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ON CONSISTENCY AND SPARSITY FOR SLICED INVERSE
REGRESSION IN HIGH DIMENSIONS
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Tsinghua University ∗, Harvard University† and Temple University‡

We provide here a framework to analyze the phase transition phe-
nomenon of slice inverse regression (SIR), a supervised dimension reduction
technique introduced by Li [J. Amer. Statist. Assoc. 86 (1991) 316–342]. Un-
der mild conditions, the asymptotic ratio ρ = limp/n is the phase transition
parameter and the SIR estimator is consistent if and only if ρ = 0. When di-
mension p is greater than n, we propose a diagonal thresholding screening
SIR (DT-SIR) algorithm. This method provides us with an estimate of the
eigenspace of var(E[x|y]), the covariance matrix of the conditional expecta-
tion. The desired dimension reduction space is then obtained by multiplying
the inverse of the covariance matrix on the eigenspace. Under certain sparsity
assumptions on both the covariance matrix of predictors and the loadings of
the directions, we prove the consistency of DT-SIR in estimating the dimen-
sion reduction space in high-dimensional data analysis. Extensive numerical
experiments demonstrate superior performances of the proposed method in
comparison to its competitors.

1. Introduction. For a continuous multivariate random variable (y,x) where
x ∈ R

p and y ∈ R, a subspace S ′ ⊂ R
p is called an effective dimension reduc-

tion (EDR) space if y ⊥⊥ x|PS ′(x) where ⊥⊥ stands for independence. Under mild
conditions [Cook (1996)], the intersection of all the EDR spaces is again an EDR
space, which is denoted as S and called the central space. Many algorithms were
proposed to find such subspace S under the assumption d = dimS � p. This line
of research is commonly known as sufficient dimension reduction. The Sliced In-
verse Regression [SIR, Li (1991)] is the first, yet the most widely used method in
sufficient dimension reduction, due to its simplicity, computational efficiency and
generality. The asymptotic properties of SIR are of particular interest in the last
two decades. The consistency of SIR has been proved for fixed p in Li (1991),
Hsing and Carroll (1992), Zhu and Ng (1995) and Zhu and Fang (1996). Later,
Zhu, Miao and Peng (2006) have proved the consistency when p = o(

√
n), a con-

dition also appearing in two recent work Zhong et al. (2012) and Jiang and Liu
(2014). When p > n, a common strategy pursued by recent researchers is to make
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sparsity assumptions that only a few predictors play a role in explaining and pre-
dicting y and apply various regularization methods. For instance, Li (2007), Li
and Nachtsheim (2006) and Yu et al. (2013) applied LASSO [Tibshirani (1996)],
Dantzig selector [Candes and Tao (2007)] and elastic net [Zou and Hastie (2005)],
respectively, to solve the generalized eigenvalue problems raised by a variety of
SDR algorithms.

However, a piece of jigsaw is missing in the understanding of SIR. If the dimen-
sion p diverges as n increases, when will the SIR break down? A similar question
has been asked for a variety of SDR estimates in Cook, Forzani and Rothman
(2012). In this paper, we prove that, under certain technical assumptions, the SIR
estimator is consistent if and only if ρ = lim p

n
= 0. This behavior of SIR in high

dimension, which will be called the phase transition phenomenon, is similar to
that of the principal component analysis (PCA), an unsupervised counterpart of
SIR. This extension is, however, by no means trivial. After all the samples (yi,xi )

are sliced into H bins according to the order statistics of yi , the sliced samples
are neither independent nor identically distributed. In this paper we provide a new
framework to study the phase transition behavior of SIR. The technical tools de-
veloped here can be extended to study the phase transition behavior of other SDR
estimators. The phase transition phenomenon provides theoretical justifications for
imposing certain structural assumptions such as sparsity in high-dimensional set-
tings.

The second part of this paper aims at extending the original SIR to the scenario
with ultra-high dimension [i.e., p = o(exp(nξ ))]. Based on equation (3) in Sec-
tion 2, the central space can be estimated in two steps: (i) obtain V̂ H , the SIR
estimate of var(E[x|y]) as the top d eigenvectors of �̂H ; (ii) estimate the pre-
cision matrix of x as �̂

−1, and estimate the central subspace as �̂
−1 col(V̂ H),

where col(V̂ H) represents the subspace formed by the column vectors of V̂ H . The
phase transition phenomenon indicates that col(V̂ H) is not a consistent estimate of
col(var(E[x|y])) when lim p

n
	= 0. Thus, we select variables according to the diag-

onal elements of �̂H and then estimate col(var(E[x|y])) by applying SIR to these
selected variables. We name this procedure as Diagonal Thresholding SIR (DT-
SIR), and have shown that DT-SIR is consistent in estimating the central space un-
der certain regularity conditions. Extensive simulation studies have demonstrated
that DT-SIR performs better than its competitors and is computationally efficient.

The rest of the paper is organized as follows. In Section 2, we briefly de-
scribe the SIR procedure and introduce the notation. In Section 3, we discuss
the phase transition phenomenon of SIR. In Section 4, we propose the DT-SIR
method and show that DT-SIR is consistent in high-dimensional data analysis. In
Section 5, we provide simulation studies to compare DT-SIR with its competitors.
Concluding remarks and discussions are put in Section 6. All the proofs are pre-
sented in Appendices A, B and the Supplementary Material [Lin, Zhao and Liu
(2018)].
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2. Preliminaries and notation.

2.1. Sliced inverse regression. Consider the multiple index model

(1) y = f
(
βτ

1x, . . . ,βτ
dx, ε

)
,

where x ∈ R
p , ε is the noise and f is an unknown link function. Without loss

of generality, we assume that E[x] = 0 ∈ R
p . Although the p × d matrix V =

(β1, . . . ,βd) is not identifiable, the space spanned by the β’s, which is called the
column space of V and denoted as col(V ), might be. Li (1991) proposed the Sliced
Inverse Regression (SIR) procedure to estimate the central space col(V ) without
knowing f (·). SIR can be summarized as follows: given n i.i.d. samples (yi,xi ),
i = 1, . . . , n, first divide them into H equal-sized slices according to the order
statistics y(i).4 Re-express the data as yh,j and xh,j , where (h, j) is the double
subscript in which h refers to the slice number and j refers to the order number of
a sample in the hth slice, that is,

yh,j = y(c(h−1)+j), xh,j = x(c(h−1)+j).

Here, x(k) is the concomitant of y(k). Let xh,· be the sample mean of the hth slice,
and x be the overall mean of all the data. Then � � var(E[x|y]) can be estimated
by

(2) �̂H = 1

H

H∑
h=1

x̄h,·x̄τ
h,·.

Based on the observation that

(3) col(�) = �x col(V ),

the central space col(V ) is estimated as �̂
−1
x col(V̂ H) where V̂ H is the matrix

formed by the top d eigenvectors of �̂H . Throughout the paper we assume that
d is fixed and the dth largest eigenvalue λd of � is bounded away from 0 when
n,p → ∞.

For SIR to be consistent in estimating the central space, Li (1991) imposed the
following two conditions:

• (A1) Linearity condition: For any ξ ∈R
p , E[ξ τx|βτ

1x, . . . ,βτ
dx] is a linear com-

bination of βτ
1x, . . . ,βτ

dx.
• (A2) Coverage condition: The dimension of the space spanned by the central

curve equals the dimension of the central space, that is, d ′ = d .

4To ease notation and arguments, we assume that n = cH and H = o(log(n)∧ log(p)) throughout
the paper.
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2.2. Further notation. Let Sh be the hth interval (yh−1,c, yh,c] for 2 ≤ h ≤
H − 1, S1 = (−∞, y1,c] and SH = (yH−1,c,∞). Note that these intervals depend
on the order statistics y(i) and are thus random. For any ω in the product sample
space, define a random variable δh = δh(ω) = ∫

y∈Sh(ω) f (y) dy where f (y) is the
density function of y. For I ⊂ {1, . . . , n},J ⊂ {1, . . . , p} and a n × p matrix A,
AI,J denotes the |I|× |J | submatrix formed by restricting the rows of A to I and
columns to J . In particular, A−,J denotes the submatrix formed by restricting the
columns to J . For any matrix B = AI,J ∈ R

|I|×|J |, let e(B) be the embedded
matrix into R

p×p by putting 0 on entries outside I × J . Similar notation are
used for vectors. For two positive numbers a and b, let a ∨ b ≡ max{a, b} and
a ∧ b ≡ min{a, b}. Let τ(x, t) = x × 1(|x| > t) be the hard thresholding function.
Throughout the paper, C, C1 and C2 denote generic absolute constants, though the
actual value may vary from case to case. For a vector x, the kth entry is denoted as
x(k). Let β1 and β2 be two vectors with the same dimension, the angle between
these two vectors is denoted as ∠(β1,β2). For two sequences {an}, {bn}, an � bn

stands for an = O(bε
n) for some positive ε < 1 and an � bn stands for lim bn

an
= 0.

3. Consistency of SIR. To study the consistency of SIR, we impose the fol-
lowing boundedness condition (A3) on the predictors’ covariance matrix in addi-
tion to the tail condition (sub-Gaussian) on their joint distribution. We also need a
condition (A4) for the central curve.

• (A3) Boundedness condition: x is sub-Gaussian, and there exist positive con-
stants C1,C2 such that

C1 ≤ λmin(�x) ≤ λmax(�x) ≤ C2,

where λmin(�x) and λmax(�x) are the minimal and maximal eigenvalues of �x ,
respectively.

• (A4) The central curve m(y) � E[x|y] has finite fourth moment and is ϑ-sliced
stable (defined below) with respect to y and m(y).

DEFINITION 1. For any two positive constants γ 1 < 1 < γ 2, let AH(γ 1,γ 2)

be the collection of all the partitions −∞ = a0 < a1 < · · · < aH−1 < aH = ∞ of
R satisfying that

γ 1

H
≤ P(ai ≤ y < ai+1) ≤ γ 2

H
.

The central curve m(y) = E[x|y] is called ϑ-sliced stable with respect to y for
some ϑ > 0 if there exist positive constants γ i , i = 1,2,3 such that for any β in
R

p and any partition in AH(γ 1,γ 2),

(4)
1

H

∣∣∣∣∣
H−1∑
h=0

var
(
βτm(y) | ah ≤ y ≤ ah+1

)∣∣∣∣∣ ≤ γ 3

Hϑ
var

(
βτm(y)

)
for sufficiently large H . The central curve is sliced stable if it is ϑ-sliced stable for
some positive constant ϑ .



584 Q. LIN, Z. ZHAO AND J. S. LIU

REMARK 1. Note that we only need (4) to hold for all unit vectors R
p by

rescaling. In particular, we have the following two useful properties of the slice-
stability:

(i) By choosing βτ = (0, . . . ,0,1,0, . . . ,0) with 1 at the kth position, we have∣∣∣∣∣
H∑

h=0

var
(
m(y, k) | ah ≤ y ≤ ah+1

)∣∣∣∣∣ ≤ γ 3H
1−ϑ var

(
m(y, k)

)
,

where m(y, k) is the kth coordinate of the central curve m(y).
(ii) Since equation (4) holds for all unit vector β , we have∥∥∥∥∥

H∑
h=0

var
(
m(y) | ah ≤ y ≤ ah+1

)∥∥∥∥∥
2

≤ γ 3H
1−ϑ

∥∥var
(
m(y)

)∥∥
2.

The sliced stable condition is satisfied by a large family of distributions. Here
are some examples:

(i) If y is Gaussian, then y (= E[y|y]) is sliced stable with respect to y. In
fact, let Y ∼ N(0,1), then E[Y 4] < ∞ and y4

P(Y ≥ y) → 0 as y → ∞. We now
prove that Y is 1

2 -sliced stable with respect to Y . Let us fix two positive constants
γ1 < 1 < γ2. We want to prove that for any partition −∞ = a0 < · · · < aH = ∞
satisfying γ1

H
≤ P(ai < Y < ai+1) ≤ γ2

H
, we have

1

H

H−1∑
h=0

var(Y |ah ≤ Y ≤ ah+1) ≤ 1

H 1/2 .

To avoid tedious notation, we only prove it for the partition {aj } where aj is the
j/H th quantile of Y , that is, P(Y ≤ aj ) = j/H . It is easy to verify that

var(Y |aj ≤ Y ≤ aj+1) ≤
{
(aj+1 − aj )

2 if 1 ≤ j ≤ H − 2,

o(1)
√

H if j = 0,H − 1.

Thus,

1

H

H−2∑
h=2

var(Y |ah ≤ Y ≤ ah+1) ≤ 1

H
(a1 − aH−1)

2 ≤ 4

H
max

{
a2

1, a2
H−1

}
.

Since a4
1P(Y < a1) → 0, we know that a2

1 = o(
√

H). Same argument shows that
a2
H−1 = o(

√
H). To summarize, we have

1

H

H−1∑
h=0

var(Y |ah ≤ Y ≤ ah+1) ≤ 1

H 1/2 .(5)

As a direct corollary, if m(·) is a function with bounded first derivative, then m(Y)

is 1
2 -sliced stable with respect to Y .
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(ii) Let y = βτx + ε, where x follows a multivariate normal distribution with
mean 0 and covariance matrix � and ε is a normal error. Simple calculation shows
that

E[x|y] = y�β

var(y)
.(6)

Thus, E[x|y] is a vector governed by the Gaussian random variable y and is sliced
stable with respect to y according to example (i).

(iii) If y is bounded, then for any function m(·) with continuous first derivative,
m(y) is sliced stable with respect to y because var(m(y)|y ∈ [a, b]) ≤ C|a − b|2.

(iv) If m(y) is sliced stable with respect to y, then for any monotone trans-
form y = g(z), m(g(z)) is sliced stable with respect to z because var(m(g(z))|z ∈
[a, b]) = var(m(y)|y ∈ [g(a), g(b)]) and P(g(a) ≤ Y ≤ g(b)) = P(a ≤ z ≤ b).
Especially, assume that Y = f (βτx + ε) where f (·) is a monotone function, x is
multivariate Gaussian and ε is a normal error. Then m(y) = E[x|y] is sliced stable.
In fact, let z = f −1(Y ), then n(z) = E[x|z] is sliced stable according to (ii). Thus
m(y) = n(f −1(y)) is sliced stable.

REMARK 2. Suppose E[m(y)] = 0 and there are n samples mi � m(yi). Let
mh,i and mh,· be defined similarly to xh,i and xh,·, respectively. On one hand, we
have the classic consistent estimator 1

n

∑
i mim

τ
i of var(m(y)). On the other hand,

a necessary condition that the slice-based estimate 1
H

∑
h mh,·mτ

h,· of var(m(y))

is consistent is the average loss of variance in each slice decreases to zero as H

increases, that is,

(7)
1

H

∑
h

m̄h,·m̄τ
h,· −

1

n

∑
i

mim
τ
i = 1

H

∑
h

1

c

∑
i

(m̄h,· − m̄h,i)
2 → 0.

The slice-stability ensure the left-hand side converges to zero at a power rate of H .
It would be easily seen that if m is smooth and y is compactly supported then (7)
holds automatically. For general curve m and random variable y, the slice-stability
is a condition on smoothness of the central curve m and the tail distribution of
m(y). This is not surprising because the smoonthness and tail conditions are com-
monly assumed for the consistency of SIR estimate.

The most widely used smoothness and tail condition is the following one pro-
posed by Hsing and Carroll (1992) [later used in Zhu, Miao and Peng (2006), Zhu
and Ng (1995)]. For B > 0 and n ≥ 1, let n(B) be the collection of all the n-
point partitions −B ≤ y(1) ≤ · · · ≤ y(n) ≤ B of [−B,B]. First, they assumed that
the central curve m(y) satisfies the following smoothness condition:

lim
n→∞ sup

y∈n(B)

n−1/4
n∑

i=2

∥∥m(yi) − m(yi−1)
∥∥

2 = 0 ∀B > 0.
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Second, they assumed that for B0 > 0, there exists a nondecreasing function m̃(y)

on (B0,∞), such that

(8)
m̃4(y)P

(|Y | > y
) → 0 as y → ∞,∥∥m(y) − m

(
y′)∥∥

2 ≤ ∣∣m̃(y) − m̃
(
y′)∣∣ for y, y′ ∈ (−∞,−B0) ∪ (B0,∞).

By changing the tail condition (8) to a slightly stronger condition E[m̃(y)4] < ∞,
Neykov, Lin and Liu (2015) proved that the modified condition implies the slice-
stability. Now, we are ready to state our main results.

THEOREM 1. Under conditions (A1), (A2), (A3) and (A4), we have

(9) ‖�̂H − �‖2 = OP

(
1

Hϑ
+ H 2p

n
+

√
H 2p

n

)
.

As a direct consequence of Theorem 1, we observe that if ρ = limn→∞ p
n

=
0, we may choose H = log(n/p) such that the right-hand side of equation (9)
converges to 0. Thus, Theorem 1 implies that �̂H is a consistent estimate of � if
ρ = 0.

REMARK 3 (More on convergence rate). Note that the convergence rate in (9)
depends on the choice of H . This may seem not very desirable at the first glance.
However, what we are really interested is the convergence rate of col(V̂ H ) which
actually does not depend on H. In fact,

�̂H − � = (�̂H − Pcol(�)�̂HPcol(�)) + (Pcol(�)�̂HPcol(�) − �).(10)

From the proof of Theorem 1, we can easily check that the first term is of conver-

gence rate pH 2

n
+

√
pH 2

n
and the second term is of rate 1

Hϑ . Since Pcol(�)�̂HPcol(�)

and � share the same column space, if we are only interested in estimating Pcol(�),
then the convergence rate of the second term does not matter provided that H is
a large enough integer, which may depend on ϑ and γ 3 but does not depend on n

and p. For such an H , if AH(γ 1,γ 2) is nonempty, Theorem 1 and (10) hold for
both categorical and continuous response variable Y .

EXAMPLE 1. We consider a toy example to show that the convergence rate of
�̂H is different col(�̂H). Consider the following noiseless toy model:

y = 1 ∗ x(1) + 0 ∗ x(2) + 0 ∗ ε,(11)

where x(1),x(2) and ε ∼ N(0,1). It is easy to see that � = var(E[x|y]) = ( 1 0
0 0

)
,

and its SIR estimate �̂H(i, j) = 1
H

∑
h xh,·(i)xh,·(j), where xh,·(1) = yh,· and

xh,·(2) ∼ N(0, 1
c
). To ensure �̂H is a consistent estimate of �,∣∣�̂H(1,1) − 1

∣∣ → 0 and
∣∣�̂H(i, j)

∣∣ → 0 ∀(i, j) 	= (1,1).(12)
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In order for �̂H (1,1) to be a consistent estimate of 1, we may need H → ∞.
However, if we are only interested in the first eigenvector (the basis of the central
subspace in this toy model) of �, we only need that �̂H(1,1) − 1 is sufficiently
small. In summary, to get a consistent estimate of the central subspace using SIR,
H must be large enough, but finite.

THEOREM 2. Under conditions (A1), (A2), (A3), (A4) and assuming that
ρ = lim p

n
= 0, we have∥∥�̂−1

x �̂H − �−1
x �

∥∥
2 → 0 as n → ∞

with probability converging to one, where �̂x = 1
n

∑n
i=1 xix

τ
i .

The proofs of Theorems 1 and 2 are in Appendix B. We define the distance
D(V 1,V 2) of two d-dimensional subspaces V 1 and V 2 as the operator norm (or
Frobenius norm) of the difference between PV 1 and PV 2 . Simple linear algebra
shows that if the β̃i ’s satisfy �xβ̃i = λi�β̃i , then

col(V ) = span{β̃1, . . . , β̃d}.
Let V̂ be the matrix formed by the top d generalized eigenvectors of (�̂

−1
x , �̂H).

Recall that the dth eigenvalue of � is assumed to be bounded away from 0. There-
fore, Theorem 2 implies that D(PV̂ ,PV ) → 0 when ρ = 0.

We have already shown that the SIR procedure provides us with a consistent
estimate of the sufficient dimension reduction space when ρ = 0. It is then natural
to ask: is this condition necessary? Our next theorem gives the answer.

THEOREM 3. Under conditions (A1), (A2), (A4) and assuming that x ∼
N(0, Ip) for the single index model

y = f
(
βτx, ε

)
,

we have:

(i) When ρ = lim p
n

∈ (0,∞), ‖�̂H −�‖2, as a function of ρ, is dominated by√
ρ ∨ ρ when H,n → ∞;
(ii) Let β̂ be the principal eigenvector of the SIR estimator �̂H . If ρ = lim p

n
>

0, then there exists a positive constant c(ρ) > 0 such that

lim inf
n→∞ E∠(β, β̂) > c(ρ)

with probability converging to one.

The proof is left in Appendix C in the Supplementary Material [Lin, Zhao and
Liu (2018)]. We illustrate this result via a numerical study of the linear model

(13) y = xτβ + ε where βτ = (1,0, . . . ,0),x ∼ N(0, Ip), ε ∼ N(0,1).
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FIG. 1. Numerical approximations of E∠(β̂,β) for model (13) as a function of dimension p for
ρ = 0.1, 0.3, 0.7, 1, 2 and 4, respectively (upper left, upper right, middle left, middle right, lower left,
lower right), where β̂ is estimated by SIR.

Figure 1 shows how E∠(β, β̂) is related to the dimension p for fixed ratio ρ = p
n

(taking values in {0.1,0.3,0.7,1,2,4}), where β̂ is calculated using SIR with the
slice number H = 10. For each p, E∠(β, β̂) is calculated based on 100 iterations.
It is seen that this expected angle converges to a positive number when the ratio
ρ is nonzero. In Figure 2, we have plotted the E∠(β, β̂) against the ratio ρ = p

n
,

varying between 0.01 and 4 with an increment of 0.01. The sample size n is 200
and the slice number H is 10. It is seen that the expected angle decreases to zero
as ρ approaches zero, and increases when ρ increases.

Results in this section have shown that there is a phase transition phenomenon of
the SIR procedure, that is, the estimate of the dimension reduction space is consis-
tent if and only if the ratio ρ = lim p

n
= 0. This provides a theoretical justification

of imposing additional structure assumption such as sparsity in high dimension
when p > n.

4. SIR in ultra-high dimension. As we have shown in Section 3, the SIR es-
timator is not consistent when ρ = lim p

n
	= 0. Hence, when p � n, some structural

assumptions are necessary for getting a consistent estimate of the central space. In
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FIG. 2. The relationship of E∠(β, β̂) and the ratio p/n where β̂ is estimated by SIR.

this paper, we assume that both the loadings of all the directions βj ’s and the
covariance matrix �x are sparse. Other structural assumptions will be studied in
future work. For β i’s, we impose the following prevalent sparsity condition:

• (A5) s = |S| � p where S = {i | βj (i) 	= 0 for some j,1 ≤ j ≤ d} and |S| is
the number of elements in the set S .

For �x , the following class of covariance matrices has been introduced in Bickel
and Levina (2008) [see also Cai, Zhang and Zhou (2010)]:

U(ε0, α,C) =
{
�x : max

j

∑
i

{|σi,j | : |i − j | > l
} ≤ Cl−α for all l > 0,

and 0 < ε0 ≤ λmin(�x) ≤ λmax(�x) ≤ 1

ε0

}
.

In this paper, to simplify the notation and arguments, we choose a slightly stronger
condition:

• (A6) �x ∈ U(ε0, α,C) and max1≤i≤p ri is bounded where ri is the number of
nonzero elements in the ith row of �x .

Let T = {k | var(E[x(k)|y]) 	= 0}. If k ∈ T , there exists η ∈ col(�) such that
η(k) 	= 0. Since we have (3),

�x col(V ) = col(�),

there exists a β ∈ col(V ) such that η = �xβ . Thus if k ∈ T , then k ∈ supp(�xβ)

for some β ∈ col(V ). In particular, with the above sparsity assumptions (A5) and
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(A6), we have |T | ≤ s max1≤i≤p ri = O(s).5 Note that our goal here is to recover
the column space col(V ) rather than S . The key for recovering col(V ) is to con-
sistently recover the set T .

At the population level, var(E(x(k))|y) can separate T from T c. When there
are only finite samples, we use

varH
(
x(k)

) = 1

H

H∑
h=1

x̄h,·(k)2(14)

as an estimate of var(E(x(k))|y). These are the diagonal elements of the matrix
�̂H . Note that these quantities depend on the sliced sample means, which are nei-
ther independent nor identically distributed. Thus, the usual concentration inequal-
ities for χ2 are no longer applicable. We have thus developed the concentration
inequalities accordingly which is one of the main technical contributions of this
paper, and can be further generalized.

REMARK 4. The link function f (·) is not used explicitly in the definition of
varH(x(k)). This nonparametric characteristic of the method is of particular inter-
est to us and will be further investigated in future researches. Screening statistics
inspired by the sliced inverse regression idea have been proposed in various for-
mats, such as those in Jiang and Liu (2014), Zhu et al. (2011) and Cui, Li and
Zhong (2015).

With the quantities varH(E[x(k)|y])’s, we define the inclusion set Ip(t) and the
exclusion set Ep(t) below, which depend on a thresholding value t :

Ip(t) = {
k | varH

(
x(k)

)
> t

}
and

Ep(t) = {
k | varH

(
x(k)

) ≤ t
}
.

Note that Ip(t) can be viewed as an estimate of T and is thus also denoted by T̂ .
After reducing the dimension to a level such that p/n is sufficiently small, the SIR

estimator �̂
T̂ ,T̂

is a consistent estimate of �T ,T . Let V̂
T̂ be the matrix formed

by the top d eigenvectors of �̂
T̂ ,T̂

. We then use �̂
−1
x col(e(V̂ T̂

)) to estimate the

central space col(V ), where �̂
−1
x is a consistent estimate of �x . Estimating the co-

variance matrix and precision matrix in a high-dimensional setting is a challenging
problem by itself and is not a main focus of this paper. We just employ the meth-
ods of Bickel and Levina (2008). In summary, we propose the following Diagonal
Thresholding screening SIR (DT-SIR) algorithm (see Algorithm 1):

5We could introduce ξ = max1≤i≤p ri , then |T | ≤ sξ . The arguments below still work, except we
might need sξ = o(p).
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Algorithm 1 DT-SIR
1. Calculate varH(x(k)) according (14) for k = 1,2, . . . , p;
2. Let T̂ = {k | varH (x(k)) > t} for an appropriate t ;

3. Let �̂
T̂ ,T̂
H be the SIR estimator of the conditional covariance matrix for the data

(y,x−,T̂ ) according to equation (2);

4. Let V̂
T̂ be the matrix formed by the top d eigenvectors of �̂

T̂ ,T̂
;

5. �̂
−1
x col(e(V̂ T̂

)) is the estimate of col(V )

A practical way to choose an appropriate t in step 2 will be presented in Sec-
tion 5. To ensure theoretical properties, we need an assumption on the signal
strength:

• (S1) ∃C > 0 and ω > 0 such that var(E[x(k)|y]) > Cs−ω when E[x(k)|y] is
not a constant.

THEOREM 4. Under conditions (A1)–(A6) and (S1), and let t = as−ω for
some constant a > 0 such that t < 1

2 var(m(y, k)),∀k ∈ T , we have:

(i) T c ⊂ Ep holds with probability at least

(15) 1 − C1 exp
(
−C2

n

H 2sω
+ C3 log(H) + log(p − s)

)
;

(ii) T ⊂ Ip holds with probability at least

(16) 1 − C4 exp
(
−C5

n

H 2sω
+ C6 log(H) + log(s)

)
,

for some positive constants C1, . . . ,C6.

This theorem has a simple implication. If n
sω � log(p)+ log(s), we may choose

H = log( n
sω log(p)

), so that

n

H 2sω
� log(p) + log(H) + log(s).

Thus, we know T = Ip with probability converging to one. Next, we have results
for the consistency of DT-SIR.

THEOREM 5. Under the same assumptions and choosing the same t as Theo-
rem 4, if n

sω � log(p) + log(s), we have∥∥e(
�̂

T̂ ,T̂
H

) − �p

∥∥
2 → 0 as n → ∞

with probability converging to one, where T̂ = I(t) and H = log( n
sω log(p)

).
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THEOREM 6. Let �̂x be the estimator of co-variance matrix from Bickel and
Levina (2008). Under the same assumptions of Theorem 5, we have∥∥�̂−1

x e
(
�̂

T̂ ,T̂
H

) − �−1
x �p

∥∥
2 → 0 as n → ∞

with probability converging to one.

The proofs of Theorems 4 to 6 are left in Appendix D in the Supplementary
Material [Lin, Zhao and Liu (2018)].

5. Simulation studies. We consider the following settings in generating the
design matrix x and the response y. In Settings I–III, each row of x is indepen-
dently sampled from N(0, I):

• Setting I. yi = sin(xi1 + xi2) + exp(xi3 + xi4) + 0.5 ∗ εi , where εi
i.i.d.∼ N(0,1);

• Setting II. yi = ∑7
j=1 xij ∗ exp(xi8 + xi9) + 0.5 ∗ εi where εi

i.i.d.∼ N(0,1);

• Setting III. yi = ∑10
j=1 xij ∗ exp(

∑20
i=11 xij ) + εi where εi

i.i.d.∼ N(0,1).

In Settings IV to VI, each row of x is independently sampled from N(0,�).

• Setting IV. yi = (xi1 + xi2 + xi3)
3/2 + 0.5 ∗ εi , where εi

i.i.d.∼ N(0,1) and � =
(σij ) is tri-diagonal with σii = 1, σi,i+1 = σi+1,i = ρ and σi,i+2 = σi+2,i = ρ2;

• Setting V. yi = ∑7
j=1 xij ∗ exp(xi8 + xi9) + εi , where εi

i.i.d.∼ N(0,1), and � =
B ⊗ Ip/10 with B = (bij )1≤i≤10,1≤j≤10 given as bij = ρ|i−j |;

• Setting VI. Assume the same setting as in Setting V except that � = (σij ) is
tri-diagonal with σii = 1, σi,i+1 = σi+1,i = ρ and σi,i+2 = σi+2,i = ρ2.

• Setting VII. Assume the same setting as in Setting V except that � = (σij ) is
given as σij = ρ|i−j |.
DT-SIR first screens all the predictors according to the statistic varH(x(k)),

which requires a tuning parameter t . We chose t by using an auxiliary variable
method based on an idea first proposed by Luo, Stefanski and Boos (2006) and ex-
tended by Wu, Boos and Stefanski (2007) and Zhu et al. (2011). In our setting, for
a given sample (yi,xi ), we generate zi ∼ N(0, Ip′) where p′ is sufficiently large
and chosen as p in our simulation studies. It is known that y and z are independent.
The threshold t can be chosen as

t̂ = max
1≤k≤p′

{
varH

(
z(k)

)}
.

In DT-SIR, when n > 1000, H is chosen as 20; when n ≤ 1000, H is chosen as 10
in the screening step and 20 in the SIR step.

We also consider the following alternative methods in the screening step: Sure
Independent Ranking and Screening (SIRS) in Zhu et al. (2011), SIR for variable
selection via Inverse modeling (SIRI) in Jiang and Liu (2014), and trace pursuit
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in Yu, Dong and Zhu (2016). As a comparison, we also considered two screen-
ing methods that are not based on the sliced regression: Distance correlation in
Székely, Rizzo and Bakirov (2007) and SURE independence in Fan and Lv (2008).
For SIRS, the threshold is chosen according to the auxiliary statistic (2.9) of Zhu
et al. (2011). For SIRI, the predictors are chosen according to 10-fold cross vali-
dation. The threshold values c̄SIR and cSIR are chosen as the 10th and 5th quantile
of a weighted χ2 distribution given in Theorem 3.1 of Yu, Dong and Zhu (2016).
In both SURE and DC screening, the top �γ n� predictors where γ = 0.01 are kept
for subsequent analyses.

After the screening step, similar to DT-SIR, we then applied the SIR algorithm
(steps 3–5 of DT-SIR) to estimate col(V ). These alternative methods are denoted
as SIRS-SIR, SIRI-SIR, SURE-SIR, DC-SIR and TP-SIR, respectively, in the fol-
lowing discussions. Another method that we compared with is the sparse SIR,
abbreviated as SpSIR, proposed in Li (2007). After obtaining an estimator col(V̂ ),
we calculated D(Pcol(V̂ ),Pcol(V )) as a measure of the estimation error. We repli-
cated this step 100 times, and calculated the average distance for the estimation
result from each method and reported these numbers in Tables 1–3. For each set-
ting, the average distance of the optimal method is highlighted using bold fonts.
We further ran a two-sample T-test to test if the actual estimation error of each
method is significantly different from that of the best method for that example at
1% level of significance.

Under all settings, the average distance obtained by DT-SIR is much smaller
than that obtained by SpSIR and SURE-SIR. The p-values for comparing DT-SIR
and SpSIR/SURE-SIR are all significant at the 0.01 level. When p ≥ n, the sparse
SIR completely fails because the average distance of the estimated space to the
true space is

√
2d , indicating that the space estimated by sparse SIR is orthogonal

to the true space spanned by β .
Under settings II–IV, DT-SIR performs either the best or not significantly worse

than the best method. For all other cases, DT-SIR performs the best except for a
few cases: Setting I when n = 500,p = 1000, setting V when n = 500,p = 6000,
setting VI when n = 500,p = 6000 and setting VII when n = 1000,p = 1000.

When p = 6000, n = 500, both DT-SIR and SIRI-SIR are the winners. Under
Setting III, DT-SIR performs better than SIRI-SIR; under settings V and VI, SIRI-
SIR performs better than DT-SIR; under other settings, these two methods are
comparable.

To graphically show the performance of various methods, we considered set-
ting IV with d = 1. Consider two cases when (n,p) = (2000,1000) and (n,p) =
(500,100). We calculated the estimated directions β̂ using various methods and
computed the angle between 〈β̂〉 and 〈β〉. We replicated this step 100 times to cal-
culate the average angles for each method. The results are displayed in Figure 3,
which shows clearly that DT-SIR performed better than its competitors.

Additionally, DT-SIR is computationally efficient. To show this, we reported the
computing time for one replication under Setting II for various pairs of (n,p) in



594 Q. LIN, Z. ZHAO AND J. S. LIU

TABLE 1
The average distance of the space estimated by each of the 7 methods tested to the true space

col(V ) under various settings with p = 1000. The boldfaced number in each row represents the best
result for that simulation scenario, and the “*” in cells represents that the p-value of the

two-sample T-test comparing the estimation error of the corresponding method with that of the best
method is less than 0.01

n DT-SIR SIRI-SIR SIRS-SIR SpSIR SURE-SIR DC-SIR TP-SIR

I

500 0.655(*) 0.751(*) 0.492 2(*) 1.39(*) 0.731(*) 1.18(*)
1000 0.3 0.431(*) 0.309 2(*) 1.29(*) 0.632(*) 0.94(*)
2000 0.221 0.341(*) 0.226 1.58(*) 1.04(*) 0.655(*) 0.784(*)
3000 0.167 0.245(*) 0.149 1.48(*) 0.816(*) 0.641(*) 0.713(*)

II

500 0.383 0.396 0.371 2(*) 1.64(*) 1.08(*) 0.389
1000 0.235 0.227 0.256 2(*) 1.36(*) 0.266(*) 0.318(*)
2000 0.161 0.157 0.189(*) 1.25(*) 1.25(*) 0.387(*) 0.264(*)
3000 0.134 0.129 0.153(*) 0.975(*) 1.12(*) 0.404(*) 0.23(*)

III

500 1.15 1.48(*) 1.38(*) 2(*) 1.97(*) 1.85(*) 1.13
1000 0.426 0.974(*) 0.596(*) 2(*) 1.94(*) 1.57(*) 0.429
2000 0.263 0.403(*) 0.29(*) 1.33(*) 1.89(*) 0.996(*) 0.338(*)
3000 0.214 0.297 0.238(*) 1.06(*) 1.82(*) 0.475(*) 0.299(*)

IV

500 0.263 0.257 0.333 1.41(*) 0.335(*) 0.334(*) 0.332(*)
1000 0.219 0.447(*) 0.25 1.41(*) 0.436(*) 0.459(*) 0.469(*)
2000 0.161 0.4(*) 0.196(*) 0.42(*) 0.442(*) 0.469(*) 0.452(*)
3000 0.134 0.377(*) 0.177(*) 0.297(*) 0.43(*) 0.458(*) 0.438(*)

V

500 0.546 0.529 0.562 2(*) 1.62(*) 1.24(*) 1.09(*)
1000 0.401 0.463(*) 0.514(*) 2(*) 1.15(*) 0.367 0.615(*)
2000 0.288 0.418(*) 0.341(*) 1.51(*) 0.926(*) 0.569(*) 0.54(*)
3000 0.249 0.399(*) 0.284(*) 1.24(*) 0.691(*) 0.597(*) 0.511(*)

VI

500 0.568 0.535 0.566 2(*) 1.64(*) 1.24(*) 1.08(*)
1000 0.427 0.524(*) 0.548(*) 2(*) 1.22(*) 0.39 0.641(*)
2000 0.311 0.469(*) 0.351(*) 1.51(*) 0.927(*) 0.598(*) 0.583(*)
3000 0.265 0.456(*) 0.307(*) 1.25(*) 0.807(*) 0.622(*) 0.56(*)

VII

500 0.556 0.534 0.585(*) 2(*) 1.66(*) 1.26(*) 1.11(*)
1000 0.436(*) 0.528(*) 0.545(*) 2(*) 1.22(*) 0.39 0.643(*)
2000 0.303 0.465(*) 0.358(*) 1.51(*) 0.747(*) 0.589(*) 0.579(*)
3000 0.258 0.468(*) 0.319(*) 1.25(*) 0.698(*) 0.63(*) 0.558(*)

Table 4. All computations were done on a computer with Intel Xeon(R) E5-1620
CPU@3.70G Hz and 16 GB memory. It is clearly seen that DT-SIR performed as
fast as SURE-SIR, and both were much faster than other competitors. Consider
the case when p = 3000, n = 2000. The computation time of DT-SIR is only 30
seconds; while that for DC-SIR is 21 minutes and 38 seconds, and the that for
TP-SIR is 6 minutes and 17 seconds.
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TABLE 2
The average distance of the space estimated by each of the 7 methods we tested to the true space

col(V ) under various settings with n = 2000

p DT-SIR SIRI-SIR SIRS-SIR SpSIR SURE-SIR DC-SIR TP-SIR

I

500 0.213 0.312(*) 0.206 1.44(*) 0.903(*) 0.629(*) 0.772(*)
1000 0.221 0.341(*) 0.226 1.58(*) 1.04(*) 0.655(*) 0.784(*)
2000 0.241 0.29 0.214 2(*) 1.07(*) 0.677(*) 0.793(*)
3000 0.23 0.278 0.218 2(*) 1.17(*) 0.683(*) 0.797(*)

II

500 0.163 0.16 0.19(*) 0.83(*) 1.22(*) 0.369(*) 0.26(*)
1000 0.161 0.157 0.189(*) 1.25(*) 1.25(*) 0.387(*) 0.264(*)
2000 0.172 0.159 0.196(*) 2(*) 1.23(*) 0.404(*) 0.259(*)
3000 0.164 0.158 0.199(*) 2(*) 1.3(*) 0.414(*) 0.261(*)

III

500 0.272 0.353 0.29(*) 0.916(*) 1.84(*) 0.846(*) 0.341(*)
1000 0.263 0.403(*) 0.29(*) 1.33(*) 1.89(*) 0.996(*) 0.338(*)
2000 0.262 0.368 0.285(*) 2(*) 1.92(*) 0.98(*) 0.339(*)
3000 0.269 0.344 0.291(*) 2(*) 1.93(*) 1.09(*) 0.339(*)

IV

500 0.145 0.409(*) 0.182(*) 0.248(*) 0.406(*) 0.433(*) 0.438(*)
1000 0.161 0.4(*) 0.196(*) 0.42(*) 0.442(*) 0.469(*) 0.452(*)
2000 0.16 0.395(*) 0.198(*) 1.41(*) 0.472(*) 0.506(*) 0.447(*)
3000 0.15 0.395(*) 0.216(*) 1.41(*) 0.49(*) 0.527(*) 0.447(*)

V

500 0.272 0.434(*) 0.353(*) 1.09(*) 0.876(*) 0.547(*) 0.539(*)
1000 0.288 0.418(*) 0.341(*) 1.51(*) 0.926(*) 0.569(*) 0.54(*)
2000 0.289 0.418(*) 0.351(*) 2(*) 0.868(*) 0.596(*) 0.537(*)
3000 0.3 0.417(*) 0.372(*) 2(*) 0.968(*) 0.605(*) 0.544(*)

VI

500 0.307 0.479(*) 0.368(*) 1.1(*) 0.858(*) 0.566(*) 0.583(*)
1000 0.311 0.469(*) 0.351(*) 1.51(*) 0.927(*) 0.598(*) 0.583(*)
2000 0.309 0.461(*) 0.399(*) 2(*) 1.08(*) 0.617(*) 0.585(*)
3000 0.31 0.46(*) 0.408(*) 2(*) 1(*) 0.638(*) 0.587(*)

VII

500 0.299 0.482(*) 0.343(*) 1.09(*) 0.818(*) 0.564(*) 0.583(*)
1000 0.303 0.465(*) 0.358(*) 1.51(*) 0.747(*) 0.589(*) 0.579(*)
2000 0.309 0.455(*) 0.383(*) 2(*) 0.966(*) 0.622(*) 0.578(*)
3000 0.308 0.46(*) 0.357(*) 2(*) 0.858(*) 0.626(*) 0.58(*)

6. Conclusion. When the dimension p diverges to infinity, classical statisti-
cal procedures often fail unless additional structures such as sparsity conditions
are imposed. Understanding boundary conditions of a statistical procedure pro-
vides us theoretical justification and practical guidance for our modeling efforts.
In this paper we provide a new framework to show that ρ = lim p

n
is the phase

transition parameter for the SIR procedure. Under certain conditions, it is shown
that the SIR estimator is consistent if and only if ρ = 0. When ρ > 0, where the
original SIR fails to be consistent, we propose a two-stage method, DT-SIR for
variable screening and selection in ultra-high dimension situations and show that
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TABLE 3
The average distance of the space estimated by each of the 7 methods tested to the true space

col(V ) under various settings with n = 500 and p = 6000

DT-SIR SIRI-SIR SIRS-SIR SpSIR SURE-SIR DC-SIR TP-SIR

I 0.694 0.631 0.606 2(*) 1.43(*) 0.97(*) 1.19(*)

II 0.446 0.462 0.414 2(*) 1.74(*) 1.08(*) 0.4

III 1.35 1.56(*) 1.56(*) 2(*) 1.99(*) 1.88(*) 1.37

IV 0.163 0.122 0.245(*) 1.41(*) 0.27(*) 0.305(*) 0.195(*)

V 0.481(*) 0.431 0.486(*) 2(*) 1.62(*) 1.1(*) 0.995(*)

VI 0.463(*) 0.423 0.494(*) 2(*) 1.62(*) 1.11(*) 0.999(*)

VII 0.44 0.412 0.477(*) 2(*) 1.61(*) 1.1(*) 1.03(*)

the method is consistent. We have used simulated examples to demonstrate the ad-
vantages of DT-SIR compared to its competitors. This method is computationally
fast and can be easily implemented for large data sets.

It is natural to ask if similar phase transition phenomena occur for other SDR
algorithms. For simplicity, let us assume that x ∼ N(0, I). If we decompose x =
PSx + PS⊥x, then y ⊥⊥ PS⊥x. The SIR procedure accumulates the signal along
direction PSx and averages out the noise along direction PS⊥x. It is clear that
if lim p

n
	= 0, the averaging-out idea fails. Thus, we cannot expect that SIR can

produce a consistent estimate of S . This intuitive argument could apply to those
SDR algorithms that inherit the sliced modeling characteristics. However, such a
development relies on the higher moment and is technical challenging.

FIG. 3. Simulated value of E∠(β̂,β) for the various methods. Left panel: (n,p) = (2000,1000).
Right panel: (n,p) = (500,1000).
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TABLE 4
Comparison of computing time under setting II

DT-SIR SIRI-SIR SIRS-SIR SpSIR SURE-SIR DC-SIR TP-SIR

n p = 1000

500 1′′ 1′12′′ 7′′ 11′′ 1′′ 24′′ 29′′
1000 2′′ 2′2′′ 20′′ 11′′ 1′′ 1′52′′ 1′2′′
2000 3′′ 3′27′′ 1′14′′ 13′′ 2′′ 7′38′′ 2′18′′
3000 4′′ 4′59′′ 2′45′′ 15′′ 3′′ 6′51′′ 3′7′′

p n = 2000

500 1′′ 2′48′′ 35′′ 2′′ 1′′ 3′46′′ 1′7′′
1000 3′′ 3′27′′ 1′14′′ 13′′ 2′′ 7′38′′ 2′18′′
2000 12′′ 4′55′′ 2′35′′ 1′39′′ 12′′ 14′24′′ 3′22′′
3000 30′′ 6′0′′ 4′10′′ 5′19′′ 30′′ 21′38′′ 6′17′′

APPENDICES

The following two sections provide details about our theoretical derivations.
But some more tedious intermediate steps (organized as Lemmas 6–21) are in the
Supplementary Material, which is available on-line [Lin, Zhao and Liu (2018)].

APPENDIX A: THE KEY LEMMA

The following lemma plays an important role in developing the high-
dimensional theory for sliced inverse regression. Here, keep in mind that H and ν

(if they are not constants) grow at very slow rate compared with c and n [e.g., poly-
nomial of log(n)]. Let m(y) = E[x|y], and x = m(y) + ε. Notation mh,j ,mh,·,m
and εh,j , εh,·, ε are similarly defined as xh,j , xh,· and x that were introduced
before.

LEMMA 1. Assume the conditions (A1), (A2), (A3) and (A4) hold. Let x ∈ R
p

be a sub-Gaussian random variable which is upper exponentially bounded by K

(see Definition 4). For any unit vector β ∈ R
p , let x(β) = 〈x,β〉 and m(β) =

〈m,β〉 = E[x(β) | y], we have the following:

(i) If var(m(β)) = 0, there exists positive constants C1,C2 and C3 such that
for any b = O(1) and sufficiently large H , we have

P
(
varH

(
x(β)

)
> b

) ≤ C1 exp
(
−C2

nb

H 2 + C3 log(H)

)
.

(ii) If var(m(β)) 	= 0, there exists positive constants C1,C2 and C3 such that,
for any ν > 1, we have∣∣varH

(
x(β)

) − var
(
m(β)

)∣∣ ≥ 1

2ν
var

(
m(β)

)
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with probability at most

C1 exp
(
−C2

nvar(m(β))

H 2ν2 + C3 log(H)

)
.

Here, we choose H such that Hϑ > C4ν for some sufficiently large constant C4.

A.1. Proof of Lemma 1(i). If m(β) = 0 [or equivalently var(m(β)) = 0],
since

ε̄h,·(β)2 =
(

c − 1

c

1

c − 1

c−1∑
i=1

εh,i(β) + 1

c
εh,c(β)

)2

≤ 2

(
1

c − 1

c−1∑
i=1

εh,i(β)

)2

+ 2
(

1

c
εh,c(β)

)2

for h = 1, . . . ,H − 1 and ε̄H,·(β) = 1
c

∑c
i=1 εH,i(β), we have

varH
(
x(β)

) − var
(
m(β)

)
= 1

H

H−1∑
h

ε̄h,·(β)2 + 1

H
ε̄H,·(β)2

≤ 2

H

(
H−1∑

h

(
1

c − 1

c−1∑
i=1

εh,i(β)

)2

+ ε̄H,·(β)2

)
+ 2

Hc2

H−1∑
h

εh,c(β)2

� 2I + 2II.

Thus

P
(
varH

(
x(β)

)
> b

) ≤ P(I > b/4) + P(II > b/4).(17)

Lemma 17(iii) in the Supplementary Material [Lin, Zhao and Liu (2018)] im-
plies that

P
(
ε(β)|y∈Sh

> t
) ≤ CH exp

(
− t2

K2

)
for some positive constant C. Since E[x(β)|y] = 0, we have E[x(β)|y ∈ Sh] = 0.
From Lemma 9, we know that for 1 ≤ h ≤ H − 1, εh,i(β) can be treated as c − 1
i.i.d. samples from ε(β)|y∈Sh

. According to Lemma 17(iv),

P

(∣∣∣∣∣ 1

c − 1

c−1∑
i=1

εh,i(β)

∣∣∣∣∣ >
√

b/2

)
≤ C1 exp

( −b(c − 1)

8C2HK2 + 4
√

bK

)
.

Similarly, we have

P

(∣∣∣∣∣1

c

c∑
i=1

εH,i(β)

∣∣∣∣∣ >
√

b/2

)
≤ C1 exp

( −bc

8C2HK2 + 4
√

bK

)
.
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Thus, if b = O(1) and H is sufficiently large, we have

P

(
I >

b

4

)
≤ C1

(
(H − 1) exp

( −b(c − 1)

8C2HK2 + 4
√

bK

)

+ exp
( −bc

8C3HK2 + 4
√

bK

))

≤ C1 exp
(
−C2

cb

H
+ C3 log(H)

)
for some positive constants C1,C2 and C3.

Since εi (β) are i.i.d. samples from a sub-Gaussian distribution ε(β) with mean
0 and upper-exponentially bounded by 2K . Lemma 19 implies that if b = O(1)

and H is sufficiently large, we have

P(II > b/4) ≤ P

(
1

n

∑
i

εi (β)2 > bc/4
)

≤ P

(
1

n

∑
i

εi (β)2 −E
[
ε(β)2]

> bc/4 −E
[
ε(β)2])

≤ P

(∣∣∣∣1

n

∑
i

εi (β)2 −E
[
ε(β)2]∣∣∣∣ ≥ cb/4 − 4K2

)

≤ C1 exp
(
−C2

√
n(cb/4 − 4K2)

K2

)
≤ C1 exp

(
−C2

cb

H
+ C3 log(H)

)
for some positive constants C1,C2 and C3 if H is sufficiently large. We used in
above the fact that E[ε(β)2] ≤ 4K2.

To summarize, if b = O(1) and H is sufficiently large, we have

P
(
varH

(
x(β)

)
> b

) ≤ C1 exp
(
−C2

cb

H
+ C3 log(H)

)
for some positive absolute constants C1,C2 and C3.

A.2. Proof of Lemma 1(ii). Let μh = E[m(y | y ∈ Sh)]. Since x is sub-
Gaussian and β is unit vector, we know that var(m(β)) = O(1). If m(β) 	= 0 [or
equivalently var(m(β)) 	= 0], we have∣∣varH

(
x(β)

) − var
(
m(β)

)∣∣ =
∣∣∣∣ 1

H

∑
h

xh,·(β)2 − var
(
m(β)

)∣∣∣∣
=

∣∣∣∣ 1

H

∑
h

mh,·(β)2 + 2

H

∑
h

mh,·(β)εh,·(β)
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+ 1

H

∑
h

εh,·(β)2 − var
(
m(β)

)∣∣∣∣
≤ A1 + A2 + A3 + A4,

where

(18)

A1 =
∣∣∣∣ 1

H

∑
h

μh(β)2 − var
(
m(β)

)∣∣∣∣,
A2 = 1

H

∑
h

∣∣mh,·(β)2 − μh(β)2∣∣,
A3 = 1

H

∑
h

ε̄h,·(β)2,

A4 =
(

1

H

∑
h

mh,·(β)2
)1/2(

1

H

∑
h

εh,·(β)2
)1/2

.

Lemma 1(ii) is a direct corollary of the following properties of Ai ’s.

LEMMA 2. Let the Ai ’s be defined as in equation (18). There exist positive
constants C1, C2 and C3, such that for any ν > 1 and H satisfying Hϑ = N1ν for
sufficiently large N1, we have that each of the following events:

(i) �1 = {A1 ≤ 1
4ν

var(m(β))},
(ii) �2 = {A2 ≤ 1

8ν
var(m(β))},

(iii) �3 = {A3 ≤ 1
16ν

var(m(β))},
(iv) �4 = {A4 ≤ 1

16ν
var(m(β))},

occurs with probability at least

(19) 1 − C1 exp
(
−C2

c var(m(β))

Hν2 + C3 log(H)

)
.

A.2.1. Proof of Lemma 2.

A.2.1.1. Proof of (i). Recall definitions of the random intervals Sh,h = 1,2, . . . ,

H and random variable δh = δh(ω) = ∫
y∈Sh(ω) f (y) dy. We have∣∣∣∣ 1

H

∑
h

(
μh(β)

)2 − var
(
m(β)

)∣∣∣∣
≤

∣∣∣∣var
(
m(β)

) − ∑
h

δh

(
μh(β)

)2
∣∣∣∣ + ∣∣∣∣ 1

H

∑
h

(
μh(β)

)2 − ∑
h

δh

(
μh(β)

)2
∣∣∣∣

� B1 + B2.
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Let ε = 1
Hn0+1 where n0 = N2ν for some sufficiently large constant N2 and let

event E(ε) be defined as in Lemma 11 in Section E, that is, E(ε) = {ω | |δh − 1
H

| >
ε,∀h}. For any ω ∈ E(ε)c, we have

B1 = ∑
h

δh(ω)var
(
m(β)|y ∈ Sh(ω)

)
≤

(
1

H
+ ε

)∑
h

var
(
m(β)|y ∈ Sh(ω)

)
(20)

≤ (1 + Hε)
γ 3

Hϑ
var

(
m(β)

)
(21)

≤ 2γ 3

N1ν
var

(
m(β)

)
,(22)

where inequality (20) follows from the fact that δh(ω) ≤ 1
H

+ ε, inequality (21)
follows from the sliced stable condition (4) and inequality (22) follows from the
requirement that Hϑ > N1ν, and the fact

B2 ≤ ε
∑
h

(
βτμh

)2 = ∑
h

ε

δh

δh

(
βτμh

)2

≤ Hε

1 − Hε

∑
h

δh

(
βτμh

)2(23)

≤ 2

N2ν

∑
h

δh

(
βτμh

)2
,

where inequality (23) follows from the fact δh ≥ 1
H

− ε.
From (22), we observe that∑

h

δh

(
μh(β)

)2 ≤
(

1 + 2γ 3

N1ν

)
var

(
m(β)

)
.(24)

Combining with (23), we then have

B2 ≤ 2

N2ν

(
1 + 2γ 3

N1ν

)
var

(
m(β)

)
.

So when E(ε)c occurs, we have

B1 + B2 ≤
(

2γ 3

N1ν
+ 2

N2ν

(
1 + 2γ 3

N1ν

))
var

(
m(β)

)
.

Note that N1 and N2 can be chosen sufficiently large so that

B1 + B2 ≤ 4γ 3

N1ν
var

(
m(β)

) ≤ 1

4ν
var

(
m(β)

)
.(25)
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Consequently, conditioning on E(ε)c where ε = 1
HN2ν+1 , if we choose Hϑ > N1ν,

then

(26)
∣∣∣∣ 1

H

∑
h

(
μh(β)

)2 − var
(
m(β)

)∣∣∣∣ ≤ 1

4ν
var

(
m(β)

)
.

Since var(m(β)) = O(1), Hϑ > N1ν and ε = 1
HN2ν+1 , the desired probability

bound follows from Lemma 11, that is,

P
(
E(ε)

) ≤ C1 exp
(
− Hc + 1

32(Hn0 + 1)2 + log
(
H 2

√
Hc + 1

))

≤ C1 exp
(
−C2

c var(m(β))

Hν2 + C3 log(H)

)
,

for some positive constants C1,C2 and C3.

REMARK 5. From (26), conditioning on E(ε)c, we obtain the following two
inequalities:

1

H

∑
h

(
μh(β)

)2 ≤
(

1 + 4γ 3

Hϑ

)
var

(
m(β)

)
(27)

and

1

H

∑
h

∣∣μh(β)
∣∣ ≤

((
1 + 4γ 3

Hϑ

)
var

(
m(β)

))1/2
.(28)

In particular, 1
H

∑
h(μh(β))2 and 1

H

∑
h |μh(β)| are bounded by OP (1).

A.2.1.2. Proof of (ii). Denote 1
c−1

∑c−1
i=1 mh,i(β) by m′

h(β) and mH,·(β) by
m′

H(β), we have

A2 ≤ 1

H

H∑
h=1

∣∣m′
h(β)2 − μh(β)2∣∣ + 1

Hc2

H∑
h=1

mh,c(β)2

+ 2(c − 1)

c

(
1

H

H∑
h=1

m′
h(β)2

)1/2(
1

Hc2

H∑
h=1

mh,c(β)2

)1/2

+ 2

Hc

H∑
h=1

μh(β)2

� I + II + III + IV.

Before we start proving this part, we need to introduce two events and bound their
probabilities. First, let

(29) E1(N3, ν) =
{
η(β) >

1

N3ν

√
var

(
m(β)

)}
,
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where η(β) = max1≤h≤H {|m′
h(β) − μh(β)|}. According to Lemma 17(i), (iv) and

Bonferroni’s inequality, we have

P
(
E1(N3, ν)

) ≤ 2H exp
(

1

(N3ν)2

−(c − 1)var(m(β))

2CHK2 + 2
N3ν

√
var(m(β))K

)
(30)

≤ C1 exp
(
−C2

c var(m(β))

Hν2 + C3 log(H)

)
(31)

for some positive constants C1, C2 and C3. Second, let

E2(N4, ν)�
{

II >
1

N4ν
var

(
m(β)

)}
,

then

P
(
E(N4, ν)

) ≤ P

(
1

nc

∑
i

m2
i >

var(m(β))

N4ν

)

≤ C1 exp
(
−C2

√
n

(
c

var(m(β))

ν

)
− K2

)
≤ C1 exp

(
−C2

c var(m(β))

Hν
+ C3 log(H)

)
for some positive constant C1, C2 and C3. It is easy to see E(N4, ν) ⊂ E(N4, ν

2).
For I. Conditioning on the event E(ε)c ∩ E1(N3, ν)c, combining with (28), we
have

I ≤ 1

H

∑
h

η(β)
(
η(β) + 2

∣∣μh(β)
∣∣)

≤ η(β)2 + 2η(β)

H

∑
h

∣∣μh(β)
∣∣

≤
((

1

N3ν

)2
+ 2

N3ν

(
1 + 4γ 3

Hϑ

)1/2)
var

(
m(β)

)
≤ 1

32ν
var

(
m(β)

)
if N3 is sufficiently large.

REMARK 6. From above, conditioning on the event E(ε)c ∩ E1(N3, ν)c, we
have

1

H

H∑
h=1

m′(β)2 ≤ 1 + 32ν

32ν
var

(
m(β)

)
.(32)

For II. Conditioning on E2(N4, ν)c, we have II ≤ var(m(y))
N4ν

.
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For III. When the event E(ε)c ∩ E1(N3, ν)c ∩ E2(N4, ν
2)c occurs, according to

equation (32),

III ≤ 2(c − 1)

c

√
1 + 32ν

32ν

1√
N4ν

var
(
m(β)

)
<

1

16ν
var

(
m(β)

)
,

if N4 is sufficiently large.
For IV. When the event E(ε)c ∩ E1(N3, ν)c ∩ E2(N4, ν)c occurs, from (26), we
know

IV = 2

Hc

∑
h

μh(β)2 ≤ 9

4c
var

(
m(β)

)
<

1

16ν
var

(
m(β)

)
.

To summarize, we know that there exist positive constant C1,C2, C3 and C4

such that

A2 ≤ I + II + III + IV ≤ 1

8ν
var

(
m(β)

)
holds on the event E(ε)c ∩ E1(N3, ν)c ∩ E2(N4, ν

2)c, which is with probability at
least

1 − C1 exp
(
−C2

c var(m(β))

Hν2 + C3 log(H)

)
for some positive constants C1, C2 and C3.

A.2.1.3. Proof of (iii). Similar to the proof of Lemma 1(i), we have

P(A3 > b) ≤ C1H exp
( −(c − 1)b

8C2HK2
1 + 4

√
bK2

)
for some positive constants C1, C2 and C3. In particular, if we take b =

1
16ν

var(m(β)), we know that

A3 ≤ 1

16ν
var

(
m(β)

)
with probability at least

1 − C1 exp
(
−C2

c var(m(β))

Hν2 + C3 log(H)

)
for some positive constant C1, C2 and C3.
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A.2.1.4. Proof of (iv). Let

D1 �
1

H

∑
h

mh,·(β)2,

D2 �A3 = 1

H

∑
h

ε̄h,·(β)2.

Consequently,

(33)

P

(
D

1/2
1 D

1/2
2 >

1

16ν
var

(
m(β)

))
≤ P

(
|D1| > 2ν + 1

2ν
var

(
m(β)

)) + P

(
D2 >

var(m(β))

(2ν + 1)16ν

)
.

Note that ∣∣D1 − var
(
m(β)

)∣∣ ≤ A2 + A1.

According to (i) and (ii), the right-hand side of (33) is bounded by

C1 exp
(
−C2

c var(m(β))

Hν2 + C3 log(H)

)
for some positive constants C1,C2 and C3.

APPENDIX B: PROOFS OF THEOREMS IN SECTION 3

B.1. Proof of Theorem 1. We have the decomposition

(34)
x = P col(�)x + P col(�)⊥x � z + w

= E[z|y] + z −E[z|y] + w � m + v + w,

where z = P col(�)x, m = E[z|y], v = z − E[z|y] and w = P col(�⊥)x. Note that
m lies in the central curve, v lies in the space col(�) and w lies in the space
perpendicular to col(�). We introduce

mh,j ,mh,·,m, zh,j ,zh,·,z and wh,j ,wh,·,w(35)

similar to the definition of xh,j , xh,· and x. Consequently, we can define �̂z and
have the following decomposition:

(36) �̂H ≡ 1

H

∑
h

xh,·xτ
h,· = �̂z +ZWτ +WZτ +WWτ ,

where

Z = 1√
H

(z1,·, . . . ,zH,·) and W = 1√
H

(w1,·, . . . ,wH,·).

We need to bound ‖�̂z − �‖2 and ‖WWτ‖2.
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LEMMA 3.

∥∥WWτ
∥∥

2 ≤ OP

(
H 2p

n

)
.(37)

PROOF. For any unit vector β ⊥ col(�), we have var(m(β)) = 0 and
v̂arH(βτx) = β�̂Hβ = βτWWτβ . From Lemma 1, we know

P

(
βτWWτβ > C

H 2p

n

)
≤ C1 exp

(−C2p + log(H)
)

(38)

for some positive constants C1 and C2. Then the ε-net argument [see, e.g.,

Vershynin (2012)] implies that ‖WWτ‖ ≤ OP (
H 2p

n
). �

LEMMA 4.

‖�̂z − �‖ ≤ OP

(
1

Hϑ

)
.(39)

As a direct corollary, we have ‖�̂z‖ ≤ OP (1).

PROOF. From Lemma 1, we have

P

(∣∣βτ (�̂z − �)β
∣∣ >

C

Hϑ
‖�‖2

)
≤ C1 exp

(
−C2

c var(m(β))

H 1+2ϑ
+ C3 log(H)

)
.

Note that we only need to verify it for β ∈ col(�), which is a d-dimensional space.
Then the ε-net argument implies that ‖�̂z − �‖2 ≤ OP ( 1

Hϑ ). �

Theorem 1 follows from Lemma 4 and Lemma 3. In fact,

‖�̂H − �‖ ≤ ‖�̂z − �‖ + ∥∥ZWτ +WZτ‖2 + ‖WWτ
∥∥

2

≤ OP

(
1

Hϑ
+

√
H 2p

n
+ H 2p

n

)
.

B.2. Proof of Theorem 2. Theorem 2 is a direct corollary of Theorem 1 and
Lemma 13. In fact, we have∥∥�̂−1

X �̂H − �−1
X �

∥∥
2 ≤ ∥∥�̂−1

X − �−1
X

∥∥
2‖�̂H‖2 + ∥∥�−1

X

∥∥
2‖�̂H − �‖2,

which → 0 if ρ = limn→∞ p
n

= 0.
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B.3. Proof of Theorem 3. (i) The proof for part (i) is similar to the proof of
Theorem 1 and the standard Gaussian assumption on x simplifies the argument and
improves the results. Since w = P S⊥x is normal and independent of y, there exists
a normal random variable ε ∼ N(0, I) such that w = �1/2ε where � = cov(w).
Using the decomposition (36), we may write

1 − 1 −W = 1√
Hc

�1/2Ep×H ,(40)

where Ep,H is a p × H matrix with i.i.d. standard normal entries. Corollary 4
implies that

∥∥WWτ
∥∥

2 ≤ C

(√
p

n
+

√
H

n

)2
≤ OP

(
p

n

)
.

Lemma 4 implies

‖�̂z‖2 ≤ ‖�‖2 + OP

(
1

Hϑ

)
.

By the Cauchy inequality, we have∥∥ZWτ
∥∥2

2 ≤ ‖�̂z‖2
∥∥WWτ

∥∥
2 ≤ OP

(
p

n

)
.

Thus,

‖�̂H − �‖2 ≤ OP

(
1

Hϑ
+ p

n
+

√
p

n

)
.

In particular, if H,n → ∞ and ρ = lim p
n

∈ (0,∞), we know that ‖�̂H − �‖2 is
dominated by ρ ∨ √

ρ as a function of ρ.
(ii) The proof for part (ii) is similar to the proof of Theorem 2 in Johnstone

and Lu (2009) but is technically more challenging. Let D = ZZτ + WWτ and
B = ZWτ +WZτ , then

�̂H =D + B.

Since we are working on single index model with x is standard normal, z = Pβx =
βz(y) for some scalar function z(y) and w = Pβ⊥x are independent normal ran-
dom variables. Let � = var(w), then we can write

W = 1√
Hc

�1/2E,

where E is a p × H matrix with i.i.d. standard normal entries.
Since z = βz(y), we have Z = 1√

H
β(z1,·, z2,·, . . . , zH,·). To ease notation, let

θ τ = (z1,·, z2,·, . . . , zH,·), then

(41)

D = 1

H
‖θ‖2ββτ + 1

n
�1/2EEτ�1/2,

B = βuτ + uβτ where u = 1

H
√

c
�1/2Eθ .
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Let 0 < α < arctan( 1
16) and

Nα = {
x ∈R

p : ∠(x,β) ≤ α and ‖x‖ = 1
}

(42)

be the set of unit vectors making angle at most α where ∠(x,y) is the angle be-
tween the vectors x and y. In order to proceed, we need the following lemma.

LEMMA 5. Let β̂ and β̂− be the principal eigenvector of S+ � D + B and
S− � D − B , respectively. There exists a positive constant ω(α) such that for any
β̂ ∈ Nα , that is, ∠(β̂,β) ≤ α, we have

∠(β̂, β̂−) ≥ 1

3
ω(α)(43)

with probability converging to one as n → ∞.

PROOF. The proof is presented in Lin, Zhao and Liu (2018). �

Note that S+ and S− have the same distribution (viewed as functions of random
terms E and θ ):

S−(E, θ) = S+(−E, θ).

Let Aα denote the event {∠(β̂,β) ≤ α} ∪ {∠(β̂−,β) ≤ α}, then

E
[
∠(β̂,β)

] ≥ E
[
∠(β̂,β),Ac

α

] +E
[
∠(β̂,β),Aα

]
≥ E

[
∠(β̂,β),Ac

α

] + 1

2
E

[
∠(β̂, β̂−),Aα

]
≥ min

{
α,

ω(α)

6

}
> 0.

SUPPLEMENTARY MATERIAL

Supplement to “On the consistency and sparsity for sliced inverse regres-
sion for high dimensions” (DOI: 10.1214/17-AOS1561SUPP; .pdf). In the sup-
plement, we prove the rest of the results stated in the paper.
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