄ε,j ⊂ Uε and μ

(
Sμ ∩ B̄(u, r) \

∞⋃
j=1

B̄ε,j

)
= 0.
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Because μ(B̄ε,j ) ≤ ν(B̄ε,j ), let ε → 0, and we obtain that μ(Sμ ∩ B̄(u, r)) ≤
ν(Sμ ∩ B̄(u, r)). Thus, μ(B̄(u, r)) = μ(Sμ ∩ B̄(u, r)) ≤ ν(Sμ ∩ B̄(u, r)) ≤
ν(B̄(u, r)). Similarly, we can show that ν(B̄(u, r)) ≤ μ(B̄(u, r)). Therefore,
ν(B̄(u, r)) = μ(B̄(u, r)).

This completes the proof. �

Note that Lemma 2.1 is unnecessary if Sμ = V or Sν = V in the proof of The-
orem 1, due to [17]. Hence, we could extend Theorem 1 from finite dimensional
Banach spaces to separable Banach spaces.

THEOREM 2. Suppose μ and ν are two Borel probability measures in a sep-
arable Banach space V. Denote their support sets by Sμ and Sν , if Sμ = V or
Sν = V, then we have D(μ,ν) ≥ 0 where the equality holds if and only if μ = ν.

REMARK 2.1. Ball Divergence can be extended to more general divergence.
More specifically, define a generalized version of D(μ,ν) as follows:

D(α)(μ, ν)

=
[∫∫

V×V
|μ − ν|α(

B̄
(
u,ρ(u, v)

))(
μ(du)μ(dv) + ν(du)ν(dv)

)]1/α

,

0 < α < ∞,

and

D(∞)(μ, ν) = sup
u,v∈Sμ,u,v∈Sν

|μ − ν|(B̄(
u,ρ(u, v)

))
.

Theorems 1 and 2 still hold for D(α)(μ, ν) and D(∞)(μ, ν). By the definitions of
D(α)(μ, ν) and D(∞)(μ, ν), we observe

|μ − ν|α(
B̄

(
u,ρ(u, v)

)) = 0

if D(α)(μ, ν) = 0 or D(∞)(μ, ν) = 0, for u, v ∈ Sμ or u, v ∈ Sν . Therefore, μ = ν

on B̄(u,ρ(u, v)) if u, v ∈ Sμ or u, v ∈ Sν . The rest follows from the proof of
Theorem 1.

REMARK 2.2. It is worth noting that the square root of Ball Divergence is
a symmetric divergence but not a metric, because it does not satisfy the triangle
inequality. For example, let μ(X = 0) = 1, ν(Y = 1) = 1 and θ(Z = 0) = θ(Z =
1) = 0.5, then we have

√
D(μ,ν) = √

2 and
√

D(μ, θ) + √
D(ν, θ) = √

1.5.
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2.2. Nonparametric two-sample test based on Ball Divergence. Next, we
find the sample version of the above mentioned D(μ,ν). Given two indepen-
dent samples Xn = {X1, . . . ,Xn} with the associated probability measure μ and
Ym = {Y1, . . . , Ym} with ν, where the observations in each sample are i.i.d. For
convenience, we decompose the Ball Divergence into two parts:

A =
∫∫

V×V
[μ − ν]2(

B̄
(
u,ρ(u, v)

))
μ(du)μ(dv)

and

C =
∫∫

V×V
[μ − ν]2(

B̄
(
u,ρ(u, v)

))
ν(du)ν(dv).

Thus,

D(μ,ν) = A + C.

Also, let δ(x, y, z) = I (z ∈ B̄(x, ρ(x, y))) and ξ(x, y, z1, z2) = δ(x, y, z1) ·
δ(x, y, z2), where δ(x, y, z) indicates whether z is located in the closed ball
B̄(x, ρ(x, y)). We denote

AX
ij = 1

n

n∑
u=1

δ(Xi,Xj ,Xu), AY
ij = 1

m

m∑
v=1

δ(Xi,Xj ,Yv),

CX
kl = 1

n

n∑
u=1

δ(Yk, Yl,Xu), CY
kl = 1

m

m∑
v=1

δ(Yk, Yl, Yv).

AX
ij represents the proportion of samples from the probability measure μ located

in the ball B̄(Xi, ρ(Xi,Xj )) and AY
ij represents the proportion of samples from the

probability measure ν located in the ball B̄(Xi, ρ(Xi,Xj )). Meanwhile, CX
kl and

CY
kl represent the corresponding proportions located in the ball B̄(Yk, ρ(Yk, Yl)).

Therefore, we can use AX
ij , AY

ij , CX
kl , CY

kl to construct the sample version of A and
C, respectively. The sample versions of A and C are as follows:

An,m = 1

n2

n∑
i,j=1

(
AX

ij − AY
ij

)2
, Cn,m = 1

m2

m∑
k,l=1

(
CX

kl − CY
kl

)2
.

Consequently, we can define our test statistic as

Dn,m = An,m + Cn,m.

Note that nAX
ij is the rank of ρ(Xi,Xj ) among {ρ(Xi,Xu), u = 1, . . . , n} and

mAY
ij is the rank of ρ(Xi,Xj ) among {ρ(Xi, Yv), v = 1, . . . ,m} ∪ {ρ(Xi,Xj )}.

Thus, our test belongs to a class of metric rank tests and possesses the properties
of a general rank test such as robustness.
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REMARK 2.3. BD can be generalized to the K-sample problem. Suppose that
μ1, . . . ,μK are K (≥ 2) measures on Banach space (V,‖ · ‖). We can define the
K-sample BD as

D(μ1, . . . ,μK)

= ∑
1≤k<l≤K

∫∫
V×V

[μk − μl]2(
B̄

(
u,ρ(u, v)

))(
μk(du)μk(dv)

+ μl(du)μl(dv)
)
.

It follows from Theorems 1 and 2 that D(μ1, . . . ,μK) = 0 if and only if μ1 =
· · · = μK .

REMARK 2.4. BD uses the ball, and hence differs from the classic Kolmogo-
rov–Smirnov test and Cramér–von Mises test. It is, however, related to the energy
distance and MMD. Since the energy distance and MMD are actually equivalent
(Sejdinovic et al. [22]), it suffices to explain how BD and MMD are related. BD,
Energy distance and MMD can be unified in the framework of the variogram

D(μ,ν) = E
[
E

(
U(X) − U(Y )

)|U ]2
,

where U is a Gaussian process with mean zero and X ∼ μ, Y ∼ ν. Let k(z1, z2)

denote the covariance function of U :

(1) If k(z1, z2) = ‖z1‖ + ‖z2‖ − ‖z1 − z2‖, then D(μ,ν) is Energy distance.
(2) If k(z1, z2) is a positive definite kernel function, then D(μ,ν) is MMD.
(3) If kμ(z1, z2) = Eξ(X1,X2, z1, z2) and kν(z1, z2) = Eξ(Y1, Y2, z1, z2), then

Dμ(μ, ν) + Dν(μ, ν) is Ball Divergence.

Next, we can verify that kμ(z1, z2) is positive definite (Sejdinovic et al. [22]) as
follows. Let z0 /∈ B̄(X,ρ(X1,X2)) (e.g., z0 = ∞).

2kμ(z1, z2) = 2Eξ(X1,X2, z1, z2)

= E
∣∣δ(X1,X2, z1) − δ(X1,X2, z0)

∣∣2
+ E

∣∣δ(X1,X2, z2) − δ(X1,X2, z0)
∣∣2

− E
∣∣δ(X1,X2, z1) − δ(X1,X2, z2)

∣∣2.
Since E|δ(X1,X2, z1)−δ(X1,X2, z2)|2 satisfies Schoenberg’s condition (Schoen-
berg [20, 21]), it is of negative type. Thus, kμ(z1, z2) is positive definite. A similar
argument holds for kν(z1, z2).
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3. Asymptotic properties. The first theorem guarantees that the sample ver-
sion Dn,m converges to D(μ,ν) as the sample sizes increase. Note that Dn,m itself
is not a V-Statistic but both of its two components An,m and Cn,m are. Indeed, An,m

is a two-sample V-statistic of order (4,2) while Cn,m is a two-sample V-statistic of
order (2,4). Thus, the consistency of Dn,m follows from the theory on V-statistic
as stated below.

THEOREM 3 (Consistency). We have

Dn,m
a.s.−−−−−→

n,m→∞ D(μ,ν),

where n
n+m

→ τ for some τ ∈ [0,1].
As the sample version of D(μ,ν), Dn,m converges to D(μ,ν) when n, m in-

crease to infinity. According to Theorems 1 and 2, μ and ν are identical if and only
if D(μ,ν) = 0. Thus, Dn,m can be used to detect the difference between μ and ν.

We further investigate the asymptotic properties of Dn,m under the null and
alternative hypotheses. In particular, we consider the limiting distributions when
n and m tend to infinity at different rates. Theorem 4 states that under the null
hypothesis, the asymptotic distribution is a mixture of χ2 distributions for any τ .
In contrast, Theorem 5 shows that under the alternative hypothesis, the statistic
converges in distribution to a normal distribution with mean 0 and the variance as a
function of τ . This is because that An,m and Cn,m are degenerate V-statistics under
the null hypothesis, but not under the alternative hypothesis. The H-decomposition
(Lee [15], Section 1.6) will be used to derive the asymptotic distributions.

We define the symmetric function

Q
(
x, y;x′, y′) = (

φ
(2,0)
A

(
x, x′) + φ

(1,1)
A (x, y) + φ

(1,1)
A

(
x′, y′) + φ

(0,2)
A

(
y, y′)),

where

φ
(2,0)
A

(
x, x′) = E

[
ξ
(
X1,X2, x, x′)] + E

[
ξ(X1,X2, Y,Y3)

]
− E

[
ξ(X1,X2, x, Y )

] − E
[
ξ
(
X1,X2, x

′, Y3
)]

,

φ
(1,1)
A (x, y) = E

[
ξ(X1,X2, x,X3)

] + E
[
ξ(X1,X2, y, Y3)

]
− E

[
ξ(X1,X2, x, y)

] − E
[
ξ(X1,X2,X3, Y3)

]
,

φ
(0,2)
A

(
y, y′) = E

[
ξ(X1,X2,X,X3)

] + E
[
ξ
(
X1,X2, y, y′)]

− E
[
ξ(X1,X2,X,y)

] − E
[
ξ
(
X1,X2,X,y′)].

Q(x, y;x′, y′) is the second component of random vectors X and Y in the H-
decomposition of An,m and Cn,m. It has the following spectral decomposition:

Q
(
x, y;x′, y′) =

∞∑
k=1

λkfk(x, y)fk

(
x′, y′),
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where λk and fk are the eigenvalues and eigenfunctions of Q. For k = 1,2, . . . ,
Z1k , Z2k are i.i.d. N(0,1), and

a2
k (τ ) = (1 − τ)EX

[
EY fk(X,Y )

]2
, b2

k(τ ) = τEY

[
EXfk(X,Y )

]2
,

θ = 2E
[
E

(
δ(X1,X2,X)

(
1 − δ(X1,X2, Y )

)|X1,X2
)]

.

THEOREM 4 (Asymptotic distribution under the null hypothesis). Suppose
that both n and m → ∞ in such a way that n

n+m
→ τ , 0 ≤ τ ≤ 1. Under the

null hypothesis, we have

nm

n + m
Dn,m

d−−−→
n→∞

∞∑
k=1

2λk

[(
ak(τ )Z1k + bk(τ )Z2k

)2 − (
a2
k (τ ) + b2

k(τ )
)] + θ.

Under the alternative hypothesis, An,m and Cn,m are nondegenerate V-statistics.
They are asymptotically normal because their projections are asymptotically nor-
mal. Let g(1,0)(X) and g(0,1)(Y ) be the first component of random vectors X and
Y in the H-decomposition of An,m and Cn,m, respectively, and let

δ2
1,0 = Var

(
g(1,0)(X)

)
and δ2

0,1 = Var
(
g(0,1)(Y )

)
.(3.1)

We obtain the following limit distribution of
√

nm(Dn,m − D(μ,ν))/
√

n + m.

THEOREM 5 (Distribution under the alternative hypothesis). Suppose that
both n and m → ∞ in such a way that n

n+m
→ τ , 0 ≤ τ ≤ 1. Under the alter-

native hypothesis, we have√
nm

n + m

(
Dn,m − D(μ,ν)

) d−−−→
n→∞ N

(
0, (1 − τ)δ2

1,0 + τδ2
0,1

)
.

From Theorem 5, we know that the distribution under the alternative hypothesis
is determined by the random vector in the group with the smaller sample size.

Let η = n
m

(≤ 1) be the ratio of the smaller to the larger sample size. With-
out loss of generality, we assume that n ≤ m. As in Chen, Dou and Qiao [4], the
consistency theorem does not depend on the ratio η as presented below.

THEOREM 6. The test based on Dn,m is consistent against any general alter-
native H1. More specifically,

lim
n→∞ VarH1(Dn,m) = 0

and

�(η) := lim inf
n→∞ (EH1Dn,m − EH0Dn,m) > 0.

More importantly, �(η) can also be expressed as

�(η) ≡D(μ,ν),

which is independent of η.
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Theorem 6 shows that the consistency result of our new test statistic is indepen-
dent of the ratio η, making it possible for Dn,m to cope with imbalance data.

4. Simulation. In this section, we present the numerical performance of the
proposed BD and compare it with other tests, including Energy distance (ED),
ESS-NN, Hotelling’s T 2 and MMD, in testing distribution equality for random
samples. We use the permutation test to obtain an empirical distribution and derive
the p-value of the BD statistic. For MMD, we used the Gaussian kernel whose
bandwidth was set at the median distance between points in the aggregate samples.

The comparisons are based on the Type-I error and power. We fix the smaller
sample size at 30 and let the sample size ratio be 1, 4 or 16. Each simulation is
replicated 400 times.

For Type I error evaluation, we consider the three models below.

Model 1: Multivariate normal distribution. The mean vectors are (μx, . . . ,

μx)d , (μy, . . . ,μy)d and the covariance matrices are σxId , σyId , where Id is the
identity matrices:

(1.1) {d = 1,μx = 0,μy = 0, σx = 1, σy = 1},
(1.2) {d = 5,μx = 0,μy = 0, σx = 1, σy = 1}.

Model 2: The marginal distribution of the multivariate random variable follows
a log-normal distribution, that is, log(X) ∼ N(μx,1) and log(Y ) ∼ N(μy,1):

(2.1) {d = 1,μx = 1,μy = 1},
(2.2) {d = 5,μx = 1,μy = 1}.

Model 3: Multivariate t distribution with freedom degree 1. The location pa-
rameter vectors are (μx, . . . ,μx)d , (μy, . . . ,μy)d and the scale parameter matrices
are identity matrices σxId , σyId , where Id is the identity matrices:

(3.1) {d = 1,μx = 0,μy = 0, σx = 1, σy = 1},
(3.2) {d = 5,μx = 0,μy = 0, σx = 1, σy = 1}.

For the power evaluation, we examine three simulation models by varying the
location parameter shift and/or scale parameter shift in each model. The following
three models are used to evaluate the power.

Model 4: Multivariate normal distribution. In the location shift case, the co-
variance matrices for both distributions are the scaled identity matrix σId and only
different in the means (μx, . . . ,μx)d and (μy, . . . ,μy)d :

(4.1) {d = 1,μx = 0,μy = 1, σx = 1, σy = 1},
(4.2) {d = 5,μx = 0,μy = 0.5, σx = 1, σy = 1}.
In the scale shift case, both distributions have zero mean and their covariance ma-
trices are scaled identity matrices:
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(4.3) {d = 1,μx = 0,μy = 0, σx = 1, σy = 2},
(4.4) {d = 5,μx = 0,μy = 0, σx = 1, σy = 1.4}.

Model 5: The marginal distribution of the multivariate random variable follows
a log-normal distribution. log(X) ∼ N(μx,1) and log(Y ) ∼ N(μy,1):

(5.1) {d = 1,μx = 0,μy = 0.5},
(5.2) {d = 5,μx = 0,μy = 0.4}.

Model 6: Multivariate t distribution with freedom degree 1. In the location shift
case, both distributions have the identity scale and differ only in the locations:

(6.1) {d = 1,μx = 0,μy = 1, σx = 1, σy = 1},
(6.2) {d = 5,μx = 0,μy = 1, σx = 1, σy = 1}.
In the scale shift case, both distributions have zero mean and scaled identity co-
variance matrix σId :

(6.3) {d = 1,μx = 0,μy = 0, σx = 0.45, σy = 1},
(6.4) {d = 5,μx = 0,μy = 0, σx = 0.45, σy = 1}.

Table 1 evaluates the Type-I error. For the aforementioned models, BD, Energy
distance, ESS-NN and MMD control the Type-I error well around 0.05. The Type-I

TABLE 1
Performance of Type I error in Models 1, 2, 3

Model Ratio BD ED ESS-NN Hotelling MMD

(1.1) 1 0.0400 0.0325 0.0475 0.0500 0.0575
4 0.0425 0.0450 0.0350 0.0600 0.0375

16 0.0525 0.0400 0.0300 0.0525 0.0475

(1.2) 1 0.0325 0.0325 0.0475 0.0575 0.0375
4 0.0550 0.0400 0.0450 0.0550 0.0525

16 0.0325 0.0425 0.0500 0.0375 0.0375

(2.1) 1 0.0375 0.0525 0.0250 0.0625 0.0425
4 0.0475 0.0275 0.0350 0.0300 0.0400

16 0.0350 0.0275 0.0250 0.0325 0.0450

(2.2) 1 0.0350 0.0450 0.0350 0.0575 0.0325
4 0.0350 0.0550 0.0600 0.0650 0.0525

16 0.0325 0.0450 0.0350 0.0375 0.0600

(3.1) 1 0.0550 0.0350 0.0575 0.0250 0.0400
4 0.0300 0.0400 0.0400 0.1025 0.0325

16 0.0300 0.0425 0.0300 0.0700 0.0525

(3.2) 1 0.0425 0.0475 0.0475 0.0425 0.0450
4 0.0325 0.0600 0.0400 0.0625 0.0400

16 0.0375 0.0250 0.0425 0.0450 0.0400
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TABLE 2
Performance of Power under Model 4. The highest power is highlighted in bold. The last four

columns refer to the power ratio between the four methods to BD

Model Ratio BD ED/BD ESS-NN/BD T 2/BD MMD/BD

(4.1) 1 0.8625 1.0957 0.8928 1.1333 0.9420
4 0.9700 1.0206 0.9587 1.0258 0.9845

16 0.9950 1.0050 0.9548 1.0050 0.9874

(4.2) 1 0.7675 1.1629 1.0098 1.2932 0.8404
4 0.9450 1.0344 0.9630 1.0582 0.9259

16 0.9825 1.0153 0.9542 1.0178 0.9186

(4.3) 1 0.6500 0.6000 0.7038 0.0808 0.8731
4 0.9275 0.5202 0.7547 0.0081 0.9461

16 0.9775 0.5141 0.7826 0.0000 0.9591

(4.4) 1 0.9475 0.2718 0.3272 0.0501 0.6992
4 1.0000 0.2100 0.4500 0.0175 0.9225

16 1.0000 0.1925 0.4850 0.0050 0.9500

error of Hoteling’s T 2 is slightly unstable in Model 3.1. Tables 2, 3 and 4 compare
the power of all tests. A common pattern is that the power increases as the ratio of
the sample sizes increases.

Table 2 presents the simulation results of Model 4. In this table, we can know
that Hotelling’s T 2 test enjoys the highest power in detecting the location shift in
multivariate normal distribution (Models 4.1 and 4.2), which makes sense since
Hotelling’s T 2 test is a kind of parametric method that based on the multivariate
normal distribution assumption and maximizes the usage of known information
about the data. BD shares a comparable power with Hotelling’s T 2 and increases
to almost 1 as the sample sizes ratio climbs to 64. However, the advantage of
Hotelling’s T 2 vanishes when detecting the scale difference (Models 4.3 and 4.4).
BD turns to be the most powerful one within five methods. Both ED and ESS-NN

TABLE 3
Performance of Power in Model 5. The highest power is highlighted in bold. The last four columns

refer to the power ratio between the four methods to BD

Model Ratio BD ED/BD ESS-NN/BD Hotelling/BD MMD/BD

(5.1) 1 0.3125 1.1600 0.7600 1.0400 0.9440
4 0.4625 0.9568 0.6811 0.7946 0.9946

16 0.5125 0.8878 0.7512 0.6878 0.8927

(5.2) 1 0.5375 1.1023 0.8186 1.4419 0.9814
4 0.7525 0.9635 0.9037 1.2060 0.9801

16 0.8175 0.8930 0.9113 1.1368 0.9664
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TABLE 4
Performance of Power in Model 6. The highest power is highlighted in bold. The last four columns

refer to the power ratio between the four methods to BD

Model Ratio BD ED/BD ESS-NN/BD Hotelling/BD MMD/BD

(6.1) 1 0.5100 0.6422 0.9706 0.1814 1.1422
4 0.7550 0.3742 0.9338 0.1424 1.1325

16 0.8250 0.1848 0.9242 0.0636 1.0667

(6.2) 1 0.7225 0.9239 0.8824 0.3080 1.3737
4 0.9400 0.4149 1.0585 0.1596 1.0638

16 0.9750 0.1641 1.0205 0.0897 1.0256

(6.3) 1 0.4250 0.5118 0.6059 0.0765 0.9882
4 0.6650 0.0564 0.6692 0.0451 0.8722

16 0.7525 0.0233 0.6777 0.0532 0.8605

(6.4) 1 0.7200 0.4757 0.8681 0.0660 1.1354
4 0.9275 0.0647 0.8814 0.0323 1.0377

16 0.9700 0.0180 0.8608 0.0258 1.0077

meet an obvious decrement when the underlying difference changes from location
shift to scale difference. The power of MMD is more robust ignoring the changes
of difference types.

In log normal distribution, the ED test performs best in the location shift in the
univariate balanced design. With the increase of sample sizes ratio, BD outper-
forms ED and becomes the most powerful in univariate case (Model 5.1). MMD
also enjoys a more sharp increment than ESS-NN and Hotelling’s T 2 but less
than BD. Under the multivariate case, Hotelling’s T 2 becomes the most power-
ful, whereas BD shares a comparative performance with Hotelling’s T 2.

Table 4 presents the results of Model 6. In this table, MMD has a remarkable
performance in detecting the location shift in both univariate and multivariate cases
as well as scale difference in the multivariate case (Models 6.1, 6.2, 6.4). In uni-
variate scale difference test, BD exceeds MMD (Model 6.3). It is worth noting that
BD almost catches up with MMD in other cases, which also indicates a powerful
performance when the underlying distribution is heavy tailed. The performance
of ESS-NN is also noticeable, whereas the performance of ED and Hotelling T 2

share a decreasing trend with the increase of sample sizes ratio.
Next, we consider the performance in the mixture of k normal distributions with

probability equals p1, . . . , pk , separately.

Model 7: Mixture of distributions:

(7.1) {d = 1,μx = 0,μy1 = −1,μy2 = 1, σx = σy1 = σy2 = 1,py1 = py2 = 0.5},
(7.2) {d = 1,μx1 = 0.3,μx2 = −0.3,μy1 = 1.3,μy2 = −1.3, σx1 = σx2 = σy1 =

σy2 = 1,px1 = px2 = py1 = py2 = 0.5},
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TABLE 5
Performance of Power in Model 7. The highest power is highlighted in bold. The last four columns

refer to the power ratio between the four methods to BD

Model Ratio BD ED/BD ESS-NN/BD Hotelling/BD MMD/BD

(7.1) 1 0.2550 0.4412 0.7255 0.1569 0.9412
4 0.5025 0.1990 0.4726 0.0199 0.8756

16 0.5225 0.2105 0.6220 0.0096 0.8756

(7.2) 1 0.5500 0.4500 0.8045 0.3045 0.9273
4 0.8075 0.3065 0.7523 0.0836 0.9164

16 0.8575 0.3936 0.8367 0.0350 0.9475

(7.3) 1 0.5950 0.1681 0.2479 0.1092 0.4328
4 0.8800 0.0824 0.2500 0.0511 0.4318

16 0.9475 0.0580 0.2559 0.0211 0.4855

(7.3) {d = 5,μx = 0,μy1 = −0.5,μy2 = 0.5,μy3 = 0, σx = σy1 = σy2 = 1, σy3 =
2,py1 = py2 = 0.25,py3 = 0.5}.

Table 5 displays the performance under the mixture of distributions. BD main-
tains a desirable performance and keeps being the most powerful one that is not
affected by the specific mixture components. MMD shares a robust performance
with BD. The Hotelling’s T 2 seems to lose its power in such cases.

In summary, BD is a powerful two-sample test in many settings, and particularly
powerful for the cases where the underlying distributions differ in scale or are
mixture distributions. It remains competitive in other cases.

5. Real data analysis.

5.1. Virtual drug screening. Virtual screening plays an important role in the
drug development process. Nontoxic compounds can be separated from the toxic
ones and can be developed in further drug development procedure by combining
screening techniques such as high-throughput screening and other computational
techniques. The computational techniques involved in this screening process con-
sist of discriminate analysis, such as traditional discrimination methods and ma-
chine learning approaches. Models are built so that active compounds can be dis-
criminated from inactive ones. In such experiments, data tend to be imbalanced
where the ratio of active compounds to inactive compounds is 0.001 on average,
making traditional discriminate analysis methods ineffective.

We reanalyze two data sets reported in Schierz [19], which are available on
http://www.biomedcentral.com. It is clear in Table 6 that both datasets are highly
imbalanced in the comparison groups. We use BD, ESS-KNN, Energy distance,
Hotelling’s T 2 and MMD for these two datasets and report the results in Table 7.

http://www.biomedcentral.com
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TABLE 6
Sample size comparison

Data No. of active observations No. of inactive observations No. of compounds

AID439 11 45 81
AID1284 46 244 103

According to Table 7, BD detected significant differences between the inactive
and active groups in both datasets, Energy distance and ESS-NN detected it in data
AID1284 but not in data AID439. This suggests that BD performs well in highly
imbalanced datasets. Since in Schierz [19], authors suggest that with the best clas-
sification model for AID439 and AID1284, the classification can accurately reach
at least 77%, confirming that these exist difference between active observations
and inactive ones both in AID1284 and AID439.

5.2. Hormone replacement therapy. Hormone replacement therapy (HRT) is
a topic of many studies Andersen et al. [1], Denti [7], Hou et al. [11]. As the
second application, we reanalyzed the dataset reported in Dumeaux [8]. The
GEO accession number for this dataset is GSE3492 and it was downloaded from
http://www.ncbi.nlm.nih.gov. This dataset was collected to explore the potential
difference in the genome wide expression profiles of 22,153 probes between 47
non-HRT users and 42 HRT users. The analysis in Dumeaux [8] ignored the po-
tential correlation in the expression levels among the genes investigated. In our
analysis, we consider all gene expressions simultaneously. For convenience, we
deleted the missing data, and our working dataset ended up with expression levels
from 2759 genes. Since the dataset contains 89 samples, the statistical inference
becomes a p � n problem for which the classical Hotelling’s T 2 has little power
(Bai and Saranadasa [2]).

Table 8 presents the p-values by using the five tests. We can see that the BD
reveals a significant difference in the gene expression profiles between the HRT
group and non-HRT group, whereas the other tests failed to detect a significant
difference. It is worth mentioning that the original analysis [8] did not detect any
significant difference in gene expression profiles between the HRT and non-HRT
groups, either.

TABLE 7
P-values from BD, Energy distance, ESS-KNN, Hotelling’s T 2 and MMD

Method BD ED ESS-KNN Hotelling’s T 2 MMD

AID439 0.038 0.108 0.074 0.781 0.686
AID1284 0.004 0.008 0.018 0.467 0.131

http://www.ncbi.nlm.nih.gov
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TABLE 8
P-values of the comparison between HRT and non-HRT from BD, energy distance, ESS-NN,

Hotelling T and MMD

Method BD ED ESS-NN Hotelling’s T 2 MMD
p-value 0.025 0.477 0.568 0.164 0.313

To further evaluate the distribution distinction between HRT and the non-HRT
group, we select the following two probes that show a significant difference with
the p-value of BD < 0.005, and plot the histogram of the two probes as shown
below.

From Figure 1, we find that the distribution of the 5771th probe in the HRT
group is symmetric with a sharp peak whereas that in the non-HRT group is also
symmetric but more smooth. This indicates that the marginal distributions of the
probes in the HRT and non-HRT group may have similar mean values but the
variance is different. The distribution of the 6705th probe in the HRT group is
positively skewed whereas in the non-HRT group it is negatively skewed. Their
means are different. Both of the graphics of these two probes result in distribution
distinction and prove the reasonability of the BD test.

6. Conclusion. The two-sample Cramér–Von Mises criterion measures the
difference between two univariate probability distributions. Developing such mea-
sures to compare multivariate probability distributions is challenging. We filled
this gap by proposing and investigating Ball Divergence. This breakthrough was
possible because the Ball Divergence relies on the difference of the probabilities
over balls, whereas the Cramér–Von Mises criterion depends directly on the differ-
ence in the distribution functions. The Ball Divergence provides a nonparametric
measure as it does not require any assumption on the moments, and hence is easy
and flexible to apply and/or extend.

FIG. 1. The distribution distinctions of the selected probes between HRT and non-HRT group.
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We not only introduced the BD as a novel concept, but also defined its sample
version—the BD based nonparametric two-sample test statistic—for practical use.
The BD statistic can be expressed as a function of metric ranks or V-statistics,
and as we proved theoretically and demonstrated numerically, the BD statistic can
cope with a highly imbalanced design. The ability to deal with highly imbalanced
designs is an obvious advantage of the BD statistic, while it still performs well for
a balanced design, to include high dimension data. Specifically, we showed that
the power of the BD test increases as the sample size of the larger group increases
while the sample size of the smaller group is fixed.

As a proof of the concept, we reanalyzed several datasets that are publicly avail-
able and have been used as benchmarks for methodological developments. In a
separate effort, we applied the BD for important biomedical applications such as
change point detection for time series (Zhang et al.[25]). One major implication of
the BD test is its potential to address the multiple comparison issue. In the existing
literature, a common practice is to examine two-sample differences in individual
response variables whether they are gene expressions or drug responses. Correct-
ing the Type-I error rates due to the multiple comparison issue is necessary and
often not effective. We have difficulties to identify true signals while unable to
eliminate false discoveries. The BD test can be used similarly to the omnibus in
MANOVA by providing a global p-value for all responses.

APPENDIX

Proofs of asymptotic properties.

PROOF OF THEOREM 3. It can be verified that

An,m = 1

n2

n∑
i,j=1

(
AX

ij − AY
ij

)2

= 1

n4m2

n∑
i,j,u,u′=1

m∑
v,v′=1

{
δ(Xi,Xj ,Xu) · δ(Xi,Xj ,Xu′)

+ δ(Xi,Xj ,Yv) · δ(Xi, Yj , Yv′)

− δ(Xi,Xj ,Xu) · δ(Xi,Xj ,Yv) − δ(Xi,Xj ,Xu′) · δ(Xi,Xj ,Yv′)
}

= 1

n4m2

n∑
i,j,u,u′=1

m∑
v,v′=1

{
ξ(Xi,Xj ,Xu,Xu′) + ξ(Xi,Xj ,Yv, Yv′)

− ξ(Xi,Xj ,Xu,Yv) − ξ(Xi,Xj ,Xu′, Yv′)
}
.
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According to the definition of An,m, we denote the kernel of An,m by
ψA(Xi,Xj ,Xu,Xu′ ;Yv,Yv′):

ψA(Xi,Xj ,Xu,Xu′ ;Yv,Yv′)

= ξ(Xi,Xj ,Xu,Xu′) + ξ(Xi,Xj ,Yv, Yv′)

− ξ(Xi,Xj ,Xu,Yv) − ξ(Xi,Xj ,Xu′, Yv′).

Similarly, denote the kernel of Cn,m by ψC(Xu,Xu′ ;Yk,Yl, Yv, Yv′):

ψC(Xu,Xu′ ;Yk,Yl, Yv, Yv′)

= ξ(Yk, Yl, Yv, Yv′) + ξ(Yk, Yl,Xu,Xu′)

− ξ(Yk, Yl, Yv,Xu) − ξ(Yk, Yl, Yv′,Xu′).

We easily have E(|ψA|) ≤ 4 < ∞, E(|ψC |) ≤ 4 < ∞ and

EψA(X1,X2,X3,X;Y3, Y )

= E
[
E

(
ψA(X1,X2,X3,X;Y3, Y )|X1,X2

)]
= E

[
E

(
δ(X1,X2,X)|X1,X2

)
E

(
δ(X1,X2,X3)|X1,X2

)
+ E

(
δ(X1,X2, Y )|X1,X2

)
E

(
δ(X1,X2, Y3)|X1,X2

)
− 2E

(
δ(X1,X2,X)|X1,X2

)
E

(
δ(X1,X2, Y )|X1,X2

)]
= E

[
E2(

δ(X1,X2,X)|X1,X2
) + E2(

δ(X1,X2, Y )|X1,X2
)

− 2E
(
δ(X1,X2,X)|X1,X2

)
E

(
δ(X1,X2, Y )|X1,X2

)]
= E

[
E

(
δ(X1,X2,X)|X1,X2

) − E
(
δ(X1,X2, Y )|X1,X2

)]2

=
∫∫

V×V
[μ − ν]2(

B̄
(
u,ρ(u, v)

))
μ(du)μ(dv)

= A.

Similarly, we have

EψC(X3,X;Y1, Y2, Y3, Y )

= E
[
E

(
δ(Y1, Y2,X)|Y1, Y2

) − E
(
δ(Y1, Y2, Y )|Y1, Y2

)]2

=
∫∫

V×V
[μ − ν]2(

B̄
(
u,ρ(u, v)

))
ν(du)ν(dv)

= C.

According to Theorem 3 (Lee [15], page 122), we have both An,m and Cn,m con-
verge a.s. to A and C, respectively. Due to the definition of Dn,m and D(μ,ν), we
have

Dn,m
a.s.−−−−−→

n,m→∞ D(μ,ν). �
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PROOF OF THEOREM 4. From the definition of Dn,m, we know that it is the
sum of An,m and Cn,m. Thus, Dn,m is not a V-statistic and we cannot apply the
V-statistic theory to Dn,m directly. Our proof is divided into three parts. First, we
decompose An,m into the sum of the U-statistic with different degrees. The dis-
tribution of An,m is determined by the U-statistic with the same degree as An,m.
Second, we can apply H-decomposition (Lee [15], Section 1.6) to the U-statistic
and obtain the primary component which can determine the distribution of the
U-statistic. Further, we deal with Cn,m similarly. Third, we combine the primary
component of An,m and Cn,m and obtain the asymptotic distribution in null hy-
pothesis in different cases.

Step 1: Following the same step of the aforementioned proof, we begin with
An,m and then Cn,m.

First, we symmetrize the kernel of ψA(Xi,Xj ,Xu,Xu′ ;Yv,Yv′) and get

ψs
A(Xi,Xj ,Xu,Xu′ ;Yv,Yv′)

= 1

4!2!
∑

τ∈π(i,j,u,u′)

∑
γ∈π(v,v′)

ψA(Xτ(1)
,Xτ(2)

,Xτ(3)
,Xτ(4)

;Yγ(1)
, Yγ(2)

),

where π(i, j, u,u′) and π(v, v′) are the permutations of {i, j, u,u′} and {v, v′},
respectively. Since the kernel ψs

A(Xi,Xj ,Xu,Xu′ ;Yv,Yv′) is symmetric, the cor-
responding V-statistic should be

An,m = 1

n4m2

n∑
i,j,u,u′=1

m∑
v,v′=1

ψs
A(Xi,Xj ,Xu,Xu′ ;Yv,Yv′).

An,m is a two-sample V-statistic of order (4,2). Thus, it can be decomposed into
the sum of U-statistic with different degrees, and the decomposition is as follows:

An,m = 1

n4m2

(
48

(
n

4

)(
m

2

)
Û

(4,2)
A + 24

(
n

4

)(
m

1

)
Û

(4,1)
A + 72

(
n

3

)(
m

2

)
Û

(3,2)
A

+ 36

(
n

3

)(
m

1

)
Û

(3,1)
A + 28

(
n

2

)(
m

2

)
Û

(2,2)
A + 14

(
n

2

)(
m

1

)
Û

(2,1)
A

+ 2

(
n

1

)(
m

2

)
Û

(1,2)
A +

(
n

1

)(
m

1

)
Û

(1,1)
A

)
.

Then

An,m = 1

n4m2

(
48

(
n

4

)(
m

2

)
Û

(4,2)
A + 24

(
n

4

)(
m

1

)
Û

(4,1)
A

+ 72

(
n

3

)(
m

2

)
Û

(3,2)
A

)
+ Op

(
1

n2 + 1

nm

)
,

(A.1)
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where

Û
(4,2)
A = 1(n

4

)(m
2

) n∑
i<j<u<u′

m∑
v<v′

ψs
A(Xi,Xj ,Xu,Xu′ ;Yv,Yv′)

= 1(n
4

)(m
2

) n∑
i<j<u<u′

m∑
v<v′

1

4!2!

× ∑
τ∈π(i,j,u,u′)

∑
γ∈π(v,v′)

ψA(Xτ(1)
,Xτ(2)

,Xτ(3)
,Xτ(4)

;Yγ(1)
, Yγ(2)

).

Step 2: Now we deal with the distribution of Û
(4,2)
A . Because Û

(4,2)
A is a two-

sample U-statistic with degrees (4,2) and kernel ψs
A(Xi,Xj ,Xu,Xu′ ;Yv,Yv′), we

can apply H-decomposition (Lee [15], Section 1.6) to Û
(4,2)
A :

Û
(4,2)
A =

4∑
c=0

2∑
d=0

(
4

c

)(
2

d

)
H

(c,d)
A

=
4∑

c=0

2∑
d=0

(
4

c

)(
2

d

)
1(n

c

)(m
d

)
× ∑

(n,c)

∑
(m,d)

h
(c,d)
A (Xi1, . . . ,Xic;Yj1, . . . , Yjd

).

(A.2)

(A.2) can be simplified as

Û
(4,2)
A = 1(n

2

)(m
2

) n∑
u<u′

m∑
v<v′

QA(Xu,Xu′ ;Yv,Yv′) + Rn

= 1(n
2

)(m
2

)
×

n∑
u<u′

m∑
v<v′

(
φ

(2,0)
A (Xu,Xu′) + φ

(1,1)
A (Xu,Yv) + φ

(1,1)
A (Xu′, Yv′)

+ φ
(0,2)
A (Yv, Yv′)

) + Rn

= 4

n(n − 1)m(m − 1)

×
n∑

u<u′

m∑
v<v′

(
φ

(2,0)
A (Xu,Xu′) + φ

(1,1)
A (Xu,Yv) + φ

(1,1)
A (Xu′, Yv′)

+ φ
(0,2)
A (Yv, Yv′)

) + Rn,
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where

φ
(2,0)
A

(
x, x′)

= E
[
ξ
(
X1,X2, x, x′)] + E

[
ξ(X1,X2, Y,Y3)

]
− E

[
ξ(X1,X2, x, Y )

] − E
[
ξ
(
X1,X2, x

′, Y3
)]

,

φ
(1,1)
A (x, y)

= E
[
ξ(X1,X2, x,X3)

] + E
[
ξ(X1,X2, y, Y3)

]
− E

[
ξ(X1,X2, x, y)

] − E
[
ξ(X1,X2,X3, Y3)

]
,

φ
(0,2)
A

(
y, y′)

= E
[
ξ(X1,X2,X,X3)

] + E
[
ξ
(
X1,X2, y, y′)]

− E
[
ξ(X1,X2,X,y)

] − E
[
ξ
(
X1,X2,X,y′)],

Rn = ∑
c+d≥3

h
(c,d)
A and VarRn = O

(
1

ncmd

)
, c + d = 3.

On the other hand, we consider Cn,m and get the corresponding U-statistic as

Û
(2,4)
C = 4

n(n − 1)m(m − 1)

n∑
u<u′

m∑
v<v′

QC(Xu,Xu′ ;Yv,Yv′) + Rn

= 4

n(n − 1)m(m − 1)

×
n∑

u<u′

m∑
v<v′

(
φ

(2,0)
C (Xu,Xu′) + φ

(1,1)
C (Xu,Yv) + φ

(1,1)
C (Xu′, Yv′)

+ φ
(0,2)
C (Yv, Yv′)

) + Rn,

where

φ
(2,0)
C

(
x, x′)

= E
[
ξ
(
Y1, Y2, x, x′)] + E

[
ξ(Y1, Y2, Y,Y3)

]
− E

[
ξ(Y1, Y2, x, Y )

] − E
[
ξ
(
Y1, Y2, x

′, Y3
)]

,

φ
(1,1)
C (x, y)

= E
[
ξ(Y1, Y2, x,X3)

] + E
[
ξ(Y1, Y2, y, Y3)

]
− E

[
ξ(Y1, Y2, x, y)

] − E
[
ξ(Y1, Y2,X3, Y3)

]
,
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φ
(0,2)
C

(
y, y′)

= E
[
ξ(Y1, Y2,X,X3)

] + E
[
ξ
(
Y1, Y2, y, y′)]

− E
[
ξ(Y1, Y2,X,y)

] − E
[
ξ
(
Y1, Y2,X,y′)],

Rn = ∑
c+d≥3

h
(c,d)
C and VarRn = O

(
1

ncmd

)
, c + d = 3.

Step 3: Under the null hypothesis, QC actually has the following relation with QA:

QC

(
x, y;x′, y′) = QA

(
x, y;x′, y′).

Thus, representing Q(x,y;x′, y′) = QC(x, y;x′, y′) = QA(x, y;x′, y′) under the
null hypothesis, we can express Dn,m as

Dn,m = An,m + Cn,m

= 1

n4m2

(
48

(
n

4

)(
m

2

)
Û

(4,2)
A + 24

(
n

4

)(
m

1

)
Û

(4,1)
A + 72

(
n

3

)(
m

2

)
Û

(3,2)
A

)

+ 1

n2m4

(
48

(
n

2

)(
m

4

)
Û

(2,4)
C + 24

(
n

1

)(
m

4

)
Û

(1,4)
C + 72

(
n

2

)(
m

3

)
Û

(2,3)
C

)

+ Op

(
1

n2 + 1

nm
+ 1

m2

)

= 2(n
2

)(m
2

) n∑
u<u′

m∑
v<v′

Q(Xu,Xu′ ;Yv,Yv′) + 1

n4m2

(
24

(
n

4

)(
m

1

)
Û

(4,1)
A

+ 72

(
n

3

)(
m

2

)
Û

(3,2)
A

)
+ 1

n2m4

(
24

(
n

1

)(
m

4

)
Û

(1,4)
C + 72

(
n

2

)(
m

3

)
Û

(2,3)
C

)

+ Op

(
1

n2 + 1

nm
+ 1

m2

)
.

Suppose that n and m → ∞ in such a way that n/(n + m) → τ . According to
Theorem 1.1 of [16], Q(x,y;x ′, y′) have the following spectral decomposition:

Q
(
x, y;x′, y′) =

∞∑
k=1

λkfk(x, y)fk

(
x′, y′).

Thus, (
1

n
+ 1

m

)−1 2(n
2

)(m
2

) n∑
u<u′

m∑
v<v′

Q(Xu,Xu′ ;Yv,Yv′)

d−−−→
n→∞

∞∑
k=1

2λk

[(
ak(τ )Z1k + bk(τ )Z2k

)2 − (
a2
k (τ ) + b2

k(τ )
)]

,
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where a2
k (τ ) = (1 − τ)EX[EY fk(X,Y )]2, b2

k(τ ) = τEY [EXfk(X,Y )]2 and Z1k ,
Z2k are i.i.d. N(0,1), k = 1,2, . . . .

Moreover, since

Û
(4,1)
A

a.s.−−−−−→
n,m→∞ EÛ

(4,1)
A , Û

(3,2)
A

a.s.−−−−−→
n,m→∞ EÛ

(3,2)
A ,

Û
(1,4)
C

a.s.−−−−−→
n,m→∞ EÛ

(1,4)
C , Û

(2,3)
C

a.s.−−−−−→
n,m→∞ EÛ

(2,3)
C .

Under the null hypothesis,

EÛ
(4,1)
A = EÛ

(1,4)
C = 6EÛ

(3,2)
A = 6EÛ

(2,3)
C

= E
[
E(δ(X1,X2,X)

(
1 − (

δ(X1,X2, Y )
))|X1,X2

]
.

Let θ = 2E[E(δ(X1,X2,X)(1 − δ(X1,X2, Y ))|X1,X2]. By use of the Slutsky
theorem, we have

nm

n + m
Dn,m

d−−−→
n→∞

∞∑
k=1

2λk

[(
ak(τ )Z1k + bk(τ )Z2k

)2 − (
a2
k (τ ) + b2

k(τ )
)] + θ.

�

PROOF OF THEOREM 5. Following the V-statistic decomposition (A.1) and H
decomposition (A.2), we have

Dn,m = An,m + Cn,m

= 48

n4m2

(
n

4

)(
m

2

)
Û

(4,2)
A + 48

n2m4

(
n

2

)(
m

4

)
Û

(2,4)
C + Op

(
1

n
+ 1

m

)

= 48

n4m2

(
n

4

)(
m

2

) 4∑
c=0

2∑
d=0

(
4

c

)(
2

d

)
H

(c,d)
A

+ 48

n2m4

(
n

2

)(
m

4

) 2∑
c=0

4∑
d=0

(
2

c

)(
4

d

)
H

(c,d)
C + Op

(
1

n
+ 1

m

)
.

Further, we obtain that

Dn,m =
4∑

c=0

2∑
d=0

(
4

c

)(
2

d

)
H

(c,d)
A +

2∑
c=0

4∑
d=0

(
2

c

)(
4

d

)
H

(c,d)
C

−
(

6

n
+ 1

m

) 4∑
c=0

2∑
d=0

(
4

c

)(
2

d

)
H

(c,d)
A −

(
1

n
+ 6

m

) 2∑
c=0

4∑
d=0

(
2

c

)(
4

d

)
H

(c,d)
C

+ Op

(
1

n
+ 1

m

)

=
4∑

c=0

2∑
d=0

(
4

c

)(
2

d

)
H

(c,d)
A +

2∑
c=0

4∑
d=0

(
2

c

)(
4

d

)
H

(c,d)
C + Op

(
1

n
+ 1

m

)
.

(A.3)
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Since the order of
∑

c+d≥2 Cc
4C

d
2 H

(c,d)
A and

∑
c+d≥2 Cc

2C
d
4 H

(c,d)
C are higher than

Op( 1
n

+ 1
m

). We can simplify (A.3) as

Dn,m = A + n−1
n∑

u=1

(
h

(1,0)
A,1 (Xu) + h

(1,0)
A,2 (Xu) + h

(1,0)
A,3 (Xu) + h

(1,0)
A,4 (Xu)

)

+ m−1
m∑

v=1

(
h

(0,1)
A,1 (Yv) + h

(0,1)
A,2 (Yv)

) + ∑
c+d≥2

Cc
4C

d
2 H

(c,d)
A

+ C + n−1
n∑

u=1

(
h

(1,0)
C,1 (Xu) + h

(1,0)
C,2 (Xu)

)

+ m−1
m∑

v=1

(
h

(0,1)
C,1 (Yv) + h

(0,1)
C,2 (Yv) + h

(0,1)
C,3 (Yv) + h

(0,1)
C,4 (Yv)

)

+ ∑
c+d≥2

Cc
2C

d
4 H

(c,d)
C + Op

(
1

n
+ 1

m

)

= A + C + n−1
n∑

u=1

(
h

(1,0)
A,1 (Xu) + h

(1,0)
A,2 (Xu) + h

(1,0)
A,3 (Xu) + h

(1,0)
A,4 (Xu)

+ h
(1,0)
C,1 (Xu) + h

(1,0)
C,2 (Xu)

) + m−1
m∑

v=1

(
h

(0,1)
A,1 (Yv) + h

(0,1)
A,2 (Yv)

+ h
(0,1)
C,1 (Yv) + h

(0,1)
C,2 (Yv) + h

(0,1)
C,3 (Yv) + h

(0,1)
C,4 (Yv)

) + Op

(
1

n
+ 1

m

)
,

(A.4)

where

h
(1,0)
A,i (x) = E

(
ψA(X1,X2,X3,X4;Y1, Y2)|Xi = x

) − A, i = 1, . . . ,4,

h
(0,1)
A,i (y) = E

(
ψA(X1,X2,X3,X4;Y1, Y2)|Yi = y

) − A, i = 1,2,

h
(1,0)
C,i (x) = E

(
ψC(X1,X2;Y1, Y2, Y3, Y4)|Xi = x

) − C, i = 1,2,

h
(0,1)
C,i (y) = E

(
ψC(X1,X2;Y1, Y2, Y3, Y4)|Yi = y

) − C, i = 1, . . . ,4.

Denote

g(1,0)(Xu) = h
(1,0)
A,1 (Xu) + h

(1,0)
A,2 (Xu) + h

(1,0)
A,3 (Xu) + h

(1,0)
A,4 (Xu)

+ h
(1,0)
C,1 (Xu) + h

(1,0)
C,2 (Xu),

g(0,1)(Yv) = h
(0,1)
A,1 (Yv) + h

(0,1)
A,2 (Yv) + h

(0,1)
C,1 (Yv) + h

(0,1)
C,2 (Yu)

+ h
(0,1)
C,3 (Yv) + h

(0,1)
C,4 (Yv)
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and

δ2
1,0 = Var

(
g(1,0)(Xu)

)
and δ2

0,1 = Var
(
g(0,1)(Yv)

)
.

Then both n− 1
2
∑n

u=1 g(1,0)(Xu) and m− 1
2
∑m

v=1 g(0,1)(Yv) converge to normal dis-
tributions with mean zero and variances δ2

1,0 and δ2
0,1, respectively. Suppose that n

and m → ∞ in such a way that n/(n + m) → τ . We have√
nm

n + m

(
Dn,m − D(μ,ν)

)

=
√

m

(n + m)n

n∑
u=1

g(1,0)(Xu) +
√

n

(n + m)m

m∑
v=1

g(0,1)(Yv) + op(1).

Since
∑n

u=1 g(1,0)(Xu) and
∑m

v=1 g(0,1)(Yv) are independent, it follows that
√

nm

n + m

(
Dn,m − D(μ,ν)

) d−−−→
n→∞ N

(
0, (1 − τ)δ2

1,0 + τδ2
0,1

)
. �

PROOF OF THEOREM 6. According to the V-statistics decomposition (A.1),
we have

Dn,m = An,m + Cn,m

= 48

n4m2

(
n

4

)(
m

2

)
Û

(4,2)
A + 48

n2m4

(
n

2

)(
m

4

)
Û

(2,4)
C + Op

(
1

n
+ 1

m

)
,

where Û
(4,2)
A and Û

(2,4)
C are the U-statistics with kernels ψs

A and ψs
C , respectively,

that is,

Û
(4,2)
A = 1(n

4

)(m
2

) n∑
i<j<u<u′

m∑
v<v′

ψs
A(Xi,Xj ,Xu,Xu′ ;Yv,Yv′)

and

Û
(2,4)
C = 1(n

2

)(m
4

) n∑
u<u′

m∑
i<j<v<v′

ψs
C(Xu,Xu′ ;Yi, Yj , Yv, Yv′).

According to (A.3) and (A.4), we have

Var(Dn,m) = δ2
1,0

n
+ δ2

0,1

m
+ O

(
1

n
+ 1

m

)
.

Thus, we can obtain that limn→∞ VarH1(Dn,m) = 0.
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Since the kernel ψs
A is the symmetrized form of ψA, they actually share the

same expectation and we thus can calculate the expectation of Û
(4,2)
A with

EÛ
(4,2)
A = 1(n

4

)(m
2

) n∑
i<j<u<u′

m∑
v<v′

Eψs
A(X1,X2,X3,X;Y3, Y )

= Eψs
A(X1,X2,X3,X;Y3, Y )

= EψA(X1,X2,X3,X;Y3, Y )

= E
[
E

(
ψA(X1,X2,X3,X;Y3, Y )|X1,X2

)]
= E

[
E

(
δ(X1,X2,X)|X1,X2

) − E
(
δ(X1,X2, Y )|X1,X2

)]2

= A.

Similarly, we can also figure out the expectation of Û
(2,4)
C by

EÛ
(2,4)
C = 1(n

2

)(m
4

) n∑
u<u′

m∑
i<j<v<v′

Eψs
C(X3,X;Y1, Y2, Y3, Y )

= E
[
E

(
ψC(X3,X;Y1, Y2, Y3, Y )|Y1, Y2

)]
= E

[
E

(
δ(Y1, Y2,X)|Y1, Y2

) − E
(
δ(Y1, Y2, Y )|Y1, Y2

)]2

= C.

With the above equations, the expectation of Dn,m can be expressed as

EDn,m = 48

n4m2

(
n

4

)(
m

2

)
EÛ

(4,2)
A + 48

n2m4

(
n

2

)(
m

4

)
EÛ

(2,4)
C + Op

(
1

n
+ 1

m

)

= (n − 1)(n − 2)(n − 3)(m − 1)

n3m
A + (n − 1)(m − 1)(m − 2)(m − 3)

nm3 C

+ O

(
1

n
+ 1

m

)
.

As n → ∞ and n ≤ m, we therefore have

lim inf
n→∞ EDn,m = lim inf

n→∞

(
(n − 1)(n − 2)(n − 3)(m − 1)

n3m

)
A

+ lim inf
n→∞

(
(n − 1)(m − 1)(m − 2)(m − 3)

nm3

)
C

= A + C

= D(μ,ν).

According to Theorem 1, we know that D(μ,ν) ≥ 0 always holds and the equal-
ity will be reached if and only if μ = ν, that is, D(μ,ν) will equal to 0 only when
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null hypothesis H0 holds while under alternative hypothesis H1 We always have
D(μ,ν) > 0. Hence, it can be seen that

�(η) = lim inf
n→∞ (EH1Dn,m − EH0Dn,m)

= D(μ,ν)|H1 − D(μ,ν)|H0

= D(μ,ν)|H1 > 0,

where the value of �(η) will be only affected by the alternative distributions while
independent of sample size ratio η. �

Computational complexity. The computational complexity of BD is O(n3 +
m3) if we compute it exactly from the definition of BD:

Dn,m = An,m + Cn,m,

where

An,m = 1

n2

n∑
i,j=1

(
AX

ij − AY
ij

)2
, Cn,m = 1

m2

m∑
k,l=1

(
CX

kl − CY
kl

)2
,

AX
ij = 1

n

n∑
u=1

δ(Xi,Xj ,Xu), AY
ij = 1

m

m∑
v=1

δ(Xi,Xj ,Yv),

CX
kl = 1

n

n∑
u=1

δ(Yk, Yl,Xu), CY
kl = 1

m

m∑
v=1

δ(Yk, Yl, Yv).

However, we could reduce its computational complexity by some fast sorting
algorithms because nAX

ij , mAY
ij , nCX

kl and mCY
kl are some ranks. For example, nAX

ij

is the rank of ρ(Xi,Xj ) among {ρ(Xi,Xu), u = 1, . . . , n} and nAX
ij + mAY

ij is the
rank of ρ(Xi,Xj ) among {ρ(Xi,Xu), u = 1, . . . , n} ∪ {ρ(Xi, Yv), v = 1, . . . ,m}.

Given two independent samples Xn = {X1, . . . ,Xn} and Ym = {Y1, . . . , Ym}, let
Z = Xn ∪ Ym. The following algorithm reduces the computational complexity to
O(n2 logn + m2 logm).

(Step 1) Calculate the pairwise distances between the points of Z to get the
distance matrix:

DZZ =
(
DXX DXY
DYX DYY

)
.

(Step 2) Rank DXX row by row to get the modified competition ranking matrix
RX in which the (i, j) entry is nAX

ij ; Get RY similarly.
(Step 3) Rank DZZ row by row to get the modified competition ranking matrix

RZZ =
(
RXX RXY
RYX RYY

)
,
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in which, the (i, j) entry of RXX is nAX
ij + mAY

ij and the (k, l) entry of RYY is

nCX
kl + mCY

kl .
(Step 4) Calculate An,m and Cn,m, and then Dn,m.
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