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GAUSSIAN AND BOOTSTRAP APPROXIMATIONS FOR
HIGH-DIMENSIONAL U-STATISTICS AND THEIR APPLICATIONS1

BY XIAOHUI CHEN

University of Illinois at Urbana–Champaign

This paper studies the Gaussian and bootstrap approximations for the
probabilities of a nondegenerate U-statistic belonging to the hyperrectangles
in R

d when the dimension d is large. A two-step Gaussian approximation
procedure that does not impose structural assumptions on the data distribution
is proposed. Subject to mild moment conditions on the kernel, we establish
the explicit rate of convergence uniformly in the class of all hyperrectangles
in R

d that decays polynomially in sample size for a high-dimensional scal-
ing limit, where the dimension can be much larger than the sample size. We
also provide computable approximation methods for the quantiles of the max-
ima of centered U-statistics. Specifically, we provide a unified perspective
for the empirical bootstrap, the randomly reweighted bootstrap and the Gaus-
sian multiplier bootstrap with the jackknife estimator of covariance matrix
as randomly reweighted quadratic forms and we establish their validity. We
show that all three methods are inferentially first-order equivalent for high-
dimensional U-statistics in the sense that they achieve the same uniform rate
of convergence over all d-dimensional hyperrectangles. In particular, they
are asymptotically valid when the dimension d can be as large as O(enc

) for
some constant c ∈ (0,1/7).

The bootstrap methods are applied to statistical applications for high-
dimensional non-Gaussian data including: (i) principled and data-dependent
tuning parameter selection for regularized estimation of the covariance ma-
trix and its related functionals; (ii) simultaneous inference for the covariance
and rank correlation matrices. In particular, for the thresholded covariance
matrix estimator with the bootstrap selected tuning parameter, we show that
for a class of sub-Gaussian data, error bounds of the bootstrapped thresh-
olded covariance matrix estimator can be much tighter than those of the min-
imax estimator with a universal threshold. In addition, we also show that the
Gaussian-like convergence rates can be achieved for heavy-tailed data, which
are less conservative than those obtained by the Bonferroni technique that
ignores the dependency in the underlying data distribution.

1. Introduction. Let Xn
1 = {X1, . . . ,Xn} be a sample of independent and

identically distributed (i.i.d.) random vectors in R
p with the distribution F . Let h :

R
p ×R

p →R
d be a fixed and measurable function such that h(x1, x2) = h(x2, x1)
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for all x1, x2 ∈ R
p and E|hk(X1,X2)| < ∞ for all k = 1, . . . , d . Consider the U-

statistic of order two:

(1) Un = 1

n(n − 1)

∑
1≤i �=j≤n

h(Xi,Xj ).

In this paper we consider the uniform approximation of the probabilities of Un

over a class of the Borel subsets in R
d . More specifically, let Tn = √

n(Un − θ)/2,
where θ = E[h(X1,X2)] is the parameter of interest, and Are be the class of all
hyperrectangles A in R

d of the form

(2) A = {
x ∈ R

d : aj ≤ xj ≤ bj for all j = 1, . . . , d
}
,

where −∞ ≤ aj ≤ bj ≤ ∞ for j = 1, . . . , d . Our main goal are to construct a

random vector T
�
n in R

d and to derive nonasymptotic bounds for

(3) ρre(Tn,T
�
n

) = sup
A∈Are

∣∣P(Tn ∈ A) − P
(
T �

n ∈ A
)∣∣.

When p (and therefore d) is fixed, the classical central limit theorems (CLT)
for approximating Tn by a Gaussian random vector T

�
n ∼ N(0,�), where � =

Cov(g(X1)) and g(X1) = E[h(X1,X2)|X1] − θ , have been extensively studied in
literature [3, 28, 32–38, 60, 68]. Recently, due to the explosive data enrichment,
regularized estimation and dimension reduction of high-dimensional data (i.e., d

is larger or even much larger than n) have attracted a lot of research attention
such as covariance matrix estimation [9, 10, 20, 30], graphical models [11, 27,
67], discriminant analysis [48], factor models [31, 44] among many others. Those
problems all involve the consistent estimation of an expectation E[h(X1,X2)] of
U-statistics of order two. Below are three examples.

EXAMPLE 1.1. The sample mean vector X̄n = n−1 ∑n
i=1 Xi is an unbiased

estimator of EX1 and X̄n can be written as a U-statistic of form (1) with the linear
kernel h(x1, x2) = (x1 + x2)/2 for x1, x2 ∈ R

p and d = p.

EXAMPLE 1.2. Let d = p × p. The sample covariance matrix Ŝn = (n −
1)−1 ∑n

i=1(Xi − X̄n)(Xi − X̄n)
	 is an unbiased estimator of the covariance ma-

trix � = Cov(X1). Here, Ŝn is a matrix-valued U-statistic of form (1) with the
quadratic kernel h(x1, x2) = (x1 − x2)(x1 − x2)

	/2 for x1, x2 ∈ R
p .

EXAMPLE 1.3. The covariance matrix quantifies the linear dependency in a
random vector. The rank correlation is another measure for the nonlinear depen-
dency in a random vector. Two generic vectors y = (y1, y2) and z = (z1, z2) in R

2

are said to be concordant if (y1 − z1)(y2 − z2) > 0. For m,k = 1, . . . , p, define

τmk = 1

n(n − 1)

∑
1≤i �=j≤n

1
{
(Xim − Xjm)(Xik − Xjk) > 0

}
.
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Then Kendall’s tau rank correlation coefficient matrix T = {τmk}pm,k=1 is a matrix-
valued U-statistic with a bounded kernel. It is clear that τmk quantifies the mono-
tonic dependency between (X1m,X1k) and (X2m,X2k) and it is an unbiased esti-
mator of P((X1m −X2m)(X1k −X2k) > 0), that is, the probability that (X1m,X1k)

and (X2m,X2k) are concordant.

In this paper we are interested in the following central questions: How does the
dimension impact the asymptotic behavior of U-statistics and how can we make
practical statistical inference when d → ∞? Bounds on (3) with the explicit de-
pendence on d are particularly useful in large-scale statistical inference problems.
In particular, motivation of this paper comes from the estimation and inference
problems for large covariance matrix and its related functionals [10, 12, 20, 21,
51, 54, 58, 66, 67]. To establish rate of convergence for the regularized estimators
or to approximate the limiting null distribution of �∞-tests in high-dimensions, a
key issue is to characterize the distribution of the supremum norm |Un − EUn|∞
that relates to the probabilities of P(Tn ∈ A) for A belonging to the family of max-
hyperrectangles in R

d of the form A = {x ∈ R
d : xj ≤ a for all j = 1, . . . , d} and

−∞ ≤ a ≤ ∞.
Our first main contribution is to provide a Gaussian approximation scheme for

the high-dimensional nondegenerate U-statistics. Different from the CLT- type re-
sults for the sums of independent random vectors [22, 24], which are directly ap-
proximated by the Gaussian counterparts with the matching first and second mo-
ments, approximation of the U-statistics is more subtle because of its dependency
and nonlinearity structures. Here, we propose a two-step Gaussian approximation
method in Section 2. In the first step, we approximate the U-statistics by the lead-
ing component of a linear form in the Hoeffding decomposition (a.k.a. the Há-
jek projection); in the second step, the linear term is further approximated by the
Gaussian random vectors. To approximate the distribution of U-statistics by a lin-
ear form, a maximal moment inequality is developed to control the nonlinear and
canonical, that is, completely degenerate, form of the reminder term. Then the lin-
ear projection is handled by the recent development of Gaussian approximation
in high-dimensions [22, 24, 69, 70]. Explicit rate of convergence of the Gaussian
approximation for high-dimensional U-statistics uniformly in the class of all hy-
perrectangles in R

d is established for unbounded kernels subject to subexponential
and uniform polynomial moment conditions. Specifically, under either moment
conditions, we show that the validity of the Gaussian approximation holds for a
high-dimensional scaling limit, where d can be larger or even much larger than n.
In our results, symmetry of U-statistics is an key ingredient in the Hoeffding de-
composition. Therefore, our result can be viewed as nonlinear generalizations of
the Gaussian approximation for the high-dimensional sample mean vector of i.i.d.
X1, . . . ,Xn.

The second contribution of this paper is to provide computable methods for ap-
proximating the probabilities P(Tn ∈ A) uniformly for A ∈ Are. This allows us to
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compute the quantiles of the maxima |Un −EUn|∞. Since the covariance matrix �

of the Hájek projection of the centered U-statistics depends on the underlying data
distribution F which is unknown in many real applications, a practically feasible
alternative is to use data-dependent approaches such as the bootstrap to approxi-
mate P(Tn ∈ A), where the insight is to implicitly construct a consistent estimator
of � under the supremum norm. In Section 3, we provide a unified perspective for
the empirical bootstrap (EB), the randomly reweighted bootstrap, and the Gaussian
multiplier bootstrap with the jackknife estimator of covariance matrix as randomly
reweighted quadratic forms and we establish their validity. Specifically, we show
that all three methods are inferentially first-order equivalent for high-dimensional
U-statistics in the sense that they achieve the same uniform rate of convergence
over Are. In particular, they are asymptotically valid when the dimension d can
be as large as O(enc

) for some constant c ∈ (0,1/7). One important feature of
the Gaussian and bootstrap approximations is that no structural assumption on the
distribution F is made and the strong dependency in F is allowed, which in fact
helps the Gaussian and bootstrap approximations.

In Section 4, we apply the proposed bootstrap method to a number of important
high-dimensional problems, including the data-dependent tuning parameter selec-
tion in the thresholded covariance matrix estimator and the simultaneous inference
of the covariance and Kendall’s tau rank correlation matrices. Two additional ap-
plications for the estimation problems of the sparse precision matrix and the sparse
linear functionals of the precision matrix are given in the Supplementary Material
(SM, [19]). In those problems, we show that the Gaussian-like convergence rates
can be achieved for non-Gaussian data with heavy-tails, which are less conserva-
tive than those obtained by the Bonferroni technique that ignores the dependency
in the underlying data distribution. For the sparse covariance matrix estimation
problem, we also show that the thresholded estimator with the tuning parameter
selected by the bootstrap procedure adapts the the dependency and moment in the
underlying data distribution and, therefore, the bounds can be much tighter than
those of the minimax estimator with a universal threshold that ignores the depen-
dency in F [10, 13, 20].

To establish the Gaussian approximation result and the validity of the bootstrap
methods, a key step is to bound the the expected supremum norm of the second-
order canonical term in the Hoeffding decomposition of the U-statistics and estab-
lish its nonasymptotic maximal moment inequalities. An alternative simple data
splitting approach by reducing the U-statistics to sums of i.i.d. random vectors
can give the exact rate for bounding the moments in the nondegenerate case [29,
42, 50, 62]. Nonetheless, the reduction to the i.i.d. summands in terms of data
splitting does not exploit the complete degeneracy structure of the canonical term
and it does not lead to the convergence result in the Gaussian approximation for
the nondegenerate U-statistics; see Section 5.1 for details. In addition, unlike the
Hoeffding decomposition approach, the data splitting approximation is not asymp-
totically tight in distribution and, therefore, it is less useful in making inference of
the high-dimensional U-statistics.
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Relation to the existing literature. For univariate U-statistics, the empirical
bootstrap was studied in [2, 7] and the randomly reweighted bootstrap of the
form (15) was proposed in [39, 41], where a different class of random weights
wi was considered satisfying wi = ξi/(n

−1 ∑n
i=1 ξi) such that ξi are i.i.d. nonneg-

ative random variables and Eξ2
i < ∞. Weights of such form contain the Bayesian

bootstrap as a special case [47, 59]. The randomly reweighted bootstrap with i.i.d.
mean-zero weights was considered for the nondegenerate case in [65] and for the
degenerate case in [26]. More general exchangeably weighted bootstraps can be
found in [40, 49, 57]. However, none of those results in literature can be used
to establish the bootstrap validity for high-dimensional U-statistics when d 
 n.
The Gaussian and bootstrap approximations for the maxima of sums of high-
dimensional independent random vectors were considered in [22, 24]. For an i.i.d.
sample, this corresponds to a U-statistic with the kernel h(x1, x2) = (x1 + x2)/2
for x1, x2 ∈ R

d . Thus, our results are nonlinear generalizations of those in [22, 24]
when X1, . . . ,Xn are i.i.d.

The current paper supersedes and improves the preliminary work [18] (available
as an arXiv preprint) by the author. In [18], a Gaussian multiplier bootstrap was
proposed by estimating the individual Hájek projection terms using the idea of
decoupling on an independent dataset. The bootstrap validity therein is established
under the Kolmogorov distance, which is a subset of Are corresponding to max-
hyperrectangles in R

d . In addition, the rate of convergence in [18] is suboptimal
while the rate derived in this paper is nearly optimal; see Remark 3 for detailed
comparisons.

Notation and definitions. For a vector x, we use |x|1 = ∑
j |xj |, |x| :=

|x|2 = (
∑

j x2
j )1/2, and |x|∞ = maxj |xj | to denote its entry-wise �1, �2, and

�∞ norms, respectively. For a matrix M , we use |M|F = (
∑

i,j M2
ij )

1/2 and
‖M‖2 = max|a|=1 |Ma| to denote its Frobenius and spectral norms, respectively.
We shall use C,C1,C2, . . . to denote positive constants that do not depend on n and
d and whose values may change from place to place. Denote a ∨ b = max(a, b),
a ∧ b = min(a, b), a � b if C1a ≤ b ≤ C2b for some constants C1,C2 > 0. For
a random variable X, we write ‖X‖q = (E|X|q)1/q for q > 0. For r = 1, . . . , n,
we shall write xr

1 = (x1, . . . , xr) and Eh = Eh(Xr
1) for the random variables

X1, . . . ,Xr taking values in a measurable space (S,S) and a measurable func-
tion h : Sr →R

d . For two vectors x, y ∈ R
d , we use x ≤ y (or x > y) to mean that

xj ≤ yj (or xj > yj ) for all j = 1, . . . , d . We use L(X) to denote the law or distri-
bution of the random variable X. For α > 0, let ψα(x) = exp(xα)−1 be a function
defined on [0,∞) and Lψα be the collection of all real-valued random variables ξ

such that E[ψα(|ξ |/C)] < ∞ for some C > 0. For ξ ∈ Lψα , we define ‖ξ‖ψα =
inf{C > 0 : E[ψα(|ξ |/C)] ≤ 1}. Then, for α ∈ [1,∞), ‖·‖ψα is an Orlicz norm and
(Lψα,‖·‖ψα) is a Banach space [45]. For α ∈ (0,1), ‖·‖ψα is a quasi-norm, that is,
there exists a constant C(α) > 0 such that ‖ξ1 + ξ2‖ψα ≤ C(α)(‖ξ1‖ψα + ‖ξ2‖ψα)
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holds for all ξ1, ξ2 ∈ Lψα [1]. We denote the Kolmogorov distance between two
real-valued random variables X and Y as ρ(X,Y ) = supt∈R |P(X ≤ t)−P(Y ≤ t)|.
Throughout the paper, we assume that n ≥ 4 and d ≥ 3.

2. Gaussian approximation. In this section we study the approximation for
P(Tn ∈ A) where Tn = √

n(Un − θ)/2 and A ∈ Are. We shall derive a Gaussian
approximation result (GAR) for nondegenerate U-statistics, which is the stepping
stone to study various bootstrap procedures in Section 3. Let X′ and X be two
independent random vectors with the distribution F that are also independent
of Xn

1 . In Sections 2 and 3, since we consider centered U-statistics Tn, we as-
sume without loss of generality that θ = 0. Define g(X) = E[h(X,X′)|X] and
f (X,X′) = h(X,X′) − g(X) − g(X′).

DEFINITION 2.1. The kernel h : Rp × R
p → R

d is said to be: (i) nondegen-
erate if Var(gm(X)) > 0 for all m = 1, . . . , d; (ii) degenerate of order one, that
is, completely degenerate or F -canonical, if P(g(X) = 0) = 1 or equivalently
E[h(x1,X

′)] = E[h(X,x2)] = E[h(X,X′)] = 0 for all x1, x2 ∈ R
p . The corre-

sponding U-statistic in (1) is nondegenerate if h is nondegenerate.

Throughout this paper, we only consider the nondegenerate U-statistics and we
assume that:

(M.1) There exists a constant b > 0 such that E[g2
m(X)] ≥ b for all m =

1, . . . , d .

The Hoeffding decomposition of Tn is given by Tn = Ln + Rn, where

Ln = 1√
n

n∑
i=1

g(Xi) and Rn = 1

2
√

n(n − 1)

∑
1≤i �=j≤n

f (Xi,Xj ).

Since f is F -canonical, we expect that Ln is the leading term (a.k.a. the Hájek
projection) of Tn. Therefore, we can reasonably expect that Tn is an approximately
linear statistic such that L(Tn) ≈ L(Ln), where the latter can be further approx-
imated by its Gaussian analogue [22, 24]. This motivates the following two-step
Gaussian approximation procedure. Let � = Cov(g(X)) = E(g(X)g(X)	) be the
d × d covariance matrix of g(X) and Y ∼ N(0,�) be a d-dimensional Gaussian
random vector. The main result of this section is to establish nonasymptotic er-
ror bounds for ρre(Tn,Y ) under different moment conditions on h. Let q > 0 and
Bn ≥ 1 be a sequence of real numbers possibly tending to infinity. In particular, we
shall consider the following assumptions:

(M.2) E[|hm(X,X′)|2+�] ≤ B�
n for � = 1,2 and for all m = 1, . . . , d .

(E.1) ‖hm(X,X′)‖ψ1 ≤ Bn for all m = 1, . . . , d .
(E.2) E[max1≤m≤d(|hm(X,X′)|/Bn)

q] ≤ 1.
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In the high-dimensional context, the dimension d grows with the sample size
n and the distribution function F may also depend on n. Therefore, Bn is al-
lowed to increase with n. In particular, under (M.1) and (M.2), Bn can be in-
terpreted as a uniform bound on the standardized absolute moments of gm(X)

for m = 1, . . . , d . For instance, the kurtosis parameter κm of gm(X) obeys κm =
[Eg4

m(X)]/[Eg2
m(X)]2 − 3 ≤ B2

n/b2 − 3. Define

(4) 1,n =
(

B2
n log7(nd)

n

)1/6
and 2,n =

(
B2

n log3(nd)

n1−2/q

)1/3
.

THEOREM 2.1 (Main result I: Gaussian approximation for high-dimensional U-
statistics for hyperrectangles). Assume that (M.1) and (M.2) hold. Suppose that
logd ≤ b̄n for some constant b̄ > 0:

(i) If (E.1) holds, then there exists a constant C := C(b, b̄) > 0 such that

(5) ρre(Tn,Y ) ≤ C1,n.

(ii) If (E.2) holds with q ≥ 4, then there exists a constant C := C(b, b̄, q) > 0
such that

(6) ρre(Tn,Y ) ≤ C{1,n + 2,n}.
The following corollary is an immediate consequence of Theorem 2.1.

COROLLARY 2.2. Assume that (M.1) and (M.2) hold. Let K ∈ (0,1) and
b̄ > 0.

(i) If (E.1) holds and B2
n log7(dn) ≤ b̄n1−K , then there exists a constant C :=

C(b, b̄) > 0 such that

(7) ρre(Tn,Y ) ≤ Cn−K/6.

In particular,

(8) ρ(T̄n, Ȳ ) ≤ Cn−K/6,

where T̄n = max1≤m≤d Tnm and Ȳ = max1≤m≤d Ym.
(ii) If (E.2) holds with q = 4 and B4

n log7(dn) ≤ b̄n1−K , then there exists a
constant C := C(b, b̄) > 0 such that (7) and (8) hold.

Theorem 2.1 and Corollary 2.2 are nonasymptotic, showing that the validity
of the Gaussian approximation for centered nondegenerate U-statistics holds even
if d can be much larger than n and no structural assumption on F is required.
In particular, Theorem 2.1 applies to kernels with the subexponential distribution
such that ‖hm‖q ≤ Cq for all q ≥ 1, in which case Bn = O(1) and the dimension
d is allowed to have a subexponential growth rate in the sample size n, that is,
d = O(exp(n(1−K)/7)). Condition (E.1) also covers bounded kernels ‖h‖∞ ≤ Bn,
where Bn may increase with n.
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REMARK 1 (Comments on the near-optimality of the convergence rate in The-
orem 2.1). The rate of convergence n−K/6 obtained in (7) is slower than the
Berry–Esseen rate n−1/2 when d is fixed. Similar observations have been made
in the existing literature [4, 56] for the normalized sample mean vectors of i.i.d.
mean-zero random vectors Xi ∈ R

d , which corresponds to a U-statistic with the
linear kernel h(x1, x2) = (x1 + x2)/2. Assuming Cov(Xi) = Idd , [56] showed that√

nX̄n has the asymptotic normality if d = o(
√

n) and [4] showed that

sup
A∈A

∣∣P(
√

nX̄n ∈ A) − P(Y ∈ A)
∣∣ ≤ Cd1/4

E|X1|3/n1/2,

where A is the class of all convex subsets in R
d , Y ∼ N(0, Idd), and C > 0 is an

absolute constant. In either case, the dependence of the CLT rate on the dimension
d is polynomial (d/n1/2 and d7/4/n1/2, resp.). On the contrary, our Theorem 2.1
allows d can be larger than n in order to obtain the CLT type results in much higher
dimensions. Since the rate O(n−1/6) is minimax optimal in infinite-dimensional
Banach spaces for the linear kernel case [6, 24], we argue that the rates derived
in Theorem 2.1 for U-statistics seem un-improvable in n in the following sense.
Let {Xij }i=1,...,n;j=1,...,d be an array of i.i.d. mean-zero random variables with
the distribution F such that EX2

ij = 1 and ‖Xij‖ψ1 ≤ c for all i = 1, . . . , n and

j = 1, . . . , d . Consider the linear kernel. Let Y ∼ N(0, Idd) and Ȳ = max1≤j≤d Yj .
Denote �(·) and φ(·) as the c.d.f. and p.d.f. of the standard normal distribution,
respectively. By the moderate deviation principle for sums of subexponential ran-
dom variables (cf. [16], equation (1.1), or [55], Chapter 8, equation (2.41)), there
exist constants C0,C1 > 0 depending only on c such that

P(Tnj > x)

1 − �(x)
= 1 + η1(1 + x3)

n1/2 , j = 1, . . . , d

for 0 ≤ x ≤ C0n
1/6 and |η1| ≤ C1. Then, for all such x in the power zone of normal

convergence, we have

P(T̄n ≤ x) − P(Ȳ ≤ x) = P(Ȳ ≤ x)
{[

1 + η2
(
1 − �(x)

)
/�(x)

]d − 1
}
,

where η2 = −η1(1 + x3)n−1/2. Take a distribution F such that η1 < 0. By the
inequality (1 + x)d ≥ 1 + dx for x ≥ 0,

P(T̄n ≤ x) − P(Ȳ ≤ x) ≥ |η1|(1 + x3)
n−1/2

P(Ȳ ≤ x)d
[
1 − �(x)

]
.

Let x∗ be the median of Ȳ ; that is, P(Ȳ ≤ x∗) = 1/2. Then x∗ � √
2 logd . In fact,

by [25], Corollary 3.1, we have x∗ ≤ √
2 logd for d ≥ 31. Thus, if x∗ ≤ C0n

1/6,
then using [1 − �(x)]/[x−1φ(x)] → 1 as x → ∞ we have

ρ(T̄n, Ȳ ) ≥ C2n
−1/2x∗2

d exp
(−x∗2

/2
) ≥ C2n

−1/2x∗2
.

Hence, there exist constants C and C ′ depending only on F such that if (logd)3 ≤
C′n, then ρ(T̄n, Ȳ ) ≥ Cn−1/2 logd . In particular, taking (logd)3 � n, we have
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ρ(T̄n, Ȳ ) ≥ Cn−1/6. Therefore, in view of the upper bound in (5) and the lower
bound in [6, 24], we conjecture that the optimal rate for ρ(T̄n, Ȳ ) in the high-
dimensional setting is O((n−1B2

n loga(nd))1/6) for some a > 0, based on which
the rate of convergence in (5) is also nearly optimal in d . However, a rigorous lower
bound for ρ(T̄n, Ȳ ) is still an open question. By the moderate deviations for self-
normalized sums [61] and the argument above, we expect that similar comments
apply for Xij with weaker polynomial moment conditions.

Theorem 2.1 and Corollary 2.2 can be viewed as nonlinear generalization
of the results in [22, 24], which considered the Gaussian approximation for
max1≤j≤d

√
nX̄nj . Therefore, for U-statistics with a nonlinear kernel h (possi-

bly unbounded and discontinuous), the effect of higher-order terms than the Hájek
projection to a linear subspace in the Hoeffding decomposition vanishes in the
Gaussian approximation. For multivariate symmetric statistics of order two, to the
best of our knowledge, the Gaussian approximation result (5), (6), (7) and (8) with
the explicit convergence rate is new. When d is fixed, the rate of convergence and
the Edgeworth expansion of such statistics can be found in [5, 8, 33]. In those
papers, assuming the Cramér condition on g(X1) and suitable moment conditions
on h(X1,X2), the Edgeworth expansion of U-statistics was established for the
univariate case (d = 1) with remainder o(n−1/2) or O(n−1) [5, 8] and the multi-
variate case (d > 1 fixed) with remainder o(n−1/2) [33]. In the latter work [33], it
is unclear that how the constant in the error bound depends on the dimensionality
parameter d .

Theorem 2.1 and Corollary 2.2 allow us to approximate the probabilities of
Tn belonging to the hyperrectangles in R

d by those probabilities of Y , with the
knowledge of �. Such results are useful for approximating the quantiles of T̄n by
those of Ȳ . In practice, the covariance matrix � and the Hájek projection terms
g(Xi), i = 1, . . . , n, depend on the underlying data distribution F , which is un-
known. Thus, quantiles of Ȳ need to be estimated in real applications. However,
we shall see in Section 3 that Theorem 2.1 can still be used to derive valid and com-
putable (i.e., fully data-dependent) methods to approximate the quantiles of T̄n.

3. Bootstrap approximations. In this section we consider computable ap-
proximations of the probabilities P(Tn ∈ A) for A ∈ Are. Before proceeding to the
rigorous results, we shall explain our general strategy. The validity of the bootstrap
procedures is established by a series of approximations:

(9) L(Tn) ≈(1) L(Y ) ≈(2) L
(
ZX|Xn

1
) ≈(3) L

(
T �

n |Xn
1
)
,

where ZX is a conditionally mean-zero Gaussian random vector in R
d given the

observed sample Xn
1 . The choice of ZX and T

�
n depends on the specific bootstrap

method such that the conditional covariance matrix of ZX given Xn
1 is a consistent

estimator of � under the supremum norm. Step (1) follows from the GAR and CLT
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in Section 2. Step (2) relies on a (conditional) Gaussian comparison principle and
the tail probability inequalities of maximal U-statistics to bound the probability of
the events on which the Gaussian comparison can be applied. Those tail probability
inequalities are developed in the SM (Section E), which are of independent interest
and may be used for other high-dimensional problems. Step (3) is a conditional
version of Step (1) given Xn

1 .

3.1. Empirical bootstrap. Let X∗
1, . . . ,X∗

n be a bootstrap sample indepen-

dently drawn from the empirical distribution F̂n = n−1 ∑n
i=1 δXi

, where δx is the
Dirac point mass at x. Define

(10) U∗
n = 1

n(n − 1)

∑
1≤i �=j≤n

h
(
X∗

i ,X
∗
j

)
.

Then the conditional distribution of T ∗
n = √

n(U∗
n −E[U∗

n |Xn
1 ])/2 given Xn

1 is used

to approximate the distribution of Tn. Here, T �
n = T ∗

n in (9). Note that E[U∗
n |Xn

1 ] =
Vn, where Vn = n−2 ∑n

i,j=1 h(Xi,Xj ) is a V -statistic. Let

ξi
i.i.d.∼ multinomial(1;1/n, . . . ,1/n).

Denote ξn×n = (ξ1, . . . , ξn) and Xp×n := Xn
1 = (X1, . . . ,Xn). Then we can write

X∗ = (X∗
1, . . . ,X∗

n) = Xξ . The key observation is that conditional on X, U∗
n is a

U-statistic of ξ1, . . . , ξn since

U∗
n = 1

n(n − 1)

∑
1≤i �=j≤n

h(Xξi,Xξj ).

Therefore, we can perform the conditional Hoeffding decomposition as follows.
Let

gX(ξ1) = E
[
h(Xξ1,Xξ2)|ξ1,X

n
1
] − Vn

= 1

n

n∑
j=1

h(Xξ1,Xj ) − 1

n2

n∑
i,j=1

h(Xi,Xj ).

Then E[gX(ξ1)|Xn
1 ] = 0 and

(11) �̂n := Cov
(
gX(ξ1)|Xn

1
) = 1

n3

n∑
i=1

n∑
j=1

n∑
k=1

h(Xi,Xj )h(Xi,Xk)
	 − VnV

	
n .

For the special case d = 1, by the strong law of large numbers for U-statistics
([60], Theorem A, page 190) we have with probability one

lim
n→∞ Var

(
gX(ξ1)

∣∣Xn
1
) = Var

(
g(X1)

) = E
{
E

[
h(X1,X2)

∣∣X1
]}2 − {

E
[
h(X1,X2)

]}2
.
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Therefore, we expect that T ∗
n is a reasonable approximation of Tn and our goal to

is bound the random quantity

ρB(
Tn,T

∗
n

) = sup
A∈Are

∣∣P(Tn ∈ A) − P
(
T ∗

n ∈ A | Xn
1
)∣∣.

In addition to (M.2), (E.1) and (E.2), we shall also assume that:

(M.2′) E[|hm(X,X)|2+�] ≤ B�
n for � = 1,2 and for all m = 1, . . . , d .

(E.1′) ‖hm(X,X)‖ψ1 ≤ Bn for all m = 1, . . . , d .
(E.2′) E[max1≤m≤d(|hm(X,X)|/Bn)

q] ≤ 1.

(M.2′), (E.1′) and (E.2′) are the von Mises conditions on the empirical bootstrap
of U-statistics [7], which require that the diagonal entries of the kernel h obey the
same moment conditions as the off-diagonal ones (M.2), (E.1) and (E.2), respec-
tively. Without (M.2′), (E.1′) and (E.2′), the empirical bootstrap (Theorem 3.1)
can fail and a counterexample was given in [7]; see also [46], Chapter 6.5. For
γ ∈ (0, e−1), define

(12)

B
1,n(γ ) =

(
B2

n log5(nd) log2(1/γ )

n

)1/6
and

B
2,n(γ ) =

(
B2

n log3(nd)

γ 2/qn1−2/q

)1/3
.

THEOREM 3.1 (Main result II: rate of convergence of the empirical bootstrap
for U-statistics). Suppose that (M.1), (M.2) and (M.2′) are satisfied. Assume that
log(1/γ ) ≤ K log(dn) and logd ≤ b̄n for some constants K, b̄ > 0.

(i) If (E.1) and (E.1′) hold, then there exists a constant C := C(b, b̄,K) > 0
such that we have with probability at least 1 − γ

(13) ρB(
Tn,T

∗
n

) ≤ C1,n.

(ii) If (E.2) and (E.2′) hold with q ≥ 4, then there exists a constant C :=
C(b, b̄, q,K) > 0 such that we have with probability at least 1 − γ

(14) ρB(
Tn,T

∗
n

) ≤ C
{
1,n + B

2,n(γ )
}
.

Theorem 3.1 is nonasymptotic, which implies the asymptotic validity of the EB
for U-statistics in the almost sure sense.

COROLLARY 3.2 (Asymptotic validity of the empirical bootstrap for U-
statistics in the almost sure sense). Suppose that (M.1), (M.2) and (M.2′) are
satisfied and logd ≤ b̄n for some constant b̄ > 0.

(i) Under (E.1) and (E.1′), we have P(ρB(Tn, T
∗
n ) ≤ C1,n for all but finitely

many n) = 1, where C > 0 is a constant depending only on b and b̄. In particular,
if B2

n log7(nd) = o(n), then ρB(Tn, T
∗
n ) → 0 almost surely.
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(ii) Under (E.2) and (E.2′) with q > 4, we have P(ρB(Tn, T
∗
n ) ≤ C{1,n +

 ′B
2,n} for all but finitely many n) = 1, where

 ′B
2,n =

(
B2

n log3(nd) log4/q(n)

n1−4/q

)1/3

and C > 0 is a constant depending only on b, b̄, and q . In particular, if
B2

n log7(nd) = o(n) and B2
n log3(nd) log4/q(n) = o(n1−4/q), then ρB(Tn, T

∗
n ) →

0 almost surely.

3.2. Randomly reweighted bootstrap with i.i.d. Gaussian weights. Let w1, . . . ,

wn be i.i.d. N(1,1) random variables that are also independent of Xn
1 and Y . Con-

sider

(15) U�
n = 1

n(n − 1)

∑
1≤i �=j≤n

wiwjh(Xi,Xj ).

Then U�
n is the stochastically reweighted version of Un and it can also be viewed

as a random quadratic form in w1, . . . ,wn. Denote T � = √
n(U�

n − Un)/2 and
T

�
n = T �

n in (9). Since the main focus of this paper is to approximate the distribution
of the centered U-statistics; that is, θ := Eh = 0, we first consider the bootstrap of
the centered U-statistics of the random quadratic form (15) and discuss the effect
of centering in the bootstraps in Remark 2.

THEOREM 3.3 (Main result III: rate of convergence of the randomly reweighted
bootstrap for centered U-statistics). Assume that θ = 0. Suppose that (M.1) and
(M.2) are satisfied. Assume that log(1/γ ) ≤ K log(dn) and logd ≤ b̄n for some
constants K, b̄ > 0.

(i) If (E.1) holds, then there exists a constant C := C(b, b̄,K) > 0 such that
we have ρB(Tn, T

�
n ) ≤ C1,n holds with probability at least 1 − γ .

(ii) If (E.2) holds with q ≥ 4, then there exists a constant C := C(b, b̄, q,K) >

0 such that we have ρB(Tn, T
�
n ) ≤ C{1,n + B

2,n(γ )} holds with probability at
least 1 − γ .

From Theorems 3.1 and 3.3, we see that the empirical and the randomly
reweighted bootstraps are first-order equivalent, both achieving the same uniform
rate of convergence for approximating the probabilities P(Tn ∈ A) for A ∈ Are.
However, unlike the EB, the randomly reweighted bootstrap does not assume the
von Mises moment conditions on the diagonal entries.

REMARK 2 (Effect of centering in the randomly reweighted bootstrap). If θ �=
0, then we can show that the i.i.d. reweighted bootstrap T �

n is not an asymptotically
valid bootstrap approximation for Tn. The reason is that centering is a key structure
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to maintain in the conditional distribution of T �
n . Therefore, in the case, we shall

consider the following modified version:

(16) U�
n = 1

n(n − 1)

∑
1≤i �=j≤n

wiwjh(Xi,Xj ) − 2(w̄ − 1)Un

and T
�
n = √

n(U
�
n − Un)/2. Then, T

�
n = T �

n − √
n(w̄ − 1)Un. Since wi are i.i.d.

N(1,1), we have
√

n(w̄ − 1)Un|Xn
1 ∼ N(0,UnU

	
n ), which is not asymptotically

vainishing for θ �= 0. Therefore, without the centering term 2(w̄ − 1)Un in U
�
n, T �

n

is not an asymptotically tight sequence for approximating Tn.

THEOREM 3.4 (Rate of convergence of the randomly reweighted bootstrap for
noncentered U-statistics). Suppose that (M.1) and (M.2) are satisfied. Assume
that log(1/γ ) ≤ K log(dn) and logd ≤ b̄n for some constants K, b̄ > 0.

(i) If (E.1) holds, then there exists a constant C := C(b, b̄,K) > 0 such that
we have ρB(Tn, T

�
n ) ≤ C1,n holds with probability at least 1 − γ .

(ii) If (E.2) holds with q ≥ 4, then there exists a constant C := C(b, b̄, q,K) >

0 such that we have ρB(Tn, T
�
n ) ≤ C{1,n + B

2,n(γ )} holds with probability at
least 1 − γ .

Theorem 3.4 is valid regardless θ �= 0 and θ = 0 since in the latter case,
√

n(w̄−
1)Un is conditionally negligible compared with T �

n . For the EB, centering in the
empirical analog �̂n of the covariance matrix � is automatically fulfilled; see (11).
Similar comments apply to the Gaussian multiplier bootstrap T

�
n in Section 3.3.

3.3. Gaussian multiplier bootstrap with jackknife covariance matrix estimator.
The i.i.d. reweighted bootstrap is closely related to the Gaussian multiplier boot-
strap with the jackknife estimator of the covariance matrix of Tn. Let e1, . . . , en be
i.i.d. N(0,1) random variables that are independent of Xn

1 and Y and

(17) T �
n = 1√

n

n∑
i=1

[
1

n − 1

∑
j �=i

h(Xi,Xj ) − Un

]
ei.

Define

(18) �̂JK
n = 1

(n − 1)(n − 2)2

n∑
i=1

∑
j �=i

∑
k �=i

(
h(Xi,Xj ) − Un

)(
h(Xi,Xk) − Un

)	
.

Then, �̂JK
n is the jackknife estimator of the covariance matrix of Tn [14] and

T
�
n |Xn

1 ∼ N(0, �̃n), where

(19) �̃n = (n − 2)2

n(n − 1)
�̂JK

n .
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Therefore, it is interesting to view the Gaussian multiplier bootstrap T
�
n as a plug-

in estimator of the distribution of Tn by its jackknife covariance matrix estimator.
To distinguish the Gaussian wild bootstrap L̂∗

0 in (20) (cf. Remark 3), we call T
�
n

the jackknife Gaussian multiplier bootstrap.

THEOREM 3.5 (Main result IV: rate of convergence of the jackknife Gaussian
multiplier bootstrap for U-statistics). Suppose that (M.1) and (M.2) are satisfied.
Assume that log(1/γ ) ≤ K log(dn) and logd ≤ b̄n for some constants K, b̄ > 0.

(i) If (E.1) holds, then there exists a constant C := C(b, b̄,K) > 0 such that
we have ρB(Tn, T

�
n ) ≤ C1,n holds with probability at least 1 − γ .

(ii) If (E.2) holds with q ≥ 4, then there exists a constant C := C(b, b̄, q,K) >

0 such that we have ρB(Tn, T
�
n ) ≤ C{1,n + B

2,n(γ )} holds with probability at
least 1 − γ .

In the special case h(x1, x2) = (x1 + x2)/2 for x1, x2 ∈ R
d , we have Un =

X̄n = n−1 ∑n
i=1 Xi is the sample mean vector and Tn = √

n(X̄n − θ)/2 where θ =
E(X1). Some algebra shows that �̂JK

n = [4(n−1)]−1 ∑n
i=1(Xi − X̄n)(Xi − X̄n)

	,
�̂n = n−1(n − 1)�̂JK

n in (11), and �̃n = [(n − 2)2/(n(n − 1))]�̂JK
n in (19). Then

T
�
n ∼ N(0, �̃n) which is the equivalent to the multiplier bootstrap of [24]. There-

fore, for i.i.d. samples, Theorems 3.1 and 3.5 are nonlinear generalizations of the
empirical and Gaussian multiplier bootstraps considered in [24].

REMARK 3 (Comparison with the Gaussian wild bootstrap of [18]). In [18],
a Gaussian wild bootstrap based on decoupling was proposed. Specifically, let
X′

1, . . . ,X
′
n be an independent copy of X1, . . . ,Xn. The Hájek projection terms

g(Xi), i = 1, . . . , n, are estimated by

ĝi = 1

n

n∑
j=1

h
(
Xi,X

′
j

) − 1

n(n − 1)

∑
1≤j �=l≤n

h
(
X′

j ,X
′
l

)
.

Since g(Xi) = E[h(Xi,X
′)|Xi] − E[h(X,X′)], ĝi can be viewed as an unbiased

estimator of g(Xi) conditionally on Xi for i = 1, . . . , n. Then the Gaussian wild
bootstrap procedure is defined as

(20) L̂∗
0 = max

1≤m≤d

1√
n

n∑
i=1

ĝimei,

where ei are i.i.d. N(0,1) random variables. Let a
L̂∗

0
(α) be the αth conditional

quantile of L̂∗
0 given X1, . . . ,Xn and X′

1, . . . ,X
′
n. Similarly, denote a

T̄
�
n
(α) as

the αth conditional quantile of T̄
�
n given X1, . . . ,Xn. Let K ∈ (0,1) be a con-

stant. Assuming (M.1), (M.2) and in addition D2 ≤ 1, it was shown in [18] that:
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(i) if B2
n log7(dn) ≤ n1−K and (E.1) holds, then supα∈(0,1) |P(T̄n ≤ a

L̂∗
0
(α)) −

α| ≤ Cn−K/8; (ii) if B4
n log7(dn) ≤ n1−K and (E.2) holds with q = 4, then

supα∈(0,1) |P(T̄n ≤ a
L̂∗

0
(α)) − α| ≤ Cn−K/12. Here, the constant C > 0 depends

only on b in (M.1) in both cases. The following theorem shows that the jack-
knife Gaussian multiplier bootstrap improves the convergence rate of Gaussian
wild bootstrap in [18].

THEOREM 3.6. Suppose that (M.1) and (M.2) are satisfied. Let K ∈ (0,1).

(i) Assume (E.1). If B2
n log7(dn) ≤ n1−K , then

(21) sup
α∈(0,1)

∣∣P(
T̄n ≤ a

T̄
�
n
(α)

) − α
∣∣ ≤ Cn−K/6,

where T̄
�
n = max1≤j≤d T

�
nj and C > 0 is a constant depending only on b.

(ii) Assume (E.2) with q ≥ 4. If B2
n log7(dn) ≤ n1−K and B4

n log6(d) ≤
n2−4(1+K/6)/q−K , then we have (21) with the constant C depending only on b

and q .

In particular, for both subexponential and uniform polynomial kernels, the con-
vergence rate of jackknife Gaussian multiplier bootstrap T

�
n is O(n−K/6). The

improved dependence on n is due to two reasons. First, we established a GAR for
high-dimensional U-statistics with sharper rate (Theorem 2.1). Second, T

�
n does

not estimate the individual terms g(Xi) in the Hájek projection which requires
a strong control on the maximal deviation |ĝi − g(Xi)|∞ over i = 1, . . . , n; see
Lemma C.4 in [18]. Instead, T

�
n implicitly constructs an estimator �̃n in (19) for

the covariance matrix of the linear projection part in the Gaussian approxima-
tion. There is a slight trade-off between the moment and scaling limit for uniform
polynomial kernels in Theorem 3.6 since the conditions B2

n log7(dn) ≤ n1−K and
B4

n log6(d) ≤ n2−4(1+K/6)/q−K are implied by either B4
n log7(dn) ≤ n1−7K/6 for

q = 4 or B4
n log7(dn) ≤ n1−K for q ≥ 4(1 + K/6). However, in either case, Theo-

rem 3.6 asymptotically permits d = O(enc
) for some c ∈ (0,1/7) when q ≥ 4 and

Bn = O(1).

4. Statistical applications. In this section we present two statistical appli-
cations for bootstrap methods in Section 3.1. For simplicity, we only present the
results for the jackknife Gaussian multiplier bootstrap T

�
n defined in (17). Similar

results hold for other bootstraps in Section 3.1. Two additional examples can be
found in the SM. Throughout the section, we consider the bootstrap of the sam-
ple covariance matrix [i.e., h(x1, x2) = (x1 − x2)(x1 − x2)

	/2 and R
d = R

p×p].
We define T̄

�
n = 2n−1/2 max1≤m,k≤p |T �

n,mk| by rescaling and denote the αth con-

ditional quantile of T̄
�
n given the data Xn

1 as

(22) a
T̄

�
n
(α) = inf

{
t ∈R : Pe

(
T̄ �

n ≤ t
) ≥ α

}
,
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where Pe is the probability taken w.r.t. the i.i.d. N(0,1) random variables
e1, . . . , en. We can compute the conditional quantile a

T
�
n
(α) by repeatedly drawing

independent samples of the standard Gaussian random variables e1, . . . , en.

4.1. Tuning parameter selection for the thresholded covariance matrix estima-
tor. Consider the problem of sparse covariance matrix estimation. Let r ∈ [0,1)

and

G(r, ζp) =
{
� ∈ R

p×p : max
1≤m≤p

p∑
k=1

|σmk|r ≤ ζp

}

be the class of sparse covariance matrices in terms of the strong �r -ball. Here,
ζp > 0 may grow with p. Let Ŝn = {ŝmk}pm,k=1 be the sample covariance matrix
and

�̂(τ ) = {
ŝmk1

{|ŝmk| > τ
}}p

m,k=1, τ ≥ 0,

be the thresholded sample covariance matrix estimator of �. A similar matrix class
as G(r, ζp) was introduced in [10] by further requiring that max1≤m≤p σmm ≤ C0
for some constant C0 > 0. Here, we do not assume the diagonal entries of � are
bounded. Performance bounds of the thresholded estimator �̂(τ ) critically depend
on the tuning parameter τ . The oracle choice of the threshold for establishing the
rate of convergence under the spectral and Frobenius norms is τ� = |Ŝn − �|∞.
Note that τ� is a random variable and its distribution depends on the unknown un-
derlying data distribution F . High probability bounds of τ� were given in [10, 20]
and asymptotic properties of �̂(τ ) were analyzed in [10, 13] for i.i.d. sub-Gaussian
data and in [20, 21] for heavy-tailed time series with polynomial moments. In
both scenarios, the rates of convergence were obtained with the Bonferroni (i.e.,
the union bound) technique and one-dimensional concentration inequalities. In
the problem of the high-dimensional sparse covariance matrix estimation, data-
dependent tuning parameter selection is often empirically done with the cross-
validation (CV) and its theoretical properties when compared with τ� largely re-
main unknown since the CV threshold does not approximate τ�. Here, we provide
a principled and fully data-dependent way to determine the threshold τ . We first
consider sub-Gaussian observations.

DEFINITION 4.1 (Sub-Gaussian random variable). A random variable X is
said to be sub-Gaussian with mean zero and variance factor ν2, if

(23) E
[
exp

(
X2/ν2)] ≤ √

2.

Denote X ∼ sub-Gaussian(ν2). In particular, if X ∼ N(0, σ 2), then X ∼
sub-Gaussian(4σ 2).
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The upper bound
√

2 in (23) is not essential and it is chosen for conve-
niently comparing with ‖X‖ψ2 : if X ∼ sub-Gaussian(ν2), then ν2 ≥ ‖X‖ψ2 .
Clearly, bounded random variables are sub-Gaussian. In addition, random vari-
ables with the mixture of sub-Gaussian distributions are also sub-Gaussian. Let
K be a positive integer and {πk}Kk=1 be sub-Gaussian distributions with the
variance factors {ν2

k }Kk=1. If a random variable X follows a mixture of K sub-

Gaussian distributions
∑K

k=1 εkπk with 0 ≤ εk ≤ 1 and
∑K

k=1 εk = 1, then X ∼
sub-Gaussian(ν̄2), where ν̄2 = max{ν2

1 , . . . , ν2
K}. In general, the variance fac-

tor for a sub-Gaussian random variable is not equivalent to the variance. For a
sequence of random variables Xn,n = 1,2, . . ., if Xn ∼ sub-Gaussian(ν2

n) and
σ 2

n = Var(Xn), then by Markov’s inequality, we always have σ 2
n ≤ √

2ν2
n , while

ν2
n may diverge at faster rate than σ 2

n as n → ∞. Below we shall give two such
examples.

EXAMPLE 4.1 (Mixture of two Gaussian distributions). Let {Xn}∞n=1 be a
sequence of random variables with the distribution Fn = (1 − εn)N(0,1) +
εnN(0, a2

n). Suppose that an ≥ 1, an → ∞ as n → ∞, and consider εn = a−4
n .

Then we have Xn ∼ sub-Gaussian(4a2
n), Var(Xn) � 1, ‖Xn‖4 � 1, ‖Xn‖6 � a

1/3
n ,

and ‖Xn‖8 � a
1/2
n . The distribution Fn can be viewed as a εn-contaminated one-

dimensional normal distribution given by (90) in the SM [19].

EXAMPLE 4.2 (Mixture of two symmetric discrete distributions). Let π1 be
the distribution of a Rademacher random variable Y [i.e., P(Y = ±1) = 1/2] and
π2 be the distribution of a discrete random variable Zn such that P(Zn = ±an) =
(2a2

n)
−1 and P(Zn = 0) = 1−a−2

n . Let {Xn}∞n=1 be a sequence of random variables
with the distribution Fn = (1 − εn)π1 + εnπ2, where εn = 2/(a2

n − 1), an >
√

3,
and an → ∞ as n → ∞. Then Xn ∼ sub-Gaussian(Ca2

n) for some large enough
constant C > 0 and elementary calculations show that Var(Xn) = 1, ‖Xn‖4 = 31/4,
‖Xn‖6 � a

1/3
n , and ‖Xn‖8 � a

1/2
n .

Therefore, in the statistical applications for sub-Gaussian data, we allow ν2
n →

∞ as n → ∞. Let ξq = max1≤k≤p ‖X1k‖q and recall � = Cov(g(X1)).

THEOREM 4.1 (Main result V: data-driven threshold selection: sub-Gaussian
observations). Let νn ≥ 1 and Xi be i.i.d. mean zero random vectors in R

p

such that Xik ∼ sub-Gaussian(ν2
n) for all k = 1, . . . , p and � ∈ G(r, ζp). Sup-

pose that there exist constants Ci > 0, i = 1, . . . ,3, such that �(j,k),(j,k) ≥ C1,

ξ6 ≤ C2ν
1/3
n and ξ8 ≤ C3ν

1/2
n for all j, k = 1, . . . , p. Let α,β,K ∈ (0,1) and
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τ∗ = β−1a
T̄

�
n
(1 − α). If ν4

n log7(np) ≤ C4n
1−K , then we have

∥∥�̂(τ∗) − �
∥∥

2 ≤
[

3 + 2β

β1−r
+

(
β

1 − β

)r]
ζpa1−r

T̄
�
n

(1 − α),(24)

1

p

∣∣�̂(τ∗) − �
∣∣2
F ≤ 2

[
4 + 3β2

β2−r
+ 2

(
β

1 − β

)r]
ζpa2−r

T̄
�
n

(1 − α),(25)

with probability at least 1 −α −Cn−K/6 for some constant C > 0 depending only
on C1, . . . ,C4. In addition, E[a

T̄
�
n
(1 − α)] ≤ C′ξ2

4 (log(p)/n)1/2 and

(26) E[τ∗] ≤ C′β−1ξ2
4
(
log(p)/n

)1/2
,

where C′ > 0 is a constant depending only on α and C1, . . . ,C4.

REMARK 4 (Comments on the conditions in Theorem 4.1). Conditions on
the growth rate ξ6 ≤ C2ν

1/3
n and ξ8 ≤ C3ν

1/2
n are satisfied by Examples 4.1

and 4.2. The nondegeneracy condition �(j,k),(j,k) ≥ C1 is quite mild. Consider
the multivariate cumulants of the joint distribution of the random vector X =
(X1, . . . ,Xp)	 following a distribution F in R

p . Let χ(t) = E[exp(ιt	X)] be the
characteristic function of X, where t = (t1, . . . , tp)	 ∈R

p and ι = √−1. Then the

multivariate cumulants κ
12···p
r1r2···rp of the joint distribution of X are the coefficients

in the expansion:

logχ(t) =
∞∑

r1,r2,...,rp=0

κ12···p
r1r2···rp

(ιt1)
r1(ιt2)

r2 · · · (ιtp)rp

r1!r2! · · · rp! .

For the covariance matrix kernel, we have

(27) �(j,k),(m,l) = (
κ

jkml
1111 + σjmσkl + σjlσkm

)
/4,

where κ
jkml
1111 is the joint fourth-order cumulants of F . Therefore, if κ

jkjk
1111 ≥ 4C1,

then �(j,k),(j,k) ≥ C1.
If the data follow a distribution in the elliptic family ([52], Chapter 1), then the

condition �(j,k),(j,k) ≥ C1 is equivalent to min1≤j≤p σjj ≥ C for some constant
C > 0 depending only on C1. To see this, for F in the elliptic family, it is known
that κ

jkml
1111 = κ(σjkσml +σjmσkl +σjlσkm), where κ is the kurtosis of F . Therefore,

�(j,k),(j,k) = [(2κ + 1)σ 2
jk + (κ + 1)σjjσkk]/4 and �(j,k),(j,k) ≥ C1 if and only if

there exists a constant C > 0 such that σjj ≥ C for all j = 1, . . . , p.

There are a number of interesting features of Theorem 4.1. Consider r = 0; that
is, � is truly sparse such that max1≤m≤p

∑p
k=1 1{σmk �= 0} ≤ ζp for � ∈ G(0, ζp).

Then we can take β = 1 (i.e., τ∗ = a
T̄

�
n
(1 − α)) and the convergence rates are

∥∥�̂(τ∗) − �
∥∥

2 ≤ 6ζpτ∗ and p−1∣∣�̂(τ∗) − �
∣∣2
F ≤ 18ζpτ 2∗ .
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Hence, the tuning parameter can be adaptively selected by bootstrap samples while
the rate of convergence is nearly optimal in the following sense. Since the distri-
bution of τ∗ mimics that of τ�, �̂(τ∗) achieves the same convergence rate as the
thresholded estimator �̂(τ�) for the oracle choice of the threshold τ� with proba-
bility at least 1−α −Cn−K/6. On the other hand, the bootstrap method is not fully
equivalent to the oracle procedure in terms of the constants in the estimation error
bounds. Suppose that we know the support � of �, that is, locations of the nonzero
entries in �. Then the oracle estimator is simply �̆ = {ŝmk1{(m, k) ∈ �}}pm,k=1
and we have

‖�̆ − �‖2 ≤ max
1≤m≤p

p∑
k=1

|ŝmk − σmk|1{
(m, k) ∈ �

}

≤ |Ŝn − �|∞ max
1≤m≤p

p∑
k=1

1
{
(m, k) ∈ �

} ≤ τ�ζp.

Therefore, the constant of the convergence rate for the bootstrap method does not
attain the oracle estimator. However, we shall comment that β is not a tuning pa-
rameter since it does not depend on F and the effect of β only appears in the
constants in front of the convergence rates (24) and (25).

Assuming that the observations are sub-Gaussian(ν2) and the variance factor
ν2 is a fixed constant, it is known that the threshold value τ� = C(ν)

√
log(p)/n

achieves the minimax rate for estimating the sparse covariance matrix [13]. Com-
pared with the minimax optimal tuning parameter τ�, our bootstrap threshold τ∗
exhibits several advantages for certain sub-Gaussian distributions, which we shall
highlight (with stronger side conditions).

First, the bootstrap threshold τ∗ does not need the knowledge of ν2
n and

it allows ν2
n → ∞ as n → ∞. In this case, from (26), the bootstrap thresh-

old τ∗ = OP(ξ
2
4
√

log(p)/n), where the constant of OP(·) depends only on
α,β,C1, . . . ,C4 in Theorem 4.1, while the universal thresholding rule τ� =
C′ν2

n

√
log(p)/n. Therefore, if ξ4 = o(νn), then τ∗ = oP(τ�) and the bootstrap

threshold τ∗ is less conservative than the minimax threshold. For instance, sup-
pose that Xim, i = 1, . . . , n;m = 1, . . . , p have the same marginal distribution
in Example 4.1 (continuous case) or Example 4.2 (discrete case). Then we have
E[τ∗] = O(

√
log(p)/n) by (26) and τ� = Ca2

n

√
log(p)/n. Thus τ∗ = oP(τ�) for

an → ∞.
Second, τ� is nonadaptive to the observations Xn

1 since the minimax lower
bound is based on the worst case analysis and the matching upper bound is ob-
tained by the Bonferroni inequality, which ignores the dependence structures in F .
On the contrary, τ∗ takes into account the dependence information of F by condi-
tioning on the observations. Therefore, the bootstrap threshold may better adjust
to the dependence structure for some designs of Xi .
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EXAMPLE 4.3 (A block diagonal covariance matrix example with reduced
rank). Let L,m be two positive integers and p = Lm. Let Zil, i = 1, . . . , n; l =
1, . . . ,L, be i.i.d. mean zero sub-Gaussian(ν2

n) random variables with unit vari-
ance and Yil = 1mZil , where 1m is the m × 1 vector containing all ones. Let
Xi = (Y	

i1 , . . . , Y	
iL)	. Under the assumptions in Theorem 4.1, we can show that

E[τ∗] ≤ C′β−1ξ2
4 (log(L)/n)1/2. If logL = o(logp), then τ∗ = oP(τ�) and �̂(τ∗)

can gain much tighter performance bounds in (24) and (25) than �̂(τ�). Note that
the covariance matrix � = Cov(Xi) in this example is block diagonal such that the
diagonal blocks of � are rank-one matrices 1m1	

m. Therefore, � has the simulta-
neous sparsity (i.e., ζp = m) and reduced rank (i.e., rank(�) = L).

Third, as we shall demonstrate in Theorem 4.2, the Gaussian-type convergence
rate of the bootstrap method in Theorem 4.1 can be achieved even for heavy-tailed
data with polynomial moments.

THEOREM 4.2 (Data-driven threshold selection: uniform polynomial mo-
ment observations). Let Xi be i.i.d. mean zero random vectors such that
‖max1≤k≤p |X1k|‖8 ≤ νn and � ∈ G(r, ζp). Suppose that there exist constants

Ci > 0, i = 1, . . . ,3, such that �(j,k),(j,k) ≥ C1, ξ6 ≤ C2ν
1/3
n and ξ8 ≤ C3ν

1/2
n for

all j, k = 1, . . . , p. Let α,β,K ∈ (0,1) and τ∗ = β−1a
T̄

�
n
(1 − α). If ν8

n log7(np) ≤
C4n

1−7K/6, then (24) and (25) hold with probability at least 1 − α − Cn−K/6 for
some constant C > 0 depending only on C1, . . . ,C4. In addition, (26) holds for
some constant C′ > 0 depending only on α and C1, . . . ,C4.

We compare Theorem 4.2 with the threshold obtained by the union bound ap-
proach. Assume that max1≤k≤p E|X1k|q < ∞ for q ≥ 8. By the Nagaev inequality
[53] applied to the split sample in Remark 5, one can show that

τ� = C(q)

{
p4/q

n1−2/q
ξ2
q +

(
logp

n

)1/2
ξ2

4

}

is the right threshold that gives a large probability bound for τ� = |Ŝn − �|∞.
Consider q = 8, ξ8 = O(1), and the scaling limit p = nA for A > 0. Then the uni-
versal threshold τ� = o(1) if 0 < A < 3/2. In contrast, since ‖max1≤k≤p |X1k|‖8 ≤
p1/8ξ8 = O(p1/8), it follows from Theorem 4.2 that the bootstrap threshold τ∗ is
asymptotically valid if 0 < A < 1 and by (26), E[τ∗] = O(

√
(logp)/n). Therefore,

in the least favorable case for the bootstrap, we conclude that: (i) if A ∈ (0,1/2],
then E[τ∗] � τ�; (ii) if A ∈ (1/2,1), then E[τ∗] = o(τ�) and τ� = o(1); (iii) if
A ∈ [1,3/2), then τ� = o(1) while the bootstrap threshold τ∗ is not asymptoti-
cally valid; (iv) if A ∈ [3/2,∞), then neither �̂(τ∗) or �̂(τ�) is consistent for
estimating �. Hence, the bootstrap method gives better convergence rate than
the universal thresholding method under the spectral and Frobenius norms when
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A ∈ (1/2,1). On the other hand, since τ� = o(1) when A ∈ (0,3/2), the cost of the
bootstrap to achieve the Gaussian-like convergence rate τ∗ = OP(

√
(logp)/n) for

the heavy-tailed distribution F is a stronger requirement on the scaling limit for
A ∈ (0,1). Moreover, to the best of our knowledge, the minimax lower bound
is currently not available to justify τ� for observations with polynomial mo-
ments. Finally, we remark that bootstrap can adapt to the dependency structure
in F . For Example 4.3 with a block diagonal covariance matrix, we only need
L log7(nL) = o(n), where L can be much smaller than p and the dimension p

may still be allowed to be larger or even much larger than the sample size n.

4.2. Simultaneous inference for covariance and rank correlation matrices.
Another related important problem of estimating the sparse covariance matrix �

is the consistent recovery of its support, that is, nonzero off-diagonal entries in �

[43]. Towards this end, a lower bound of the minimum signal strength (�-min con-
dition) is a necessary condition to separate the weak signals and true zeros, yet, the
�-min condition is never verifiable. To avoid this undesirable condition, we can
alternatively formulate the recovery problem as a more general hypothesis testing
problem:

(28) H0 : � = �0 versus H1 : � �= �0,

where �0 is a known p × p matrix. In particular, if �0 = Idp×p , then the support
recovery can be restated as the following simultaneously testing problem: for all
m,k ∈ {1, . . . , p} and m �= k,

(29) H0,mk : σmk = 0 versus H1,mk : σmk �= 0.

The test statistic we construct is T̄0 = |Ŝn − �0|∞,off, which is an �∞ statistic by
taking the maximum magnitudes on the off-diagonal entries. Then H0 is rejected
if T̄0 ≥ a

T̄
�
n
(1 − α).

COROLLARY 4.3 (Asymptotic size of the simultaneous test: sub-Gaussian
observations). Let νn ≥ 1 and Xi be i.i.d. mean zero random vectors in R

p

such that Xik ∼ sub-Gaussian(ν2
n) for all k = 1, . . . , p. Suppose that there ex-

ist constants Ci > 0, i = 1, . . . ,3, such that �(j,k),(j,k) ≥ C1, ξ6 ≤ C2ν
1/3
n and

ξ8 ≤ C3ν
1/2
n for all j, k = 1, . . . , p. Let α,β,K ∈ (0,1) and τ∗ = β−1a

T̄
�
n
(1 − α).

If ν4
n log7(np) ≤ C4n

1−K , then the above test based on T̄0 for (28) has the size
α + O(n−K/6); that is, the family-wise error rate of the simultaneous test problem
(29) is asymptotically controlled at the level α.

From Corollary 4.3, the test based on T̄0 is asymptotically exact of size α for
sub-Gaussian data. A similar result can be established for observations with poly-
nomial moments. Due to the space limit, details are omitted. [15] proposed a sim-
ilar test statistic for comparing the two-sample large covariance matrices. Their
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results (Theorem 1 in [15]) are analogous to Corollary 4.3 in this paper in that no
structural assumptions in � are needed in order to obtain the asymptotic valid-
ity of both tests. However, we shall note that their assumptions (C.1), (C.2) and
(C.3) on the nondegeneracy are stronger than our condition �(j,k),(j,k) ≥ C1. For
sub-Gaussian observations Xik ∼ sub-Gaussian(ν2

n), (C.3) in [15] assumed that
min1≤j≤k≤p γjk/ν

4
n ≥ c for some constant c > 0, where γjk = Var(X1jX1k). If

ν2
n → ∞, then [15], Theorem 1, requires that γjk for all j, k = 1, . . . , p have to

obey a uniform lower bound that diverges to infinity. For the covariance matrix
kernel, since g(x) = (xx	 − �)/2, we only need that minj,k γjk ≥ c for some
fixed lower bound.

Next we comment that a distinguishing feature of our bootstrap test from the �2

test statistic [17] is that no structural assumptions are made on F and we allow for
the strong dependence in �. For example, consider again the elliptic distributions
([52], Chapter 1) with the positive-definite V = �1p1	

p + (1 − �)Idp×p such that
the covariance matrix � is proportion to V . Then we have

tr
(
V 4) = p

[
1 + (p − 1)�2]2 + p(p − 1)

[
2� + (p − 2)�2]2

,

tr
(
V 2) = �2p2 + (

1 − �2)
p.

For any � ∈ (0,1), tr(V 4)/ tr2(V 2) → 1 as p → ∞. Therefore, the limiting distri-
bution of the �2 test statistic in [17] is no longer normal and its asymptotic distri-
bution remains unclear.

Finally, the covariance matrix testing problem (28) can be generalized further to
nonparametric forms, which can gain more robustness to outliers and the nonlin-
earity in the dependency structures. Let U� = E[h(X1,X2)] be the expectation of
the random matrix associated with h and U0 be a known p × p matrix. Consider
the testing problem

H0 : U� = U0 versus H1 : U� �= U0.

Then the test statistic can be constructed as T̄0 = |Un − U0|∞ [or T̄ ′
0 = |Un −

U0|∞,off] and H0 is rejected if T̄0 ≥ a
T̄

�
n
(1 − α) [or T̄ ′

0 ≥ a
T̄

�
n
(1 − α)], where the

bootstrap samples are generated w.r.t. the kernel h. The above test covers Kendall’s
tau rank correlation matrix as a special case where h is the bounded kernel.

COROLLARY 4.4 (Asymptotic size of the simultaneous test for Kendall’s tau
rank correlation matrix). Let Xi be i.i.d. random vectors with a distribution F in
R

p . Suppose that there exists a constant C1 > 0 such that �(j,k),(j,k) ≥ C1 for all
j, k = 1, . . . , p. Let α,β,K ∈ (0,1) and τ∗ = β−1a

T̄
�
n
(1 −α), where the bootstrap

samples are generated with Kendall’s tau rank correlation coefficient matrix ker-
nel. If log7(np) ≤ C2n

1−K , then the test based on T̄ ′
0 has the size α + O(n−K/6).

Therefore, the asymptotic validity of the bootstrap test for large Kendall’s tau
rank correlation matrix is obtained when logp = o(n1/7) without imposing struc-
tural and moment assumptions on F .
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5. Proof of the main results. The rest of the paper is organized as follows.
In Section 5.1, we first present a useful inequality for bounding the expectation of
the sup-norm of the canonical U-statistics and then compare with an alternative
simple data splitting bound by reducing to the moment bounding exercise for the
sup-norm of sums of i.i.d. random vectors. We shall discuss several advantages of
using the U-statistics approach by exploring the degeneracy structure. Section 5.2
contains the proof of the Gaussian approximation result and Section 5.3 proves the
convergence rate of the bootstrap validity. Proofs of the statistical applications are
given in Section 5.4. Additional proofs and technical lemmas are given in the SM
[19].

5.1. A maximal inequality for canonical U-statistics. Before proving our main
results, we first establish a maximal inequality of the canonical U-statistics of order
two. The derived expectation bound is useful in controlling the size of the nonlinear
and completely degenerate error term in the Gaussian approximation.

THEOREM 5.1 (A maximal inequality for canonical U-statistics). Let Xn
1

be a sample of i.i.d. random variables in a separable and measurable space
(S,S). Let f : S × S → R

d be an S ⊗ S-measurable, symmetric and canon-
ical kernel such that E|fm(X1,X2)| < ∞ for all m = 1, . . . , d . Let Vn =
[n(n − 1)]−1 ∑

1≤i �=j≤n f (Xi,Xj ), M = max1≤i �=j≤n max1≤m≤d |fm(Xi,Xj )|,
Dq = max1≤m≤d(E|fm(X1,X2)|q)1/q for q > 0. If 2 ≤ d ≤ exp(bn) for some
constant b > 0, then there exists an absolute constant K > 0 such that

(30) E
[|Vn|∞] ≤ K

(
1 + b1/2){(

logd

n

)3/2
‖M‖4 + logd

n
D2 +

(
logd

n

)5/4
D4

}
.

Note that Theorem 5.1 is nonasymptotic. As immediate consequences of Theo-
rem 5.1, we can derive the rate of convergence of E[|Vn|∞] with kernels under the
subexponential and uniform polynomial moment conditions.

COROLLARY 5.2 (Kernels with subexponential and uniform polynomial mo-
ments). Let Bn,B

′
n be two sequences of positive reals and f be a symmetric and

canonical kernel. Suppose that 2 ≤ d ≤ exp(bn) for some constant b > 0:

(i) If

(31) max
1≤m≤d

E
[
exp

(|fm|/Bn

)] ≤ 2,

then there exists a constant C(b) > 0 such that

(32) E
[|V |∞] ≤ C(b)Bn

{(
n−1 logd

)3/2 log(nd) + n−1 logd
}
.



GAUSSIAN APPROXIMATION FOR HIGH-DIMENSIONAL U-STATISTICS 665

(ii) Let q ≥ 4. If

(33) E

(
max

1≤m≤d
|fm|/Bn

)q ∨ max
1≤m≤d

E
(|fm|/B ′

n

)4 ≤ 1,

then there exists a constant C(b) > 0 such that

(34) E
[|V |∞] ≤ C(b)

{
Bnn

−3/2+2/q(logd)3/2 + B ′
nn

−1 logd
}
.

REMARK 5 (Comparison of Theorem 5.1 with sums of i.i.d. random vectors
by data splitting). We can also bound the expected norm of a U -statistic by the
expected norm of sums of i.i.d. random vectors. Assume that E|fk(X1,X2)| < ∞
for all k = 1, . . . , d and let m = [n/2] be the largest integer no greater than n/2.
As noted in [36], we can write

(35) m(Vn −EVn) = 1

n!
∑

all πn

S(Xπn(1), . . . ,Xπn(n)),

where S(Xn
1) = ∑m

i=1[f (X2i−1,X2i ) − Ef ] and the summation
∑

all πn
is taken

over all possible permutations πn : {1, . . . , n} → {1, . . . , n}. By Jensen’s inequality
and the i.i.d. assumption of Xi , we have

(36) E|Vn −EVn|∞ ≤ 1

m
E

∣∣∣∣∣
m∑

i=1

[
f (Xi,Xi+m) −Ef

]∣∣∣∣∣∞,

which can be viewed as a data splitting method into two halves. Assuming (31), it
follows from Bernstein’s inequality [64], Proposition 5.16, that

(37) E|Vn −EVn|∞ ≤ K1Bn

(√
log(d)/n + log(d)/n

)
for some absolute constant K1 > 0. So if logd ≤ bn1−ε for some ε ∈ (0,1), then
E|Vn −EVn|∞ ≤ C(b)Bn(log(d)/n)1/2 ≤ C(b)Bnn

−ε/2. For the canonical kernel
where EVn = 0, there are two advantages of using the U-statistics approach in
Theorem 5.1 over the data splitting method into i.i.d. summands (36) and (37).

First, we can obtain from (32) that E|Vn|∞ ≤ C(b)Bn{n1−5ε/2 + n−ε}. There-
fore, sharper rate is obtained by (32) when ε ∈ (1/2,1), which covers the regime of
valid Gaussian approximation and bootstrap. Under the scaling limit for the Gaus-
sian approximation validity, that is, Ba

n log7(np)/n ≤ Cn−K2 for some K2 ∈ (0,1),
where a = 2 for the subexponential moment kernel and a = 4 for the uniform poly-
nomial moment kernel, it is easy to see that logd ≤ log(nd) ≤ Cn(1−K2)/7 so we
can take ε = (6 + K2)/7.

Second and more importantly, the rate of convergence obtained by the Bern-
stein bound (37) does not lead to a convergence rate for the Gaussian and boot-
strap approximations. The reason is that, although (37) is rate-exact for nonde-
generate U-statistics, where the dependence of the rate in (37) on the sample
size is O(Bnn

−1/2), it is not strong enough to control the size of the nonlin-
ear remainder term E[|n1/2Vn|∞] when d → ∞ (recall that Rn = n1/2Vn/2); cf.
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Proposition 5.3. On the contrary, our bound in Theorem 5.1 exploits the degen-
eracy structure of V and the dependence of the rate in (30) on the sample size is
O(Bnn

−1 +‖M‖4n
−3/2). Therefore, Theorem 5.1 is mathematically more appeal-

ing in the degenerate case.
For nondegenerate U-statistics Un = [n(n − 1)]−1 ∑

1≤i �=j≤n h(Xi,Xj ), the re-
duction to sums of i.i.d. random vectors in (36) does not give tight asymptotic
distributions. To illustrate this point, we consider the case d = 1 and let Xi be
i.i.d. mean zero random variables with variance σ 2. Let ζ 2

1 = Var(g(X1)) and
ζ 2

2 = Var(h(X1,X2)). Assume that ζ 2
1 > 0. So ζ 2

1 is the variance of the leading
projection term used in the Gaussian approximation and by Jensen’s inequality

ζ 2
1 ≤ ζ 2

2 . Note that
√

n(Un − EUn)
D→ N(0,4ζ 2

1 ) [60], Theorem A, page 192,

and by the CLT
√

2/m
∑m

i=1[f (Xi,Xi+m) − Ef ] D→ N(0,2ζ 2
2 ). Since in general

ζ 2
2 �= 2ζ 2

1 , the limiting distribution of the U-statistic is not the same as that in the
data splitting method. For example, consider the nondegenerate covariance ker-
nel h(x1, x2) = (x1 − x2)

2/2. Denote μ4 = EX4
1 and g(x1) = (x2

1 − σ 2)/2. Then
ζ 2

2 = (μ4 + σ 4)/2 and ζ 2
1 = (μ4 − σ 4)/4 so that ζ 2

2 > 2ζ 2
1 when σ 2 > 0. In partic-

ular, if Xi are i.i.d. N(0, σ 2), then μ4 = 3σ 4, 4ζ 2
1 = 2σ 4, and 2ζ 2

2 = 4σ 4. There-
fore, even though (37) gives better rate in the nondegenerate case, the reduction by
splitting the data into the i.i.d. summands is not optimal for the Gaussian approx-
imation purpose, which is the main motivation of this paper. In fact, ζ 2

2 serves no
purpose in the limiting distribution of

√
n(Un −EUn).

5.2. Proof of results in Section 2. For q > 0 and φ ≥ 1, we define

Dg,q = max
1≤m≤d

E
∣∣gm(X)

∣∣q,
Mg,q(φ) = E

[
max

1≤m≤d

∣∣gm(X)
∣∣q1

(
max

1≤m≤d

∣∣gm(X)
∣∣ >

√
n

4φ logd

)]
,

MY,q(φ) = E

[
max

1≤m≤d
|Ym|q1

(
max

1≤m≤d
|Ym| >

√
n

4φ logd

)]

and Mq(φ) = Mg,q(φ) + MY,q(φ). The Gaussian approximation result (GAR) in
Proposition 5.3 below relies on the control of Dg,3 and M3(φ). Interestingly, the
quantity Mg,3(φ) can be viewed as a stronger version of the Lindeberg condition
that allows us to derive the explicit convergence rate of the Gaussian approxima-
tion when d → ∞. Denote χτ,ij = 1(max1≤m≤d |hm(Xi,Xj )| > τ) for τ ≥ 0. Let

Dq = max
1≤m≤d

E
∣∣hm(X1,X2)

∣∣q,

Mh,q(τ ) = E

[
max

1≤i �=j≤n
max

1≤m≤d

∣∣hm(Xi,Xj )
∣∣qχτ,ij

]
.
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For two random vectors X and Y in R
d , we denote

ρ̃re(X,Y ) = sup
y∈Rd

∣∣P(X ≤ y) − P(Y ≤ y)
∣∣.

PROPOSITION 5.3 (A general Gaussian approximation result for U-statistics).
Assume that (M.1) holds and logd ≤ b̄n for some constant b̄ > 0. Then there exist
constants Ci := Ci(b, b̄) > 0, i = 1,2 such that for any real sequence D̄g,3 satis-
fying Dg,3 ≤ D̄g,3, we have

(38)

ρ̃re(Tn,Y )

≤ C1

{(D̄2
g,3 log7 d

n

)1/6
+ M3(φn)

D̄g,3

+ φn

(
log3/2 d

n

(
Mh,4(τ )1/4 + τ

) + logd

n1/2 D
1/2
2 + log5/4 d

n3/4 D
1/4
4

)}
,

where

(39) φn = C2

(D̄2
g,3 log4 d

n

)−1/6
.

In addition, ρre(Tn,Y ) obeys the same bound in (38).

With the help of Proposition 5.3, we are now ready to prove Theorem 2.1.

PROOF OF THEOREM 2.1. We may assume that 1,n ≤ 1; otherwise the proof
is trivial. Let �n = log(nd) > 1. By (M.2) and Jensen’s inequality, we have D2 ≤
B

2/3
n , Dg,3 ≤ D3 ≤ Bn, and D4 ≤ B2

n . Write Mh,q = Mh,q(0). By Proposition 5.3
with τ = 0 and φn is given by (39), we have

(40)

ρre(Tn,Y ) ≤ C1

{(D̄2
g,3 log7 d

n

)1/6
+ M3(φn)

D̄g,3

+ φn

(
log3/2 d

n
M

1/4
h,4 + logd

n1/2 D
1/2
2 + log5/4 d

n3/4 D
1/4
4

)}
,

where C1 > 0 is a constant only depending on b and b̄.
Case (E.1). By [63], Lemma 2.2.2, M

1/4
h,4 ≤ K1Bn�n. Choosing D̄g,3 = Bn, we

have

φn

log3/2 d

n
M

1/4
h,4 ≤ C2

B
2/3
n �

11/6
n

n5/6 ≤ C21,n,

φn

logd

n1/2 D
1/2
2 ≤ C3

(logd)1/3

n1/3 ≤ C31,n,

φn

log5/4 d

n3/4 D
1/4
4 ≤ C4

B
1/6
n (logd)7/12

n7/12 ≤ C41,n.
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Following the proof of [24], Proposition 2.1, we can show that

(D̄2
g,3 log7 d

n

)1/6
+ M3(φn)

D̄g,3
≤ C51,n.

Then, (5) follows from (40). Here, all constants Ci for i = 2, . . . ,5 depend only
on b and b̄.

Case (E.2). D2 and D4 obey the same bounds as case (E.1). Assuming (E.2),
M

1/4
h,4 ≤ n1/2Bn. Choosing D̄g,3 = Bn + B2

nn−1/2+2/q(logd)−1/2, we have

φn

log3/2 d

n
M

1/4
h,4 ≤ C6

B
2/3
n �

5/6
n

n1/3 ≤ C61,n.

Following the proof of [24], Proposition 2.1, we can show that

(D̄2
g,3 log7 d

n

)1/6
+ M3(φn)

D̄g,3
≤ C7{1,n + 2,n}.

Here, C6,C7 are constants depending only on b, b̄, and q . Then (5) is immediate.
�

5.3. Proof of results in Section 3. In view of the approximation diagram (9),
our first task is to control the random quantity

sup
A∈Are

∣∣P(Y ∈ A) − P
(
ZX ∈ A | Xn

1
)∣∣

on an event occurring with large probability, which is Step (2) in the approximation
diagram (9).

PROPOSITION 5.4 (Gaussian comparison bound for the linear part in U-statistic
and its EB version). Let ZX|Xn

1 ∼ N(0, �̂n), where �̂n is defined in (11). Suppose
that (M.1), (M.2) and (M.2′) are satisfied.

(i) If (E.1) and (E.1′) hold, then there exists a constant C(b) > 0 such that
with probability at least 1 − γ we have

(41) sup
A∈Are

∣∣P(Y ∈ A) − P
(
ZX ∈ A | Xn

1
)∣∣ ≤ C(b)B

1,n(γ ).

(ii) If (E.2) and (E.2′) hold with q ≥ 4, then there exists a constant C(b, q) > 0
such that with probability at least 1 − γ we have

(42) sup
A∈Are

∣∣P(Y ∈ A) − P
(
ZX ∈ A | Xn

1
)∣∣ ≤ C(b, q)

{
B

1,n(γ ) + B
2,n(γ )

}
.

From Proposition 5.4, we are now ready to establish the rate of convergence of
the empirical bootstrap for U-statistics. Let Wjk = |n−1 ∑n

i=1 hj (Xk,Xi) − Vnj |
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for j = 1, . . . , d and k = 1, . . . , n. For q, τ > 0, and φ ≥ 1, we define

D̂g,q = max
1≤j≤d

n−1
n∑

k=1

W
q
jk,

D̂q = max
1≤j≤d

n−2
n∑

k,l=1

∣∣hj (Xk,Xl)
∣∣q,

M̂h,q(τ ) = n−2
n∑

i,k=1

max
1≤j≤d

∣∣hj (Xi,Xk)
∣∣q1

(
max

1≤j≤d

∣∣hj (Xi,Xk)
∣∣ > τ

)
,

M̂g,q(φ) = n−1
n∑

k=1

max
1≤j≤d

W
q
jk1

(
max

1≤j≤d
Wjk >

√
n

4φ logd

)
,

M̂Z,q(φ) = E

[
max

1≤j≤d

∣∣ZX
j

∣∣q1
(

max
1≤j≤d

∣∣ZX
j

∣∣ >

√
n

4φ logd

) ∣∣∣ Xn
1

]
,

M̂q(φ) = M̂g,q(φ) + M̂Z,q(φ), and ZX | Xn
1 ∼ N(0, �̂n).

PROOF OF THEOREM 3.1. In this proof the constants C1,C2, . . . depend only
on b, b̄,K in case (i) and b, b̄, q,K in case (ii). First, we may assume that

(43) n−1B2
n log7(nd) ≤ c1 ≤ 1

for some sufficiently small constant c1 > 0, where c1 depends only on b, b̄,K in
case (i) and on b, b̄, q,K in case (ii), since otherwise the proof is trivial by setting
the constants C(b, b̄,K) in (i) and C(b, b̄, q,K) in (ii) large enough. By (9) and
the triangle inequality,

(44)
ρB(

Tn,T
∗
n

) ≤ ρre(Tn,Y ) + sup
A∈Are

∣∣P(Y ∈ A) − P
(
ZX ∈ A | Xn

1
)∣∣

+ ρre(ZX,T ∗
n | Xn

1
)
,

where ρre(ZX,T ∗
n | Xn

1) = supA∈Are |P(ZX ∈ A | Xn
1) − P(T ∗

n ∈ A | Xn
1)|. Since

log(1/γ ) ≤ K log(dn), we have B
1,n(γ ) ≤ K1/31,n and 2,n ≤ B

2,n(γ ) for γ ∈
(0, e−1). By Theorem 2.1 and Proposition 5.4, we have: (i) if (E.1) and (E.1′) hold,
then with probability at least 1 − 2γ /9 we have

ρre(Tn,Y ) + sup
A∈Are

∣∣P(Y ∈ A) − P
(
ZX ∈ A | Xn

1
)∣∣ ≤ C(b, b̄,K)1,n;

(ii) if (E.2) and (E.2′) hold, then with probability at least 1 − 2γ /9 we have

ρre(Tn,Y ) + sup
A∈Are

∣∣P(Y ∈ A) − P
(
ZX ∈ A | Xn

1
)∣∣

≤ C(b, b̄, q,K)
{
1,n + B

2,n(γ )
}
.
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To deal with the third term on the right-hand side of (44), we observe that con-
ditionally on Xn

1 , U∗
n is a U-statistics of ξ1, . . . , ξn and ZX has the conditional

covariance matrix �̂n; cf. (11). So we can apply Proposition 5.3 conditionally.
Case (i). As in the proof of Proposition 5.4, we have with probability at least

1 − γ /9:

(45) |�̂n − �|∞ ≤ C1
[
n−1B2

n log(nd) log2(1/γ )
]1/2

.

By (43), (M.1), (M.2) and (M.2′), there exists a constant C2 > 0 such that
b/2 ≤ �̂n,jj ≤ C2B

2/3
n ≤ C2Bn for all j = 1, . . . , d holds with probability at

least 1 − γ /9. Let D̄g,3 = C3Bn, D̄2 = C4B
2/3
n and D̄4 = C5B

2
n log(dn). By

Lemma C.2, each of the three events {D̂g,3 ≥ D̄g,3}, {D̂2 ≥ D̄2} and {D̂4 ≥
D̄4} occur with probability at most γ /9. Let φn = C6(n

−1D̄2
g,3 log4 d)−1/6

for some C6 > 0 such that φn ≥ 1. By Jensen’s inequality, maxk,j Wkj ≤
2n−1 maxk,j

∑n
i=1 |hj (Xk,Xi)|. Then, by the union bound and the assumptions

(E.1) and (E.1′), we have

(46)

P
(
M̂g,3(φn) > 0

) = P

(
max

1≤j≤d,1≤k≤n
Wjk >

√
n/(4φn logd)

)

≤ (dn) max
1≤j≤d,1≤k≤n

P

(
1

n

n∑
i=1

∣∣hj (Xk,Xi)
∣∣ >

√
n

8φn logd

)

≤ (2dn) exp
(
−

√
n

8φn(logd)Bn

)
,

where the last step (46) follows from the triangle inequality on the Orlicz space
with the ψ1 norm ‖n−1 ∑n

i=1 |hj (Xk,Xi)|‖ψ1 ≤ n−1 ∑n
i=1 ‖hj (Xk,Xi)‖ψ1 ≤ Bn.

Substituting the value of φn and using (43), we have

(47)

√
n

8φn(logd)Bn

≥ C
1/3
3 log(nd)

8C6c
1/3
1

≥ C
1/3
3

16C6c
1/3
1

[
log(nd) + 1

K
log(1/γ )

]
.

Therefore, P(M̂g,3(φn) > 0) ≤ γ /9 by choosing c1 > 0 small enough. Next,
we deal with M̂Z,3(φn). Since conditional on Xn

1 , ZX ∼ N(0, �̂n). On the

event {�̂n,jj ≤ C2Bn,∀j = 1, . . . , d}, we have ‖ZX
j ‖ψ2 ≤ √

8C2Bn/3B
1/2
n and

‖ZX
j ‖ψ1 ≤ C7B

1/2
n for all j = 1, . . . , d , where C7 = √

8C2/(3 log 2). Integration-
by-parts yields

M̂Z,3(φn) =
∫ ∞
t

P

(
max

j

∣∣ZX
j

∣∣ > u1/3 ∣∣ Xn
1

)
du + tP

(
max

j

∣∣ZX
j

∣∣> t1/3 ∣∣ Xn
1

)
,

where t = (
√

n/4φn logd)3. Since for any u > 0

P

(
max

j

∣∣ZX
j

∣∣ > u1/3 ∣∣ Xn
1

)
≤ (2d) exp

(−u1/3/
(
C7B

1/2
n

))
,
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we have by elementary calculations that∫ ∞
t

P

(
max

j

∣∣ZX
j

∣∣ > u1/3 ∣∣ Xn
1

)
du ≤ C8 dt

[ 3∑
�=1

(
B1/2

n t−1/3)�] exp
(
− t1/3

C7B
1/2
n

)
.

Since B
1/2
n t−1/3 log(nd) ≤ 4C6C

−1/3
3 [n−1B2

n log4(nd)]1/3 ≤ 4C6C
−1/3
3 c

1/3
1 , it

follows from (46) and (47) that

M̂Z,3(φn) ≤ C9dt exp
(
− t1/3

C7B
1/2
n

)
≤ C9dn3/2 exp

(
− log(nd)

4C7C6C
−1/3
3 c

1/3
1

)

≤ C9n
−1/2

for c1 > 0 small enough. For the term M̂h,4(τ ), we note that

P
(
M̂h,4(τ ) > 0

) = P

(
max

1≤i,k≤n
max

1≤j≤d

∣∣hj (Xi,Xk)
∣∣ > τ

)
and by (E.1) and (E.1′) ‖hj (Xj ,Xk)‖ψ1 ≤ Bn. So we have

P
(
M̂h,4(τ ) > 0

) ≤ (
2dn2)

exp(−τ/Bn).

Choose τ = C10n
1/2/[φn logd]. Then, by (46) and (47), we have P(M̂h,4(τ ) >

0) ≤ γ /9. Now, by Proposition 5.3 conditional on Xn
1 with Mh,4(τ ) ≤

n2
E[max1≤j≤d |hj (X,X′)|41(max1≤j≤d |hj (X,X′)| > τ)], we conclude that

ρre(ZX,T ∗
n | Xn

1
) ≤ C11

{(
B2

n log7 d

n

)1/6
+ 1

n1/2Bn

+ φn

logd

n1/2 B1/3
n

+ φn

log5/4 d

n3/4 B1/2
n log1/4(dn) + log1/2 d

n1/2

}

≤ C121,n

holds with probability at least 1 − 7γ /9. So, (13) follows.
Case (ii). In addition to (43), we may assume that

(48)
B2

n log3(nd)

γ 2/qn1−2/q
≤ c2 ≤ 1

for some small enough constant c2 > 0. As in Case (i), there exists a constant
C1 > 0 such that b/2 ≤ �̂n,jj ≤ C1Bn for all j = 1, . . . , d holds with probability

at least 1 − γ /9. Let D̄g,3 = C2[Bn + n−1+3/qB3
nγ −3/q(logd)], D̄2 = C3[B2/3

n +
n−1+2/qB2

nγ −2/q(logd)], and D̄4 = C4[B2
n + n−1+4/qB2

nγ −4/q(logd)]. By
Lemma C.2, each of the three events {D̂g,3 ≥ D̄g,3}, {D̂2 ≥ D̄2}, and {D̂4 ≥ D̄4}
occur with probability at most γ /9. Note that

(49)
φn := C5

(
n−1D̄2

g,3 log4 d
)−1/6

≤ C5C
−1/3
2 min

{
n1/6B−1/3

n log−2/3 d,n1/2−1/qB−1
n γ 1/q log−1 d

}
.
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By (46), the union bound, (49) and choosing C2 large enough, we have

P
(
M̂g,3(φn) > 0

) ≤ n max
1≤k≤n

P

(
1

n

n∑
i=1

max
j

∣∣hj (Xk,Xi)
∣∣ >

√
n

8φn logd

)

≤ (8Bnφn logd)q

nq/2−1 ≤ γ

9
,

where the second last step follows from (E.2), (E.2′) and the triangle inequality
‖n−1 ∑n

i=1 maxj |hj (Xk,Xi)|‖q ≤ n−1 ∑n
i=1 ‖maxj |hj (Xk,Xi)|‖q ≤ Bn. Bound

on the term M̂Z,3(φn) is the same as in Case (i). Choose τ = C6n
1/2+1/q/[φn logd]

for some C6 > 0. Then we have

P
(
M̂h,4(τ ) > 0

) ≤ C
−q
6 n2 (Bnφn logd)q

nq/2+1 ≤ γ

9
.

Then we have by elementary calculations that

ρre(ZX,T ∗
n | Xn

1
) ≤ C7

{(D̄2
g,3 log7 d

n

)1/6
+ 1

n1/2Bn

+ φn

logd

n1/2 D̄
1/2
2

+ φn

log5/4 d

n3/4 D̄
1/4
4 + log1/2 d

n1/2−1/q

}

≤ C8
{
1,n + B

2,n(γ )
}

with probability at least 1 − 7γ /9. The proof is now complete. �

PROOF OF COROLLARY 3.2. Let γn = [n log2(n)]−1. Then
∑∞

n=4 γn ≤∫ ∞
3 [x log2(x)]−1 dx = log−1(3) < ∞. Applying Theorem 3.1 with γ = γn and

by the Borel–Cantelli lemma, we have P(ρB(Tn, T
∗
n ) > C1,n i.o.) = 0 for part

(i) and P(ρB(Tn, T
∗
n ) > C{1,n +  ′B

2,n(γ )} i.o.) = 0 for part (ii), from which the
corollary follows. �

The proof of the validity of the randomly reweighted bootstrap with i.i.d. Gaus-
sian weights (Section 3.2) and Gaussian multiplier bootstrap with the jackknife
covariance matrix estimator (Section 3.3) can be found in Section C in the SM
[19].

5.4. Proof of results in Section 4.

PROOF OF THEOREM 4.1. Let τ� = β−1|Ŝn − �|∞. By the sub-Gaussian as-
sumption and Lemma F.1, it is easy to verify that there is a large enough constant
C > 0 depending only on C2,C3 such that

(50) max
�=1,2

E
[|hmk|2+�/

(
Cν2�

n

)] ∨E
[
exp

(|hmk|/ν2
n

)] ≤ 2,
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where h is the covariance matrix kernel. Since �(j,k),(j,k) ≥ C1 for all j, k =
1, . . . , p and ν4

n log7(np) ≤ C4n
1−K , we have by Theorem 3.6 that |Ŝn − �|∞ ≤

a
T̄

�
n
(1 − α) with probability at least 1 − α − Cn−K/6, where C > 0 is a constant

depending only on Ci, i = 1, . . . ,4. Therefore, P(τ� ≤ τ∗) ≥ 1 − α − Cn−K/6 and
the rest of the proof is restricted to the event {τ� ≤ τ∗}. By the decomposition,∥∥�̂(τ∗) − �

∥∥
2 ≤ ∥∥�̂(τ∗) − Tτ∗(�)

∥∥
2 + ∥∥Tτ∗(�) − �

∥∥
2

≤ I + II + III + τ 1−r∗ ζp,

where Tτ (�) = {σmk1{|σmk| > τ }}pm,k=1 is the resulting matrix of the thresholding
operator on � at the level τ and

I = max
m

∑
k

|ŝmk|1{|ŝmk| > τ∗, |σmk| ≤ τ∗
}
,

II = max
m

∑
k

|σmk|1{|ŝmk| ≤ τ∗, |σmk| > τ∗
}
,

III = max
m

∑
k

|ŝmk − σmk|1{|ŝmk| > τ∗, |σmk| > τ∗
}
.

Note that on the event {τ� ≤ τ∗}, maxm,k |ŝmk − σmk| ≤ βτ∗. Since � ∈ G(r, ζp),
we can bound

III ≤ (βτ∗)
(
τ−r∗ ζp

) = βτ 1−r∗ ζp.

By the triangle inequality,

II ≤ max
m

∑
k

|ŝmk − σmk|1{|σmk| > τ∗
} + max

m

∑
k

|ŝmk|1{|ŝmk| ≤ τ∗, |σmk| > τ∗
}

≤ (βτ∗)
(
τ−r∗ ζp

) + τ∗
(
τ−r∗ ζp

) = (1 + β)τ 1−r∗ ζp.

Let η ∈ (0,1). We have I ≤ IV + V + VI, where

IV = max
m

∑
k

|σmk|1{|ŝmk| > τ∗, |σmk| ≤ τ∗
}
,

V = max
m

∑
k

|ŝmk − σmk|1{|ŝmk| > τ∗, |σmk| ≤ ητ∗
}
,

VI = max
m

∑
k

|ŝmk − σmk|1{|ŝmk| > τ∗, ητ∗ < |σmk| ≤ τ∗
}
.

Clearly, IV ≤ τ 1−r∗ ζp . On the indicator event of V , we observe that

βτ∗ ≥ |ŝmk − σmk| ≥ |ŝmk| − |σmk| > (1 − η)τ∗.

Therefore, V = 0 if η + β ≤ 1. For VI, we have

VI ≤ (βτ∗)(ητ∗)−rζp.
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Collecting all terms, we conclude that∥∥�̂(τ∗) − �
∥∥

2 ≤ (
3 + 2β + η−rβ

)
ζpτ 1−r∗ + V.

Then (24) follows from the choice η = 1 − β . The Frobenius norm rate (25) can
be established similarly. Details are omitted.

Next, we prove (26). Let ĝi = (n − 1)−1 ∑
j �=i h(Xi,Xj ) − Un and denote �(·)

as the c.d.f. of the standard Gaussian random variable. By the union bound, we
have for all t > 0

Pe

(
2√
n

∣∣∣∣∣
n∑

i=1

ĝiei

∣∣∣∣∣∞ ≥ t

)
≤ 2p2

[
1 − �

(
t

ψ̄

)]
,

where ψ̄ = max1≤m,k≤p |ψmk| and ψ2
mk = 4n−1 ∑n

i=1 ĝ2
i,mk . Let τ̃ =

n−1/2β−1ψ̄�−1(1−α/(2p2)); then τ∗ ≤ τ̃ . Since �−1(1−α/(2p2)) � (logp)1/2,
we have E[τ∗] ≤ C′β−1

E[ψ̄](log(p)/n)1/2, where C′ > 0 is a constant only de-
pending on α. Now we bound E[ψ̄]. By Jensen’s inequality,

ψ2
mk ≤ 16

n(n − 1)

∑
1≤i �=j≤n

h2
mk(Xi,Xj ).

Let � = [n/2]. By the data splitting argument in (36), [23], Lemma 9, and Jensen’s
inequality, we have

E

{
max
m,k

1

n(n − 1)

∣∣∣∣ ∑
1≤i �=j≤n

[
h2

mk(Xi,Xj ) −Eh2
mk

]∣∣∣∣
}

≤ 1

�
E

{
max
m,k

∣∣∣∣∣
�∑

i=1

[
h2

mk(Xi,Xi+�) −Eh2
mk

]∣∣∣∣∣
}

≤ K1

�

{
(logp)1/2

[
max
m,k

�∑
i=1

Eh4
mk(Xi,Xi+�)

]1/2

+ (logp)
[
Emax

m,k
max

1≤i≤�
h4

mk(Xi,Xi+�)
]1/2

}
.

By Pisier’s inequality ([63], Lemma 2.2.2) we have∥∥∥max
m,k

max
i≤�

∣∣hmk(Xi,Xi+�)
∣∣∥∥∥

4
≤ K2ν

2
n log(np).

Hence it follows from (50) that

E
[
ψ̄2] ≤ C

{
ξ4

4 + ξ4
8

(
logp

n

)1/2
+ ν4

n

log3(np)

n

}
.

Since ν4
n log7(np) ≤ C4n

1−K and ξ8 ≤ C3ν
1/2
n , we have E[ψ̄] ≤ Cξ2

4 , where C > 0
is constant depending only on Ci, i = 1, . . . ,4. Then we conclude that E[τ∗] ≤
C(α,C1, . . . ,C4)β

−1ξ2
4 (log(p)/n)1/2. �
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