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MULTISCALE BLIND SOURCE SEPARATION

BY MERLE BEHR∗,1, CHRIS HOLMES†,2 AND AXEL MUNK∗,‡,3

University of Goettingen∗, University of Oxford†, and
Max Planck Institute for Biophysical Chemistry‡

We provide a new methodology for statistical recovery of single lin-
ear mixtures of piecewise constant signals (sources) with unknown mixing
weights and change points in a multiscale fashion. We show exact recovery
within an ε-neighborhood of the mixture when the sources take only values in
a known finite alphabet. Based on this we provide the SLAM (Separates Lin-
ear Alphabet Mixtures) estimators for the mixing weights and sources. For
Gaussian error, we obtain uniform confidence sets and optimal rates (up to
log-factors) for all quantities. SLAM is efficiently computed as a nonconvex
optimization problem by a dynamic program tailored to the finite alphabet
assumption. Its performance is investigated in a simulation study. Finally, it
is applied to assign copy-number aberrations from genetic sequencing data to
different clones and to estimate their proportions.

1. Introduction. As the presented methodology requires a quite broad range
of techniques, we will briefly introduce them in this section for explanatory pur-
poses. Details are given in subsequent sections and the Supplementary Material
[5].

1.1. The statistical blind source separation problem. We will start by intro-
ducing a particular kind of the blind source separation (BSS) problem which will
be considered throughout this paper. More generally, in BSS problems (for a re-
view, see Section 1.8) one observes a mixture of signals (sources) and aims to
recover these sources from the available observations, usually corrupted by noise.
The blindness refers to the fact that neither the sources nor the mixing weights
are known. Of course, without any additional information on the sources the BSS
problem is unsolvable as the weights and sources cannot be separated, in general.
However, under the additional assumption that the sources take values in a known
finite alphabet, we will show that estimation of all quantities and inference for
these is indeed possible.
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Motivated by several applications mainly from digital communications [e.g.,
the recovery of mixtures of multi-level PAM signals (see [56, 69])] and cancer
genetics (see Section 1.7), we assume, from now on, that the m source functions
f i , i = 1, . . . ,m, consist of arrays of constant segments, that is, step functions with
unknown jump sizes, numbers, and locations of change points (c.p.’s), respectively.
More specifically, let for a finite (known) ordered alphabet A = {a1, . . . , ak} ⊂ R,
with a1 < · · · < ak , each source function be in the class of step functions on [0,1)

(1) S(A) :=
{

K∑
j=0

θj1[τj ,τj+1) : θj ∈ A,0 = τ0 < · · · < τK < τK+1 = 1,K ∈ N

}
.

Note that this implies that for each source function the number K(f i) of c.p.’s is
assumed to be finite, possibly different, and unknown. We will assume θj �= θj+1
for j = 0, . . . ,K to ensure identifiability of the c.p.’s τj . Note that without further
specification S := S(A) is an extremely flexible class of functions, including any
discretized source function taking values in A. Moreover, we define the set of all
possible (linear) mixtures with m components each in S as

(2) M := M(A,m) =
{
ω�f =

m∑
i=1

ωif
i : ω ∈ �(m) and f ∈ S(A)m

}
,

with mixing weights ω in the m-simplex

(3) �(m) :=
{
ω ∈ Rm : 0 ≤ ω1 ≤ · · · ≤ ωm and

m∑
i=1

ωi = 1

}
.

For a set �̃ ⊂ �(m) we define M(A, �̃) analogously. Throughout the following,
we assume that m is known. Extension to unknown m is akin to a model selection
type of problem and beyond the scope of this paper.

In summary, in this paper we will be concerned with the statistical blind source
separation regression model.

The SBSSR-model. For a given finite alphabet A and a given number of mix-
ture components m ∈ N let g = ∑m

i=1 ωif
i ∈ M be an arbitrary mixture of m

piecewise constant source functions f i ∈ S . Suppose we observe

(4) Yj = g(xj ) + σεj , j = 1, . . . , n,

at sampling points xj := (j − 1)/n, s.t. the error (ε1, . . . , εn)
� ∼ N (0, In), σ > 0,

that is, i.i.d. centered normal random variables with variance σ 2.

EXAMPLE 1.1. In Figure 1, a mixture g of m = 3 source functions f 1, f 2, f 3,
taking values in the alphabet A = {0,1,2}, is displayed. The mixing weights are
given by ω� = (0.11,0.29,0.6). Normal noise with standard deviation σ = 0.22
is added according to the SBSSR-model, n = 7680. Both, n and σ were chosen
close to our data example in Section 5.



MULTISCALE BLIND SOURCE SEPARATION 713

FIG. 1. The mixture g = 0.11f 1 + 0.29f 2 + 0.6f 3, together with the observations Y (gray dots),
and the sources f 1, f 2, f 3 from Example 1.1 (from top to bottom).

In summary, the unknowns in the SBSSR-model are:

1. the weights ω = (ω1, . . . ,ωm)� and
2. the source functions f i , i = 1, . . . ,m, that is, their

(a) number of c.p.’s K(f i),
(b) c.p. locations τ i

j , j = 1, . . . ,K(f i), and

(c) function values f i(x) (∈A) at locations x ∈ [0,1).

In this paper, we will address estimation of all the quantities in 1. and 2. and, in
addition, we will construct under further assumptions:

3. a uniform (i.e., honest) confidence region C1−α for the weights ω and
4. asymptotically uniform multivariate confidence bands for the source functions

f = (f 1, . . . , f m)�.

REMARK 1.2.

(a) For simplicity, we assume throughout the following that g in (4) is sampled
equidistantly at xj = (j − 1)/n, j = 1, . . . , n and that all functions are de-
fined on the domain [0,1). We stress that extensions to more general domains
⊆ R and sampling designs are straightforward under suitable assumptions (see,
e.g., [11]) but will be suppressed to ease notation.

(b) Further, for sake of brevity, we will assume that in (4) the variance σ 2 is
known, otherwise one may pre-estimate it

√
n-consistently by standard meth-

ods; see, for example, [20, 21, 39, 50] and Section 5.

1.2. Identifiability and exact recovery. Before we introduce estimators for ω

and f , we need to discuss identifiability of these parameters in the SBSSR-model,
that is, conditions when g determines them uniquely via g = ∑m

i=1 ωif
i .

Although, deterministic finite alphabet instantaneous (linear) mixtures, that is,
σ = 0 in the SBSSR-model (4), received a lot of attention in the literature [22, 37,
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43, 54, 59, 66, 72], a complete characterization of identifiability remained elusive
and has been recently provided in [6], which will be briefly reviewed here as far
as it is required for our purposes. Obviously, not every mixture g ∈ M in (2) is
identifiable. Consider, for example, ω ∈ �(m) in (3) such that ω1 = ω2. Then a
jump in the source function f 1 has the same effect on the mixture g as a jump in
f 2 and hence, f 1 and f 2 cannot be distinguished from the mixture g. Likewise,
when ω1 and ω2 are close, that is, ω2 − ω1 → 0, it becomes arbitrarily difficult to
separate f 1 and f 2 from the observations Y in the SBSSR-model. For statistical
estimation, it is therefore necessary that different source function values f (x) =
(f 1(x), . . . , f m(x)) ∈ Am are sufficiently well separated by the mixing weights ω.
This is quantified by the alphabet separation boundary [6]

ASB(ω) = ASB(ω,A) := min
a �=a′∈Am

∣∣ω�a − ω�a′∣∣.(5)

A necessary identifiability condition in the SBSSR-model is ASB(ω) > 0 (see [6],
Section 3.A), where the size of ASB(ω) can be understood as a conditioning num-
ber for the difficulty of separating the sources in the SBSSR-model, that is, the
smaller ASB(ω), the more difficult separation of sources. Therefore, to quantify
the estimation error of any method which serves the purposes in 1.–4. we must
restrict to submodels of mixing weights which sufficiently separate different al-
phabet values in Am, that is, for given δ > 0 we introduce

(6) �δ = �δ(A,m) := {
ω ∈ �(m) : ASB(ω) ≥ δ

}
.

Note further that ASB(ω) > 0 implies that any jump in the source vector f

(i.e., at least one source f i jumps) occurs as well in the mixture g = ω�f and that
ASB(ω) coincides with the minimal possible jump height of g.

Just as we have restricted the possible ω’s in (6), it is necessary to further re-
strict the set of possible source functions f ∈ S(A)m in (1). Consider for example
the case of two sources, m = 2, such that f 1 = f 2. Then g = ω1f

1 + ω2f
2 = f 1,

independently of ω, and hence, ω cannot be determined from g. Therefore, a cer-
tain kind of variability of the sources f i is necessary to ensure identifiability of
the mixing weights ω. We employ from [6] the following simple sufficient identi-
fiability condition.

DEFINITION 1.3. A vector of source functions f = (f 1, . . . , f m)� ∈ S(A)m

is separable if there exit intervals I1, . . . , Im ⊂ [0,1) such that f is constant on Ir

with function values

(7) f |Ir ≡ [A]r , r = 1, . . . ,m,

with

(8) A := a1Em + (a2 − a1)Im =

⎛
⎜⎜⎜⎝

a2 a1 a1 . . . a1
a1 a2 a1 . . . a1
...

...

a1 a1 . . . a1 a2

⎞
⎟⎟⎟⎠ ∈ Am×m,
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where Em denotes the matrix of ones, Im the identity matrix, and [A]r the r th row
of A.

The notation “separable” is borrowed from identifiability conditions for non-
negative matrix factorization [2, 24, 57]; see Section 1.8 for details. Separabil-
ity in Definition 1.3 means that for each of the m sources f i there is a region
where only this source function is “active” (taking the second smallest alpha-
bet value a2) and all the other sources are “silent” (taking the smallest alphabet
value a1). For example, if we have an alphabet of the form A = {0,1, a3, . . . , ak},
A becomes the identity matrix and separability means that each of the mixing
weights ωi appears at least once in the mixture g = ω�f . Note that separabil-
ity in Definition 1.3 only requires that the values [A]r ∈ Am are attained some-
where by the source functions f 1, . . . , f m and does not specify the location. For
specific situations it is possible to replace the matrix A in (8) by a different in-
vertible [as a function from �(m) to Rm] matrix if this matrix induces enough
variability in the sources for the weights to be identifiable from their mixture (see
[6]). Here, however, we consider arbitrary alphabets and number of sources and
the separability condition in Definition 1.3 ensures identifiability for arbitrary A

and m, in general. Note that when the source functions f = (f 1, . . . , f m)� at-
tain all km possible function values in Am somewhere in [0,1), the case of max-
imal variation, then, in particular, f is separable (see [6] for further examples).
We stress that the above assumption (7) on the variability of f is close to be-
ing necessary for identifiability (see [6], Theorem 3.1). Hence, without such an
assumption no method can provide a unique decomposition of g into the f i’s
and its weights ωi , i = 1, . . . ,m, even in the noiseless case. Summing up, we
will, in the following, restrict to those mixtures g in the SBSSR-model, which are
in

(9) Mδ :=
{
ω�f =

m∑
i=1

ωif
i : ω ∈ �δ and f ∈ S(A)m is separable

}
.

For instance, in Example 1.1 f is separable and ω ∈ �0.02, that is, g ∈
M0.02.

The following simple but fundamental result will guide us later on to derive
estimators for all quantities in 1. and 2. in the statistical setting (4) (see Sec-
tion 1.4).

THEOREM 1.4 (Stable recovery of weights and source functions). Let g =
ω�f , g̃ = ω̃�f̃ be two mixtures in Mδ for some δ > 0 and let ε be such that
0 < ε < δ(a2 − a1)/(2m(ak − a1)). If

(10) sup
x∈[0,1)

∣∣g(x) − g̃(x)
∣∣ < ε,
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1. then the weights satisfy the stable approximate recovery (SAR) property
maxi=1,...,m |ωi − ω̃i | < ε/(a2 − a1) and

2. the sources satisfy the stable exact recovery (SER) property f = f̃ .

For a proof see Section S1.1 in the Supplementary Material [5].

1.3. Methodology: First approaches. In order to motivate our (quite involved)
methodology, let us discuss briefly some attempts which may come to mind at a
first glance. As a first approach to estimate ω and f from the data Y in the SBSSR-
model one might pre-estimate the mixture g with some standard c.p. procedure,
ignoring its underlying mixture structure, and then try to reconstruct ω and f af-
terwards. One problem is that the resulting step function cannot be decomposed
into mixing weights ω ∈ �(m) and source function f ∈ Sm(A), in general, as the
given alphabet A leads to restrictions on the function values of g. But already for
the initial step of reconstructing the mixture g itself, a standard c.p. estimation
procedure (which does ignore the mixture structure) is unfavorable as it discards
important information on the possible function values of g (induced by A). For
example, if g has a small jump in some region, this might be easily missed (see
Figure 2 for an example). Consequently, subsequent estimation of f and ω will
fail as well. In contrast, a procedure which takes the mixture structure explicitly
into account right from its beginning is expected to have better detection power for

FIG. 2. Observations Y from Example 1.1 (gray dots), together with the true underlying mixture g

(red line). The blue line shows the c.p. estimate from [32], which does not incorporate the mixture
structure. The red line shows the estimate with the proposed method (see Figure 4 for the underlying
recovery of ω and the sources f ). The blue areas display a region where g has a small jump (red
line), which is not detected by the c.p. estimator [32] (blue line), but by the proposed method (black
line). The bottom plots show a zoom in of the blue regions.
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FIG. 3. Histogram of the data from Example 1.1 with 20, 100, and 200 equidistant bins, respec-
tively (from left to right). The vertical red lines indicate the true function values (modes) of g which
have to be identified.

a jump. As a conclusion, considering the SBSSR-model as a standard c.p. model
discards important information and does not allow for demixing, in general.

A second approach which comes to mind is to first use some clustering algo-
rithm to pre-estimate the function values of g, ignoring its serial c.p. structure,
and infer the mixing weights ω from this. This pre-clustering approach has been
pursued in several papers [22, 37, 72] for the particular case of a binary alphabet,
that is, k = 2. However, as the number of possible function values of g equals km

(recall that k is the size of the alphabet and m is the number of sources), recovery
of these values in a statistical context by clustering is a difficult task in general,
as it amounts to estimate the location of (at most) km modes correctly from the
marginal distributions of the observations Yj . In fact, this corresponds to mode
hunting (see, e.g., [16, 30, 46, 53, 55, 67]) with potentially large number of modes
which is known to be a hard problem. We illustrate the difficulty of this in Fig-
ure 3 employing histograms of the Yj ’s in Example 1.1 with different bin widths.
From this, it becomes obvious that a pre-clustering approach is not feasible for the
present data.

Summing up, ignoring either of both, the c.p. and the finite alphabet mixture
structure, in a first pre-estimation step discards important information which is
indispensable for statistically efficient recovery. We emphasize that we are not
aware of any existing method taking both aspects into account, in contrast to the
method presented in this paper (SLAM), which will be briefly described now.

1.4. Separate Linear Alphabet Mixtures (SLAM). In a first step, we will con-
struct a confidence region C1−α for the weights ω which can be characterized by
the acceptance region of a specific multiscale test with test statistic Tn, which
is particularly well suited to capture both, the c.p. and the mixture structure,
of g. The confidence level is determined by a threshold qn(α) such that for any
g = ∑m

i=1 ωif
i ∈ Mδ

(11)
{
ω ∈ C1−α(Y )

} ⊇ {
Tn ≤ qn(α)

}
.
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In a second step, we estimate f based on a multiscale constraint again. In the
following section, we will introduce this procedure in more detail. We stress that
the multiscale approach underlying SLAM is crucial for valid recovery of sources
and mixing weights as the jumps potentially can occur at any location and any
scale (i.e., interval length of neighboring sampling points).

1.4.1. Multiscale statistic and confidence boxes underlying SLAM. As the
jump locations may occur at any place, a well established way for inferring the
function values of g is to use local log-likelihood ratio test statistics in a multi-
scale fashion (see, e.g., [20, 29, 30, 32, 63]). Let g|[xi ,xj ] ≡ gij denote that g is
constant on [xi, xj ] with function value gij . For the local testing problem on the
interval [xi, xj ] ⊂ [0,1) with some given value gij ∈ R

(12) H0 : g|[xi ,xj ] ≡ gij vs. H1 : g|[xi ,xj ] �≡ gij

the local log-likelihood ratio test statistic is

(13) T
j
i (Yi, . . . , Yj , gij ) = ln

(
supθ∈R

∏j
l=i φθ (Yl)∏j

l=i φgij
(Yl)

)
= (

∑j
l=i Yl − gij )

2

2σ 2(j − i + 1)
,

where φθ denotes the density of the normal distribution with mean θ and vari-
ance σ 2. We then combine the local testing problems in (12) and define in our
context the multiscale statistic Tn for some candidate function g̃ (which may de-
pend on Y ) as

(14) Tn(Y, g̃) := max
1≤i≤j≤n

g̃|[xi ,xj ]≡g̃ij

|∑j
l=i Yl − g̃ij |

σ
√

j − i + 1
− pen(j − i + 1),

where pen(j − i + 1) := √
2(ln(n/(j − i + 1)) + 1). The maximum in (14) is un-

derstood to be taken only over those intervals [xi, xj ] on which g̃ is constant with
value g̃ij = g̃(xi). The function values of g̃ determine the local testing problems
(the value gij in (12)) on the single scales [xi, xj ]. The calibration term pen(·)
serves as a balancing of the different scales in a way that the maximum in (14) is
equally likely attained on all scales (see [29, 32]). Other scale penalizations can be
employed as well (see, e.g., [70]), but, for the ease of brevity, will not be discussed
here. With the notation Ȳ

j
i := ∑j

l=i Yl/(j − i + 1), the statistic Tn(Y, g̃) in (14)
has the following geometric interpretation:

(15) Tn(Y, g̃) ≤ q ⇔ g̃ij ∈ B(i, j) ∀1 ≤ i ≤ j ≤ n with g̃|[xi ,xj ] ≡ g̃ij ,

for q ∈ R, with intervals

(16) B(i, j) :=
[
Y

j

i − q + pen(j − i + 1)√
j − i + 1/σ

,Y
j

i + q + pen(j − i + 1)√
j − i + 1/σ

]
.
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In the following, we will make use of the fact that the distribution of Tn(Y, g),
with g ∈ Mδ [see (9)] the true signal from the SBSSR-model, can be bounded

from above with that of Tn = Tn(Y,0). It is known that Tn
D⇒ L(B) < ∞ a.s. as

n → ∞, a certain functional of the Brownian motion B (see [28, 29]). Note that
the distribution of Tn(Y,0) does not depend on the (unknown) f and ω anymore.
As this distribution is not explicitly accessible and to be more accurate for small n

(≤ 5000 say) the finite sample distribution of Tn can be easily obtained by Monte
Carlo simulations. From this, one obtains qn(α), α ∈ (0,1), the 1 − α quantile
of Tn. We then obtain

(17) inf
g∈Mδ

P
(
Tn(Y, g) ≤ qn(α)

) ≥ 1 − α.

Hence, for the intervals in (16) with q = qn(α) it follows that for all g ∈ Mδ

(18) P
(
gij ∈ B(i, j) ∀1 ≤ i ≤ j ≤ n with g|[xi ,xj ] ≡ gij

) ≥ 1 − α.

In the following, we use the notation B(i, j) for both, the intervals in (16) and
the corresponding boxes [i, j ] × B(i, j).

1.4.2. Inference about the weights. We will use now the system of boxes
B := {B(i, j) : 1 ≤ i ≤ j ≤ n} from (16) with q = qn(α) as in (17) to construct
a confidence region C1−α for ω such that (11) holds, which ensures

(19) inf
g∈Mδ

P(ω ∈ C1−α) ≥ 1 − α.

More precisely, we will show that a certain element B� ∈ Bm (denoted as the space
of m-boxes) directly provides a confidence set C�

1−α = A−1B� for ω, with A as in
(8). As B� cannot be determined directly, we will construct a covering, B� � B�,
of it such that the resulting confidence set

(20) C1−α = ⋃
B∈B�

A−1B

has minimal volume (up to a log-factor) (see Section 2.4). The construction of B�

is done by applying certain reduction rules on the set Bm reducing it to a smaller
set B� ⊂ Bm with B� ∈ B�. This is summarized in the CRW (confidence region
for the weights) algorithm in Section 2.1 (and Section S2.1 in the Supplementary
Material [5], respectively), which constitutes the first part of SLAM.

In Example 1.1 for α = 0.1 this gives C0.9 = [0.00,0.33] × [0.07,0.41] ×
[0.39,0.71] as a confidence box for ω = (ω1,ω2,ω3)

� which covers the true value
ω = (0.11,0.29,0.60)� in this case.

As the boxes B(i, j) from (16) are constructed in a symmetric way, SLAM now
simply estimates ω by

(21) ω̂ = 1∑m
i=1(ωi + ωi)

(ω1 + ω1, . . . ,ωm + ωm),
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with C1−α =: [ω1,ω1] × · · · × [ωm,ωm]. In Example 1.1, (21) gives for α = 0.1
ω̂ = (0.17,0.25,0.58)�.

For D ⊂ Rm and d ∈ Rm define the maximal distance

(22) dist(d,D) := sup
d̃∈D

‖d − d̃‖∞.

Further, and for all following considerations, define

(23) αn = exp
(−c1 ln2(n)

)
and βn = exp

(
−75m2 (ak − a1)

2

(a2 − a1)2 c1 ln2(n)

)
,

for some constant c1, to be specified later, see (40). Denote the minimal distance
between any two jumps of g ∈ Mδ (and hence of the f i’s, recall the discussion
in Section 1.2) as λ. Then, in addition to uniform coverage in (19) for α = αn

in (23), we will show that the confidence region C1−α from (20) covers the un-
known weight vector ω with maximal distance shrinking of order ln(n)/

√
n with

probability tending to one at a superpolynomial rate,

P
(

dist
(
ω,C1−αn(Y )

)
<

c2

a2 − a1

ln(n)√
n

)
≥ 1 − exp

(−c1 ln2(n)
)

for all n ≥ N�, for some constants c1 = c1(δ), c2 = c2(λ, δ) and some explicit
N� = N�(λ, δ) ∈ N (see Corollary 2.8).

1.4.3. Inference about the source functions. Once the mixing weights ω have
been estimated by ω̂ [see (21)], SLAM estimates f 1, . . . , f m in two steps. First,
the number of c.p.’s K(g) of g = ω�f ∈ Mδ will be estimated by solving the
constrained optimization problem

(24) K̂ := min
g̃∈M(A,ω̂)

K(g̃) s.t. Tn(Y, g̃) ≤ qn(β).

Here, the multiscale constraint on the r.h.s. of (24) is the same as for C1−α(Y )

in (11), but with a possibly different confidence level 1 − β . Finally, we estimate
f 1, . . . , f m as the constrained maximum likelihood estimator

(25) f̂ = (
f̂ 1, . . . , f̂ m)� := argmax

f̃ ∈H(β)

n∑
i=1

ln
(
φ

ω̂�f̃ (xi )
(Yi)

)
,

with (see Section 2.2)

(26) H(β) := {
f̃ ∈ S(A)m : Tn

(
Y, ω̂�f̃

) ≤ qn(β) and K
(
ω̂�f̃

) = K̂
}
.

Choosing α = αn and β = βn as in (23), in Section 2.4 (see Theorem 2.7) we
show that with probability at least 1 −αn, for n large enough, the SLAM estimator
f̂ in (25) estimates for all i = 1, . . . ,m:

1. the respective number of c.p.’s K(f i) correctly,
2. all c.p. locations with rate ln2(n)/n simultaneously, and
3. the function values of f i exactly (up to the uncertainty in the c.p. locations).
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Obviously, the rate in 2. is optimal up to possible log-factors as the sampling rate
is 1/n. From Theorem 2.7, it follows further (see Remark 2.9) that the minimax
detection rates are even achieved (again up to possible log-factors) when δ, λ → 0
(as n → ∞).

Further, we will show that a slight modification H̃(β) of H(β) in (26) consti-
tutes an asymptotically uniform (for given ASB δ and λ) multivariate confidence
band for the source functions (f 1, . . . , f m) (see Section 2.3).

To illustrate, Figure 4 depicts SLAM’s estimates of the mixture ĝ = ω̂�f̂ , with
ω̂ = (0.11,0.26,0.63)�, and the source functions f̂ 1, f̂ 2, f̂ 3 from (25) with Y as
in Example 1.1, β = 0.01 (corresponding to qn(β) = 2.1), and an automatic choice
of α, the MVT-selection method explained in Section 4.6. In order to visualize
H̃(β), we illustrate the provided confidence in gray scale encoding the projections
of H̃(β) (recall the alphabet A = {0,1,2}).

FIG. 4. First row: g (red dotted line), ĝ (black line) with ω̂ = (0.11,0.26,0.63)�, and data Y

(gray) from Example 1.1. Subsequent rows: f i (red line) and SLAM’s estimate f̂ i (gray/black line)
for qn(α) = 0.2 and qn(β) = 2.1 (see Section 4.6). Gray shades for segments of f̂ i indicate the con-
fidence for the given segment: a maximal deviation of two (light gray), one (gray), and no deviation
(black) at confidence level β = 0.01. The blue area displays a constant region of g where ĝ includes
a (wrong) jump and its effect on estimation of the sources.
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1.5. Algorithms and software. SLAM’s estimate for ω (see (21) and Algo-
rithm CRW, in Section S2.1 in the Supplementary Material [5]) can be computed
with polynomial complexity between O(nm) and O(n2m) (see Section 3). Using
dynamic programming, the final estimate of sources can then be computed with
a complexity ranging from O(n) and O(n2) depending on the final solution (see
Section 3 for details). An R-package including an implementation of SLAM is
available on request.

1.6. Simulations. The performance of SLAM is investigated in a simulation
study in Section 4. We first investigate accuracy of ω̂ and the confidence region
C1−α(Y ) as in (21) and (20). We found always higher coverage of C1−α(Y ) than
the nominal confidence level 1 − α. In line with this, ω̂ appeared to be very stable
under the choice of the confidence level α. Second, we investigate SLAM’s esti-
mates f̂ . A major conclusion is that if g is not well estimated in a certain region,
this typically will influence the quality of the estimates of f i in this region but
not beyond (see the marked light blue region in Figure 4 where the estimator ĝ

includes a wrong jump in a constant region of g but this error does not propagate
serially). This may be explained by the flexible c.p. model Mδ together with the
multiscale nature of SLAM, which locally “repairs” estimation errors. Finally, in
Section 4.6 we comment on practical choices for α and β complementing the theo-
retically motivated choices in (23). To this end, we suggest a data driven selection
method for α when it is considered as tuning parameter for the accuracy of the
estimate ω̂ and f̂ rather than a confidence level for the coverage of ω.

1.7. Application to cancer genetics. Blind source separation in the context
of the SBSSR-model occurs in different areas, for example, in digital communi-
cations and signal transmission. The main motivation for our work comes from
cancer genetics, in particular from the problem to assign copy-number aberra-
tions (CNAs) in cell samples taken from tumors (see [48]) to its clones. CNAs
refer to stretches of DNA in the genomes of cancer cells which are under copy-
number variation involving deletion or duplication of stretches of DNA relative
to the inherited (germline) state present in normal tissues. CNAs are known to
be key drivers of tumor progression through the deletion of “tumor suppressing”
genes and the duplication of genes involved in processes such as cell signaling
and division. Understanding where, when and how CNAs occur during tumour-
genesis, and their consequences, is a highly active and important area of cancer
research (see e.g., [8]). Modern high-throughput technologies allow for routine
whole genome DNA sequencing of cancer samples and major international efforts
are underway to characterize the genetic make up of all cancers, for example, The
Cancer Genome Atlas, http://cancergenome.nih.gov/.

A key component of complexity in cancer genetics is the “clonal” structure of
many tumors, which relates to the fact that tumors usually contain distinct cell
populations of genetic subtypes (clones) each with a distinct CNA profile (see,

http://cancergenome.nih.gov/
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e.g., [36, 61]). High-throughput sequencing technologies act by bulk measurement
of large numbers of pooled cells in a single sample, extracted by a micro-dissection
biopsy or blood sample for haematological cancers.

The copy-number, that is, the number of copies of DNA stretches at a certain
locus, of a single clone’s genome is a step function mapping chromosomal loci to
a value i ∈ {0, . . . , k} corresponding to i copies of DNA at a locus, with reasonable
biological knowledge of k (in our example k = 5; see Section 5).

From the linear properties of the measurement technologies the relative amount
of DNA measured at any loci is therefore a mixture of step functions, with mixture
weights given by the relative proportion of the clone’s DNA in the pool. The es-
timation of the mixed function, that is, estimating the locations of varying overall
copy numbers, has perceived considerable interest in the past (see [15, 27, 32, 41,
51, 52, 68, 73]). However, the corresponding demixing problem, that is, jointly
estimating the number of clones, their proportion, and their CNAs, has only per-
ceived more recently as an important issue and hence received very little attention
in a statistical content so far and is the main motivation for this work.

In Section 5, we illustrate SLAM’s ability to recover the CNA’s of such clones
by utilizing it on real genetic sequencing data. On hand of a special data set, with
measurements not only for the mixture but also for the underlying source functions
(clones) and with knowledge about the mixing weights, we are able to report on the
accuracy of SLAM’s estimates of the corresponding CNA profile and the mixing
proportion of the clones.

1.8. Related work. Each BSS of finite alphabet sources (see, e.g.,
[10, 22, 37, 43, 45, 47, 54, 59, 72]) and the estimation of step functions, with
unknown number and location of c.p.’s (see, e.g., [13, 27, 31–34, 40–42, 49, 51,
52, 62, 65, 68, 74]), are widely discussed problems. However, the combination of
both, as discussed in this paper, is not. Rigorous statistical methodology and the-
ory for finite alphabet BSS problems is entirely lacking to best of our knowledge
and we are not aware of any other method which provides estimates for and confi-
dence statements in the SBSSR-model in such a rigorous and general way. There
are, however, related problems, discussed in the following.

Rewriting the SBSSR-model (4) in matrix form Y = Fω + ε with F =
(f i(xj ))1≤j≤n,1≤i≤m shows some commonality to signal recovery in linear mod-
els. In fact, our Theorem 1.4 reveals some analogy to exact and stable recovery
results in compressive sensing and related problems (see [12, 25]). We stress, how-
ever, that there are fundamental differences. There typically the systems matrix F

is known and ω is a sparse vector to be recovered, having only a very few non null
coefficients. Under an additional finite alphabet assumption (for known F ) recov-
ery of ω is for example, addressed in [1, 9, 18, 26]. In our setting both, F and ω

are unknown.
Another related problem is nonnegative matrix factorization (NMF) (see, e.g.,

[2, 24, 44, 57]), where one assumes a multivariate signal Y ∈ Rn×M resulting from
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M different (unknown) mixing vectors, that is, ω ∈ Rm×M+ , and an (unknown)
nonnegative source matrix F ∈ Rn×m+ . There, a fundamental assumption is that
m � min(n,M), which obviously does not hold in our case where M = 1. In-
stead we employ the additional assumption of a known finite alphabet, that is,
F ∈ An×m. Indeed, techniques and algorithms for NMF are quite different from
the ones derived here, as our methodology explicitly takes advantage of the one
dimensional (i.e., ordered) c.p. structure under the finite alphabet assumption.

However, the identifiability conditions (6) and (7) from Section 1.2 are similar
in nature to identifiability conditions for the NMF problem [2, 24], from where
the notation “separable” originates. In order to ensure identifiability in the NMF
problem, the “α-robust simplicial” condition (see, e.g., [57], Definition 2.1) on the
mixing matrix ω ∈ Rm×M+ and the “separability” condition (see, e.g., [57], Defini-
tion 2.2) on the source matrix F ∈ Rn×m+ are well established [2, 24, 57].

There, the “α-robust simplicial” condition assumes that the mixing vectors
ω1·, . . . ,ωm· ∈ RM+ constitute vertices of an m-simplex with minimal diameter
(distance between any vertex and the convex hull of the remaining vertices) α.
This means that different source values Fi· ∈ Rm are mapped to different mixture
values Fi·ω ∈ RM+ by the mixing matrix ω ∈ Rm×M+ . This condition is analog to
the condition ASB(ω) ≥ δ in (6), which also ensures that different source values
f (x) ∈ Am are mapped to different mixture values ω�f (x) ∈ R via the mixing
weights ω ∈ �(m), with minimal distance δ between different mixture values.

The “separability” condition in NMF is the same as in Definition 1.3 but with A

replaced by the identitiy matrix (recall that in NMF the sources can take any posi-
tive value in R+, in contrast to the SBSSR-model where the sources can only take
values in a given alphabet A) and the intervals Ir ⊂ (0,1] are replaced by measure-
ment points ir ∈ {1, . . . , n} (recall that the SBSSR-model considers a change-point
regression setting, in contrast to NMF where observations do not necessarily come
from discrete measurements of an underlying regression function). In both mod-
els (NMF and SBSSR), the separability condition ensures a certain variability of
the sources in order to guarantee identitfiability of the mixing matrix and vector,
respectively, from their mixture.

Besides NMF, there are many other matrix-factorization problems, which aim
to decompose a multivariate signal Y ∈ Rn×M in two matrices of dimension n×m

and m × M , respectively. A popular example is independent component analy-
sis (ICA) (see, e.g., [3, 7, 17]), which exploits statistical independence of the m

different sources. We stress that this approach becomes infeasible in our setting
where M = 1 as the error terms then sum up to a single error term and ICA would
treat this as one observation. Other matrix-factorization methods assume a certain
sparsity of the mixing-matrix [64]. Similar to NMF methods, in general all these
methods, however, again rely on the assumption that M > 1 (most of them even
require M ≥ m) as otherwise the signal is not even identifiable, in contrast to our
situation again due to the finite alphabet.
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Minimization of the �0 norm using dynamic programming (which has a long
history in c.p. analysis; see, e.g., [4, 31, 33, 42]) for segment estimation under a
multiscale constraint has been introduced in [11] (see also [19] and [32]) and here
we extend this to mixtures of segment signals and in particular to a finite alphabet
restriction.

The SBSSR problem becomes tractable as we assume that our signals occur
with sufficiently many alphabet combinations which may be present already on
small scales on the one hand, and on the other hand we also observe long enough
segments (large scales) in order to estimate reliably the corresponding mixing
weights on these [see the identifiability condition in (7)]. Both assumptions seem
to be satisfied in our motivating application, the separation of clonal copy numbers
in a tumor.

To the best of our knowledge, the way we treat the problem of clonal separation
is new; see, however, [14, 23, 38, 48, 60, 71]. Methods suggested there, all rely
on specific prior information about the sources f and cannot be applied to the
general SBSSR-model. Moreover, most of them treat the problem from a Bayesian
perspective.

2. Method and theory.

2.1. Confidence region for the weights. Let Y and g = ω�f ∈ Mδ be as in
the SBSSR-model (4). Our starting point for the recovery of the weights ω and
the sources f is the construction of proper confidence sets for ω which is also of
statistical relevance by its own as the source functions are unknown which hinders
direct inversion of a confidence set for g.

Consider the system of boxes B = {B(i, j) : 1 ≤ i ≤ j ≤ n} from (16) with
q = qn(α) as in (17) for some given α ∈ (0,1), as described in Section 1.4.1.

As the underlying sources f are assumed to be separable [see Definition 1.3
and (9)] there exist intervals [xi�r

, xj�
r
] ⊂ (0,1], for r = 1, . . . ,m, such that

(27) f |[xi�r
,xj�

r
] ≡ [A]r ,

with A as in (8). Assume for the moment that these intervals would be known and
let B� := B(i�1, j

�
1 ) × · · · × B(i�m, j�

m) ∈ Bm be the corresponding m-box. Then a
1 − α confidence region for ω is given as

(28) C1−α

(
i�1, j

�
1 , . . . , i�m, j�

m

) := A−1B�.

To see that (28) is, indeed, a 1 − α confidence region for ω, note that{
ω ∈ C1−α

(
i�1, j

�
1 , . . . , i�m, j�

m

)} ⊃ ⋂
1≤r≤m

{
g|[xi�r

,xj�
r
] ≡ ω�[A]r ∈ B

(
i�r , j

�
r

)}
and {

Tn(Y, g) ≤ qn(α)
} = ⋂

1≤i≤j≤n
g|[xi ,xj ]≡gij

{
gij ∈ B(i, j)

}
.
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This implies that

(29)
{
ω ∈ C1−α

(
i�1, j

�
1 , . . . , i�m, j�

m

)} ⊃ {
Tn(Y, g) ≤ qn(α)

}
and therefore it holds uniformly in g ∈ Mδ that

(30) P
(
ω ∈ C1−α

(
i�1, j�

1 , . . . , i�m, j�
m

)) ≥ P
(
Tn(Y, g) ≤ qn(α)

) ≥ 1 − α.

Of course, as the source functions f are unknown, intervals [xi�r
, xj�

r
] which satisfy

(27) are not available immediately, and thus, one cannot construct the m-box B�

required for (28) directly.
For this reason, we will describe a strategy to obtain a subsystem of m-

boxes, that is, a subset B� ⊂ Bm, which covers B� conditioned on {Tn(Y, g) ≤
qn(α)} almost surely. To this end, observe that for any random set C�(Y ) ⊂ Rm

with

(31) P
(
C�(Y ) ⊃ C1−α

(
i�1, j

�
1 , . . . , i�m, j�

m

)|Tn(Y, g) ≤ qn(α)
) = 1

(29) and (30) imply P(ω ∈ C�(Y )) ≥ 1 − α. We then define C1−α as in (20). To
this end, B� is constructed such that the diameter of the resulting C1−α is of or-
der ln(n)/

√
n (see Corollary 2.8). The construction will be done explicitly by an

algorithm which relies on the application of certain reduction rules to Bm to be
described in the following.

Let projr : Bm → B, for r = 1, . . . ,m, denote the r th projection [i.e.,
projr (B1 × · · · × Bm) := Br ] and define the set of boxes on which any signal
fulfilling the multiscale constraint is non constant (nc) as

(32) Bnc := {
B(i, j) ∈ B : ∃[s, t], [u, v] ⊂ [i, j ] with B(s, t) ∩ B(u, v) =∅

}
.

R1. Delete B ∈ Bm if there exists an r ∈ {1, . . . ,m} such that B(i, j) :=
projr (B) ∈ Bnc as in (32).

The reasoning behind R1 is as follows. g|[xi�r
,xj�

r
] is constant for r = 1, . . . ,m

as f 1, . . . , f m are constant on [xi�r
, xj�

r
]. Consequently, all m-boxes that include

a box B(i, j) ∈ B such that g cannot be constant on [xi, xj ] [conditioned on
Tn(Y, g) ≤ qn(α)] can be deleted in order to preserve coverage of B�. Let [xi, xj ]
be an interval on which g is constant (say g|[xi ,xj ] ≡ c) and assume that there exist
intervals [s, t], [u, v] ⊂ [i, j ] such that B(s, t) ∩ B(u, v) = ∅. Then by construc-
tion of the boxes B(s, t) and B(u, v), Tn(Y, g) ≤ qn(α) implies that c ∈ B(s, t) and
c ∈ B(u, v), which contradicts B(s, t) ∩ B(u, v) = ∅. In other words, Bnc (nc =̂
non constant) in (32) includes all boxes B(i, j) such that all function g̃ ∈ Mδ

which fulfill the multiscale constraint Tn(Y, g̃) ≤ qn(α) cannot be constant on
[xi, xj ]. Note that, in contrast to the following two reduction rules, the reduction
rule R1 does not depend on the specific matrix A in the identifiablity condition
in (7).
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R2. Delete B ∈ Bm, with [br, br ] := projr (B) if at least one of the following
statements holds true:
1. b1 ≤ a1 or b1 ≥ a1 + a2−a1

m
,

2. for any 2 ≤ r ≤ m

a2 + (m − 1)a1 − ∑r−1
j=1 bj

m − r + 1
≤ br or br−1 ≥ br,

3.
∑m

j=1 bj ≤ a2 + (m − 1)a1.

R2 1. comes from the fact that 0 < ω1 < 1/m, R2 2. from ωi−1 < ωi < (1 −∑i−1
j=1 ωj)/(m − i + 1), and R2 3. from

∑m
j=1 ωj = 1, together with the specific

choice of the matrix A in (8). For a different choice of A in (7) the equations in R2
can be modified accordingly.

In what follows, define for k = 1, . . . , n,

(33) Jk := {[i, j ] : k ∈ [i, j ] and B(i, j) /∈Bnc
}
.

R3. Delete B ∈ Bm, if there exists a k ∈ {1, . . . , n} such that for all [i, j ] ∈ Jk

(34)
[

max
i≤u≤v≤j

buv, min
i≤u≤v≤j

buv

]
∩ {

ω̃�a : a ∈Am and ω̃ ∈ A−1B
}

is empty, with [buv, buv] := B(u, v) ∈ B.

Conditioning on Tn(Y, g) ≤ qn(α) implies ω ∈ A−1B�, and, in particular, that
there exists an ω̃ ∈ A−1B� such that Im(g) := {g(x1), . . . , g(xn)} ⊂ {ω̃�a : a ∈
Am}. Moreover, for every k ∈ {1, . . . , n} there exists an interval [xi, xj ] where g

is constant with g|[xi ,xj ] ≡ g(xk) ∈ Im(g). So, Tn(Y, g) ≤ qn(α) implies g(xk) ∈
B(u, v) for all [u, v] ⊂ [i, j ] and, therefore, for B = B� (34) is not empty [condi-
tioned on Tn(Y, g) ≤ qn(α)].

REMARK 2.1 (Incorporating prior knowledge on minimal scales).

(a) If we restrict to a minimal scale λ ∈ (0,1) on which a jump of g may occur,
that is, for τj , j = 0, . . . ,K + 1, being the c.p.’s of g,

(35)
λ := min

j∈{0,...,K} |τj+1 − τj | > 0,

we can modify R3 with Jk in (33) replaced by Jk ∩ {[i, j ] : j − i + 1 ≥ nλ}.
(b) In many applications (see Section 5), it is very reasonable to assume apriori

knowledge of a minimal interval length λ� of [xi�r
, xj�

r
] in (27). This means that

there exists some interval Ir ⊂ [0,1) of minimum size λ�, where (f 1, . . . , f m)

take the value [A]r as in (8) for r = 1, . . . ,m. This is summarized in the fol-
lowing reduction rule.
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R4. Knowing that j�
r − i�r + 1 ≥ λ�n for r = 1, . . . ,m in (27), delete B ∈ Bm if

there exists an r ∈ {1, . . . ,m} such that for B(i, j) := projr (B) j − i + 1 <

λ�n.

R1–R4 is summarized in Algorithm CRW, in Section S2.1 in the Supplementary
Material [5], for constructing a confidence region for ω.

REMARK 2.2 (Noninformative m-box). If B� = ∅, we formally may set
C1−α := �(m), the trivial confidence region. As {B� = ∅} ⊂ {Tn(Y, g) > qn(α)},
the probability that this happens can be bounded from above by α. This is in gen-
eral only a very rough bound, simulations show that B� = ∅ is hardly ever the
case when α is reasonably small. For instance, in 10,000 simulations of Exam-
ple 1.1 with n = 1280, σ = 0.1, α = 0.1, it did not happen once. Of course, when
α ↗ 1, B� = ∅ finally, as no mixture g ∈ Mδ can fulfill the multiscale constrained
Tn(Y, g) ≤ q for arbitrarily small q .

REMARK 2.3 (Shape of C1−α). The previous construction of the confidence
set C1−α does not ensure that the confidence set is of m-box form

(36) [ω1,ω1] × · · · × [ωm,ωm].
In general it is a union of m-boxes. However, we can always take the smallest
covering m-box of C1−α , given by

(37)
[

inf
ω̃∈C1−α

ω̃1, sup
ω̃∈C1−α

ω̃1

]
× · · · ×

[
inf

ω̃∈C1−α

ω̃m, sup
ω̃∈C1−α

ω̃m

]
,

in order to get a confidence set as in (36). Note, that dist(ω,C1−α) =: d re-
mains the same when we replace C1−α by (37). To see this, consider Ĉ :=
ω + [−d, d]m, which is a covering m-box of C1−α , so in particular Ĉ covers (37),
with dist(ω, Ĉ) = d .

Summing up, we have now constructed a confidence set C1−α for the mixing
vector ω in the SBSSR-model. Given C1−α SLAM estimates ω as in (21). From
this, in the next section we derive estimators for the sources f 1, . . . , f m.

2.2. Estimation of source functions. SLAM estimates f = (f 1, . . . , f m) by
solving the constraint optimization problem (25), which admits a solution if and
only if

(38) min
f̃ ∈S(A)m

Tn

(
Y, ω̂(α)�f̃

) ≤ qn(β).

(38) cannot be guaranteed in general but it can be shown that it holds asymptoti-
cally with probability one (see Theorem S1.1 in the Supplementary Material [5]),
independently of the specific choice of ω̂ ∈ C1−α(Y ) in (21). For finite n our sim-
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ulations show that violation of (38) is hardly ever the case. For instance, in 10,000
simulation runs of Example 1.1 with α = β = 0.1 it did not happen once. There-
fore, in practice, failure of (38) might rather indicate that the model assumption
is not correct (e.g., due to outliers) and could be treated by pre-processing of the
data. Another strategy can be to decrease β and hence the constraint in (38) as for
β > β ′ it holds that qn(β

′) > qn(β).

REMARK 2.4 (Incorporating identifiability conditions in SLAM). The separa-
bility condition in (7) could be incorporated in the estimator (25), which provides
a further restriction on H(β) in (26). This may yield a finite sample improvement
of SLAM, however, at the expense of being less robust if such a particular iden-
tifiability condition is violated [see Section 4.5.1 for a simulation study of SLAM
when the identifiability conditions in (6) and (7) are violated].

2.3. Confidence bands for the source functions. Obviously, uniform confi-
dence sets for f cannot be obtained if we allow for an arbitrarily small distance
between two c.p.’s of g (as for any c.p. problem, see [32]). However, if we restrict
to a minimal scale λ as in (35), the SLAM estimation procedure in (25) leads to
asymptotically uniform confidence bands for the source functions f 1, . . . , f m. To
this end, we introduce

(39) Mδ
λ :=

{
g ∈ Mδ : min

j∈{0,...,K(g)} |τj+1 − τj | ≥ λ
}
,

where, as in (1), τ0 = 0 < τ1 < · · · < τK(g) < τK(g)+1 = 1 denote c.p.’s of g. More-
over, let T̃n be as in (14), but with pen(j − i + 1) replaced by pen(j − i + 1) +
((a2 − a1) ln(n)/m +

√
8σ 2 ln(e/λ)/λ)

√
(j − i + 1)/n and let H̃(β) be as in (26)

but with Tn replaced by T̃n. Then H̃(β) constitutes an asymptotically uniform con-
fidence band as the following theorem shows.

THEOREM 2.5. Consider the SBSSR-model and let ω̂ be the SLAM estimator
from (21) for α = αn as in (23). Then, for H̃(β) as in (26) with Tn replaced by T̃n,
H̃(β) provides an asymptotically uniform confidence region for the sources f ,

lim
n−→∞ inf

g∈Mδ
λ

P
((

f 1, . . . , f m) ∈ H̃(β)
) ≥ 1 − β.

For a proof see Section S1.3 in the Supplementary Material [5].

2.4. Consistency and rates. In the following, we investigate further theoretical
properties of SLAM. As in Theorem 2.5 our results will be stated uniformly over
the space Mδ

λ in (39), that is, for a given minimal length λ of the constant parts of
the mixture g and a given minimal ASB δ as in (5). Define the constants

(40) c1 = δ2(a2 − a1)
2

48600σ 2m2(ak − a1)2 , c2 = δ +
√

2σ 2 ln(e/λ)√
λ

.
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Further, let N� ∈ N be the smallest integer, s.t.√√√√2 ln(eN�/ ln2(N�))

ln2(N�)
+

√
6 ln(3e/λ)√

N�λ
≤ δ

4σ
, and(41)

ln(N�)√
N�λ

≤ δ(a2 − a1)/(ak − a1)

2m(δ +
√

2σ 2 ln(e/λ))
.(42)

REMARK 2.6 (Behavior of N�). Note that the left-hand side in (41) and
(42) is decreasing in N�, respectively. For fixed λ and δ/σ ↘ 0, (41) domi-
nates the behavior of N� as it is essentially of the form σ/δ ≤ c(λ)

√
ln(N�),

whereas (42) is of the form σ/δ ≤ c(λ,A,m)
√

N�/ ln(N�). Conversely, for
fixed δ/σ and λ ↘ 0, (42) dominates the behavior of N� as it is essentially of
the form λ−1 ln(λ−1) ≤ c(δ/σ,A,m)N�/ ln2(N�) whereas (41) is of the form
λ−1 ln(λ−1) ≤ c(δ/σ)N�.

THEOREM 2.7. Consider the SBSSR-model with g ∈ Mδ
λ. Let ω̂ and f̂ =

(f̂ 1, . . . , f̂ m) be the SLAM estimators from (21) and (25), respectively, with α = αn

and β = βn as in (23). Further, let τ̂ i and τ i be the vectors of all c.p. locations of
f̂ i and f i , respectively, for i = 1, . . . ,m. Then for all n > N� in (41) and (42) and
for all i = 1, . . . ,m:

1. K(f̂ i) = K(f i),

2. maxj |τ̂ i
j − τ i

j | ≤ 2 ln2(n)
n

,

3. maxj |f̂ i |[τ̂j ,τ̂j+1) − f i |[τj ,τj+1)| = 0, and

4. |ω̂i − ωi | ≤ c2
a2−a1

ln(n)√
n

,

with probability at least 1 − exp(−c1 ln2(n)), with c1 and c2 as in (40).

From the proof of Theorem 2.7 (see Section S1.2 in the Supplementary Material
[5]) it also follows that assertions 1.–4. hold for any ω̂ ∈ C1−α(Y ) and we obtain
the following.

COROLLARY 2.8. Consider the SBSSR-model with g ∈ Mδ
λ. Let C1−α(Y ) be

as in (20) and αn as in (23). Further, let dist be is as in (22). Then for all n > N�

in (41) and (42)

dist
(
ω,C1−αn(Y )

)
<

c2

a2 − a1

ln(n)√
n

with probability at least 1 − exp(−c1 ln2(n)), with c1 and c2 as in (40).
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REMARK 2.9 (SLAM (almost) attains minimax rates).

(a) (C.p. locations.) Theorem 2.7 states that we can recover the c.p. locations of
f i in probability with rate ln2(n)/n. Obviously, the estimation rate of the c.p.
locations is bounded from below by the sampling rate 1/n. Consequently, the
rate of Theorem 2.7 differs from the optimal rate only by a ln2(n) factor.

(b) (Weights.) By the one-to-one correspondence between the weights and the
function values of g the weights’ detection rate ln(n)/

√
n immediately follows

from the box height in (16) with qn(αn) ∈ O(ln(n)) and coincides with the
optimal rate O(1/

√
n) up to a ln(n) term.

(c) (Dependence on λ.) The minimal scale λ in Theorem 2.7 may depend on n,
that is, λ = λn. In order to ensure consistency of SLAM’s estimates ω̂ and
(f̂ 1, . . . , f̂ m), Theorem 2.7 requires that (41) and (42) holds (for a sufficiently
large N�) and that c2 ln(n)/

√
n → 0, as n → ∞. By Remark 2.6, this is ful-

filled whenever λ−1 ln(λ−1) ∈ O(n/ ln2(n)). This means that the statements
1.–4. in Theorem 2.7 hold true asymptotically with probability one as the
minimal scale λn of successive jumps in a sequence of mixtures gn does not
asymptotically vanish as fast as of order ln3(n)/n. We stress that no method
can recover finer details of a bump signal (including the mixture g) below its
detection boundary which is of the order ln(n)/n, that is, SLAM achieves this
minimax detection rate up to a ln2(n) factor (see [30, 32]).

(d) (Dependence on δ.) Just as the minimal scale λ, the minimal ASB δ in Theo-
rem 2.7 may depend on n as well, that is, δ = δn. Analog to 2.9), the SLAM’s
estimates remain consistent whenever δ−1 ∈ O(

√
ln(n)), that is, the statements

1.–4. in Theorem 2.7 hold true asymptotically with probability one if the min-
imal ASB δn in a sequence of mixtures gn does not decrease as fast as of order
1/

√
ln(n). We stress that no method can recover smaller jump heights of the

mixture g below its minimax detection rate, which in 1/ ln(n). To see this, note
that statement 2. in Theorem 2.7 provides asymptotic detection power one for
2 ln(n)2 i.i.d. observations with mean δn (recall that the ASB corresponds to
the minimal possible jump height of the mixture g). Hence, SLAM achieves
the minimax rate up to a

√
ln(n) factor.

REMARK 2.10 (SLAM for known ω). If ω is known in the SBSSR-model,
the second part of SLAM can be used separately. We may then directly solve (24)
without pre-estimating ω, that is, in Section 1.4.3, we simply replace ω̂ by ω.
Then, Theorem 2.5 is still valid for H̃(β) replaced by H(β). Further, a careful
modification of the proof of Theorem 2.7 shows that the assertions in Theorem 2.7
hold for a possibly smaller N� in (41) and (42) and for c1 replaced by 75m2(ak −
a1)

2c1/(a2 − a1)
2. We stress that the finite alphabet assumption is still required

and the corresponding identifiability assumption ASB(ω) ≥ δ must be valid.
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3. Computational issues. SLAM is implemented in two steps. In the first
step, for a given α ∈ (0,1) a confidence region for the mixing weights ω is
computed as in Algorithm CRW (see Section 2.1 and S2.1). To this end, each
of the n2m m-boxes in Bm = {B(i, j) : 1 ≤ i ≤ j ≤ n}m needs to be examined
with the reduction rules R1–R4 for validity as a candidate box for the intervals
[i�1, j�

1 ]× · · ·× [i�m, j�
m], which yields the complexity O(n2m). There are, however,

important pruning steps, which can lead to a considerably smaller complexity.
First, note that it suffices to consider m-boxes which are maximal elements with

respect to the partial order of inclusion, that is, for B1 = [b1
1, b

1
1] × · · · × [b1

m,b
1
m],

B2 = [b2
1, b

2
1] × · · · × [b2

m,b
2
m] ∈ Bm

B1 � B2 ⇔ [
b1

i , b
1
i

] ⊆ [
b2

i , b
2
i

]
for all i = 1, . . . ,m,

where an element a of a partially ordered set P is maximal if there is no element
b in P such that b > a. To see this, assume that an m-box B is not deleted by
the reduction rule R3 in the second last line of Algorithm CRW, then an m-box
B ′ ∈ Bm with B ′ ≺ B does not influence the confidence region C1−α (see the last
line of Algorithm CRW), as A−1B ′ ⊂ A−1B . Conversely, if an m-box B is deleted
by the reduction rule R3 in the second last line of Algorithm CRW, then an m-box
B ′ ∈ Bm with B ′ ≺ B will be deleted by R3 as well, such that B ′ does not need to
be considered either.

Second, note that the parameter ω, which is inferred in Algorithm CRW, is
global and, hence, one can restrict to observations on a subinterval [xi, xj ] ⊂ [0,1)

as long as g|[xi ,xj ] fulfills the identifiability conditions of Mδ .

The explicit complexity of Algorithm CRW depends on the finial solution f̂

itself. Depending on the final f̂ , the above mentioned pruning steps yield a com-
plexity between O(nm) and O(n2m). ω̂ is then computed as in (21).

In the second step, for a given β ∈ (0,1) and given ω̂ SLAM solves the con-
strained optimization problem (25), which can be done using dynamic program-
ming. Frick et al. [32] provide a pruned dynamic programming algorithm to effi-
ciently solve a one-dimensional version of (25) without the finite alphabet restric-
tion in (72). As this restriction is crucial for SLAM we outline the details of the
necessary modifications in Section S2.2 in the Supplementary Material [5]. These
modifications, however, do not change to complexity of the algorithm. Frick et al.
[32] show that the overall complexity of the dynamic program depends on the final
solution ĝ and is between O(n) and O(n2).

We stress finally that significant speed up (which is, however, not the subject
of this paper) can be achieved by restricting the system of intervals in Tn and B,
respectively, to a smaller subsystem, for example, intervals of dyadic length, which
for example reveals the complexity of the second step as O(n ln(n)).
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4. Simulations. In the following, we investigate empirically the influence of
all parameters and the underlying signal on the performance of the SLAM esti-
mator. As performance measures, we use the mean absolute error, MAE, for ω̂

and the mean absolute integrated error, MIAE, for f̂ . Further, we report the cen-
tered mean, Mean(K̂) − K , the centered median, Med(K̂) − K , of the number
of c.p.’s of f̂ , the frequency of correctly estimated number of c.p.’s for the single
source functions f i , Mean(K̂ = K)i , and for the whole source function vector f ,
Mean(K̂ = K). To investigate the accuracy of the c.p. locations of the single esti-
mated source functions f̂ 1, . . . , f̂ m, we report the mean of maxi minj |τi − τ̂j | and
maxj mini |τi − τ̂j |, where τ and τ̂ denotes the vector of c.p. locations of the true
signal and the estimate, respectively. Furthermore, we report common segmen-
tation evaluation measures for the single estimated source functions f̂ 1, . . . , f̂ m,
namely the entropy-based V -measure, V1, with balancing parameter 1 of [58] and
the false positive sensitive location error, FPSLE, and the false negative sensitive
location error, FNSLE, of [35]. The V -measure, taking values in [0,1], measures
whether given clusters include the correct data points of the corresponding class.
Larger values indicate higher accuracy, 1 corresponding to a perfect segmenta-
tion. The FPSLE and the FNSLE capture the average distance between true and
estimated segmentation boundaries, with FPSLE being larger if a spurious split is
included, while FNSLE getting larger if a true boundary is not detected (see [35]
for details). To investigate the performance of the confidence region C1−α for ω,
we use dist(ω,C1−α) from (22), the mean coverage Mean(ω ∈ C1−α), and the di-
ameters ωi − ωi , where C1−α = [ω1,ω1] × · · · × [ωm,ωm]. Further, we report the
mean coverage of the confidence band H̃(β), that is, Mean(f ∈ H̃(β)). In order
to reduce computation time, we only considered intervals of dyadic length as ex-
plained in Section 3, possibly at expense of detection power. Simulation runs were
always 10,000.

4.1. Number of source functions m. In order to illustrate the influence of the
number of source functions m on the performance of SLAM, we vary m = 2, . . . ,5
while keeping the other parameters in the SBSSR-model fixed.

We investigate a binary alphabet A = {0,1} and set f i = 1[(i−1)/5,i/5) for i =
1, . . . ,5, simple bump functions. For each m ∈ {2,3,4,5}, we choose ω such that
ASB(ω) = 0.02 in (5) (see Table S3.1 in the Supplementary Material [5]). For
σ = δ = 0.02, n = 1000, and α = β = 0.1, we compute ω̂, C0.9, f̂ 1, . . . , f̂ m, and
H̃(0.1) for each m ∈ {2,3,4,5}, incorporating prior knowledge λ ≥ 0.025 [see
(35) and Remark 2.1] (with truth λ = 0.05). The results are displayed in Table S3.2.
A major finding is that as the number of possible mixture values equals km, the
complexity of the SBSSR-model grows exponentially in m such that demixing
becomes substantially more difficult with increasing m.
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4.2. Number of alphabet values k. To illustrate the influence of the number
of alphabet values k, we consider three different alphabets Ak = {0, . . . , k} for
k = 2,3,4. For m = 2, we set

(43) f 1 =
15∑
i=0

(i mod k)1[i,i+1)/16, f
2 =

[15/k]∑
i=0

(i mod k)1k[i,i+1)/16,

step functions taking successively every alphabet value in A2 (see Figure S3.1
in the Supplementary Material [5]). Further, we set ω = (0.02,0.98) such that
ASB(ω) = 0.02 for k = 2,3,4. For σ = 0.05, n = 1056, and α = β = 0.1 we
compute ω̂, C0.9, f̂ 1, . . . , f̂ m, and H̃(0.1) for each k = 2,3,4, incorporating prior
knowledge λ ≥ 1/32 [see (35) and Remark 2.1] (with truth λ = 1/16). The results
are displayed in Table S3.3 in the Supplementary Material [5]. From this, we find
that an increasing k does not influence SLAM’s performance for ω̂ and C1−α too
much. However, the model complexity km increases polynomially (for m = 2 as in
Table S3.3 quadratically) in k, reflected in a decrease of SLAM’s performance for
the estimate of the source functions f̂ .

4.3. Confidence levels α and β . We illustrate the influence of the confidence
levels α and β on SLAM’s performance with f and ω as in Example 1.1, that is,
m = 3, A = {0,1,2}, ω = (0.11,0.29,0.6), and f as displayed in Figure 1. For
σ = 0.02,0.05,0.1 and n = 1280, we compute ω̂, C1−α , f̂ 1, . . . , f̂ m, and H̃(β)

for each (α,β) ∈ {0.01,0.05,0.1}2, incorporating prior knowledge λ ≥ 0.025 [see
(35) and Remark 2.1] (with truth λ = 0.05). Results are displayed in Table S3.4
and Table S3.5 in the Supplementary Material [5]. These illustrate that SLAM’s
estimate ω̂ for the mixing weights is very stable under the choice of α. The di-
ameters dist(ω,C1−α) and ωi − ωi , respectively decrease slightly with increasing
α, as expected. Further, we found that the coverage Mean(ω ∈ C1−α) is always
bigger than the nominal coverage 1 − α indicating the conservative nature of the
first inequality in (30). With increasing β the multiscale constraint in (24) becomes
stricter leading to an increase of K̂ . However, as Table S3.5 illustrates, this effect
is remarkably small, resulting also in a high stability of f̂ with respect to α and β .
In contrast to the uniform coverage of the confidence region C1−α for ω for finite
n [recall (19)], this holds only asymptotically for the confidence band H̃(β) (see
Theorem 2.5). This is reflected in Table S3.5, where with increasing σ the cov-
erage Mean(f ∈ H̃(β)) can be smaller than the nominal 1 − β . Nevertheless, the
coverage of the single source functions remains reasonably high even for large σ

(see Table S3.5). In summary, we draw from Table S3.4 and S3.5 a high stability
of SLAM in the tuning parameters α and β , for both, the estimation error and the
confidence statements, respectively.
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4.4. Prior information on the minimal scale λ. In the previous simulations,
we always included prior information on the minimal scale λ [see (35) and Re-
mark 2.1]. In the following, we demonstrate the influence of this prior infor-
mation on SLAM’s performance in Example 1.1, that is, m = 3, A = {0,1,2},
ω = (0.11,0.29,0.6), and f as displayed in Figure 1. For σ = 0.02, n = 1280,
and α = β = 0.1 we compute ω̂, C0.9, f̂ 1, . . . , f̂ m, and H̃(0.1) under prior knowl-
edge λ ≥ 0.05, 0.04, 0.025, 0.015, 0.005 (with truth λ = 0.05). The results in
Table S3.9 in the Supplementary Material [5] show a certain stability for a wide
range of prior information on λ. Only when the prior assumptions on λ is of order
0.1λ (or smaller) SLAM’s performance gets significantly worse.

4.5. Robustness of SLAM. Finally, we want to analyze SLAM’s robustness
against violations of model assumptions.

4.5.1. Robustness against nonidentifiability. Throughout this work, we as-
sumed g ∈ Mδ , that is, ω ∈ �δ(m) as in (6) and f ∈ S(A)m separable as in (7),
in order to ensure identifiability. In the following, we briefly investigate SLAM’s
behavior if these conditions are close to be, or even violated.

Alphabet separation boundary δ. We start with the identifiability condition ω ∈
�δ(m), that is, ASB(ω) ≥ δ > 0 as in (5). We reconsider Example 1.1, that is,
m = 3, A = {0,1,2}, and f as displayed in Figure 1, but with ω chosen randomly,
uniformly distributed on �(3). For σ = 0.05, n = 1280, and α = β = 0.1 we com-
pute ω̂, C1−α , f̂ 1, f̂ 2, f̂ 3, and H̃(β), incorporating prior knowledge λ ≥ 0.025
[see (35) and Remark 2.1] (with truth λ = 0.05). Consequently, for each run we
get a different ω and ASB(ω), respectively.

We found that SLAM’s performance of ω̂ and C1−α , respectively, is not much
influenced by ASB(ω) [see Table S3.7, where the average mean squared error
of ω̂ and dist(ω,C1−α) remain stable when ASB(ω) becomes small]. The situ-
ation changes of course, when it comes to estimation of f itself. ASB(ω) = 0
in (5) implies nonidentifiability of f , that is, it is not possible to recover f

uniquely. Therefore, it is expected that small ASB(ω) will lead to a bad perfor-
mance of any estimator of f . This is also reflected in Theorem 2.7 where δ, with
ASB(ω) ≥ δ, appears as a “conditioning number” of the SBSSR-problem. The re-
sults in Table S3.8 in the Supplementary Material [5] confirm the strong influence
of ASB(ω) on the performance of SLAM’s estimate for f . However, as SLAM
does not only give an estimate of f but also a confidence band H̃(β) this (un-
avoidable) uncertainty is also reflected in its coverage. To illustrate this define
a local version of ASB(ω) as ASBx(ω) := mina �=f (x)∈Am |ω�a − ω�f (x)|. In-
tuitively, ASBx(ω) determines the difficulty to discriminate between the source
functions at a certain location x ∈ [0,1). Now, define the local size of H̃(β) as
|H̃x(β)| := #{a ∈ Am : ∃f ∈ H̃(β) s.t. f (x) = a}. Table S3.8 in the Supplemen-
tary Material [5] shows that the uncertainty in |H̃x(β)| increases in nonidentifiable
regions, that is, when ASBx(ω) is small.
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Violation of separability condition. Next, we consider the separability condition
in (7). We consider a modification of Example 1.1, that is, m = 3, A = {0,1,2},
where we modified the source function f 1 in such a way, that it violates the sepa-
rability condition in (7) for r = 1 (see Figure S3.2 in the Supplementary Material
[5]). For σ = 0.05, n = 1280, and α = β = 0.1, we compute ω̂ and f̂ 1, f̂ 2, f̂ 3

incorporating prior knowledge λ ≥ 0.025 [see (35) and Remark 2.1] (with truth
λ = 0.05). The results are shown in Table S3.6 in the Supplementary Material [5].
The violation of the separability condition in (7) leads to nonidentifiabilty of ω,
which is naturally reflected in a worse performance of SLAM’s estimate of ω. As
the condition is violated for r = 1 this has a particular impact on ω̂1. The perfor-
mance for ω̂2 and ω̂3 remains relatively stable. The same holds true for f̂ itself,
where the estimation error of ω̂1 propagates to a certain degree to the estimation
of f̂ 1. The performance of f̂ 2 and f̂ 3, however, is not much influenced.

4.5.2. Violation of normality assumption. In the SBSSR-model, we assume
that the error distribution is normal, that is, ε = (ε1, . . . , εn)

� ∼ N (0, In). In the
following we study SLAM’s performance for t-(heavy tails) and χ2-(skewed) dis-
tributed errors. Again, we reconsider Example 1.1, that is, m = 3, A = {0,1,2},
and f as displayed in Figure 1. We add to g now t-distributed and χ2-distributed
errors, respectively, with 3 degrees of freedom, re-scaled to a standard deviation
of σ = 0.05. For n = 1280 and α = 0.1, we compute ω̂ and f̂ 1, f̂ 2, f̂ 3, incorpo-
rating prior knowledge λ ≥ 0.025 [see (35) and Remark 2.1] (with truth λ = 0.05).
We simulated the statistic Tn for t- and χ2-distributed errors, respectively, and
choose q(β) to be the corresponding 90% quantile. For t-distributed errors, this
gave q(β) = 13.03 and for χ2-distributed errors q(β) = 3.73. The results (see
Table S3.6 in the Supplementary Material [5]) indicate a certain robustness to mis-
specification of the error distribution, provided the quantiles for Tn are adjusted
accordingly.

4.6. Selection of qn(α) and qn(β). On the one hand, for given α and β SLAM
yields confidence statements for the weights ω and the source functions f at level
1 − α and 1 − β , respectively. This suggests the choice of these parameters as
confidence levels. On the other hand, when we target to estimate ω and f qn(α)

and qn(β) can be seen as tuning parameters for the estimates ω̂ and f̂ . Although,
we found in Section 4.3 that SLAM’s estimates are quite stable for a range of α’s
and β’s, a fine tuning of these parameters improves estimation accuracy, of course.
In the following, we suggest a possible strategy for this. First, we discuss qn(α)

for tuning the estimate ω̂q := ω̂(Y, q). Recall that for estimating ω, qn(β) is not
required.

Minimal valid threshold (MVT). Theorem 2.7 yields ln(n)/
√

n-consistency
of ω̂ when qn(α) = qn(αn) with αn as in (23), independently of the specific
choice of ω̂ ∈ C1−αn . Further, for α′ [and qn(α

′), respectively] with α′ ≥ αn [and
qn(α

′) ≤ qn(αn), respectively] C1−α′ ⊆ C1−αn whenever B� = B�
qn(α′) �= ∅ in
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(20). Thus, choosing the threshold q , for any discrete set Q = {q1, q2, . . . , qN =
qn(αn)}, as q� := min(q ∈ Q : B�

q �= ∅) guarantees the convergence rates of
Theorem 2.7 for the corresponding estimate ω̂(Y, q�). In practice, we found
Q = {−1.0,−0.9, . . . ,1.9,2.0} to be a sufficiently rich candidate set.

Sample splitting (SST). Alternatively, we can choose q such that a given per-
formance measure h(q) := E [L(ω̂q − ω)] for estimating ω, for example, the MSE
with L = ‖ · ‖2

2, is minimized. As ω is unknown, we have to estimate h(q), for
which we suggest a simple sample splitting procedure. Details are given in Sec-
tion S4, in the Supplementary Material [5]. Simulations indicate that, especially for
high noise level, the MVT-selection method outperforms the SST-selection method
in terms of standard performance measures like MSE and MAE. However, in con-
trast to the SST-selection method, the MVT-selection method cannot be tailored
for a specific performance measure h.

It remains to select qn(β) (and β , respectively), which is required addition-
ally for f̂ , recall (25) and (26). Theorem 2.7 suggests to choose qn(β) = qn(βn)

with βn as in (23), that is, qn(β) → ∞ with rate O(log(n)). For finite n, there
exist several methods for selection of qn(β) in c.p. regression (see, e.g., [73]),
which might be used here as well. However, due to the high stability of f̂ in
q (see Section 4.3 and Figure S4.2 in the Supplementary Material [5]), we sim-
ply suggest to choose β = 0.1, which we have used here for our data analysis.
This choice controls the probability of overestimating the number of jumps in g,
P(K(ĝ) > K(g)) ≤ 0.1 asymptotically. In general, it depends on the application.
A large qn(β) (hence small β) has been selected in the subsequent application to
remove spurious changes in the signal which appear biologically not as of much
relevance.

5. Genetic sequencing data. Recall from Section 1.7 that a tumor often con-
sists of a few distinct subpopulations, so called clones, of DNA with distinct copy-
number profiles arising from duplication and deletion of genetic material groups.
The copy number profiles of the underlying clones in a sample measurement cor-
respond to the functions f 1, . . . , f m, the weights ω1, . . . ,ωm correspond to their
proportion in the tumor, and the measurements correspond to the mixture g with
some additive noise.

The most common method for tumor DNA profiling is via whole genome se-
quencing, which roughly involves the following steps:

1. Tumor cells are isolated, and the pooled DNA is extracted, amplified and frag-
mented through shearing into single-strand pieces.

2. Sequencing of the single pieces takes place using short “reads” (at time of writ-
ing of around 102 base-pairs long).

3. Reads are aligned and mapped to a reference genome (or the patient germline
genome if available) with the help of a computer.
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Although, the observed total reads are discrete (each observation corresponds
to an integer number of reads at a certain locus), for a sufficiently high sequencing
coverage, as it is the case in our example with around 55 average stretches of DNA
mapped to a locus, it is well established to approximate this binomial by a normal
variate (see [48] and references there).

In the following, SLAM is applied to the cell line LS411, which comes from col-
orectal cancer and a paired lymphoblastoid cell line. Sequencing was done through
a collaboration of Complete Genomics with the Wellcome Trust Center for Human
Genetics at the University of Oxford. This data has the special feature of being
generated under a designed experiment using radiation of the cell line (“in vitro”),
designed to produce CNAs that mimic real world copy-number events. In this case
therefore, the mixing weights and sequencing data for the individual clones are
known, allowing for validation of SLAM’s results, something that is not feasible
for patient cancer samples.

The data comes from a mixture of three different types of DNA, relating to
a normal (germline) DNA and two different clones. Tumor samples, even from
micro-dissection, often contain high proportion of normal cells, which for our
purposes are a nuisance, this is known as “stromal contamination” of germline
genomes in the cancer literature. The true mixing weights in our sample are
ω� = (ωNormal,ωClone1,ωClone2) = (0.2,0.35,0.45).

SLAM will be, in the following, applied only to the mixture data without knowl-
edge of ω and the sequenced individual clones and germline. The latter (which
serve as ground truth) will then be used only for validation of SLAM’s recon-
struction. We restricted attention to regions of chromosome 4,5,6,18 and 20, as
detailed below. Figure S3.3 in the Supplementary Material [5] shows the raw data.
Sequencing produces some spatial artefacts in the data, and waviness related to
the sequencing chemistry and local GC-content, corresponding to the relative fre-
quency of the DNA bases {C, G} relative to {A, T}. This violates the modeling
assumptions. To alleviate this we preprocess the data with a smoothing filter using
local polynomial kernel regression on normal data, baseline correction, and bin-
ning. We used the local polynomial kernel estimator from the R package KernS-
mooth, with bandwidth chosen by visual inspection. We selected the chromoso-
mal regions above as those showing reasonable denoising, and take the average of
every 10th data point to make the computation manageable resulting in n = 7480
data points spanning the genome. The resulting data is displayed in Figure S3.4 in
the Supplementary Material [5], where we can see that the data is much cleaned in
comparison with Figure S3.3 although clearly some artefacts and local drift of the
signal remain.

With σ = 0.21 pre-estimated as in [20], SLAM yields the confidence region for
α = 0.1 C0.9 = [0.00,0.31] × [0.28,0.50] × [0.33,0.72]. With qn(α) = −0.15 se-
lected with the MVT-method from Section 4.6 we obtain ω̂ = (0.12,0.35,0.53).
Figure S3.5 in the Supplementary Material [5] shows SLAM’s estimates for
qn(β) = 2.2 (which corresponds to β = 0.01). The top row shows the estimate for
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FIG. 5. SLAM’s estimates (red lines) for qn(α) = −0.15 (selected with MVT-method from Sec-
tion 4.6) and qn(β) = 20. Top row: total copy-number estimates across the genome. Rows 2–4: esti-
mates of the CN profiles of the germline and clones.

total copy number
∑

j ŵj f̂
j and rows 2–4 show f̂ 1, f̂ 2, and f̂ 3. We stress that

the data for the single clones are only used for validation purposes and do not en-
ter the estimation process. Inspection of Figure S3.5 shows that artefacts and local
drifts of the signal result in an overestimation of the number of jumps. However,
the overall appearance of the estimated CNA profile remains quite accurate. This
over-fitting effect caused by these artifacts can be avoided by increasing SLAM’s
tuning parameter qn(β) at the (unavoidable) cost of loosing detection power on
small scales [see Figure 5, which shows SLAM’s estimate for qn(β) = 20]. In
summary, Figure 5 (and S3.5) show that SLAM can yield highly accurate estima-
tion of the total CNA profile in this example, as well as reasonable CNA profiles
and their mixing proportions for the clones, something which has not been obtain-
able prior to now. The analysis takes around 1 minute to run on a desktop computer
with an intel core i7 processor. In future work, we aim to speed up the algorithm
and explore association between the CNA patient profiles and clinical outcome
data such as time-to-relapse and response to therapy.

6. Conclusion and discussion. In this paper, we have established a new ap-
proach for separating linear mixtures of step functions with a known finite alphabet
for additive Gaussian noise. This is of major interest for cancer genetics, but ap-
pears in other applications as well, for instance, in digital communications. We are
not aware of any other method that deals with this problem in such a rigorous and
general way. However, there are still some further generalizations and extensions
to be studied.

Although we obtained a certain robustness of SLAM to misspecification of the
error distribution in our simulation study, it is natural to ask how the results of this
work can be extended to other types of error distributions than the normal distri-
bution. [28, 29, 32] give several results about the multiscale statistic Tn, its limit
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distribution, and its geometric interpretation—which leads to the definition of the
boxes B [see (16)] for general one-dimensional exponential families. Combining
this with the results of this work should yield extensions for such distributions.

In contrast to the noiseless case, ε ≡ 0 in (4), where the weights can be recon-
structed in O(km) (independent of n) steps [6, 22], SLAM’s estimation for the
weights requires between O(nm) and O(n2m) steps. Without further paralleliza-
tion, this restricts the applicability of the algorithm to small number of mixtures m.
Significant speed up can also be achieved when a smaller system of intervals in Tn

is used (at the possible expense of finite sample detection power), for example,
all intervals of dyadic length, in which case the worst case complexity reduces to
O((n ln(n))m).

A further important issue is an extension for unknown number of source func-
tions m. Clearly, this is a model selection problem, which might be approached
with standard methods like the BIC or AIC criterion in conjunction with SLAM,
a topic for further research.

One may also ask the question, whether the SBSSR-model can be treated for
infinite alphabets A. The condition ASB(ω) > 0 in (6) remains necessary in order
to guarantee identifiability, that is, different mixture values must be well separated.
This condition, however, becomes significantly more restrictive when the size of
the alphabet increases. Even for the most simple (infinite) alphabet A = N there
exists no m ≥ 2, ω ∈ �(m) which fulfills ASB(ω) > 0, that is, no method can
be valid in this situation. To see this, fix some ω ∈ �(m) and w.l.o.g. assume
that ω1 ∈ Q, that is, ω1 = n/d with n,d ∈ N and d > n. Then, d̃ := (d − n)d ∈ N,
n ·d ∈ N, and ASB(ω) ≤ |(d̃ω1 +0 · (1−ω1))− (0 ·ω1 +nd(1−ω1))| = 0. Hence,
finiteness of the alphabet A is fundamental for identifiability in the SBSSR-model.

Another issue is the extension to unknown (but finite) alphabets. If only cer-
tain parameters of the alphabet are unknown, for example, an unknown scaling
constant, the alphabet is of the form A = {La1, . . . ,Lak} with ai ’s known but L

unknown, we speculate that generalizations should be possible and will rely on
corresponding identifiability conditions, which are unknown so far. An arbitrary
unknown alphabet, however, clearly leads to an unidentifiable model. This raises
challenging issues, which we plan to address in the future.
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SUPPLEMENTARY MATERIAL

Supplement to Multiscale Blind Source Separation (DOI: 10.1214/17-
AOS1565SUPP; .pdf). Proofs of Theorem 1.4, Theorem 2.5, and Theorem 2.7
(Section S1); additional details on algorithms (Section S2); additional figures and
tables from Section 4 and 5 (Section S3); details on the SST-method (Section S4).
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