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I-LAMM FOR SPARSE LEARNING: SIMULTANEOUS CONTROL
OF ALGORITHMIC COMPLEXITY AND STATISTICAL ERROR1
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Fudan University∗, Princeton University†, University of Toronto‡ and
Tecent AI Lab§

We propose a computational framework named iterative local adap-
tive majorize-minimization (I-LAMM) to simultaneously control algorith-
mic complexity and statistical error when fitting high-dimensional models.
I-LAMM is a two-stage algorithmic implementation of the local linear ap-
proximation to a family of folded concave penalized quasi-likelihood. The
first stage solves a convex program with a crude precision tolerance to ob-
tain a coarse initial estimator, which is further refined in the second stage
by iteratively solving a sequence of convex programs with smaller preci-
sion tolerances. Theoretically, we establish a phase transition: the first stage
has a sublinear iteration complexity, while the second stage achieves an im-
proved linear rate of convergence. Though this framework is completely algo-
rithmic, it provides solutions with optimal statistical performances and con-
trolled algorithmic complexity for a large family of nonconvex optimization
problems. The iteration effects on statistical errors are clearly demonstrated
via a contraction property. Our theory relies on a localized version of the
sparse/restricted eigenvalue condition, which allows us to analyze a large
family of loss and penalty functions and provide optimality guarantees under
very weak assumptions (e.g., I-LAMM requires much weaker minimal signal
strength than other procedures). Thorough numerical results are provided to
support the obtained theory.

1. Introduction. Modern data acquisitions routinely measure massive
amounts of variables, which can be much larger than the sample size, making
statistical inference an ill-posed problem. For inferential tractability and inter-
pretability, one common approach is to exploit the penalized M-estimator

(1.1) β̂ = argmin
β∈Rd

{
L(β) +Rλ(β)

}
,

where L(·) is a smooth loss function, Rλ(·) is a sparsity-inducing penalty with a
regularization parameter λ. Our framework encompasses the square loss, logistic
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loss, Gaussian graphical model negative log-likelihood loss, Huber loss and the
family of folded concave penalties [Fan and Li (2001)]. Finding optimal statistical
procedures with controlled computational complexity characterizes the efforts of
high-dimensional statistical learning in the last two decades. This paper makes
an important leap toward this grand challenge by proposing a general algorithmic
strategy for solving (1.1) even when Rλ(β) is nonconvex.

A popular choice of Rλ(β) is the Lasso penalty [Tibshirani (1996)], a convex
penalty. Though a large literature exists on understanding the theory of penalized
M-estimators with convex penalties [Bickel, Ritov and Tsybakov (2009), Bunea,
Tsybakov and Wegkamp (2007), van de Geer and Bühlmann (2009), Negahban
et al. (2012)], it has been well known [Fan and Li (2001), Zou (2006)] that the
convex penalties introduce nonnegligible estimation biases. In addition, the algo-
rithmic issues for finding a global minimizer are rarely addressed. To eliminate the
estimation bias, a family of folded-concave penalties was introduced by Fan and Li
(2001), which includes the smooth clipped absolute deviation (SCAD) [Fan and Li
(2001)], minimax concave penalty (MCP) [Zhang (2010a)], and capped �1-penalty
[Zhang (2010b)]. Compared to their convex counterparts, these nonconvex penal-
ties eliminate the estimation bias and attain more refined statistical rates of conver-
gence. However, it is more challenging to analyze the theoretical properties of the
resulting estimators due to nonconvexity of the penalty functions. Existing work
on nonconvex penalized M-estimators treats the statistical properties and practical
algorithms separately. On one hand, statistical properties are established for the
hypothetical global optimum (or some local minimum), which is usually unob-
tainable by any practical algorithm in polynomial time. For example, Fan and Li
(2001) showed that there exists a local solution that possesses an oracle property;
Kim, Choi and Oh (2008) and Fan and Lv (2011) showed that the oracle estima-
tor is a local minimizer with high probability. Later on, Kim and Kwon (2012)
and Zhang and Zhang (2012) proved that the global optimum achieves the ora-
cle property under certain conditions. Nevertheless, none of these papers specify
an algorithm to find the desired solution. More recently, Agarwal, Negahban and
Wainwright (2012), Loh and Wainwright (2015), Negahban et al. (2012) develop
a projected gradient algorithm with desired statistical guarantees. However, they
need to modify the estimating procedures to include an additional �1-ball con-
straint, ‖β‖1 ≤ R, which depends on the unknown true parameter. On the other
hand, practitioners have developed numerous heuristic algorithms for nonconvex
optimization problems, but without theoretical guarantees. One such example is
the coordinate optimization strategy studied in Breheny and Huang (2011) and
Friedman et al. (2007).

So there is a gap between theory and practice: What is actually computed is not
the same as what has been proved. To bridge this gap, we propose an iterative local
adaptive majorize-minimization (I-LAMM) algorithm for fitting high-dimensional
statistical models. Unlike most existing methods, which are mainly motivated from
a statistical perspective and ignore the computational consideration, I-LAMM is
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both algorithmic and statistical: it computes an estimator within polynomial time
and achieves optimal statistical accuracy for this estimator. In particular, I-LAMM
obtains estimators with the strongest statistical guarantees for a wide family of
loss functions under the weakest possible assumptions. Moreover, the statistical
properties are established for the estimators computed exactly by our algorithm,
which is designed to control the cost of computing resources. Compared to existing
works [Agarwal, Negahban and Wainwright (2012), Loh and Wainwright (2015),
Negahban et al. (2012)], our method does not impose any constraint that depends
on the unknown true parameter.

Inspired by the local linear approximation to the folded concave penalty [Zou
and Li (2008)], we use I-LAMM to solve a sequence of convex programs up to a
prefixed optimization precision

(1.2) min
β∈Rd

{
L(β) +R

(
λ(�−1) � β

)}
for � = 1, . . . , T ,

where λ(�−1) = (λw(|β̃(�−1)
1 |), . . . , λw(|β̃(�−1)

d |))T, β̃
(�)

is an approximate solu-
tion to the �th optimization problem in (1.2), w(·) is a weighting function, R(·) is
a decomposable convex penalty function and “�” denotes the Hadamard product.
In this paper, we mainly consider R(β) = ‖β‖1, though our theory is general. The
weighting function corresponds to the derivative of the folded concave penalty in
Fan and Li (2001), Zou and Li (2008) and Fan and Lv (2011).

In particular, the I-LAMM algorithm obtains a crude initial estimator β̃
(1)

and
further solves the optimization problem (1.2) for � ≥ 2 with established algorith-
mic and statistical properties. This provides theoretical insights on how fast the
algorithm converges and how much computation is needed, as well as the desired
statistical properties of the obtained estimator. The whole procedure consists of
T convex programs, each only needs to be solved approximately to control the
computational cost. Under mild conditions, we show that only log(λ

√
n) steps

are needed to obtain the optimal statistical rate of convergence. Even though I-
LAMM solves approximately a sequence of convex programs, the solution enjoys
the same optimal statistical property of the unobtainable global optimum for the
folded-concave penalized regression. The adaptive stopping rule for solving each
convex program in (1.2) allows us to control both computational costs and statisti-
cal errors. Figure 1 provides a geometric illustration of the I-LAMM procedure. It
contains a contraction stage and a tightening stage as described below.

∗ Contraction Stage: In this stage (� = 1), we approximately solve a convex opti-

mization problem (1.2), starting from any initial value β̃
(0)

, and terminate the al-
gorithm as long as the approximate solution enters a desired contraction region,
which will be characterized in Section 2.3. The obtained estimator is called the
contraction estimator, which is very crude and only serves as initialization.

∗ Tightening Stage: This stage involves multiple tightening steps (� ≥ 2). Specif-
ically, we iteratively tighten the contraction estimator by solving a sequence
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FIG. 1. Geometric illustration of the contraction property. The contraction stage produces an ini-

tial estimator, starting from any initial value β̃
(0) that falls in the contraction region, which secures

the tightening stage to enjoy optimal statistical and computational rates of convergence. The tight-
ening stage adaptively refines the contraction estimator until it enters the optimal region, which is
stated in (1.3). Here, λ is a regularization parameter, s the number of nonzero coefficients in β∗ and
n the sample size.

of convex programs. Each step contracts its initial estimator toward the true pa-
rameter until it reaches the optimal region of convergence. At that region, further
iteration does not improve statistical performance. See Figure 1. More precisely,
we will show the following contraction property:

(1.3)
∥∥β̃(�) − β∗∥∥

2 �
√

s

n
+ δ · ∥∥β̃(�−1) − β∗∥∥

2 for � ≥ 2,

where β∗ is the true regression coefficient, δ ∈ (0,1) a prefixed contraction pa-
rameter and

√
s/n the order of statistical error. Tightening helps improve the

accuracy only when ‖β̃(�−1) − β∗‖2 dominates the statistical error. The itera-

tion effect is clearly demonstrated. Since β̃
(�)

is only used to create an adaptive

weight for β̃
(�+1)

, we can control the iteration complexity by solving each sub-
problem in (1.2) approximately. What differs from the contraction stage is that
the initial estimators in the tightening stage are already in the contraction re-
gion, making the optimization algorithm enjoy geometric rate of convergence.
This allows us to rapidly solve (1.2) with small optimization error.

∗ (Phase Transition in Algorithmic Convergence) In the contraction stage (� = 1),
the optimization problem is not strongly convex and, therefore, our algorithm
has only a sublinear convergence rate. Once the solution enters the contraction
region, we will show that the feasible solutions are sparse and the objective func-
tion is essentially “low” dimensional and becomes (restricted) strongly convex
and smooth in that region. Therefore, our algorithm has a linear convergence rate
for � > 1. Indeed, this holds even for � = 1, which admits a sublinear rate until
it enters into the contraction region and enjoys a linear rate of convergence after
that; see Figure 2. But this estimator (for � = 1) is the estimator that corresponds
to the LASSO penalty, not the folded concave penalty that we are looking for.
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FIG. 2. Computational rate of convergence in each stage for the simulation experiment specified
in case 2 in Example 6.1. The x-axis is the iteration count k within the �th subproblem. The phase
transition from sublinear rate to liner rate of algorithmic convergence is clearly seen once the itera-

tions enter the contraction region. Here, β̂
(�) is the global minimizer of the �th optimization problem

in (1.2) and β(�,k) is its kth iteration (see Figure 3). For � = 1, the initial estimation sequence
has sublinear rate and once the solution sequence enters the contraction region, it becomes linear
convergent. For � ≥ 2, the algorithm achieves linear rate, since all estimators β(�,k−1) are in the
contraction region.

This paper makes four major contributions. First, I-LAMM offers an algorith-
mic approach to obtain the optimal estimator with controlled computing resources.
Second, compared to the existing literature, our method requires weaker conditions
due to a novel localized analysis of sparse learning problems. Specifically, our
method does not need the extra ball constraint as in Loh and Wainwright (2015)
and Wang, Liu and Zhang (2014), which is an artifact of their proofs. Third, our
computational framework takes the approximate optimization error into analysis
and provides theoretical guarantees for the estimator that is computed by the al-
gorithm. Fourth, our method provides new theoretical insights about the adaptive
Lasso and folded-concave penalized regression. In particular, we bridge these two
methodologies together using a unified framework. See Section 3.2 for more de-
tails.

The rest of this paper proceeds as follows. In Section 2, we introduce I-LAMM
and its implementation. Section 3 contributes to new insights into existing meth-
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ods for high-dimensional regression. In Section 4, we introduce both the localized
sparse eigenvalue and localized restricted eigenvalue conditions. Statistical prop-
erty and computational complexity are then presented. In Section 5, we outline the
key proof strategies. Numerical simulations are provided to evaluate the proposed
method in Section 6. We conclude by discussions in Section 7. All the proofs are
postponed to the Supplementary Material [Fan et al. (2018)].

NOTATION. For u = (u1, u2, . . . , ud)T ∈ R
d , we define the �q -norm of u by

‖u‖q = (
∑d

j=1 |uj |q)1/q , where q ∈ [1,∞). Let ‖u‖min = min{uj : 1 ≤ j ≤ d}.
For a set S , let |S| denote its cardinality. We define the �0-pseudo norm of u as
‖u‖0 = | supp(u)|, where supp(u) = {j : uj 
= 0}. For an index set I ⊆ {1, . . . , d},
uI ∈ R

d is defined to be the vector whose ith entry is equal to ui if i ∈ I and
zero otherwise. Let A = [ai,j ] ∈ R

d×d . For q ≥ 1, we define ‖A‖q as the matrix
operator q-norm of A. For index sets I,J ⊆ {1, . . . , d}, we define AI,J ∈ R

d×d

to be the matrix whose (i, j)th entry is equal to ai,j if i ∈ I and j ∈ J , and zero
otherwise. We use sign(x) to denote the sign of x: sign(x) = x/|x| if x 
= 0 and
sign(x) = 0 otherwise. For two functionals f (n, d, s) and g(n, d, s), we denote
f (n, d, s) � g(n, d, s) if f (n, d, s) ≥ Cg(n, d, s) for a constant C; f (n, d, s) �
g(n, d, s) otherwise.

2. Methodology. In this paper, we assume that the loss function L(·) ∈ FL,
a family of general convex loss functions specified in Appendix A of the Supple-
mentary Material Fan et al. (2018).

2.1. Local adaptive majorize-minimization. Recall that the estimators are ob-
tained by solving a sequence of convex programs in (1.2). We require the function
w(·) used therein to be taken from the tightening function class T , defined as

T = {
w(·) ∈ M : w(t1) ≤ w(t2) for all t1 ≥ t2 ≥ 0,

(2.1)
0 ≤ w(t) ≤ 1 if t ≥ 0,w(t) = 0 if t ≤ 0

}
.

To fix ideas, we take Rλ(β) in (1.1) to be
∑d

j=1 pλ(|βj |), where pλ(·) is a folded
concave penalty [Fan and Li (2001)] such as the SCAD or MCP. As discussed in
Fan and Li (2001), the penalized likelihood function in (1.1) is folded concave with
respect to β , making it difficult to be maximized. We propose to use the adaptive
local linear approximation (adaptive LLA) to the penalty function Fan, Xue and
Zou (2014), Zou and Li (2008) and approximately solve

argmin
β

{
L(β) +

d∑
j=1

p′
λ

(∣∣β̃(�−1)
j

∣∣)|βj |
}

for 1 ≤ � ≤ T ,(2.2)

where β̃
(�−1)
j is the j th component of β̃

(�−1)
and β̃

(0)
can be an arbitrary bad initial

value: β̃
(0) = 0, for example. If we assume that w(·) ≡ λ−1p′

λ(·) ∈ T , such as the
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SCAD or MCP, then the adaptive LLA algorithm can be regarded as a special case
of our general formulation (1.2). Note that the LLA algorithm with �q -penalty
(q < 1) is not covered by our algorithm since its derivative is unbounded at the
origin, and thus λ−1p′

λ(·) /∈ T . The latter creates a zero-absorbing state: once a
component is shrunk to zero, it will remain zero throughout the remaining itera-
tions, as noted in Fan and Lv (2008). Of course, we can truncate the loss derivative
of the loss function to resolve this issue.

We now propose a local adaptive majorize-minimization (LAMM) principal,
which will be repeatedly called to practically solve the optimization problem (2.2).
We first review the majorize-minimization (MM) algorithm. To minimize a general
function f (β), at a given point β(k), MM majorizes it by g(β|β(k)), which satisfies

g
(
β|β(k)) ≥ f (β) and g

(
β(k)|β(k)) = f

(
β(k))

and then compute β(k+1) = argminβ{g(β|β(k))} [Hunter and Lange (2004), Lange,
Hunter and Yang (2000)]. The objective value of such an algorithm is nonincreas-
ing in each step, since

f
(
β(k+1)) major.≤ g

(
β(k+1)|β(k)) min.≤ g

(
β(k)|β(k)) init.= f

(
β(k)).(2.3)

An inspection of the above arguments shows that the majorization requirement is
not necessary. It requires only the local property

(2.4) f
(
β(k+1)) ≤ g

(
β(k+1)|β(k)) and g

(
β(k)|β(k)) = f

(
β(k))

for the inequalities in (2.3) to hold.
Inspired by the above observation, we locally majorize (2.2) at the �th step. It

is similar to the iteration steps used in the (proximal) gradient method [Boyd and
Vandenberghe (2004), Nesterov (2013)]. Instead of computing and storing a large

Hessian matrix as in Zou and Li (2008), we majorize L(β) in (2.2) at β̃
(�−1)

by an
isotropic quadratic function

L
(
β̃

(�−1)) + 〈∇L
(
β̃

(�−1))
,β − β̃

(�−1)〉 + φ

2

∥∥β − β̃
(�−1)∥∥2

2,

where ∇ is used to denote derivative. By Taylor’s expansion, it suffices to take φ

that is no smaller than the largest eigenvalue of ∇2L(β̃
(�−1)

). More importantly,
the isotropic form also allows a simple analytic solution to the subsequent ma-
jorized optimization problem:

argmin
β∈Rd

{
L

(
β̃

(�−1)) + 〈∇L
(
β̃

(�−1))
,β − β̃

(�−1)〉
(2.5)

+ φ

2

∥∥β − β̃
(�−1)∥∥2

2 +
d∑

j=1

p′
λ

(∣∣β̃(�−1)
j

∣∣)|βj |
}
.
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With λ(�−1) = (p′
λ(|β̃(�−1)

1 |), . . . , p′
λ(|β̃(�−1)

d |))T, it is easy to show that (2.5) is
minimized at

β(�,1) = Tλ(�−1),φ

(
β̃

(�−1)) ≡ S
(
β̃

(�−1) − φ−1∇L
(
β̃

(�−1))
, φ−1λ(�−1)),

where S(x,λ) is the soft-thresholding operator, defined by S(x,λ) ≡ (sign(xj ) ·
max{|xj | − λj ,0}). The simplicity of this updating rule is due to the fact that (2.5)
is an unconstrained optimization problem. This is not the case in Loh and Wain-
wright (2015) and Wang, Liu and Zhang (2014).

However, finding the value of φ ≥ ‖∇2L(β̃
(�−1)

)‖2 is not an easy task in com-
putation. To avoid storing and computing the largest eigenvalue of a big matrix, we
now state the LAMM algorithm, thanks to the local requirement (2.4). The basic
idea of LAMM is to start from a very small isotropic parameter φ0 and then suc-
cessfully inflate φ by a factor γu > 1 (say, 2). If the solution satisfies (2.4), we stop
this part of the algorithm, which will make the target value nonincreasing. Since
after the kth iteration, φ = γ k−1

u φ0, there always exists a k such that it is no larger

than ‖∇2L(β̃
(�−1)

)‖2. In this manner, the LAMM algorithm will find a smallest
iteration to make (2.4) hold.

Specifically, our proposed LAMM algorithm to solve (2.5) at β̃
(�−1)

begins with
φ = φ0, say 10−6, iteratively increases φ by a factor of γu > 1 inside the �th step
of optimization, and computes

β(�,1) = Tλ(�−1),φ(�,k)

(
β(�,0)) with φ(�,k) = γ k−1

u φ0,β
(�,0) = β̃

(�−1)
,

until the local property (2.4) holds. In our context, LAMM stops when

�λ(�−1),φ(�,k)

(
β(�,1),β(�,0)) ≥ F

(
β(�,1),λ(�−1)),

where F(β,λ(�−1)) ≡ L(β) + ∑d
j=1 λ

(�−1)
j |βj | and

�λ(�−1),φ(�,k)

(
β,β(�,0)) ≡ L

(
β(�,0)) + 〈∇L

(
β(�,0)),β − β(�,0)〉

+ φ(�,k)

2

∥∥β − β(�,0)
∥∥2

2 +
d∑

j=1

λ
(�−1)
j |βj |.

Inspired by Nesterov (2013), to accelerate LAMM within the next majoriz-
ing step, we keep track of the sequence {φ(�,k)}�,k and set φ(�,k) = max{φ0,

γ −1
u φ(�,k−1)}, with the convention that φ�,0 = φ̃�−1 and φ̃0 = φ0, in which φ̃�−1

is the isotropic parameter corresponding to the solution β̃
(�−1)

. This is summa-
rized in Algorithm 1 with a generic initial value.

The LAMM algorithm solves only one local majorization step. It corresponds
to moving one horizontal step in Figure 3. To solve (2.2), we need to use LAMM
iteratively, which we shall call the iterative LAMM (I-LAMM) algorithm, and
compute a sequence of solutions β(�,k) using the initial value β(�,k−1). Figure 3
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Algorithm 1 The LAMM algorithm in the kth iteration of the �th tightening sub-
problem.

1: Algorithm: {β(�,k), φ(�,k)} ← LAMM(λ(�−1),β(�,k−1), φ0, φ
(�,k−1))

2: Input: λ(�−1),β(�,k−1), φ0, φ
(�,k−1)

3: Initialize: φ(�,k) ← max{φ0, γ
−1
u φ(�,k−1)}

4: Repeat
5: β(�,k) ← Tλ(�−1),φ(�,k)(β

(�,k−1))

6: If F(β(�,k),λ(�−1)) > �λ(�−1),φ(�,k)(β
(�,k);β(�,k−1)) then φ(�,k) ← γuφ

(�,k)

7: Until F(β(�,k),λ(�−1)) ≤ �λ(�−1),φ(�,k)(β
(�,k);β(�,k−1))

8: Return {β(�,k), φ(�,k)}

depicts the schematics of our algorithm: the �th row corresponds to solving the �th
subproblem in (2.2) approximately, beginning by computing the adaptive weight
λ(�−1). The number of iterations needed within each row will be discussed in the
sequel.

2.2. Stopping criterion. I-LAMM recognizes that the exact solutions to (2.2)
can never be achieved in practice with algorithmic complexity control. Instead,

in the �th optimization subproblem, we compute the approximate solution, β̃
(�)

,
up to an optimization error ε, the choice of which will be discussed in next sub-
section. To calculate this approximate solution, starting from the initial value

β(�,0) = β̃
(�−1)

, the algorithm constructs a solution sequence {β(�,k)}k=1,2,... us-
ing the introduced LAMM algorithm; see Figure 3.

We then introduce a stopping criterion for the I-LAMM algorithm. From opti-
mization theory [Section 5.5 in Boyd and Vandenberghe (2004)], we know that any

exact solution β̂
(�)

to the �th subproblem in (2.2) satisfies the first-order optimality
condition

∇L
(
β̂

(�)) + λ(�−1) � ξ = 0 for some ξ ∈ ∂
∥∥β̂(�)∥∥

1 ∈ [−1,1]d,(2.6)

where ∂ is used to indicate the subgradient operator. The set of subgradients of a
function f : Rd → R at a point x0, denoted as ∂f (x0), is defined as the collection

FIG. 3. Paradigm illustration of I-LAMM. k�,1 ≤ � ≤ T , is the iteration index for the �th opti-
mization in (2.2). εc and εt are the precision parameters for the contraction and tightening stage
respectively and will be described in Section 2.3 in detail.
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Algorithm 2 I-LAMM algorithm for each subproblem in (2.2)

1: Algorithm:{β̃(�)} ← I-LAMM(λ(�−1),β(�,0))

2: Input: φ0 > 0
3: for k = 0,1, . . . until ωλ(�−1) (β(�,k)) ≤ ε do
4: {β(�,k), φ(�,k)} ← LAMM(λ(�−1),β(�,k−1), φ0)

5: end for
6: Output: β̃

(�) = β(�,k)

of vectors, ξ , such that f (x) − f (x0) ≥ ξT(x − x0), for any x. Thus, a natural
measure for suboptimality of β can be defined as

ωλ(�−1) (β) = min
ξ∈∂‖β‖1

{∥∥∇L(β) + λ � ξ
∥∥∞

}
.

For a prefixed optimization error ε, we stop the algorithm within the �th subprob-

lem when ωλ(�−1) (β(�,k)) ≤ ε. We call β̃
(�) ≡ β(�,k) an ε-optimal solution. More

details can be found in Algorithm 2.

REMARK 2.1. The I-LAMM algorithm is an early-stop variant of the ISTA
algorithm to handle general loss functions and nonconvex penalties [Beck and
Teboulle (2009)]. The LAMM principal serves as a novel perspective for the prox-
imal gradient method.

2.3. Tightening after contraction. From the computational perspective, opti-
mization in (2.2) can be categorized into two stages: contraction (� = 1) and tight-
ening (2 ≤ � ≤ T ). In the contraction stage, we start from an arbitrary initial value,
which can be quite remote from the underlying true parameter. We take ε as εc � λ,
reflecting the precision needed to bring the initial solution to a contracting neigh-
borhood of the global minimum. For instance, in linear model with sub-Gaussian
errors, εc can be taken in the order of

√
logd/n. This stage aims to find a good

initial estimator β̃
(1)

for the subsequent optimization subproblems in the tighten-
ing stage. Recall that s = ‖β∗‖0 is the sparsity level. We will show in Section 4.3

that with a properly chosen λ, the approximate solution β̃
(1)

, produced by the early
stopped I-LAMM algorithm, falls in the region of such good initials estimators:{

β : ∥∥β − β∗∥∥
2 ≤ Cλ

√
s and β is sparse

}
.

We call this region the contraction region.

However, the estimator β̃
(1)

suffers from a suboptimal statistical rate of conver-
gence, which is inferior to the refined one obtained by nonconvex regularization.
A second stage to tighten this coarse contraction estimator into the optimal region
of convergence is needed. This is achieved by the subsequent optimization (� ≥ 2)

and referred to as a tightening stage. Because the initial estimators are already good
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and sparse at each iteration of the tightening stage, the I-LAMM algorithm at this
stage enjoys a geometric rate of convergence, due to the sparse strong convexity.
Therefore, the optimization error ε = εt can be much smaller to simultaneously
ensure statistical accuracy and control computational complexity. To achieve the
oracle rate

√
s/n: εt must be no larger than the order of

√
1/n. A graphical il-

lustration of the full algorithm is presented in Figure 3. Theoretical justifications
are provided in Section 4. From this perspective, we shall also call the psuedo-
algorithm in (1.2) or (2.2), combined with LAMM, the tightening after contraction
(TAC) algorithm.

3. New insights into existing methods.

3.1. Connection to one-step local linear approximation. In the low-dimensional
regime, Zou and Li (2008) shows that the one-step LLA algorithm produces an
oracle estimator if the maximum likelihood estimator (MLE) is used for initial-
ization. They thus claim that the multi-step LLA is unnecessary. However, this is
not the case in high dimensions, under which an unbiased initial estimator, such
as the MLE, is not available. In this paper, we show that starting from a possibly
arbitrary bad initial value (such as 0), the contraction stage can produce a sparse
coarse estimator. Each tightening step then refines the estimator from previous step
to the optimal region of convergence by

(3.1)
∥∥β̃(�) − β∗∥∥

2 �
√

s

n
+ δ · ∥∥β̃(�−1) − β∗∥∥

2 for 2 ≤ � ≤ T ,

where δ ∈ (0,1) is a prefixed contraction parameter. Unlike the one-step method
in Fan, Xue and Zou (2014), the role of iteration is clearly evidenced in (3.1).

An important aspect of our algorithm (2.2) is that we use the solvable approx-

imate solutions, β̃
(�)

’s, rather than the exact ones, β̂
(�)

’s. In order to practically
implement (2.2) for a general convex loss function, Zou and Li (2008) propose to
locally approximate L(β) by a quadratic function

(3.2) L
(
β̂

(0)) + 〈∇L
(
β̂

(0))
,β − β̂

(0)〉 + 1

2

(
β − β̂

(0))T∇2L
(
β̂

(0))(
β − β̂

(0))
,

where β̂
(0)

is a “good” initial estimator of β∗ and ∇2L(β̂
(0)

) is the Hessian eval-

uated at β̂
(0)

. However, in high dimensions, evaluating the d × d Hessian is not
only computationally intensive but also requires a large storage cost. In addition,
the optimization problem (2.2) cannot be solved analytically with approximation
(3.2). We resolve these issues by proposing the isotropic quadratic approximation;
see Section 2.
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3.2. New insight into folded-concave regularization and adaptive Lasso. The
adaptive local linear approximation (2.2) provides new insight into folded-concave
regularization and adaptive Lasso. To correct the Lasso’s estimation bias, folded-
concave regularization [Fan and Li (2001)] and its one-step implementation, adap-
tive Lasso [Fan, Xue and Zou (2014), Zou (2006), Zou and Li (2008)] have drawn
much research interest due to their attractive statistical properties. For a general
loss function L(β), the adaptive Lasso solves

β̂adapt = argmin
β

{
L(β) + λ

d∑
j=1

w(βinit,j )|βj |
}
,

where βinit,j is an initial estimator of βj . We see that the adaptive Lasso is a spe-
cial case of (2.2) with � = 2. Two important open questions for an adaptive Lasso
are to obtain a good enough initial estimator in high dimensions and to select a
suitable tuning parameter λ, which achieves the optimal statistical performance.
Our solution to the first question is to use, the approximate solution to Lasso with
controlled computational complexity, which corresponds to � = 1 in (2.2). For the
choice of λ, Bühlmann and van de Geer (2011) suggested sequential tuning: in the
first stage, they use cross validation to select the initial tuning parameter, denoted
here by λ̂init,cv and the corresponding estimator β̂ init; in the second stage, they
again adopt cross validation to select the adaptive tuning parameter λ in the adap-
tive Lasso. Despite the popularity of such tuning procedure, there are no theoretical
guarantees to support it. As will be shown later in Theorem 4.2 and Corollary 4.3,
our framework produces optimal solution by only tuning λ(0) = λ1 in the contrac-
tion stage, indicating that sequential tuning may not be necessary for the adaptive
Lasso if w(·) is chosen from the tightening function class T .

It is worth noting that a classical weight w(βj ) ≡ 1/|βj | for the adaptive Lasso
does not belong to the tightening function class T . As pointed out by Fan and
Lv (2008), zero is an absorbing state of the adaptive Lasso with this choice of
weight function. Hence, when the Lasso estimator in the first stage misses any
true positives, it will be missed forever in later stages as well. In contrast, the
proposed tightening function class T overcomes such shortcomings by restricting
the weight function w(·) to be bounded. This phenomenon is further elaborated via
our numerical experiments in Section 6. The mean square error for the adaptive
Lasso can be even worse than the Lasso estimator because the adaptive Lasso may
miss true positives in the strongly correlated design case.

Our framework also reveals interesting connections between the adaptive Lasso
and folded-concave regularization. Specifically, consider the following folded-
concave penalized regression:

(3.3) min
β∈Rd

{
L(β) +Rλ

(|β|)} where Rλ

(|β|) is a folded concave penalty.

We assume that Rλ(·) is element-wisely decomposable, that is, Rλ(|β|) =∑d
k=1 pλ(|βk|). Under this assumption, using the concave duality, we can rewrite
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Rλ(|β|) as

Rλ(|β|) = inf
v

{|β|Tv −R�
λ(v)

}
,(3.4)

where R�
λ(·) is the dual of Rλ(·). By the duality theory, we know that the minimum

of (3.4) is achieved at v̂ = ∇Rλ(|μ|)|μ=β . We can employ (3.4) to reformulate
(3.3) as

(β̂, v̂) = argmin
β,v

{
L(β) + vT|β| −R�

λ(v)
}
.

The optimization above can then be solved by exploiting the alternating minimiza-
tion scheme. In particular, we repeatedly apply the following two steps:

(1) Optimize over β with v fixed: β̂
(�) = argminβ{L(β) + (̂v(�−1))T|β|}.

(2) Optimize over v with β fixed. We can obtain closed form solution: v(�) =
∇Rλ(|μ|)|

μ=β̂
(�) .

This is a special case of (1.2) if we take w(β) = λ−1∇Rλ(|μ|)|μ=β and let �

grow until convergence. Therefore, with a properly chosen weight function w(·),
our proposed algorithm bridges the adaptive Lasso and folded-concave penalized
regression together under different choices of �. In Corollary 4.3, we will prove
that, when � is in the order of log(λ

√
n), then the proposed estimator enjoys the

optimal statistical rate ‖β̂(�) − β∗‖2 ∝ √
s/n, under mild conditions.

4. Theoretical results. We establish the optimal statistical rate of conver-
gence and the computational complexity of the proposed algorithm. To establish
these results in a general framework, we first introduce the localized versions of
the sparse eigenvalue and restricted eigenvalue conditions.

4.1. Localized eigenvalues and assumptions. The sparse eigenvalue condition
[Zhang and Zhang (2012)] is commonly used in the analysis of sparse learning
problems. However, it is only valid for the least square loss. For a general loss
function, the Hessian matrix depends on the parameter β and can become nearly
singular in certain regions. For example, the Hessian matrix of the logistic loss is

∇2L(β) = 1

n

n∑
i=1

xixT
i · 1

1 + exp (−xT
i β)

· 1

1 + exp (xT
i β)

,

which tends to zero as ‖β‖2 → ∞, no matter what the data are. One of our key
theoretical observations is that: what we really need are the localized conditions
around the true parameters β∗, which we now introduce.
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4.1.1. Localized sparse eigenvalue.

DEFINITION 4.1 (Localized sparse eigenvalue, LSE). The localized sparse
eigenvalues are defined as

ρ+(m, r) = sup
u,β

{
uT

J ∇2L(β)uJ : ‖uJ ‖2
2 = 1, |J | ≤ m,

∥∥β − β∗∥∥
2 ≤ r

};
ρ−(m, r) = inf

u,β

{
uT

J ∇2L(β)uJ : ‖uJ ‖2
2 = 1, |J | ≤ m,

∥∥β − β∗∥∥
2 ≤ r

}
.

Both ρ+(m, r) and ρ−(m, r) depend on the Hessian matrix ∇2L(β), the true
coefficient β∗, the sparsity level m, and an extra locality parameter r . They reduce
to the commonly-used sparse eigenvalues when ∇2L(β) does not change with β
as in the quadratic loss. The following assumption specifies the LSE condition in
detail. Recall that s = ‖β∗‖0.

ASSUMPTION 4.1. We say the LSE condition holds if there exist an integer
s̃ ≥ cs for some constant c, r and a constant C such that

0 < ρ∗ ≤ ρ−(2s + 2̃s, r) < ρ+(2s + 2̃s, r) ≤ ρ∗ < +∞ and

ρ+(̃s, r)/ρ−(2s + 2̃s, r) ≤ 1 + Cs̃/s.

Assumption 4.1 is standard for linear regression problems and is commonly
referred to as the sparse eigenvalue condition when r = ∞. Such conditions
have been employed by Bickel, Ritov and Tsybakov (2009), Loh and Wainwright
(2015), Negahban et al. (2012), Raskutti, Wainwright and Yu (2010), Wang, Liu
and Zhang (2014). The newly proposd LSE condition, to the best of our knowl-
edge, is the weakest one in the literature.

4.1.2. Localized restricted eigenvalue. In this section, we introduce the lo-
calized version of the restricted eigenvalue condition [Bickel, Ritov and Tsybakov
(2009)]. This is an alternative condition to Assumption 4.1 that allows us to handle
general Hessian matrices that depend on β , under which the theoretical properties
can be carried out parallelly.

DEFINITION 4.2 (Localized restricted eigenvalue, LRE). The localized re-
stricted eigenvalue is defined as

κ+(m,γ, r) = sup
u,β

{
uT∇2L(β)u : (u,β) ∈ C(m,γ, r)

};
κ−(m,γ, r) = inf

u,β

{
uT∇2L(β)u : (u,β) ∈ C(m,γ, r)

}
,

where C(m,γ, r) ≡ {u,β : S ⊆ J, |J | ≤ m,‖uJ c‖1 ≤ γ ‖uJ ‖1,‖β − β∗‖2 ≤ r} is
a local �1 cone.
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Similarly, the localized restricted eigenvalue reduces to the restricted eigen-
value when ∇2L(β) does not depend on β . We say the localized restricted
eigenvalue condition holds if there exists m,γ, r such that 0 < κ−(m,γ, r) ≤
κ+(m,γ, r) < ∞. In Appendix B, we give a geometric explanation of the local
�1 cone, C(m,γ, r), and the corresponding localized analysis.

4.2. Statistical theory. In this section, we provide theoretical analysis of the
proposed estimator under the LSE condition. For completeness, in Appendix B,
we also establish similar results under localized restricted eigenvalue condition.

We begin with the contraction stage. Recall that the initial value β̃
(0)

is taken as 0
for simplicity. We need the following assumption on the tightening function.

ASSUMPTION 4.2. Assume that w(·) ∈ T and w(u) ≥ 1/2 for u =
18ρ−1∗ δ−1λ. Here T is the tightening function class defined in (2.1).

Our first result characterizes the statistical convergence rate of the estimator in
the contraction stage. The key ideas of the proofs are outlined in Section 5. Other
technical lemmas and details can be found in the Supplementary Material [Fan et
al. (2018)].

PROPOSITION 4.1 (Statistical rate in the contraction stage). Suppose that As-
sumption 4.1 holds. If λ, ε and r satisfy

4
(∥∥∇L

(
β∗)∥∥∞ + ε

) ≤ λ ≤ rρ∗/(18
√

s),(4.1)

then any εc-optimal solution β̃
(1)

satisfies∥∥β̃(1) − β∗∥∥
2 ≤ 18ρ−1∗ λ

√
s � λ

√
s.

The result above is a deterministic statement. Its proof is omitted as it directly
follows from Lemma 5.1 with � = 1 and E1 there to be S, the support of the true
parameter β∗. The proof of Lemma 5.1 can be found in Appendix B. In Proposi-
tion 4.1, the approximation error εc, can be taken to be the order of λ � √

logd/n

in the sub-Gaussian noise case. The contraction stage ensures that the �2 estimation
error is proportional to λ

√
s, which is identical to the optimal rate of convergence

for the Lasso estimator [Bickel, Ritov and Tsybakov (2009), Zhang (2009)]. Our
result can be regarded as a generalization of the usual Lasso analysis to more gen-
eral losses, which satisfy the localized sparse eigenvalue condition. We are ready
to present the main theorem, which demonstrates the effects of optimization error,
shrinkage bias and tightening steps on the statistical rate.

THEOREM 4.2 (Optimal statistical rate). Suppose Assumptions 4.1 and 4.2
hold. If 4(‖∇L(β∗)‖∞ + (εt ∨ εc)) ≤ λ � r/

√
s, then any εt -optimal solution
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β̃
(�)

, � ≥ 2, satisfies the following δ-contraction property:∥∥β̃(�) − β∗∥∥
2 ≤ C

(∥∥∇L
(
β∗)

S

∥∥
2 + εt

√
s + λ

∥∥w
(|β∗

S | − u
)∥∥

2

)
+ δ

∥∥β̃(�−1) − β∗∥∥
2,

where C is a constant and u = 18ρ−1∗ δ−1λ. Consequently, there exists a constant
C′ such that

∥∥β̃(�) − β∗∥∥
2 ≤ C′(∥∥∇L

(
β∗)

S

∥∥
2︸ ︷︷ ︸

oracle rate

+
opt err︷ ︸︸ ︷
εt

√
s +λ

∥∥w
(∣∣β∗

S

∣∣ − u
)∥∥

2︸ ︷︷ ︸
coefficient effect

) +
tightening effect︷ ︸︸ ︷
2C′δ�−1λ

√
s .

The effect of the tightening stage can be clearly seen from the theorem above:
each tightening step induces a δ-contraction property, which reduces the influence
of the estimation error from the previous step by a δ-fraction. Therefore, in or-
der to achieve the oracle rate

√
s/n, we shall carefully choose the optimization

error such that εt � ‖∇L(β∗)‖2/
√

s and make the tightening iterations � large
enough. As a corollary, we give the explicit statistical rate under the quadratic loss

L(β) = (2n)−1‖y − Xβ‖2
2. In this case, we take λ �

√
n−1logd so that the scaling

condition (4.1) holds with high probability. We use sub-Gaussian(0, σ 2) to denote
a sub-Gaussian distribution random variable with mean 0 and variance proxy σ 2.

COROLLARY 4.3. Let yi = xT
i β∗ + εi , 1 ≤ i ≤ n, be independently and iden-

tically distributed sub-Gaussian random variables with εi ∼ sub-Gaussian(0, σ 2).
The columns of X are normalized such that maxj ‖X∗j‖2 ≤ √

n. Assume there ex-
ists an γ > 0 such that ‖β∗

S‖min ≥ u+γ λ and w(γ λ) = 0. Under Assumptions 4.1

and 4.2, if λ �
√

n−1logd , εt ≤ √
1/n and T � log logd , then with probability at

least 1 − 2d−η1 − 2 exp{−η2s}, β̃
(T )

must satisfy∥∥β̃(T ) − β∗∥∥
2 �

√
s/n,

where η1 and η2 are positive constants.

Corollary 4.3 indicates that I-LAMM can achieve the oracle statistical rate√
s/n as if the support for the true coefficients were known in advance. To achieve

such rate, we require εc � √
logd/n and εt �

√
1/n. In other words, we need only

a more accurate estimator in the tightening stage rather than in both stages. This
will help us to relax the computational burden, which will be discussed in detail
in Theorem 4.7. Our last result concerns the oracle property of the obtained es-

timator β̃
(�)

for � large enough, with the proof postponed to Appendix B in the
Supplementary Material [Fan et al. (2018)]. We first define the oracle estimator β̂

◦
as

β̂
◦ = argmin

supp(β)=S

L(β).
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THEOREM 4.4 (Strong oracle property). Suppose Assumptions 4.1 and 4.2
hold. Assume ‖β∗

S‖min ≥ u + γ λ and w(γ λ) = 0 for some constant γ . Let
4(‖∇L(β̂

◦
)‖∞ + εc ∨ εt ) ≤ λ � r/

√
s and εt ≤ λ/

√
s. If ‖β̂◦ − β∗‖max ≤ ηn � λ,

then for � large enough such that � � log{(1 + εc/λ)
√

s}, we have

β̃
(�) = β̂

◦
.

The theorem above is again a deterministic result. Large probability bound can
be obtained by bounding the probability of the event {4(‖∇L(β̂

◦
)‖∞ +(εc ∨εt )) ≤

λ}. The assumption that ‖β̂◦ −β∗‖max � λ is very mild, because the oracle estima-
tor only depends on the intrinsic dimension s rather than d . For instance, under lin-
ear model with sub-Gaussian errors, it can be shown that ‖β̂

◦ −β‖max ≤ √
log s/n

with high probability.
Theorem 4.4 implies that the oracle estimator β̂

◦
is a fixed point of the I-LAMM

algorithm, namely, once the initial estimator is β̂
◦
, the next iteration produces the

same estimator. This is in the same spirit as that proved in Fan, Xue and Zou
(2014).

4.3. Computational theory. In this section, we analyze the computational rate
for all of our approximate solutions. We start with the following assumption.

ASSUMPTION 4.3. ∇L(β) is locally ρc-Lipschitz continuous, that is,

(4.2)
∥∥∇L(β1) − ∇L(β2)

∥∥
2 ≤ ρc‖β1 − β2‖2 for β1,β2 ∈ B2

(
R/2,β∗)

,

where ρc is the Lipschitz constant and R � ‖β∗‖2 + λ
√

s.

We then give the explicit iteration complexity of the contraction stage in the
following proposition. Recall the definition of φ0 and γu in Algorithm 2.1, and ρ∗
in Assumption 4.1.

PROPOSITION 4.5 (Sublinear rate in the contraction stage). Assume that As-
sumptions 4.1 and 4.3 hold. Let 4(‖∇L(β∗)‖∞ + εc) ≤ λ � r/

√
s. To achieve an

approximate local solution β̃
(1)

such that ωλ(0) (β̃
(1)

) ≤ εc in the contraction stage,
we need no more than ((1 + γu)Rρc/εc)

2 LAMM iterations, where ρc is a constant
defined in (4.2).

The sublinear rate is due to the lack of strong convexity of the loss function in
the contraction stage, because we allow starting with arbitrary bad initial value,
say 0. Once it enters the contracting region (aka, the tightening stage), the problem
becomes sparse strongly convex (see Proposition B.3 in Appendix B), which en-
dows the algorithm a linear rate of convergence. This is empirically demonstrated
in Figure 2. Our next proposition gives a formal statement on the geometric con-
vergence rate for each subproblem in the tightening stage.
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PROPOSITION 4.6 (Geometric rate in the tightening stage). Suppose that the

same conditions for Theorem 4.2 hold. To obtain an approximate solution β̃
(�)

satisfying ωλ(�−1) (β̃
(�)

) ≤ ε in each step of the �th tightening stage (� ≥ 2), we need
at most C′ log(C′′λ

√
s/ε) LAMM iterations, where C ′ and C′′ are two positive

constants.

Proposition 4.6 suggests that we only need to conduct a logarithmic number of
LAMM iterations in each tightening step. Simply combining the computational
rate in both the contraction and the tightening stages, we manage to obtain the
global computational complexity.

THEOREM 4.7. Assume that λ
√

s = o(1). Suppose that the same condi-

tions for Theorem 4.2 hold. To achieve an approximate solution β̃
(�)

such that

ωλ(0) (β̃
(1)

) ≤ εc � λ and ωλ(k−1) (β̃
(k)

) ≤ εt �
√

1/n for 2 ≤ k ≤ T , the total num-
ber of LAMM iterations we need is at most

C ′ 1

ε2
c

+ C′′(T − 1) log
(

1

εt

)
,

where C′ and C′′ are two positive constants, and T � log(λ
√

n).

REMARK 4.8. We complete this section with a remark on the sublinear rate in
the contraction stage. Without further structures, the sublinear rate in the first stage
is the best possible one for the proposed optimization procedure when λ is held
fixed. Linear rate can be achieved when we start from a sufficiently good initial
value. Another strategy is to use the path-following algorithm which is developed
in Wang, Liu and Zhang (2014), where they gradually reduce the size of λ to ensure
the solution sequence to be sparse.

5. Proof strategy for main results. In this section, we present the proof
strategies for the main statistical and computational theorems, with technical lem-
mas and other details left in the Supplementary Material [Fan et al. (2018)].

5.1. Proof strategy for statistical recovery result in Section 4.2. Proposi-
tion 4.1 indicates that the contraction estimator suffers from a suboptimal rate
of convergence λ

√
s. The tightening stage helps refine the statistical rate adap-

tively. To suppress the noise in the �th subproblem, it is necessary to control
minj {|β̃(�−1)

j | : j ∈ Sc} in high dimensions. For this, we construct an entropy set

E� of S in each tightening subproblem to bound the magnitude of ‖λ(�−1)

Ec
�

‖min. The
entropy set at the �th step is defined as

E� = S ∪ {
j : λ(�−1)

j < λw(u), u = 18δ−1ρ−1∗ λ ∝ λ
}
.(5.1)
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Under mild conditions, we will show that |E�| ≤ 2s and ‖λ(�)

Ec
�
‖min ≥ λw(u) ≥ λ/2,

which is more precisely stated in the following lemma.

LEMMA 5.1. Suppose that Assumptions 4.1 and 4.2 hold. If 4(‖∇L(β∗)‖∞ +
εt ∨ εc) ≤ λ � r/

√
s, we must have |E�| ≤ 2s, and the ε-optimal solution β̃

(�)

satisfies ∥∥β̃(�) − β∗∥∥
2 ≤ 12ρ−1∗

(∥∥λ(�−1)
S

∥∥
2 + ∥∥∇L

(
β∗)

E�

∥∥
2 + ε

√|E�|)
≤ 18ρ−1∗ λ

√
s � λ

√
s.

Lemma 5.1 bounds ‖β̃(�) − β∗‖2 in terms of ‖λ(�−1)
S ‖2, which is further upper

bounded by the order of λ
√

s. The rate λ
√

s coincides with the convergence rate of
the contraction estimator. Later, we will exploit this result in our localized analysis

to secure that all the approximate solutions {β̃(�)}�=1,...,T fall in a local �2-ball
centered at β∗ with radius r � λ

√
s.

The next lemma further bounds ‖λ(�−1)
S ‖2 using functionals of β̃

(�−1)
, which

connects the adaptive regularization parameter to the estimator from previous
steps.

LEMMA 5.2. Assume w ∈ T . Let λ
(�−1)
j = λw(|β̃(�−1)

j |) for β̃
(�−1)

, then for
any norm ‖ · ‖∗, we have∥∥λ(�−1)

S

∥∥∗ ≤ λ
∥∥w

(∣∣β∗
S

∣∣ − u
)∥∥∗ + λu−1∥∥β∗

S − β̃
(�−1)

S

∥∥∗,
where w(|β∗

S | − u) ≡ (w(|β∗
j | − u))j∈S .

Lemma 5.2 bounds the tightening weight λ(�−1) in the �th subproblem by two
terms. The first term describes the coefficient effects: when the coefficients are
large enough (in absolute value) such that ‖β∗‖min ≥ u + γ λ and w(γ λ) = 0, it
becomes 0. The second term concerns the estimation error of the estimator from
previous step. Combing the above two lemmas, we prove that β̃

(�)
benefits from

the tightening stage and possesses a refined statistical rate of convergence. The
proof of Corollary 4.3 is left in Appendix B in the Supplementary Material [Fan et
al. (2018)].

PROOF OF THEOREM 4.2. Applying Lemma 5.1, we obtain the size of the
entropy set E� [see the definition in (5.1)] is bounded by 2s and∥∥β̃(�) − β∗∥∥

2 ≤ C1
(∥∥λ(�−1)

S

∥∥
2 + ∥∥∇L

(
β∗)

E�

∥∥
2 + εt

√|E�|) � λ
√

s,(5.2)

where C1 = 12ρ−1∗ . Using Lemma 5.2 yields that∥∥λ(�−1)
S

∥∥
2 ≤ λ

∥∥w
(∣∣β∗

S

∣∣ − u
)∥∥

2 + λu−1∥∥(
β̃

(�−1) − β∗)
S

∥∥
2.



LOCAL ADAPTIVE MAJORIZE-MINIMIZATION 833

Plugging the inequality above into (5.2) obtains that∥∥β̃(�) − β∗∥∥
2 ≤ C1

(∥∥∇L
(
β∗)

E�

∥∥
2 + εt

√|E�|︸ ︷︷ ︸
I

+λ
∥∥w

(∣∣β∗
S

∣∣ − u
)∥∥

2

)
(5.3)

+ C1λu−1∥∥(
β̃

(�−1) − β∗)
S

∥∥
2.

We now simplify the inequality above by providing an upper bound for term I. De-
composing the support set E� into S and E� \S and applying the triangle inequality
along with the Hölder inequality, we have

I ≤ ∥∥∇L
(
β∗)

S

∥∥
2 + εt

√
s + (∥∥∇L

(
β∗)∥∥∞ + εt

)√
E�/S.(5.4)

Following the proof of Lemma 5.1 in Appendix B,
√|E� \ S| can be bounded by∥∥β̃(�−1)

E�\S
∥∥

2/u ≤ ∥∥β̃(�−1) − β∗∥∥
2/u where u = 18ρ∗−1

δ−1λ ∝ λ.

Therefore, (5.4) can be simplified to

I ≤ ∥∥∇L
(
β∗)

S

∥∥
2 + εt

√
s + λ

4u

∥∥β̃(�−1) − β∗∥∥
2,

which, combining with (5.3), yields the contraction property with δ. Consequently,
we obtain∥∥β̃(�) − β∗∥∥

2

≤ C
(∥∥∇L

(
β∗)

E�

∥∥
2 + εt

√
s + λ

∥∥wS

(∣∣β∗
S

∣∣ − u
)∥∥

2

) + δ�−1∥∥β̃(1) − β∗∥∥
2

≤ C
(∥∥∇L

(
β∗)

E�

∥∥
2 + εt

√
s + λ

∥∥wS

(∣∣β∗
S

∣∣ − u
)∥∥

2

) + Cδ�−1λ
√

s,

where C = C1/(1 − δ) and the last inequality follows from Proposition 4.1. The
proof is complete. �

5.2. Proof strategy for computational result in Section 4.3. In this section,
we present the sketch for the proofs of the results in Section 4.3. We start with
the contraction stage. The next lemma shows that the contraction stage enjoys a
sublinear rate of convergence. The proof can be found in Appendix C.

LEMMA 5.3. Recall that F(β,λ) = L(β) + ∑d
j=1 λj |βj |. We have

F
(
β(1,k),λ(0)) − F

(
β̂

(1)
,λ(0)) ≤ φc

2k

∥∥β(1,0) − β̂
(1)∥∥2

2.

The result above suggests that the optimization error decreases to zero at the
rate of 1/k, while Proposition 4.1 indicates that the best statistical rate for the
contraction stage is only in the order of λ

√
s. Therefore, one can early stop the

LAMM iterations in the contraction stage as soon as it enters the contraction region
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{β : ‖β − β∗‖2 � Cλ
√

s,β is sparse}. It is this lemma that helps characterize the
iteration complexity in terms of the total number of LAMM updates needed in the
contraction stage; see Proposition 4.5.

To utilize the localized sparse eigenvalue condition in the tightening stage, we
need the following proposition, which characterizes the sparsity of all the approx-
imate solutions produced by the contraction stage.

LEMMA 5.4. Assume that Assumption 4.1 holds. If 4(‖∇L(β∗)‖∞ + εc) ≤
λ � r/

√
s, then β̃

(1)
in the contraction stage is s + s̃ sparse. In particular, we have

‖(β̃(1)
)Sc‖0 ≤ s̃.

Together with Proposition 4.1, it ensures that the contraction estimator β̃
(1)

falls
in the contraction region {β : ‖β −β∗‖2 ≤ Cλ

√
s and β is sparse}. This makes the

localized sparse eigenvalue condition useful, and thus makes the geometric rate of
convergence possible.

LEMMA 5.5 (Geometric rate in the tightening stage). Under the same condi-
tions for Theorem 4.2, for any � ≥ 2, {β(�,k)} converges geometrically,

F
(
β(�,k),λ(�−1)) − F

(
β̂

(�)
,λ(�−1))

≤
(

1 − 1

4γuκ

)k{
F

(
β(�,0),λ(�−1)) − F

(
β̂

(�)
,λ(�−1))}.

The above result suggests that each subproblem in the tightening stage enjoys
a geometric rate of convergence, which is the fastest possible rate among all first-
order optimization methods under the blackbox model. Lemma 5.5 can be used to
obtain the computational complexity analysis of each single step of the tightening
stage, that is, Proposition 4.6.

6. Numerical examples. In this section, we evaluate the statistical perfor-
mance of the proposed framework through several numerical experiments. We
consider the following three examples.

EXAMPLE 6.1 (Linear regression). In the first example, continuous responses
were generated according to the model

yi = xT
i β∗ + εi, where β∗ = (5,3,0,0,−2,0, . . . ,0︸ ︷︷ ︸

d−5

)T,(6.1)

and n = 100. Moreover, in model (6.1), {xi}i∈[n] are generated from N(0,�) dis-
tribution with covariance matrix �, which is independent of εi ∼ N(0,1). We take
� as a correlation matrix � = (ρij ) as follows:
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• Case 1: independent correlation design with (ρij ) = diag(1, . . . ,1).
• Case 2: constant correlation design with ρij = 0.75 if i 
= j ; ρij = 1, otherwise.
• Case 3: autoregressive correlation design with ρij = 0.95|i−j |.

EXAMPLE 6.2 (Logistic regression). In the second example, independent ob-
servations with binary responses are generated according to the model

P(yi = 1|xi ) = exp{xT
i β∗}

1 + exp{xT
i β∗} , i = 1, . . . , n,

where β∗ and {xi}i∈[n] are generated in the same manner as in the case 1 of Exam-
ple 6.1.

EXAMPLE 6.3 (Varying dimensions and sample sizes). In this example, we
continue Example 6.1 with varying dimensions and sample sizes. Specifically,
we consider linear regression under autoregressive correlation design with ρij =
0.90|i−j | with d varying from 1000 to 3500 and n varying from 100 to 500.

In the first two cases, we fix the sample size n at 100 and consider d = 1000.
We investigate the sparsity recovery and estimation properties of the I-LAMM (or
TAC) estimator via numerical simulations. We compared the I-LAMM estimator
with the following methods: the oracle estimator which assumes the availability of
the active set S; the refitted Lasso (Refit), which uses a post least square refit on the
selected set from Lasso; the adaptive Lasso (ALasso) estimator with weight func-
tion w(βj ) = 1/|βj | proposed by Zou (2006); the smoothly clipped absolute devia-
tion (SCAD) estimator [Fan and Li (2001)] with a = 3.7; and the minimax concave
penalty (MCP) estimator with a = 3 [Zhang (2010a)]. For I-LAMM, we used the
3-fold cross-validation to select the constant c ∈ 0.5 × {1,2, . . . ,20} in the tuning
parameter λ = c

√
logd/n in the contraction stage, with regularization parameters

updated automatically at later steps. We further took γu = 2, εc = √
logd/n and

εt = √
1/n. For the Lasso, we used the I-LAMM algorithm; for the ALasso, se-

quential tuning in Bühlmann and van de Geer (2011) was used: we employed the
3-fold cross validation in each step with the I-LAMM algorithm used; and the
SCAD and MCP estimators were computed using the R package ncvreg and the
3-fold cross-validation was used for tuning parameter selection.

For each simulation setting, we generated 100 simulated datasets and applied
different estimators to each dataset. We report different statistics for each estima-
tor in Table 1 and Figure 4. To measure the sparsity recovery performance, we cal-
culated the median of the number of zero coefficients incorrectly estimated to be
nonzero (i.e., false positive, denoted as FP), the median of the number of nonzero
coefficients correctly estimated to be nonzero (i.e., true positive, denoted by TP).
To measure the estimation accuracy, we calculated the median of mean squared
error (MSE). To evaluate the computational efficiency, we gave the median of time
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TABLE 1
The median of MSE, TP, FP, Time in seconds under the Case 1, Case 2 and Case 3 for linear

regression in Example 6.1 and logistic regression in Example 6.2

MSE TP FP Time MSE TP FP Time

Linear\Case 1 Linear\Case 2
I-LAMM 0.0285 3.00 0.00 0.17 0.0659 3.00 0.00 0.19
Lasso 0.3114 3.00 17.00 0.02 1.3709 3.00 16.00 0.04
Refit 0.5585 3.00 17.00 0.02 2.1573 3.00 16.00 0.04
ALasso 0.4616 3.00 15.00 0.06 1.6077 3.00 13.00 0.08
SCAD 0.0397 3.00 0.00 0.21 0.0695 3.00 0.00 0.23
MCP 0.0344 3.00 0.00 0.17 0.0706 3.00 0.00 0.22
Oracle 0.0258 3.00 0.00 – 0.0565 3.00 0.00 –

Linear\Case 3 Logistic
I-LAMM 0.2819 3.00 3.00 0.22 8.94 3.00 0.00 0.20
Lasso 5.8061 2.00 20.00 0.03 26.92 3.00 20.00 0.03
Refit 2.6354 2.00 20.00 0.03 26.85 3.00 20.00 0.03
ALasso 4.4242 2.00 12.00 0.06 8.28 3.00 7.00 0.05
SCAD 14.8680 2.00 5.00 0.25 9.48 3.00 12.00 0.21
MCP 14.9381 1.00 1.00 0.18 11.84 3.00 3.00 0.22
Oracle 0.1661 3.00 0.00 – 3.32 3.00 0.00 –

(in seconds) used to produce the final estimator for different methods. Note that
the computational time provided here is merely for a reference. They depend on
optimization errors and implementation.

FIG. 4. The median of MSE with varying dimensions and sample sizes in Example 6.3.
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We have several important observations. First, it is not surprising that Lasso
tends to overfit. Other procedures improve the performance of Lasso by reduc-
ing the estimation bias and the false positive rate. The best overall performance is
achieved by the I-LAMM estimator with small MSE and FP in all cases. The MCP
and SCAD estimators also have overall good performance in the logistic regression
model, and case 1 and case 2 of the linear regression model. However, all of MCP,
SCAD and ALasso breaks down by missing true positives in case 3, where the de-
sign matrix exhibits a strong correlation between features, while I-LAMM remains
the best followed by the Lasso estimator. This suggests the superiority of I-LAMM
over other implementation-based nonconvex penalized regression methods under
strongly correlated designs. The MSE of the I-LAMM estimator keeps flat when
the dimension d varies, which justifies the oracle rate

√
s/n. SCAD and MCP have

competitive performance when the dimension is relatively small, but they quickly
break down when the dimension gets larger. This is possibly due to the numeri-
cal instability for directly solving nonconvex systems. This phenomenon is also
observed in Wang, Liu and Zhang (2014). When the sample size is increasing,
the performances of I-LAMM, SCAD and MCP are almost identical to each other
while other convex methods suffer from slightly worse performance.

In addition, to demonstrate the phase transition phenomenon, in Figure 2, we
plot the log estimation error verses the number of iterations for each tightening step
for case 2 in Example 6.1. Indeed, the contraction stage suffers a sublinear rate of
convergence before getting into the contracting region and enjoys a geometric rate
afterwards, while the tightening stage has a geometric rate of convergence. These
are in line with our asymptotic theory.

7. Conclusions and discussions. We propose a computational framework, I-
LAMM (or TAC), for simultaneous control of algorithmic complexity and sta-
tistical error when fitting high-dimensional models. Even though I-LAMM only
solves a sequence of convex programs approximately, the solution enjoys the same
optimal statistical property of the unobtainable global optimum for the folded-
concave penalized regression. Our theoretical treatment relies on a novel localized
analysis which avoids the parameter bound contraint, such as ‖β‖1 ≤ R, used in
all other recent works. Statistically, a δ-contraction property is established: each
convex program contracts the previous estimator by a δ-fraction until the opti-
mal statistical error is reached. Computationally, a phase transition in algorithmic
convergence is established. The contraction stage enjoys only a sublinear rate of
convergence while the tightening stage converges geometrically fast.

Recently, Negahban et al. (2012) proposed the restricted eigenvalue condition
for unified M-estimators. Loh (2017) leveraged this condition, which is more re-
lated to our localized conditions. However, there are two major differences. First,
their local parameter r is fixed at a constant independent of n,d, s, while we allow
it to go to 0 as long as r � √

s logd/n. Second, their high-dimensional regres-
sion problem relies on the �1 ball constraint ‖β‖1 ≤ R, while our newly developed
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localized analysis, together with the localized conditions, removes such type of
constraint. In Lozano and Meinshausen (2013), the authors only consider the so-
lutions in a local cone, which makes their analysis much simpler than ours. In
this paper, we provide a stronger result: with high probability, all local solutions
must fall in a local sparse (or �1) cone, and thus makes the localized eigenvalue
conditions applicable.

More recently, Wang, Kim and Li (2013) proposed a two-step approach named
calibrated CCCP which achieve strong oracle properties when using the Lasso es-
timator as initialization. Our work differs from theirs in two aspects. First, their
work aims at analyzing the least square loss while our analysis handles much
broader families of loss functions. Second, their procedure attains an oracle rate
but requires the minimum signal strength to be in the order of s

√
logd/n. Such

a requirement is suboptimal. In contrast, our results requires only
√

logd/n. This
weakened assumption on minimum signal strength also distinguishes I-LAMM
from other convex procedures, such as least squares refit after model selection
[Belloni and Chernozhukov (2013)]. In Wang, Kim and Li (2013), the authors also
proposed a high-dimensional BIC criterion for variable selection and finding the
oracle estimator along the solution path. We believe such a criterion can also be
applied to our framework under general conditions. In further studies, Loh and
Wainwright (2014, 2015) and Wang, Liu and Zhang (2014) study the theoreti-
cal properties of nonconvex penalized M-estimators. Specifically, Loh and Wain-
wright (2015) and Loh and Wainwright (2014) provide conditions under which all
the local optima obtained by an �1-ball constrained optimization enjoys desired
statistical rates. Wang, Liu and Zhang (2014) propose a path-following strategy to
obtain optimal computational and statistical rates of convergence, which also relies
an extra ball constraint.

Our work differs from the aforementioned literature at least in three aspects:

(1) Our theory exploits a new notion of localized analysis, which is not available
in Loh and Wainwright (2014, 2015) and Wang, Liu and Zhang (2014). Such
analysis allows us to eliminate the extra ball constraints in previous work,
which introduce more tuning effort and are intuitively redundant given the
penalty function.

(2) Our statistical results tolerate explicit computational precisions and are valid
for all obtained approximate solutions, while the analysis in Loh and Wain-
wright (2015) only targets on the exact local solutions. Moreover, our compu-
tational result does not rely on the path-following type strategy as in Wang,
Liu and Zhang (2014) and is valid for any algorithm with desired statistical
properties as basic building blocks within each of the tightening steps.

(3) We provide a refined oracle statistical rate
√

s/n for the obtained approxima-
tion solution, while Loh and Wainwright (2015) and Wang, Liu and Zhang
(2014) do not provide such a result. Loh and Wainwright (2015) provide a sta-
tistical rate which is also achievable using the convex Lasso penalty. Wang,
Liu and Zhang (2014) only prove the oracle rate for exact local solutions.
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Our work can be applied to many different topics: low-rank matrix completion
problems, high-dimensional graphical models, quantile regression and many oth-
ers. We conjecture that in all of the aforementioned topics, I-LAMM can give a
faster rate by approximately solving a sequence of convex programs, with con-
trolled computing resources. It is also interesting to see how our algorithm works
in large-scale distributed systems. Is there any fundamental tradeoffs between sta-
tistical efficiency, communication and time complexity? We leave these as future
research projects.

SUPPLEMENTARY MATERIAL

Supplement to “I-LAMM for Sparse learning: simultaneous control of al-
gorithmic complexity and statistical error” (DOI: 10.1214/17-AOS1568SUPP;
.pdf). The Supplementary Material [Fan et al. (2018)] contains proofs for Corol-
lary 4.3, Theorem 4.4, Proposition 4.5, Proposition 4.6 and Theorem 4.7 in Sec-
tion 4. It collects proofs of the lemmas presented in Section 5. An application to
robust linear regression is given in Appendix D. Other technical lemmas are col-
lected in Appendices E and F.
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