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PATHWISE COORDINATE OPTIMIZATION FOR SPARSE
LEARNING: ALGORITHM AND THEORY1

BY TUO ZHAO, HAN LIU AND TONG ZHANG

Georgia Institute of Technology, Princeton University and Tencent AI Lab

The pathwise coordinate optimization is one of the most important com-
putational frameworks for high dimensional convex and nonconvex sparse
learning problems. It differs from the classical coordinate optimization algo-
rithms in three salient features: warm start initialization, active set updat-
ing and strong rule for coordinate preselection. Such a complex algorithmic
structure grants superior empirical performance, but also poses significant
challenge to theoretical analysis. To tackle this long lasting problem, we de-
velop a new theory showing that these three features play pivotal roles in
guaranteeing the outstanding statistical and computational performance of
the pathwise coordinate optimization framework. Particularly, we analyze
the existing pathwise coordinate optimization algorithms and provide new
theoretical insights into them. The obtained insights further motivate the de-
velopment of several modifications to improve the pathwise coordinate opti-
mization framework, which guarantees linear convergence to a unique sparse
local optimum with optimal statistical properties in parameter estimation and
support recovery. This is the first result on the computational and statistical
guarantees of the pathwise coordinate optimization framework in high dimen-
sions. Thorough numerical experiments are provided to support our theory.

1. Introduction. Modern data acquisition routinely produces massive amount
of high dimensional data, where the number of variables d greatly exceeds the
sample size n, such as high-throughput genomic data [Neale et al. (2012)] and
image data from functional magnetic resonance imaging [Eloyan et al. (2012),
Liu, Wang and Zhao (2015)]. To handle high dimensionality, we often assume
that only a small subset of variables are relevant in modeling [Tibshirani (1996)].
Such a parsimonious assumption motivates various sparse learning approaches.
Taking sparse linear regression as an example, we consider a linear model y =
Xθ∗ + ε, where y ∈ R

n is the response vector, X ∈ R
n×d is the design matrix,

θ∗ = (θ1, . . . , θd)� ∈ R
d is the unknown sparse regression coefficient vector, and

ε ∼ N(0, σ 2In) is the random noise. Here, In ∈ R
n×n is an identity matrix. Let
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‖ · ‖2 denote the �2 norm, and Rλ(θ) denote a sparsity-inducing regularizer with a
regularization parameter λ > 0. We can obtain a sparse estimator of θ∗ by solving
the following regularized least square optimization problem:

(1.1) min
θ∈Rd

Fλ(θ) where Fλ(θ) = 1

2n
‖y − Xθ‖2

2 +Rλ(θ).

Popular choices of Rλ(θ) are usually coordinate decomposable, Rλ(θ) =∑d
j=1 rλ(θj ), including the �1 [Lasso, Tibshirani (1996)], SCAD [Smooth Clipped

Absolute Deviation, Fan and Li (2001)] and MCP [Minimax Concavity Penalty,
Zhang (2010)] regularizers. For example, the �1 regularizer takes Rλ(θ) =
λ‖θ‖1 = λ

∑
j |θj | with rλ(|θj |) = λ|θj | for j = 1, . . . , d .

The �1 regularizer is convex and computationally tractable, but often induces
large estimation bias, and requires a restrictive irrepresentable condition to attain
variable selection consistency [Zhao and Yu (2006), Meinshausen and Bühlmann
(2006), Zou (2006)]. To address this issue, nonconvex regularizers such as SCAD
and MCP have been proposed to obtain nearly unbiased estimators. Throughout
the rest of the paper, we only consider MCP as an example due to space limit, but
the extension to SCAD is straightforward. Particularly, let E be an event, we define
1{E} as an indicator function with 1{E} = 1 if E holds and 1{E} = 0 otherwise. Given
γ > 1, MCP has

(1.2) rλ
(|θj |) = λ

(
|θj | −

θ2
j

2λγ

)
· 1{|θj |<λγ } + λ2γ

2
· 1{|θj |≥λγ }.

We call γ the concavity parameter of MCP, since it essentially characterizes the
concavity of the MCP regularizer: A larger γ implies that the regularizer is less
concave. We observe that the MCP regularizer can be written as

(1.3) Rλ(θ) = λ‖θ‖1 +Hλ(θ),

where Hλ(θ) = ∑d
j=1 hλ(|θj |) is a smooth, concave and also coordinate decom-

posable function with

(1.4) hλ

(|θj |) = − θ2
j

2γ
· 1{|θj |<λγ } + λ2γ − 2λ|θj |

2
· 1{|θj |≥λγ }.

We present several examples of the MCP regularizer in Figure 1. Fan and Li
(2001), Zhang (2010) show that the nonconvex regularizer effectively reduces the
estimation bias, and achieve better performance than the �1 regularizer in both
parameter estimation and support recovery. Particularly, given a suitable chosen
γ < ∞, they show that there exits a local optimum to (1.1), which attains the
oracle properties under much weaker conditions. However, they cannot provide
specific algorithms that guarantee such a local optimum in polynomial time due to
the nonconvexity.
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FIG. 1. Several examples of the MCP regularizer with λ = 1 and γ = 2,4,8 and ∞ (Lasso). The
MCP regularizer reduces the estimation bias and achieve better performance than the �1 regularizer
in both parameter estimation and support recovery, but imposes great computational challenge.

Typical algorithms for solving (1.1) developed in existing optimization litera-
ture include proximal gradient algorithms [Nesterov (2013)] and coordinate opti-
mization algorithms [Luo and Tseng (1992), Shalev-Shwartz and Tewari (2011),
Richtárik and Takáč (2014), Lu and Xiao (2015)]. The proximal gradient algo-
rithms need to access all entries of the design matrix X in each iteration for com-
puting a full gradient and a sophisticated line search step. Thus, they are often not
scalable and efficient in practice when d is large. To address this issue, many re-
searchers resort to the coordinate optimization algorithms for better computational
efficiency and scalability.

The classical coordinate optimization algorithm is straightforward and much
simpler than the proximal gradient algorithms in each iteration: Given θ(t) at the
t th iteration, we select a coordinate j , and then take an exact coordinate minimiza-
tion step

(1.5) θ
(t+1)
j = argmin

θj

Fλ

(
θj , θ

(t)
\j

)
,

where θ\j is a subvector of θ with the j th entry removed. For the �1, SCAD, and
MCP regularizers, (1.5) admits a closed-form solution. For notational simplicity,
we denote θ

(t+1)
j = Tλ,j (θ

(t)). Then (1.5) can be rewritten as

(1.6) θ
(t+1)
j = Tλ,j

(
θ(t)) = argmin

θj

1

2n

∥∥z(t) − X∗j θj

∥∥2
2 + rλ(θj ),

where X∗j denotes the j th column of X and z(t) = y − Xθ(t) + X∗j θ
(t)
j is the

partial residual. Without loss of generality, we assume that X satisfies the column
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normalization condition ‖X∗j‖2 = √
n for all j = 1, . . . , d . Let θ̃

(t)
j = 1

n
X�∗j z

(t).

Then for MCP, we obtain θ
(t+1)
j by

(1.7) θ
(t+1)
j = θ̃

(t)
j · 1{|θ̃ (t)

j |≥γ λ} + Sλ(θ̃
(t)
j )

1 − 1/γ
· 1{|θ̃ (t)

j |<γλ},

where Sλ(a) = sign(a) ·max{|a|−λ,0}. As shown in the supplementary materials
[Zhao, Liu and Zhang (2018)], (1.7) can be efficiently calculated by a simple par-
tial residual update trick, which only requires the access to one single column of
the design matrix X∗j (Recall the proximal gradient algorithms need to access the

entire design matrix). Once we obtain θ
(t+1)
j , we take θ

(t+1)
\j = θ

(t)
\j . Such a coor-

dinate optimization algorithm, though simple, is not necessarily efficient in theory
and practice. Existing optimization theory only shows its sublinear convergence to
local optima in high dimensions if we select coordinates from 1 to d in a cyclic or-
der throughout all iterations [Razaviyayn, Hong and Luo (2013), Li et al. (2016)].
Moreover, no theoretical guarantee has been established on statistical properties
of the obtained estimators for nonconvex regularizers in parameter estimation and
support recovery. Thus, the coordinate optimization algorithms were almost ne-
glected until recent rediscovery by Friedman et al. (2007), Mazumder, Friedman
and Hastie (2011), Tibshirani et al. (2012).2

REMARK 1.1 (Connection between MCP and Lasso). Let c
∞ = 0 for any con-

stant c. As can be seen from (1.2), for γ = ∞, MCP is reduced to the �1 regu-
larizer, that is, rλ(|θj |) = λ|θj | with hλ(|θj |) = 0. Accordingly, (1.7) is reduced

to θ
(t+1)
j = Sλ(θ̃

(t)
j ), which is identical to the updating formula of the coordinate

optimization algorithm proposed in Fu (1998) for Lasso. Thus, throughout the rest
of the paper, we just simply consider the �1 regularizer as a special case of MCP,
unless we clearly specify the difference between γ < ∞ and γ = ∞ for MCP.

As illustrated in Figure 2, Hastie and Tibshirani (1990), Mazumder, Friedman
and Hastie (2011), Tibshirani et al. (2012) propose a pathwise coordinate opti-
mization framework with three nested loops, which integrates the warm start ini-
tialization, active set updating strategy, and strong rule for coordinate preselection
into the classical coordinate optimization.

Particularly, in the outer loop, the warm start initialization optimizes (1.1) with
a sequence of decreasing regularization parameters in a multistage manner, and
yields solutions from sparse to dense. Within each stage of the warm start initial-
ization (an iteration of the outer loop), the algorithm uses the solution from the
previous stage for initialization, and then adopts the active set updating strategy

2A brief history on applying coordinate optimization to sparse learning problems is presented in
Hastie (2009).
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FIG. 2. The pathwise coordinate optimization framework contains 3 nested loops: (I) Warm start
initialization; (II) Active set updating and strong rule for coordinate preselection; (III) Active coordi-
nate minimization. Many empirical results have corroborated its outstanding performance. Detailed
descriptions of the loops are presented in Section 2.

to exploit the solution sparsity to speed up computation. The active set updating
strategy contains two consequent nested loops: In the middle loop, the algorithm
first divides all coordinates into active ones (active set) and inactive ones (inactive
set) based on some heuristic coordinate gradient thresholding rule [strong rule,
Tibshirani et al. (2012)]. Then within each iteration of the middle loop, an inner
loop is called to conduct coordinate optimization. In general, the algorithm runs an
inner loop on the current active coordinates until convergence, with all inactive co-
ordinates remain zero. The algorithm then exploits some heuristic rule to identify
a new active set, which further decreases the objective value and repeats the inner
loops. The iteration within each stage terminates when the active set in the middle
loop no longer changes. In practice, the warm start initialization, active set updat-
ing strategy, and strong rule for coordinate preselection encourage the algorithm
to iterate over a small active set involving only a small number of coordinates and,
therefore, significantly boost the computational efficiency and scalability. Soft-
ware packages such as GLMNET, SparseNet and HUGE have been developed
and widely applied to many research areas [Hastie and Tibshirani (1990), Zhao
et al. (2012)].

Despite of the popularity of the pathwise coordinate optimization framework,
we are still in lack of adequate theory to justify its superior computational per-
formance due to its complex algorithmic structure. The warm start initialization,
active set updating strategy, and strong rule for coordinate preselection are only
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considered as engineering heuristics in existing literature. On the other hand, many
experimental results have shown that the pathwise coordinate optimization frame-
work is effective at finding local optima with good empirical performance, yet no
theoretical guarantee has been established. Thus, a gap exists between theory and
practice.

To bridge this gap, we propose a new algorithm, named PICASSO (Path-wIse
CalibrAted Sparse Shooting algOrithm), which improves the existing pathwise co-
ordinate optimization framework. Particularly, we propose a new greedy selection
rule for active set updating and a new convex relaxation based warm start ini-
tialization (for sparse learning problems using general loss functions beyond the
least square loss). These modifications though simple, have a profound impact:
The solution sparsity and restricted strong convexity can be ensured throughout
all iterations, which allows us to establish statistical and computational guaran-
tees of PICASSO in high dimensions [Zhang and Huang (2008), Bickel, Ritov and
Tsybakov (2009), Raskutti, Wainwright and Yu (2010)]. Eventually, we prove that
PICASSO attains a linear convergence to a unique sparse local optimum with op-
timal statistical properties in parameter estimation and support recovery (See more
details in Section 3). To the best of our knowledge, this is the first result on the
computational and statistical guarantees for the pathwise coordinate optimization
framework in high dimensions.

Several proximal gradient algorithms are closely related to PICASSO. By ex-
ploiting similar sparsity structures of the optimization problem, Wang, Liu and
Zhang (2014), Zhao and Liu (2016), Loh and Wainwright (2015) show that these
proximal gradient algorithms also attain linear convergence to (approximate) local
optima with guaranteed statistical properties. We will compare these algorithms
with PICASSO in Section 6.

The rest of this paper is organized as follows: In Section 2, we present the
PICASSO algorithm. In Section 3, we present a new theory for analyzing the
pathwise coordinate optimization framework, and establish the computational and
statistical properties of PICASSO for sparse linear regression. In Section 4, we ex-
tend PICASSO to other sparse learning problems with general loss functions, and
provide theoretical guarantees; In Section 5, we present thorough numerical exper-
iments to support our theory. In Section 6, we discuss related work. In Section 7,
we present the proofs of the theorems. Due to space limit, the proofs of all lemmas
are deferred to the supplementary materials [Zhao, Liu and Zhang (2018)].

NOTATION. Given a vector v = (v1, . . . , vd)� ∈ R
d , we define vector norms:

‖v‖1 = ∑
j |vj |, ‖v‖2

2 = ∑
j v2

j , and ‖v‖∞ = maxj |vj |. We denote the number
of nonzero entries in v as ‖v‖0 = ∑

j 1{vj 
=0}. We define the soft-thresholding
function and operator as Sλ(vj ) = sign(vj ) · max{|vj | − λ,0} and Sλ(v) =
(Sλ(v1), . . . ,Sλ(vd))�. We denote v\j = (v1, . . . , vj−1, vj+1, . . . , vd)� ∈ R

d−1

as the subvector of v with the j th entry removed. Let A ⊆ {1, . . . , d} be an in-
dex set. We use A to denote the complementary set to A, that is, A = {j | j ∈
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{1, . . . , d}, j /∈ A}. We use vA to denote a subvector of v by extracting all entries
of v with indices in A. Given a matrix A ∈ R

d×d , we use A∗j = (A1j , . . . ,Adj )
�

to denote the j th column of A, and Ak∗ = (Ak1, . . . ,Akd)� to denote the kth row
of A. Let �max(A) and �min(A) be the largest and smallest eigenvalues of A.
We define the matrix norms ‖A‖2

F = ∑
j ‖A∗j‖2

2 and ‖A‖2 as the largest singular
value of A. We denote A\i\j as the submatrix of A with the ith row and the j th
column removed. We denote Ai\j as the ith row of A with its j th entry removed.
Let A ⊆ {1, . . . , d} be an index set. We use AAA to denote a submatrix of A by
extracting all entries of A with both row and column indices in A.

2. Pathwise calibrated sparse shooting algorithm. We introduce the PI-
CASSO algorithm for sparse linear regression. PICASSO is a pathwise coordinate
optimization algorithm and contains three nested loops (as illustrated in Figure 2).
For simplicity, we first introduce its inner loop, then its middle loop and at last its
outer loop.

2.1. Inner loop: Iterates over coordinates within an active set. We start
with the inner loop of PICASSO, which is the active coordinate minimization
(ActCooMin) algorithm. The iteration index for the inner loop is (t), where
t = 0,1,2, . . . . As illustrated in Algorithm 1, the ActCooMin algorithm solves
(1.1) by iteratively conducting exact coordinate minimization, but it is only al-
lowed to iterate over a subset of all coordinates, which is called “the active set.”
Accordingly, the complementary set to the active set is called “the inactive set,”
because the values of these coordinates do not change throughout all iterations of

Algorithm 1: The active coordinate minimization algorithm (ActCooMin) is
the inner loop of PICASSO. It iterates over only a small subset of all coordi-
nates in a cyclic order. Thus, its computation is scalable and efficient. With-
out loss of generality, we assume |A| = s and A = {j1, . . . , js} ⊆ {1, . . . , d},
where j1 ≤ j2 ≤ · · · ≤ js .

Algorithm: θ̂ ← ActCooMin(λ, θ(0),A, τ )

Initialize: t ← 0
Repeat

w(t+1,0) ← θ(t)

For k ← 1, . . . , s

w
(t+1,k)
jk

← Tλ,jk
(w(t+1,k−1)), w

(t+1,k)
\jk

← w
(t+1,k−1)
\jk

θ (t+1) ← w(t+1,s)

t ← t + 1
Until ‖θ(t+1) − θ(t)‖2 ≤ τλ

Return: θ̂ ← θ(t)
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the inner loop. Since the active set usually contains a very small number of co-
ordinates, the active set coordinate minimization algorithm is very scalable and
efficient.

For notational simplicity, we denote the active and inactive sets by A and A,
respectively. Here, we select A and A based on the sparsity pattern of the initial
solution of the inner loop θ(0),

A = {
j | θ(0)

j 
= 0
}

and A = {
j | θ(0)

j = 0
}
.

The ActCooMin algorithm then minimizes (1.1) with all coordinates of A staying
at zero values,

(2.1) min
θ∈Rd

Fλ(θ) subject to θA = 0.

The ActCooMin algorithm iterates over all active coordinates in a cyclic order at
each iteration. Without loss of generality, we assume

|A| = s and A = {j1, . . . , js} ⊆ {1, . . . , d},
where j1 ≤ j2 ≤ · · · ≤ js . Given a solution θ(t) at the t th iteration, we construct
a sequence of auxiliary solutions {w(t+1,k)}sk=0 to obtain θ(t+1). Particularly, for
k = 0, we take w(t+1,0) = θ(t); For k = 1, . . . , s, we take

w
(t+1,k)
jk

= Tλ,jk

(
w(t+1,k−1)) and w

(t+1,k)
\jk

= w
(t+1,k−1)
\jk

,

where Tλ,jk
(·) is defined in (1.6). We then set θ(t+1) = w(t+1,s) for the next iter-

ation. Given τ as a small convergence parameter (e.g., 10−5), we terminate the
ActCooMin algorithm when

(2.2)
∥∥θ(t+1) − θ(t)

∥∥
2 ≤ τλ.

We then take the output solution as θ̂ = θ(t+1).
The ActCooMin algorithm only converges to a local optimum of (2.1), which is

not necessarily a local optimum of (1.1). Thus, PICASSO needs to combine this
inner loop with some active set updating scheme, which allows the active set to
change. This leads to the middle loop of PICASSO.

2.2. Middle loop: Iteratively updates active sets. We then introduce the middle
loop of PICASSO, which is the iterative active set updating (IteActUpd) algorithm.
The iteration index of the middle loop is [m], where m = 0,1,2, . . . . As illustrated
in Algorithm 2, the IteActUpd algorithm simultaneously decreases the objective
value and iteratively changes the active set to ensure convergence to a local opti-
mum to (1.1). For notational simplicity, we denote the least square loss function
and its gradient as L(θ) = 1

2n
‖y − Xθ‖2

2 and ∇L(θ) = 1
n
X�(Xθ − y).
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Algorithm 2: The iterative active set updating (IteActUpd) algorithm is the
middle loop of PICASSO. It simultaneously decreases the objective value and
iteratively changes the active set. To encourage the sparsity of the active set,
the greedy selection rule moves only one inactive coordinate to the active set
in each iteration.

Algorithm: θ̂ ← IteActUpd(λ, θ [0], δ, τ, ϕ)

Initialize: m ← 0, A0 ← {j | θ
[0]
j = 0, |∇jL(θ [0])| ≥ (1 −ϕ)λ} ∪ {j | θ

[0]
j 
= 0}

Repeat
θ [m+0.5] ← ActCooMin(λ, θ [m],Am, τ)

Am+0.5 ← {j | θ [m+0.5]
j 
= 0}, Am+0.5 ← {j | θ [m+0.5]

j = 0}
km ← argmaxk∈Am+0.5

|∇kL(θ [m+0.5])|
θ

[m+1]
km

← Tλ,km(θ [m+0.5]), θ
[m+1]
\km

← θ
[m+0.5]
\km

Am+1 ← Am+0.5 ∪ {km}, Am+1 ← Am+0.5 \ {km}
m ← m + 1

Until |∇kmL(θ [m+0.5])| ≤ (1 + δ)λ

Return: θ̂ ← θ [m]

(I) Active Set Initialization by Strong Rule: We first introduce how PICASSO ini-
tializes the active set for each middle loop. Suppose an initial solution θ [0] is sup-
plied to the middle loop of PICASSO. Friedman et al. (2007) suggest a straight-
forward “simple rule” to initialize the active set based on the sparsity pattern of
θ [0],

(2.3) A0 = {
j | θ [0]

j 
= 0
}

and A0 = {
j | θ [0]

j = 0
}
.

Tibshirani et al. (2012) further show that (2.3) is sometimes too conservative,
and suggest a more aggressive active set initialization procedure using a “strong
rule,” which often leads to better computational performance in practice. Specif-
ically, given an active set initialization parameter ϕ ∈ (0,1), the strong rule3 for
PICASSO initializes A0 and A0 as

A0 = {
j | θ [0]

j = 0,
∣∣∇jL

(
θ [0])∣∣ ≥ (1 − ϕ)λ

} ∪ {
j | θ [0]

j 
= 0
}
,(2.4)

A0 = {
j | θ [0]

j = 0,
∣∣∇jL

(
θ [0])∣∣ < (1 − ϕ)λ

}
,(2.5)

where ∇jL(θ [0]) denotes the j th entry of ∇L(θ [0]). As can be seen from (2.4), the
strong rule yields an active set, which is no smaller than the simple rule. Note that
we need the initialization parameter ϕ to be a reasonably small value (e.g., 0.1).

3Our proposed strong rule for PICASSO is sightly different from the sequential strong rule pro-
posed in Tibshirani et al. (2012). See more details in Remark 2.2.
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Otherwise, the strong rule may select too many active coordinates and compromise
the solution sparsity.

(II) Active Set Updating Strategy: We then introduce how PICASSO updates the
active set at each iteration of the middle loop. Suppose at the mth iteration (m ≥ 1),
we are supplied with a solution θ [m] with a pair of active and inactive sets defined
as

Am = {
j | θ [m]

j 
= 0
}

and Am = {
j | θ [m]

j = 0
}
.

Each iteration of the IteActUpd algorithm contains two stages. The first stage con-
ducts the active coordinate minimization algorithm over the active set Am until
convergence, and returns a solution θ [m+0.5]. Note that the active coordinate min-
imization algorithm may yield zero values for some active coordinates. Accord-
ingly, we remove those coordinates from the active set, and obtain a new pair of
active and inactive sets as

Am+0.5 = {
j | θ [m+0.5]

j 
= 0
}

and Am+0.5 = {
j | θ [m+0.5]

j = 0
}
.

The second stage checks which inactive coordinates of Am+0.5 should be added
into the active set. Existing pathwise coordinate optimization algorithms usu-
ally add inactive coordinates into the active set based on a cyclic selection rule
[Friedman et al. (2007), Mazumder, Friedman and Hastie (2011)]. Particularly,
they conduct the exact coordinate minimization over all coordinates of Am+0.5 in
a cyclic order. Accordingly, an inactive coordinate is added into the active set if
the corresponding exact coordinate minimization step yields a nonzero value. Such
a cyclic selection rule, however, has no control over the solution sparsity. It may
add too many inactive coordinates into the active set, and compromise the solution
sparsity.

To address this issue, we propose a new greedy selection rule for updating the
active set. Particularly, let ∇jL(θ [m+0.5]) denote the j th entry of ∇L(θ [m+0.5]).
We select a coordinate by

km = argmax
k∈Am+0.5

∣∣∇kL
(
θ [m+0.5])∣∣.

We then terminate the IteActUpd algorithm if

(2.6)
∣∣∇kmL

(
θ [m+0.5])∣∣ ≤ (1 + δ)λ,

where δ is a small convergence parameter (e.g., 10−5). Otherwise, we take

θ
[m+1]
km

= Tλ,km

(
θ [m+0.5]) and θ

[m+1]
\km

= θ
[m+0.5]
\km

,

and set the new active and inactive sets as

Am+1 = Am+0.5 ∪ {km} and Am+1 = Am+0.5 \ {km}.
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REMARK 2.1. Beside the greedy selection rule, we also propose a randomized
selection rule and a truncated cyclic selection rule for updating the active set. Due
to space limit, we defer the details to the supplementary materials [Zhao, Liu and
Zhang (2018)].

The IteActUpd algorithm, though equipped with the proposed greedy selec-
tion rule and strong rule for coordinate preselection, ensures the solution sparsity
throughout iterations only for a sufficiently large regularization parameter.4 Oth-
erwise, given an insufficiently large regularization parameter, the IteActUpd algo-
rithm may still overselect the active coordinates. To address this issue, we combine
the IteActUpd algorithm with a sequence of decreasing regularization parameters,
which leads to the outer loop of PICASSO.

2.3. Outer loop: Iterates over regularization parameters. The outer loop of
PICASSO is the warm start initialization (WarmStartInt). The iteration index of the
outer loop is {K}, where K = 1, . . . ,N . As illustrated in Algorithm 3, the warm
start initialization solves (1.1) indexed by a geometrically decreasing sequence of
regularization parameters {λK = λ0η

K}NK=0 with a common ratio η ∈ (0,1), and
outputs a sequence of N + 1 solutions {θ̂ {K}}NK=0, which is also called the solution
path.

Algorithm 3: The warm start initialization is the outer loop of PICASSO.
It solves (1.1) with respect to a decreasing sequence of regularization pa-
rameters {λK}NK=0. The leading regularization parameter λ0 is chosen as
λ0 = ‖∇L(0)‖∞, which yields an all zero output solution θ̂ {0} = 0. For
K = 1, . . . ,N , we solve (1.1) for λK using θ̂ {K−1} as an initial solution.
{τK}NK=1 and {δK}NK=1 are two sequences of small convergence parameters,
where τK and δK correspond to the K th outer loop iteration with the regular-
ization parameter λK .

Algorithm: {θ̂ {K}}NK=0 ← WarmStartInt({λK}NK=0)

Parameter: η, ϕ, {τK}NK=1, {δK}NK=1
Initialize: λ0 ← ‖∇L(0)‖∞, θ̂ {0} ← 0
For K ← 1,2, . . . ,N

λK ← ηλK−1
θ̂ {K} ← IteActUpd(λK, θ̂ {K−1}, δK, τK,ϕ)

Return: {θ̂ {K}}NK=0

4As will be shown in Section 3, the choice of λ is determined by the initial solution of the middle
loop.
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For sparse linear regression,5 the warm start initialization chooses the leading
regularization parameter λ0 as λ0 = ‖∇L(0)‖∞ = ‖ 1

n
X�y‖∞. Recall Hλ(θ) is

defined in (1.3). By verifying the KKT condition, we have

min
ξ∈∂‖0‖1

∥∥∇L(0) + ∇Hλ0(0) + λ0ξ
∥∥∞ = min

ξ∈∂‖0‖1

∥∥∇L(0) + λ0ξ
∥∥∞ = 0,

where the first equality comes from ∇Hλ0(0) = 0 for the MCP regularizer (See
more details in the supplementary materials [Zhao, Liu and Zhang (2018)]). This
indicates that 0 is a local optimum of (1.1). Accordingly, we set θ̂ {0} = 0. Then for
K = 1,2, . . . ,N , we solve (1.1) for λK using θ̂ {K−1} as initialization.

The warm start initialization starts with large regularization parameters to sup-
press the overselection of the irrelevant coordinates {j | θ∗

j = 0} (in conjunction
with the IteActUpd algorithm). Thus, the solution sparsity ensures the restricted
convexity throughout all iterations, making the algorithm behave as if minimizing
a strongly convex function. Though large regularization parameters may also yield
zero values for many relevant coordinates {j | θ∗

j 
= 0} and result in larger esti-
mation errors, this can be compensated by the decreasing regularization sequence.
Eventually, PICASSO gradually recovers the relevant coordinates, reduces the es-
timation error of each output solution and attains a sparse output solution with
optimal statistical properties in parameter estimation and support recovery.

REMARK 2.2 (Connection to the sequential strong rule). Tibshirani et al.
(2012) propose a sequential strong rule for coordinate preselection, which initial-
izes the active set for λK as

A0 = {
j | θ [0]

j = 0,
∣∣∇jL

(
θ [0])∣∣ ≥ 2λK − λK−1

} ∪ {
j | θ [0]

j 
= 0
}
,(2.7)

A0 = {
j | θ [0]

j = 0,
∣∣∇jL

(
θ [0])∣∣ < 2λK − λK−1

}
.(2.8)

Recall λK = ηλK−1. Then we have 2λK − λK−1 = (1 − (1 − η)/η)λK . This in-
dicates that the sequential strong rule is a special case of our strong rule for PI-
CASSO with ϕ = (1 − η)/η.

3. Computational and statistical theory. We develop a new theory to ana-
lyze the pathwise coordinate optimization framework, and establish the computa-
tional and statistical properties of PICASSO for sparse linear regression. Recall
our linear model assumption is y = Xθ∗ + ε, where ε ∼ N(0, σ 2In).6 Moreover,
in (1.3), we rewrite the nonconvex regularizer as Rλ(θ) = λ‖θ‖1 +Hλ(θ), where

5When dealing with general loss functions, we need a new convex relaxation based warm start
initialization approach, which will be introduced in Section 4.2.

6For simplicity, we only consider the Gaussian noise setting, but it is straightforward to extend our
analysis to the sub-Gaussian noise setting.
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Hλ(θ) = ∑d
j=1 hλ(|θj |) is a smooth, concave and coordinate decomposable func-

tion. For notational simplicity, we define L̃λ(θ) = L(θ)+Hλ(θ). Accordingly, we
rewrite Fλ(θ) as

Fλ(θ) = L(θ) +Rλ(θ) = L̃λ(θ) + λ‖θ‖1.

3.1. Computational theory. We first introduce three assumptions. The first as-
sumption requires λN to be sufficiently large.

ASSUMPTION 3.1. We require that the regularization sequence satisfies

(3.1) λN = 8σ

√
logd

n
≥ 4

∥∥∇L
(
θ∗)∥∥∞ = 4

n

∥∥X�ε
∥∥∞.

Moreover, we require η ∈ [0.96,1).

Assumption 3.1 ensures that all regularization parameters are sufficiently large
to eliminate the irrelevant coordinates for PICASSO.

REMARK 3.2. Note that Assumption 3.1 is a deterministic bound for our cho-
sen λN . As will be shown in Lemma 3.13, since ‖X�ε‖∞ is random, we need to
verify that (3.1) holds with high probability when applying PICASSO to sparse
linear regression.

Before we present the second assumption, we define the largest and smallest s

sparse eigenvalues of the Hessian matrix ∇2L(θ) = 1
n
X�X as follows.

DEFINITION 3.3. Given an integer s ≥ 1, we define the largest and smallest s

sparse eigenvalues as

ρ+(s) = sup
‖v‖0≤s

v�∇2L(θ)v

‖v‖2
2

and ρ−(s) = inf‖v‖0≤s

v�∇2L(θ)v

‖v‖2
2

.

The next lemma connects the largest and smallest s sparse eigenvalues to the
restricted strong convexity and smoothness.

LEMMA 3.4. Suppose there exists an integer s such that 0 < ρ−(s) ≤ ρ+(s) <

∞. For any θ, θ ′ ∈ R
d satisfying ‖θ − θ ′‖0 ≤ s, L(θ) is restricted strongly convex

and smooth,

(3.2)
ρ−(s)

2

∥∥θ ′ − θ
∥∥2

2 ≤ L
(
θ ′) −L(θ) − (

θ ′ − θ
)�∇L(θ) ≤ ρ+(s)

2

∥∥θ ′ − θ
∥∥2

2.
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Moreover, given α = 1/γ ≤ ρ−(s) and ρ̃−(s) = ρ−(s) − α > 0, where γ is the
concavity parameter of MCP defined in (1.2), for any θ, θ ′ ∈ R

d satisfying ‖θ −
θ ′‖0 ≤ s, L̃λ(θ) is restricted strongly convex and smooth,

ρ̃−(s)

2

∥∥θ ′ − θ
∥∥2

2 ≤ L̃λ

(
θ ′) − L̃λ(θ) − (

θ ′ − θ
)�∇L̃λ(θ) ≤ ρ+(s)

2

∥∥θ ′ − θ
∥∥2

2.

Meanwhile, for any ξ ∈ ∂‖θ‖1, Fλ(θ) is restricted strongly convex,

ρ̃−(s)

2

∥∥θ ′ − θ
∥∥2

2 ≤ Fλ

(
θ ′) −Fλ(θ) − (

θ ′ − θ
)�(∇L̃λ(θ) + λξ

)
.

Lemma 3.4 indicates the importance of the solution sparsity: When θ is suf-
ficiently sparse, the restricted strong convexity of L(θ) dominates the concavity
of Hλ(θ). Thus, if an algorithm ensures the solution sparsity throughout all it-
erations, it will behave like minimizing a strongly convex optimization problem.
Accordingly, a linear convergence can be established. Note that Lemma 3.4 is also
applicable to Lasso, since Lasso satisfies α = 1/γ = 1/∞ = 0. Now we introduce
the second assumption.

ASSUMPTION 3.5. Given ‖θ∗‖0 ≤ s∗, there exists an integer s̃ such that

s̃ ≥ (
484κ2 + 100κ

)
s∗, ρ+

(
s∗ + 2̃s

)
< ∞, and ρ̃−

(
s∗ + 2̃s

)
> 0,

where κ is defined as κ = ρ+(s∗ + 2̃s)/ρ̃−(s∗ + 2̃s).

Assumption 3.5 guarantees that the optimization problem satisfies the restricted
strong convexity as long as the number of active irrelevant coordinates never ex-
ceeds s̃ throughout all iterations.

REMARK 3.6. Assumptions 3.1 and 3.5 are closely related to high dimen-
sional statistical theories for sparse linear regression in existing literature. See
more details in Zhang and Huang (2008), Bickel, Ritov and Tsybakov (2009),
Zhang (2010), Negahban et al. (2012).

Now we introduce the last assumption on the computational parameters.

ASSUMPTION 3.7. Recall the convergence parameters δK ’s and τK ’s are de-
fined in Algorithm 3, and the active set initialization parameter ϕ is defined in
(2.4). We require for all K = 1, . . . ,N ,

δK ≤ 1

8
, τK ≤ δK

ρ+(s∗ + 2̃s)

√
ρ̃−(1)

ρ+(1)(s∗ + 2̃s)
and ϕ ≤ 1

8
.

Assumption 3.7 guarantees that all middle and inner loops of PICASSO attain
adequate precisions such that their output solutions satisfy the desired computa-
tional and statistical properties.
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REMARK 3.8. All constants in our technical assumptions and proof are for
providing insights of PICASSO. We do not make efforts on optimizing any of
these constants. Taking Assumption 3.1 as an example, we choose η ∈ [0.96,1)

just for easing our analysis. We can also choose η to be any other constant, for
example, 0.95, as long as it is sufficiently close to 1. Such a change in η only
affects the required sample complexity, iteration complexity and statistical rates of
convergence up to small constant factors.

Now, we start with the convergence analysis for the inner loop of PICASSO.
The following theorem presents the convergence rate in terms of the objective
value. For notational simplicity, we omit the outer loop index K , and denote λK

and τK by λ and τ , respectively.

THEOREM 3.9 (Inner loop). Suppose Assumption 3.5 holds. If the initial ac-
tive set satisfies |A| = s ≤ s∗ + 2̃s, then (2.1) is essentially strongly convex. For
t = 1,2, . . . , we have

Fλ

(
θ(t)) −Fλ(θ) ≤

(
sρ2+(s)

sρ2+(s) + ρ̃−(s)ρ̃−(1)

)t [
Fλ

(
θ(0)) −Fλ(θ)

]
,

where θ is a unique global optimum to (2.1). Moreover, we need at most(
1 + sρ2+(s)

ρ̃−(s)ρ̃−(1)

)
· log

(
2[Fλ(θ

(0)) −Fλ(θ)]
ρ̃−(1)τ 2λ2

)
iterations to terminate the ActCooMin algorithm, where τ is defined in (2.2).

Theorem 3.9 guarantees that given a sufficiently sparse active set, Algorithm 1
essentially minimizes a strongly convex optimization problem, though (1.1) is
globally nonconvex. Thus, it attains a linear convergence to a unique global op-
timum.

Then we proceed with the convergence analysis for the middle loop of PI-
CASSO. The following theorem presents the convergence rate in terms of the
objective value. For notational simplicity, we omit the outer loop index K , and
denote λK and δK by λ and δ, respectively. Moreover, we define

(3.3) �λ = 4λ2s∗

ρ̃−(s∗ + s̃)
, S = {

j | θ∗
j 
= 0

}
and S = {

j | θ∗
j = 0

}
.

THEOREM 3.10 (Middle loop). Suppose Assumptions 3.1, 3.5 and 3.7 hold.
For any λ ≥ λN , if the initial solution θ [0] satisfies ‖θ [0]

S ‖0 ≤ s̃ and Fλ(θ
[0]) ≤

Fλ(θ
∗) + �λ, then regardless the active set initialized by either the strong rule or

simple rule, we have |A0 ∩ S| ≤ s̃. Meanwhile, for m = 0,1,2, . . . , we also have
‖θ [m]

S ‖0 ≤ s̃ + 1, ‖θ [m+0.5]
S ‖0 ≤ s̃, and

Fλ

(
θ [m]) −Fλ

(
θ

λ) ≤
(

1 − ρ̃−(s∗ + 2̃s)

(s∗ + 2̃s)ρ+(1)

)m[
Fλ

(
θ(0)) −Fλ

(
θ

λ)]
,



PATHWISE COORDINATE OPTIMIZATION: ALGORITHM AND THEORY 195

where θ
λ

is a unique sparse local optimum of (1.1) satisfying

(3.4) Kλ

(
θ

λ) = min
ξ∈∂‖θλ‖1

∥∥∇L̃λ

(
θ

λ) + λξ
∥∥∞ = 0 and

∥∥θλ
S
∥∥

0 ≤ s̃.

Moreover, recall δ is defined in (2.6), we need at most

(s∗ + 2̃s)ρ+(1)

ρ̃−(s∗ + 2̃s)
· log

(
3ρ+(1)[Fλ(θ

[0]) −Fλ(θ
λ
)]

δ2λ2

)
active set updating iterations to terminate the IteActUpd algorithm. Meanwhile,
we have the output solution θ̂ λ satisfying Kλ(θ̂

λ) ≤ δλ.

Theorem 3.10 guarantees that when supplied a proper initial solution, the mid-
dle loop of PICASSO attains a linear convergence to a unique sparse local opti-
mum. Moreover, Theorem 3.10 has three important implications:

(I) The greedy rule is conservative and only select one coordinate each time. This
mechanism prevents the overselection of the irrelevant coordinates and encourages
the solution sparsity. In contrast, the cyclic selection rule in Mazumder, Friedman
and Hastie (2011) may overselect the irrelevant coordinates and compromise the
restricted convexity. An illustration is provided in Figure 3.

(II) Besides decreasing the objective value, the active coordinate minimization
algorithm can remove some irrelevant coordinates from the active set. Thus, in con-
junction with the greedy selection rule, the solution sparsity is ensured throughout
all iterations. An illustration is provided in Figure 4. To the best of our knowledge,

FIG. 3. An illustration of the failure of the cyclic selection rule. The green and blue circles denote
the active and inactive coordinates, respectively. Suppose we have 9 coordinates and the maximum
number of active coordinates we can tolerate is 4. The greedy selection rule is conservative, and only
add one coordinate to the active set each time. Thus, it eventually increases the number of active co-
ordinates from 2 to 3, and prevents from overselecting coordinates. In contrast, the cyclic selection
rule used in Friedman et al. (2007), Mazumder, Friedman and Hastie (2011) leads to overselect-
ing coordinates, which eventually increases the number of active coordinates to 6. Thus, it fails to
preserve the restricted strong convexity.
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FIG. 4. An illustration of the active set updating algorithm. The green and blue circles denote
the active and inactive coordinates respectively. Suppose we have 9 coordinates, and the maximum
number of active coordinates we can tolerate is 4. The active set updating iteration first removes
some active coordinates from the active set, then add some inactive coordinates into the active set.
Thus, the number of active coordinates is ensured to never exceed 4 throughout all iterations. To
the best of our knowledge, such a “forward-backward” phenomenon has not been discovered and
rigorously characterized in existing literature.

such a “forward-backward” phenomenon has not been discovered and rigorously
characterized in existing literature.

(III) The strong rule for coordinate preselection in PICASSO put some coordi-
nates with zero values to the active set, only when their corresponding coordinate
gradients have sufficiently large magnitudes. Thus, it can also prevent the overse-
lection of the irrelevant coordinates and ensure the solution sparsity.

Next, we proceed with the convergence analysis for the outer loop of PICASSO.
As has been shown in Theorem 3.10, each middle loop of PICASSO requires a
proper initialization. Since θ∗ and S are unknown in practice, it is difficult to
manually pick such an initial solution. The next theorem shows that the warm
start initialization guides PICASSO to attain such a proper initialization for every
middle loop without any prior knowledge.

LEMMA 3.11 (Outer loop). Recall �λK
and KλK

(θ) are defined in (3.3)
and (3.4), respectively. Suppose Assumptions 3.1, 3.5 and 3.7 hold. If θ satisfies
‖θS‖0 ≤ s̃ and KλK−1(θ) ≤ δK−1λK−1, then we have

‖�̂‖1 ≤ 11‖�̂S‖1 ≤ 11
√

s∗‖�̂‖2,

KλK
(θ) ≤ λK

4
,

FλK
(θ) ≤ FλK

(
θ∗) + �λK

.
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FIG. 5. An illustration of the warm start initialization (the outer loop). From an intuitive geomet-
ric perspective, the warm start initialization yields a sequence of nested fast convergence regions.
We start with large regularization parameters. This suppresses the overselection of the irrelevant
coordinates {j | θ∗

j = 0} and yields highly sparse solutions. With the decrease of the regularization
parameter, PICASSO gradually recovers the relevant coordinates, and eventually obtains a sparse
estimator θ̂ {N} with optimal statistical properties in both parameter estimation and support recovery.

The warm start initialization starts with an all zero local optimum and a suffi-
ciently large λ0, which naturally satisfy all requirements:

‖0S‖0 ≤ s̃ and Kλ0(0) = 0.

Thus, θ [0] = 0 is a proper initial solution for λ1. Then combining Theorems 3.10
and 3.11, we show by induction that the output solution of each middle loop is al-
ways a proper initial solution for the next middle loop. The warm start initialization
is illustrated in Figure 5.

Combining Theorems 3.9 and 3.10 with Lemma 3.11, we establish the global
convergence in terms of the objective value for PICASSO.

THEOREM 3.12 (Main theorem). Suppose Assumptions 3.1, 3.5 and 3.7 hold.
Recall α = 1/γ and γ is the concavity parameter defined in (1.2), δK ’s and τK ’s
are the convergence parameters for the middle and inner loops within the K th
iteration of the outer loop, and κ and s̃ are defined in Assumption 3.5. For K =
1, . . . ,N , we have:

(I) At the K th iteration of the outer loop, the number of exact coordinate min-
imization iterations within each inner loop is at most(

s∗ + 2̃s + (s∗ + 2̃s)2ρ2+(s∗ + 2̃s)

ρ̃−(s∗ + 2̃s)ρ̃−(1)

)
· log

(
50s∗

ρ̃−(1)τ 2
Kρ̃−(s∗ + s̃)

)
.
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(II) At the K th iteration of the outer loop, the number of active set updating
iterations is at most

(s∗ + 2̃s)ρ+(1)

ρ̃−(s∗ + 2̃s)
· log

(
75s∗ρ+(1)

δ2
Kρ̃−(s∗ + s̃)

)
.

(III) At the K th iteration of the outer loop, we have

FλN

(
θ̂ {K}) −FλN

(
θ

λN
) ≤ [1{K<N} + 1{K=N} · δN ] 50λ2

Ks∗

ρ̃−(s∗ + s̃)
.

Theorem 3.12 guarantees that PICASSO attains a linear convergence to a unique
sparse local optimum, which is a significant improvement over sublinear conver-
gence of the randomized coordinate minimization algorithms established in exist-
ing literature. To the best of our knowledge, this is the first result establishing the
convergence properties of the pathwise coordinate optimization framework in high
dimensions.

3.2. Statistical theory. Finally, we analyze the statistical properties of the esti-
mator obtained by PICASSO for sparse linear regression. We assume ‖θ∗‖0 ≤ s∗,
and for any v 
= 0, the design matrix X satisfies

(3.5) ψ�‖v‖2
2 − γ� · logd

n
‖v‖2

1 ≤ ‖Xv‖2
2

n
≤ ψu‖v‖2

2 + γu · logd

n
‖v‖2

1,

where γ�, γu, ψ� and ψu are positive constants, and do not scale with (s∗, n, d).
Existing literature has shown that (3.5) is satisfied by many common examples of
sub-Gaussian random design with high probability [Raskutti, Wainwright and Yu
(2010), Negahban et al. (2012)].

We then verify Assumptions 3.1 and 3.5 by the following lemma.

LEMMA 3.13. Suppose ε ∼ N(0, σ 2In) and (3.5) holds. Given λN = 8σ ×√
logd/n, we have

P

(
λN ≥ 4

∥∥∇L
(
θ∗)∥∥∞ = 4

n

∥∥X�ε
∥∥∞

)
≥ 1 − 2d−2.

Moreover, given ‖ 1
n
X�X‖1 =O(d), ‖θ∗‖∞ =O(d), γ ≥ 4/ψ�, and large enough

n, there exists a generic constant C1 such that we have N =OP (logd),

s̃ = C1s
∗ ≥ [

484κ2 + 100κ
] · s∗,

ρ̃−
(
s∗ + 2̃s

) ≥ ψ�

4
and

ρ+
(
s∗ + 2̃s

) ≤ 5ψu

4
.
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Lemma 3.13 guarantees that the regularization sequence satisfies Assump-
tion 3.1 with high probability, and Assumption 3.5 holds when the design ma-
trix satisfies (3.5). Thus, by Theorem 3.12, we know that with high probability,
PICASSO attains a linear convergence to a unique sparse local optimum for sparse
linear regression. Moreover, Lemma 3.13 also implies that the number of regular-
ization parameters only needs to be the order of logd . Thus, solving the optimiza-
tion problem with a sequence of regularization parameters does not require much
additional efforts.

We then characterize the statistical rate of convergence in parameter estimation
for the estimator obtained by PICASSO.

THEOREM 3.14 (Parameter estimation). Suppose ε ∼ N(0, σ 2In) and (3.5)
holds. Given γ ≥ 4/ψ� and λN = 8σ

√
logd/n, for small enough δN and large

enough n such that n ≥ C2s
∗ logd for a generic constant C2, we have

∥∥θ̂ {N} − θ∗∥∥
2 = OP

(
σ

√
s∗

1

n
+ σ

√
s∗

2 logd

n

)
,

where s∗
1 = |{j | |θ∗

j | ≥ γ λN }| and s∗
2 = |{j | 0 < |θ∗

j | < γλN }|.

By dividing all nonzero θ∗
j ’s into strong signals and weak signals by their mag-

nitudes, Theorem 3.14 shows that the MCP regularizer reduces the estimation error
for strong signal with magnitudes larger than γ λN and, therefore, attains a faster
statistical rate of convergence than Lasso.

REMARK 3.15 (Parameter estimation for Lasso). Theorem 3.14 is also appli-
cable to Lasso with γ = ∞. As a result, all nonzero θ∗

j ’s are considered as weak
signals |θ∗

j | < ∞ for all j = 1, . . . , d , that is, s∗
1 = 0 and s∗

2 = s∗. Theorem 3.14
only guarantees a slower statistical rate of convergence for Lasso,

∥∥θ̂ {N} − θ∗∥∥
2 = OP

(
σ

√
s∗

2 logd

n

)
=OP

(
σ

√
s∗ logd

n

)
for γ = ∞.

We then proceed to show that the statistical rate of convergence in Theorem 3.14
is minimax optimal in parameter estimation for a suitably chosen γ < ∞. Particu-
larly, we consider a class of sparse vectors:

�
(
s∗

1 , s∗
2 , d

) =
{
θ∗

∣∣∣∣ θ∗ ∈R
d,

d∑
j=1

1{|θ∗
j |≥θmin} ≤ s∗

1 ,

d∑
j=1

1{0<|θ∗
j |<θmin} ≤ s∗

2

}
,

(3.6)
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where θmin = 8γ σ√
C2(s

∗
1 +s∗

2 )
is the threshold between strong and week signals for

some generic constant C2 and γ < ∞. Given s∗ = s∗
1 + s∗

2 and n ≥ C2s
∗ logd , we

have

θmin = 8γ σ√
C2(s

∗
1 + s∗

2 )
≥ 8γ σ

√
logd

n
= γ λN,

which matches the threshold for dividing signals in Theorem 3.14. The next theo-
rem establishes a lower bound for parameter estimation.

THEOREM 3.16 (Lower bound). Let θ̂ denote any estimator of θ∗ based on
y ∼ N(Xθ∗, σ 2In), where θ∗ ∈ �(s∗

1 , s∗
2 , d). Then there exists a generic constant

C4 such that

inf
θ̂

sup
θ∈�(s∗

1 ,s∗
2 ,d)

E
∥∥θ̂ − θ∗∥∥

2 ≥ C4

(
σ

√
s∗

1

n
+ σ

√
s∗

2 logd

n

)
.

Theorem 3.16 guarantees that the estimator obtained by PICASSO attains the
minimax optimal rates of convergence over �(s∗

1 , s∗
2 , d). The convex �1 regular-

izer, however, only attains a suboptimal statistical rate of convergence due to the
universal estimation bias regardless the signal strength. See more details in Zhang
and Huang (2008), Bickel, Ritov and Tsybakov (2009).

To analyze the support recovery performance for the estimator obtained by PI-
CASSO, we define the oracle least square estimator θ̂o as

(3.7) θ̂o
S = argmin

θS

1

2n
‖y − X∗SθS‖2

2 and θ̂o
S = 0,

where S and S are defined in (3.3). Recall θ
λN is the unique sparse local minimizer

to (1.1) with λN . The following theorem shows that θ
λN is identical to the oracle

least square estimator θ̂o with high probability.

THEOREM 3.17 (Support recovery). Suppose (3.5) holds,

(3.8) ε ∼ N
(
0, σ 2In

)
, and min

j∈S
∣∣θ∗

j

∣∣ ≥ C5γ σ

√
logd

n

for a generic constant C5. Given 4/ψ� ≤ γ < ∞ and λN = 8σ
√

logd/n, for large
enough n, there exits a generic constant C3 such that P(θ

λN = θ̂o) ≥ 1 − 4d−2.
Meanwhile, with probability at least 1 − 4d−2, we also have

∥∥θ̂ {N} − θ∗∥∥
2 ≤ C3σ

√
s∗
n

and supp
(
θ̂ {N}) = supp

(
θ∗)

.
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FIG. 6. An illustration of the statistical rates of convergence in parameter estimation and sup-
port recovery for the Lasso, MCP and oracle estimators. Recall s∗

1 and s∗
2 are defined in (3.6), and

s∗ = s∗
1 + s∗

2 . When all the signals are weak (s∗
1 = 0, s∗ = s∗

2 ), both the Lasso and MCP estima-
tors attain the same estimation error bound OP (σ

√
s∗ logd/n). When some signals are strong, the

MCP-regularized estimator attains a better estimation error bound OP (σ
√

s∗
1/n + σ

√
s∗
2 logd/n)

than Lasso, because it reduces the estimation bias for the strong signals. Eventually, when all the
signals are strong (s∗

2 = 0, s∗ = s∗
2 ), the MCP estimator attains the same estimation error bound as

the oracle estimator OP (σ
√

s∗/n), and also correctly identify the support true support with high
probability.

Theorem 3.17 guarantees that PICASSO converges to θ̂o with high probabil-
ity, which is often referred to the oracle property in existing literature [Fan and Li
(2001)]. Besides, we also guarantee that the estimator θ̂ {N} obtained by PICASSO
is nearly unbiased and correctly identifies the true support with high probability.
Although the �1 regularizer can be viewed as a special case of MCP, such an ora-
cle property does not hold Lasso. This is because we require γ < ∞ such that the
estimation bias can be eliminated for strong signals. Thus, Lasso cannot guarantee
the correct support recovery [unless the design matrix satisfies a restrictive irrep-
resentable condition; see more details in Zhao and Yu (2006), Meinshausen and
Bühlmann (2006), Zou (2006)]. We present an illustration of Theorems 3.14 and
3.17 in Figure 6.

4. Extension to general loss functions. PICASSO can be further extended to
other regularized M-estimation problems. Taking sparse logistic regression as an
example,7 we denote the binary response vector by y = (y1, . . . , yn)

� ∈ R
n, and

the design matrix by X ∈ R
n×d . We consider a logistic model with P(yi = 1) =

7Due to space limit, we only present sparse logistic regression as an example. Please see more
details on sparse robust regression using the huber loss function in the supplementary materials
[Zhao, Liu and Zhang (2018)].



202 T. ZHAO, H. LIU AND T. ZHANG

πi(θ
∗) and P(yi = −1) = 1 − πi(θ

∗), where

(4.1) πi(θ) = 1

1 + exp(−X�
i∗θ)

for i = 1, . . . , n.

When θ∗ is sparse, we consider the optimization problem

(4.2) min
θ∈Rd

L(θ) +Rλ(θ) where L(θ) = 1

n

n∑
i=1

[
log

(
1 + exp

(−yiX
�
i∗θ

))]
.

For notational simplicity, we denote the logistic loss function in (4.2) as L(θ), and
define L̃λ(θ) = L(θ) + Hλ(θ). Then similar to sparse linear regression, we write
Fλ(θ) as

Fλ(θ) = L(θ) +Rλ(θ) = L̃λ(θ) + λ‖θ‖1.

The logistic loss function is twice differentiable with

∇L(θ) = 1

n

n∑
i=1

[
1 − πi(θ)

]
yiXi∗ and ∇2L(θ) = 1

n
X�PX,

where P = diag([1 − π1(θ)]π1(θ), . . . , [1 − πn(θ)]πn(θ)) ∈ R
n×n. Similar to

sparse linear regression, we also assume that the design matrix X satisfies the
column normalization condition ‖X∗j‖2 = √

n for all j = 1, . . . , d .

4.1. Proximal coordinate gradient descent. For sparse logistic regression, di-
rectly taking the minimum with respect to a selected coordinate does not admit
a closed-form solution and, therefore, may involve some sophisticated algorithm
such as the root-finding method.

To address this issue, Razaviyayn, Hong and Luo (2013) suggest a more con-
venient approach, which takes a proximal coordinate gradient descent iteration.
For example, we select a coordinate j at the t th iteration and consider a quadratic
approximation of Fλ(θj ; θ(t)

\j ),

Qλ,j,L

(
θj ; θ(t)) = Vλ,j,L

(
θj ; θ(t)) + λ|θj | + λ

∥∥θ(t)
\j

∥∥
1,

where L > 0 is a step size parameter, and Vλ,j,L(θj ; θ(t)) is defined as

Vλ,j,L

(
θj ; θ(t)) = L̃λ

(
θ(t)) + (

θj − θ
(t)
j

)∇j L̃λ

(
θ(t)) + L

2

(
θj − θ

(t)
j

)2
.

Here, we choose the step size parameter L such that Qλ,j,L(θj ; θ(t)) ≥ Fλ(θj , θ
(t)
\j )

for all j = 1, . . . d . We then take

(4.3) θ
(t+1)
j = argmin

θj

Qλ,j,L

(
θj ; θ(t)) = argmin

θj

Vλ,j,L

(
θj ; θ(t)) + λ|θj |.
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Different from the exact coordinate minimization, (4.3) always has a closed-
form solution obtained by soft thresholding. Particularly, we define θ̃

(t)
j = θ

(t)
j −

∇j L̃λ(θ
(t))/L. Then we have

θ
(t+1)
j = argmin

θj

1

2

(
θj − θ̃

(t)
j

)2 + λ

L
|θj | = Sλ/L

(
θ̃

(t)
j

)
and θ

(t+1)
\j = θ

(t)
\j .

For notational convenience, we write θ
(t+1)
j = Tλ,j,L(θ(t)). When applying PI-

CASSO to solve sparse logistic regression, we only need to replace Tλ,j (·) with
Tλ,j,L(·) in Algorithms 1–3.

REMARK 4.1. For sparse logistic regression, we have ∇2
jjL(θ) = 1

n
X�∗jPX∗j .

Since P is a diagonal matrix, and πi(θ) ∈ (0,1) for any θ ∈ R
d , we have ‖P‖2 =

maxi Pii ∈ (0,1/4] for all i = 1, . . . , n. Then we have X�∗jPX∗j ≤ ‖P‖2‖X∗j‖2
2 ≤

n/4, where the last inequality comes from the column normalization condition
of X. Thus, we choose L = supθ maxj ∇2

jjL(θ) = 1/4.

We then analyze the computational and statistical properties of the estimator
obtained by PICASSO for sparse logistic regression.

4.2. Convex relaxation based warm start initialization. We assume that
‖θ∗‖0 ≤ s∗, and for any v 
= 0 and any θ such that ‖θ − θ∗‖2 ≤ R, we have

(4.4) ψ�‖v‖2
2 − γ�

√
logd

n
‖v‖2

1 ≤ v�∇2L(θ)v ≤ ψu‖v‖2
2 + γu

√
logd

n
‖v‖2

1,

where γ�, γu, ψ�, ψu and R are positive constants, and do not scale with (s∗, n, d).
Existing literature has shown that many common examples of sub-Gaussian ran-
dom design satisfy (4.4) with high probability [Raskutti, Wainwright and Yu
(2010), Negahban et al. (2012), Loh and Wainwright (2015)].

Similar to sparse linear regression, we need to verify Assumptions 3.1 and 3.5
for sparse logistic regression by the following lemma.

LEMMA 4.2. Suppose (4.4) holds. Given λN = 16
√

logd/n, we have

P

(
λN ≥ 4

∥∥∇L
(
θ∗)∥∥∞ = 4

n

∥∥X�w
∥∥∞

)
≥ 1 − d−7,

where w = ([1 − π1(θ
∗)]y1, . . . , [1 − πn(θ

∗)]yn)
� with πi(θ)’s defined in (4.1).

Moreover, given γ ≥ 4/ψ� and ‖θ − θ∗‖2 ≤ R, there exists some generic constant
C1 such that for large enough n, we have

s̃ = C1s
∗ ≥ [

484κ2 + 100κ
]
s∗, ρ̃−

(
s∗ + 2̃s

) ≥ ψ�

2
, ρ+

(
s∗ + 2̃s

) ≤ 5ψu

4
.
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The proof of Lemma 4.2 directly follows the proof of Lemma 3.13 and Loh
and Wainwright (2015) and, therefore, is omitted. Lemma 4.2 guarantees that the
regularization sequence satisfies Assumption 3.1 with high probability, and As-
sumption 3.5 holds when the design matrix satisfies (4.4).

Different from sparse linear regression, however, the restricted convexity and
smoothness only hold over an �2 ball centered at θ∗ for sparse logistic regression.
Thus, directly choosing θ̂ {0} = 0 may violate the restricted strong convexity. A sim-
ple counterexample is ‖θ∗‖2 > R, which results in ‖0 − θ∗‖2 > R. To address this
issue, we propose a new convex relaxation based warm start initialization to obtain
an initial solution for λ0. Particularly, we solve the following convex relaxation of
(1.1):

(4.5) min
θ∈Rd

F̃λ0(θ) where F̃λ0(θ) = L(θ) + λ0‖θ‖1

up to an adequate precision. For example, we choose θ relax satisfying the approxi-
mate KKT condition of (4.5) as follows:

(4.6) min
ξ∈∂‖θ relax‖1

∥∥∇L
(
θ relax) + λ0ξ

∥∥∞ ≤ δ0λ0,

where δ0 ∈ (0,1) is the initial precision parameter for λ0. Since δ0 in (4.6) can be
chosen as a sufficiently large value (e.g., δ0 = 1/8), computing θ relax becomes very
efficient even for algorithms with only sublinear rates of convergence to global op-
tima, for example, classical coordinate minimization and proximal gradient algo-
rithms. For notational convenience, we call the above initialization procedure the
convex relaxation based warm initialization.

LEMMA 4.3. Suppose Assumption 3.5 holds only for ‖θ − θ∗‖2 ≤ R. Given
ρ−(s∗ + s̃)R ≥ 9λ0

√
s∗ ≥ 18λN

√
s∗ and δ0 = 1/8, we have∥∥θ relax

S
∥∥

0 ≤ s̃,
∥∥θ relax − θ∗∥∥

2 ≤ R, and Fλ0

(
θ relax) ≤ Fλ0

(
θ∗) + �λ0 .

Lemma 4.3 guarantees that θ relax is a proper initial solution for λ0. Thus, all con-
vergence analysis in Theorem 3.12 directly follows, and PICASSO attains a linear
convergence to a unique sparse local optimum with high probability. The statis-
tical properties can also be established accordingly. An illustration of the convex
relaxation based warm start initialization is provided in Figure 7.

5. Numerical experiments. We evaluate the computational and statistical
performance of PICASSO through numerical simulations. We compare PICASSO
with five competitors: (1) SparseNet [Mazumder, Friedman and Hastie (2011)];
(2) Path-following Iterative Shrinkage Thresholding Algorithm [PISTA, Wang,
Liu and Zhang (2014)]; (3) Accelerated PISTA [A-PISTA, Zhao and Liu (2016)];
(4) Multistage Convex Relaxation Method [Mcvx, Zhang (2013)]; (5) Local Lin-
ear Approximation [LLA, Zou and Li (2008)]. Note that each subproblem of Mcvx
and LLA is solved by proximal gradient algorithms with backtracking line search.
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FIG. 7. An illustration of the convex relaxation based warm start initialization. When the restricted
convexity and smoothness only hold over a neighborhood around θ∗ (green region). Directly choos-
ing 0 as the initial solution may violate the restricted strong convexity. Thus, we adopt a convex
relaxation approach to obtain an initial solution, which is ensured to be sparse and belong to the
desired neighborhood.

All experiments are conducted on a PC with Intel Core i5 3.3 GHz and 16 GB
memory. All programs are coded in double precision C, called from an R wrapper.
We optimize the computation by exploiting the vector and matrix sparsity, which
gains a significant speedup in vector and matrix manipulations (e.g., computing the
gradient and evaluating the objective value). We apply PICASSO to sparse linear
regression with the MCP regularizer.

We generate each row of the design matrix Xi∗ independently from a d-
dimensional Gaussian distribution with mean 0 and covariance matrix � ∈ R

d×d ,
where �kj = 0.75 and �kk = 1 for all j, k = 1, . . . , d and k 
= j . We then normal-
ize each column of the design matrix X∗j such that ‖X∗j‖2 = √

n. The response
vector is generated from the linear model y = Xθ∗ + ε, where θ∗ ∈ R

d is the re-
gression coefficient vector, and ε is generated from a n-dimensional Gaussian dis-
tribution with mean 0 and covariance matrix σ 2In. We set n = 300, d = 18,000,
s∗ = 18 and σ 2 = 4. θ∗ has 18 nonzero entries, which are θ∗

1000 = θ∗
7000 = θ∗

13,000 =
3, θ∗

2000 = θ∗
8000 = θ∗

14,000 = 2, θ∗
3000 = θ∗

9000 = θ∗
15,000 = 1.5, θ∗

4000 = θ∗
10,000 =

θ∗
16,000 = −3, θ∗

5000 = θ∗
11,000 = θ∗

17,000 = −2 and θ6000 = θ∗
12,000 = θ18,000 = −1.5

for k = 0, . . . ,2. We then set γ = 1.25, N = 70, λN = 0.25σ
√

logd/n, ϕ = 0.05,
δK = 10−3 and τK = 10−6 for all 1 ≤ K ≤ N .

We present the numerical results averaged over 1000 simulations. Specifically,
we create a validation set using the same design matrix as the training set for reg-
ularization parameter selection. We then tune the regularization parameter over
the selected regularization sequence. We denote the response vector of the valida-



206 T. ZHAO, H. LIU AND T. ZHANG

TABLE 1
Quantitative comparison on the simulated data set (n = 300, d = 18,000, s∗ = 18, σ 2 = 4). In

terms of timing performance, PICASSO slightly outperforms SparseNet, outperforms A-PISTA and
greatly outperforms PISTA, LLA and Mcvx. In terms of support recovery and parameter estimation,

PICASSO slightly outperforms A-PISTA, PISTA and Mcvx, and greatly outperforms SparseNet
and LLA

Method ‖̂θ − θ∗‖2 ‖̂θS‖0 ‖̂θSc‖0 Correct Timing

PICASSO 1.258 (0.515) 17.79 (0.54) 0.48 (0.52) 616/1000 1.062 (0.084)

SparseNet 1.602 (0.791) 17.64 (0.85) 2.07 (1.41) 248/1000 1.109 (0.088)

PISTA 1.267 (0.528) 17.76 (0.54) 0.55 (0.51) 614/1000 52.358 (5.920)

A-PISTA 1.276 (0.530) 17.76 (0.54) 0.57 (0.57) 613/1000 6.358 (0.865)

Mcvx 1.293 (0.529) 17.76 (0.52) 0.58 (0.52) 615/1000 67.247 (7.128)

LLA 1.517 (0.949) 17.50 (0.61) 1.28 (0.85) 365/1000 31.247 (3.870)

tion set as ỹ ∈ R
n. Let θ̂ λ denote the obtained estimator using the regularization

parameter λ. We then choose the optimal regularization parameter λ̂ by

λ̂ = argmin
λ∈{λ1,...,λN }

∥∥ỹ − Xθ̂λ
∥∥2

2.

We repeat the simulation for 1000 times and summarize the averaged results in Ta-
ble 1. In terms of timing performance, PICASSO slightly outperforms SparseNet,
outperforms A-PISTA, and greatly outperforms PISTA, LLA and Mcvx. In terms
of support recovery and parameter estimation, PICASSO slightly outperforms A-
PISTA, PISTA and Mcvx, and greatly outperforms SparseNet and LLA.

To further demonstrate the superiority of PICASSO, we present a typical fail-
ure example of SparseNet using the heuristic cyclic selection rule. This example
is chosen from our 1000 simulations, and illustrated in Figure 8. We see that the
heuristic cyclic selection rule in SparseNet always needs to iterate over many ir-
relevant variables before getting to the relevant variable when identifying a new
active set. Since these irrelevant variables are highly correlated with the relevant
variables in our experiment, the heuristic cyclic selection rule tends to overselect
the irrelevant variables and miss some relevant variables. In contrast, PICASSO,
PISTA and A-PISTA have mechanisms to prevent from overselecting the irrelevant
coordinates when identifying active sets. This eventually makes them outperform
SparseNet in both parameter estimation and support recovery. Moreover, we also
see that PISTA is much slower than other algorithms, because PISTA needs to
calculate a full gradient and conduct a sophisticated line search in every itera-
tion, which are computationally expensive. Though A-PISTA adopts the coordi-
nate minimization to further accelerate PISTA, it still suffers from the computa-
tionally expensive line search when identifying active sets. This eventually leads
to less competitive timing performance than PICASSO.
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FIG. 8. A typical failure example of SparseNet using the heuristic cyclic selection rule, which is
chosen from our 1000 simulations. We see that cyclic selection rule tends to overselect the irrelevant
coordinates and miss some relevant coordinates when updating the active set. Thus, SparseNet even-
tually yields denser solutions with worse performance in parameter estimation and support recovery
than PICASSO, PISTA and A-PISTA.

6. Discussions and future work. Here, we discuss several existing meth-
ods related to PICASSO, including the multistage convex relaxation method
(Mcvx), local linear approximation method (LLA), path-following iterative shrink-
age thresholding algorithm (PISTA), accelerated path-following iterative shrink-
age thresholding algorithm (A-PISTA) and proximal gradient algorithm.

The multistage convex relaxation method is proposed in Zhang (2013). It solves
a sequence of convex relaxation problems of (1.1). Zhang (2013) show that the
obtained estimator enjoys similar statistical guarantees to those of PICASSO for
sparse linear regression. However, there is only sublinear guarantee on its conver-
gence rate to a local optimum. Moreover, since each relaxed problem is still lack of
strong convexity, the multistage convex relaxation method needs to be combined
with some efficient computational algorithms such as PICASSO.

The local linear approximation method is proposed in Zou and Li (2008), Wang,
Kim and Li (2013), Fan, Xue and Zou (2014). It is essentially a special case of the
multistage convex relaxation with only two iterations. Similar to the multistage
convex relaxation method, it also needs an efficient computational algorithm to
solve each relaxed problem. Moreover, in order to obtain the variable selection
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consistency, the local linear approximation method requires a stronger minimum
signal strength. Taking sparse linear regression as an example, Wang, Kim and Li
(2013), Fan, Xue and Zou (2014) requires a minimum signal strength of order of
σ
√

s∗ logd/n, while PICASSO only requires a minimum signal strength of order
of σ

√
logd/n.

The path-following iterative shrinkage thresholding algorithm (PISTA) is pro-
posed in Wang, Liu and Zhang (2014). PISTA is essentially a proximal gradient
algorithm combined with the warm start initialization. PISTA needs to calculate
the entire (d-dimensional) gradient vector and requires a sophisticated backtrack-
ing line search procedure in every iteration. Thus, PICASSO is computationally
much more efficient and scalable than PISTA in practice, although PISTA and
PICASSO enjoy similar theoretical guarantees. Besides, the implementation of
PISTA requires subtle control over the step size, and often yield slow empirical
convergence. An accelerated PISTA algorithm (A-PISTA) is proposed in Zhao and
Liu (2016), which uses coordinate minimization algorithms to accelerated PISTA.
It shows an improved computational performance over PISTA in our numerical
simulations, but not as competitive as PICASSO.

Moreover, when extending PISTA to general loss functions, Wang, Liu and
Zhang (2014) propose a contained formulation. Particularly, they solve (1.1) with
an additional constraint,

(6.1) min
θ∈Rd

L(θ) +Rλ(θ) subject to ‖θ‖2 ≤ R/2.

The additional constraint guarantees that the solution always stays in the restricted
strongly convex region (a small neighborhood around θ∗), only under the assump-
tion ‖θ∗‖2 ≤ R/2, where R is a constant and cannot scale with (n, s∗, d). This
assumption is very restrictive, and also introduces an additional tuning parameter.
In contrast, our proposed convex relaxation based warm start initialization avoids
this assumption, and allows ‖θ∗‖2 to be arbitrarily large. Furthermore, we want to
emphasize that PISTA exploits an explicit soft-thresholding procedure to directly
control the solution sparsity in each iteration, while PICASSO adopts an algorith-
mic strategy to control the sparsity of the active set.

Other researchers focus on solving (1.1) with an additional constraint,

(6.2) min
θ∈Rd

L(θ) +Rλ(θ) subject to ‖θ‖1 ≤ M,

where M > 0 is an extra tuning parameter. Loh and Wainwright (2015) show that
the proximal gradient algorithm attains a linear convergence to a ball centered at
θ∗ to (6.2) with a radius approximately equal to the statistical error. However, the
analysis of Loh and Wainwright (2015) does not justify the advantage of noncon-
vex regularization: They only provide a slower statistical rate of convergence than
PICASSO in parameter estimation for their obtained estimator, and no support re-
covery guarantee is established. Besides, their analysis for general loss functions
also requires the restrictive assumption: ‖θ∗‖2 ≤ R/2, where R is a constant and
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does not scale with (n, s∗, d). Nevertheless, PICASSO does not require this as-
sumption.

For future work, we are interested in several possible extensions: (I) Extension
to more complicated regularizers such as grouping regularizers for variable clus-
tering; (II) Extension to more complicated (possibly nonconvex) loss functions
such as sparse phase retrieval and sparse coding problems; (III) Extension to asyn-
chronous parallel optimization setting with shared memory or communication-
efficient distributed optimization setting; (IV) Extension to second-order algo-
rithms such as the regularized iterative reweighed least square optimization
algorithm for sparse generalized linear model estimation (proximal Newton).
These extensions will lead to more efficient and scalable coordinate optimization
algorithms for more sophisticated nonconvex optimization problems.

7. Proof of main results. We present the proof sketch of our computational
and statistical theories. Some lemmas are deferred to the supplementary materials
[Zhao, Liu and Zhang (2018)]. To unify the convergence analysis of PICASSO
using the exact coordinate minimization (1.6) and proximal coordinate gradient
descent (4.3), we define two auxiliary parameters ν+(1) and ν−(1). Specifically,
we choose ν+(1) = ν−(1) = L for the proximal coordinate gradient descent, and
ν+(1) = ρ+(1) and ν−(1) = ρ̃−(1) for the exact coordinate minimization.

7.1. Proof of Theorem 3.9.

PROOF. Since ‖θ(0)‖0 = s ≤ s∗ + 2̃s, by Assumption 3.5 and Lemma 3.4, we
know that (2.1) is a strongly convex optimization problem. Thus, its minimizer θ

is unique. We then introduce the following lemmas.

LEMMA 7.1. Suppose Assumption 3.5 holds, and |A| = s ≤ s∗ + 2̃s. For t =
0,1,2, . . . , we have Fλ(θ

(t)) −Fλ(θ
(t+1)) ≥ ν−(1)

2 ‖θ(t) − θ(t+1)‖2
2.

LEMMA 7.2. Suppose Assumption 3.5 holds, and |A| = s ≤ s∗ + 2̃s. For t =
0,1,2, . . . , we have Fλ(θ

(t+1)) −Fλ(θ) ≤ sρ2+(s)

2ρ̃−(s)
‖θ(t+1) − θ(t)‖2

2.

Lemmas 7.1 and 7.2 characterize the successive descent and the gap toward the
optimal objective value after each iteration, respectively.

(Linear Convergence) Combining Lemmas 7.1 and 7.2, we obtain

Fλ

(
θ(t+1)) −Fλ(θ) ≤ sρ2+(s)

ρ̃−(s)ν−(1)

[
Fλ

(
θ(t)) −Fλ(θ)

]
− sρ2+(s)

ρ̃−(s)ν−(1)

[
Fλ

(
θ(t+1)) −Fλ(θ)

]
.

(7.1)
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By simple manipulation, (7.1) implies

Fλ

(
θ(t+1)) −Fλ(θ)≤(i)

(
sρ2+(s)

ρ̃−(s)ν−(1) + sρ2+(s)

)[
Fλ

(
θ(t)) −Fλ(θ)

]
≤(ii)

(
sρ2+(s)

ρ̃−(s)ν−(1) + sρ2+(s)

)t+1[
Fλ

(
θ(0)) −Fλ(θ)

]
,

(7.2)

where (ii) comes from recursively using (i).
(Number of Iterations) Combining (7.2) with Lemma 7.1, we obtain

∥∥θ(t) − θ(t+1)
∥∥2

2 ≤(i) 2[Fλ(θ
(t)) −Fλ(θ)]
ν−(1)

≤
(

sρ2+(s)

ρ̃−(s)ν−(1) + sρ2+(s)

)t 2[Fλ(θ
(0)) −Fλ(θ)]
ν−(1)

,

where (i) comes from Fλ(θ
(t)) ≥Fλ(θ). Thus, we need at most

t = log−1
(

sρ2+(s)

ρ̃−(s)ν−(1) + sρ2+(s)

)
log

(
ν−(1)τ 2λ2

2[Fλ(θ(0)) −Fλ(θ)]
)

iterations such that

∥∥θ(t+1) − θ(t)
∥∥2

2 ≤
(

sρ2+(s)

ρ̃−(s)ν−(1) + sρ2+(s)

)t 2[Fλ(θ
(0)) −Fλ(θ)]
ν−(1)

≤ τ 2λ2. �

7.2. Proof of Theorem 3.10.

PROOF. Before we start the proof, we introduce the following lemmas.

LEMMA 7.3. Suppose Assumptions 3.1, 3.5 and 3.7 hold. There exists a
unique sparse local optimum θ

λ
satisfying ‖θλ

S‖0 ≤ s̃ and Kλ(θ
λ
) = 0.

LEMMA 7.4. Suppose Assumptions 3.1, 3.5 and 3.7 hold. If the initial solution
θ(0) in Algorithm 1 satisfies ‖θ(0)

S ‖0 ≤ 2̃s and Fλ(θ
(0)) ≤ Fλ(θ

∗) + �λ, the output

solution θ̂ satisfies

(7.3) min
ξA∈∂‖θ̂A‖1

∥∥∇AL̃λ(θ̂) + λξA
∥∥∞ ≤ δλ and ‖θ̂S‖0 ≤ s̃.

LEMMA 7.5. Suppose Assumptions 3.1, 3.5 and 3.7 hold. If the initial solution
θ [0] satisfies ‖θ [0]

S ‖0 ≤ s̃ and Fλ(θ
[0]) ≤ Fλ(θ

∗) + �λ. Then regardless the simple
rule or strong rule, we have |A0 ∩ S| ≤ s̃.
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The proofs of Lemmas 7.3, 7.4 and 7.5 are provided in the supplementary ma-
terials [Zhao, Liu and Zhang (2018)]. Lemma 7.3 verifies the existence of the
unique sparse local optimum. Lemma 7.4 implies that the inner loop of PICASSO
removes some irrelevant coordinates, and encourages the output solution sparsity.
Lemma 7.5 implies that the initial active set is sufficiently sparse for both simple
and strong rules.

(Solution Sparsity) Since the objective always decreases, we have

(7.4) Fλ

(
θ [m+1]) ≤ Fλ

(
θ [m+0.5]) ≤ Fλ

(
θ [0]) ≤ Fλ

(
θ∗) + �λ

for all m = 0,1,2, . . . . Since θ [0] satisfies ‖θ [0]
S ‖0 ≤ s̃, by Lemma 7.5, we have

|A0 ∩ S| ≤ s̃. Then by Lemma 7.4, we have ‖θ [0.5]
S ‖0 ≤ s̃. Moreover, the greedy

selection rule moves only one inactive coordinate to the active set and, there-
fore, guarantees ‖θ [1]

S ‖0 ≤ s̃ + 1. By induction, we prove ‖θ [m]
S ‖0 ≤ s̃ + 1 and

‖θ [m+0.5]
S ‖0 ≤ s̃ for all m = 0,1,2, . . . .
(Linear Convergence) We first prove the linear convergence for the proximal

coordinate gradient descent. We need to construct an auxiliary solution:

w[m+1] = argmin
w∈Rd

Jλ,L

(
w; θ [m+0.5])

= argmin
w∈Rd

L̃λ

(
θ [m+0.5]) + (

w − θ [m+0.5])�∇L̃λ

(
θ [m+0.5])

+ L

2

∥∥w − θ [m+0.5]∥∥2
2 + λ‖w‖1.

We can verify w
[m+1]
k = argminθk

Qλ,k,L(θk; θ [m+0.5]) for j = 1, . . . , d . For no-
tational simplicity, we define w[m+1] = Tλ,L(θ [m+0.5]). Before we proceed, we
introduce the following lemmas.

LEMMA 7.6. Suppose Assumptions 3.1, 3.5 and 3.7 hold. For the proximal
coordinate gradient descent and m = 0,1,2, . . . , we have

Fλ

(
θ [m+0.5]) −Fλ

(
θ [m+1]) ≥ 1

s∗ + 2̃s

[
Fλ

(
θ [m+0.5]) −Jλ,L

(
w[m+1]; θ [m+0.5])].

LEMMA 7.7. Suppose Assumptions 3.1, 3.5 and 3.7 hold. For the proximal
coordinate gradient descent and m = 0,1,2, . . . , we have

Fλ

(
θ [m+0.5]) −Fλ

(
θ

λ) ≤ L

ρ̃−(s∗ + 2̃s)

[
Fλ

(
θ [m+0.5]) −Jλ,L

(
w[m+1]; θ [m+0.5])].

The proofs of Lemmas 7.6 and 7.7 are presented in the supplementary materials
[Zhao, Liu and Zhang (2018)]. Lemmas 7.6 and 7.7 characterize the successive
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descent in each iteration and the gap toward the optimal objective value after each
iteration respectively. Combining Lemmas 7.6 and 7.7, we obtain

Fλ

(
θ [m+0.5]) −Fλ

(
θ

λ)
≤ (s∗ + 2̃s)L

ρ̃−(s∗ + 2̃s)

([
Fλ

(
θ [m+0.5]) −Fλ

(
θ

λ)] − [
Fλ

(
θ [m+1]) −Fλ

(
θ

λ)])
.

(7.5)

By simple manipulation, (7.5) implies

Fλ

(
θ [m+1]) −Fλ

(
θ

λ) ≤
(

1 − ρ̃−(s∗ + 2̃s)

(s2 + 2̃s)L

)[
Fλ

(
θ [m+0.5]) −Fλ

(
θ

λ)]
≤(i)

(
1 − ρ̃−(s∗ + 2̃s)

(s∗ + 2̃s)L

)[
Fλ

(
θ [m]) −Fλ

(
θ

λ)]
≤(ii)

(
1 − ρ̃−(s∗ + 2̃s)

(s∗ + 2̃s)L

)m+1[
Fλ

(
θ [0]) −Fλ

(
θ

λ)]
,

(7.6)

where (i) comes from (7.4), and (ii) comes from recursively applying (i).
For the exact coordinate minimization, at the mth iteration, we only need to con-

duct a proximal coordinate gradient descent iteration with L = ρ+(1), and obtain
an auxiliary solution θ̃ [m+1]. Since Fλ(θ

[m+1]) ≤ Fλ(θ̃
[m+1]), by (7.6), we further

have

(7.7) Fλ

(
θ [m+1]) −Fλ

(
θ

λ) ≤
(

1 − ρ̃−(s∗ + 2̃s)

(s∗ + 2̃s)ρ+(1)

)[
Fλ

(
θ [m]) −Fλ

(
θ

λ)]
.

(Number of Iterations) Before we proceed, we introduce the following lemma.

LEMMA 7.8. Suppose Assumption 3.5 holds. For any θ , we conduct an exact
coordinate minimization or proximal coordinate gradient descent iteration over
a coordinate k, and obtain w. Then we have Fλ(θ) − Fλ(w) ≥ ν−(1)

2 (wk − θk)
2.

Moreover, if θk = 0 and |∇kL(θ)| ≥ (1 + δ)λ, we have

|wk| ≥ δλ

L
and Fλ(θ) −Fλ(w) ≥ δ2λ2

2ν+(1)
.

Lemma 7.8 characterizes the sufficient descent when adding the selected in-
active coordinate k into the active set. Assume that the selected coordinate km

satisfies |∇kmL(θ [m+0.5])| ≥ (1 + δ)λ. Then by Lemma 7.8 we have

(7.8) Fλ

(
θ [m+0.5]) −Fλ

(
θ

λ) ≥ Fλ

(
θ [m+0.5]) −Fλ

(
θ [m+1]) ≥ δ2λ2

2ν+(1)
.

Moreover, by (7.6) and (7.7), we need at most

m = log−1
(

1 − ρ̃−(s∗ + 2̃s)

(s∗ + 2̃s)ν+(1)

)
log

(
δ2λ2

3ν+(1)[Fλ(θ [0]) −Fλ(θ
λ
)]

)
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iterations such that Fλ(θ
[m+0.5])−Fλ(θ

λ
) ≤ δ2λ2

3ν+(1)
, which is contradicted by (7.8).

Thus, we must have maxk∈Am
|∇kL(θ [m+0.5])| ≤ (1 + δ)λ, and the algorithm is

terminated.
(Approximately Optimal Output Solution) By Lemma 7.4, we know that when

every inner loop terminates, the approximate KKT condition must hold over the
active set. Since ∇Am

Hλ(θ
[m+0.5]) = 0, the stopping criterion

max
k∈Am

∣∣∇kL
(
θ [m+0.5])∣∣ ≤ (1 + δ)λ

implies that the approximate KKT condition holds over the inactive set

min
ξAm

∈∂‖θ [m+0.5]
Am

‖1

∥∥∇Am
L̃λ

(
θ [m+0.5]) + λξAm

∥∥∞ ≤ δλ.

The above two approximate KKT conditions implies that θ [m+0.5] satisfies the
approximate KKT condition Kλ(θ

[m+0.5]) ≤ δλ. �

7.3. Proof of Theorem 3.12.

PROOF. [Result (I)] Before we proceed, we introduce the following lemma.

LEMMA 7.9. Suppose Assumptions 3.1, 3.5 and 3.7 hold. For any λ ≥ λN , if
θ satisfies ‖θS‖0 ≤ s̃ and Kλ(θ) ≤ δλ, where δ ≤ 1/8, then for any λ′ ∈ [λN,λ],
we have

Fλ′(θ) −Fλ′
(
θ

λ′) ≤ 40(Kλ(θ) + 3(λ − λ′))(λ + λ′)s∗

ρ̃−(s∗ + s̃)
.

The proof of Lemma 7.9 is provided in the supplementary materials [Zhao, Liu
and Zhang (2018)]. If we take λ = λ′ = λK and θ = θ̂ {K−1}, then Lemma 7.9
implies

(7.9) FλK

(
θ̂ {K−1}) −FλK

(
θ

λK
) ≤ 25s∗λ2

K

ρ̃−(s∗ + s̃)
.

Since the objective value always decreases within each middle loop, for any inner
loop with λK , we have FλK

(θ(0)) − FλK
(θ) ≤ FλK

(θ̂ {K−1}) − FλK
(θ

λK
). Thus,

by Theorem 3.9 and (7.9), we know that the number of iterations within each inner
loop is at most

log−1
(

ρ̃−(s)ν−(1) + sρ2+(s)

sρ2+(s)

)
log

(
ν−(1)τ 2

Kρ̃−(s∗ + s̃)

25s∗
)
.

[Results (II)] Combining Theorem 3.10 with (7.9), we know that the number of
active set updating iterations within each middle loop is at most

log−1
(

1 − ρ̃−(s∗ + 2̃s)

(s∗ + 2̃s)ν+(1)

)
log

(
δ2
Kρ̃−(s∗ + s̃)

75ν+(1)s∗
)
.
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[Results (III)] For K < N , we take λ′ = λN , λ = λK , and θ = θ̂ {K}. Then by
Lemma 7.9, we have

FλN

(
θ̂ {K}) −FλN

(
θ

λN
) ≤ 25(λK + λN)(KλK

(θ̂ {K}) + 3(λK − λN))s∗

ρ̃−(s∗ + s̃)
,

which completes the proof due to λK > λN for K = 0, . . . ,N − 1. �

7.4. Proof of Theorem 3.16.

PROOF. For any θ∗, we consider a partition of Rd as

S1 =
{
j

∣∣∣ θ∗
j ≥ C2σ√

s∗
1 + s∗

2

}
, and S0 =

{
j

∣∣∣ θ∗
j <

C2σ√
s∗

1 + s∗
2

}
.

We consider the first scenario, where S0 = ∅. Then we establish the lower
bound for estimating θ∗

S1
only. Let θ̃S1 denote any estimator of θ∗

S1
based on

y ∼ N(X∗S1θ
∗
S1

, σ 2In). This is essentially a low-dimensional linear regression
problem since s∗

1 < n. By the minimax lower bound for standard linear regression
model in Duchi (2015), we have

inf
θ̃S1

sup
θ∈�(s∗

1 ,s∗
2 ,d)

E
∥∥θ̃S1 − θ∗

S1

∥∥
2 ≥ C6σ

√
s∗

1

n

for a generic constant C6. We then consider a second scenario, where S1 = ∅.
Then we establish the lower bound for estimating θ∗

S0
only. Let θ̃S0 denote any

estimator of θ∗
S0

based on y ∼ N(X∗S0θ
∗
S0

, σ 2In). This is essentially a high di-
mensional sparse linear regression problem. By the lower bound for sparse linear
regression model established in Raskutti, Wainwright and Yu (2011), we have

inf
θ̃S0

sup
θ∈�(s∗

1 ,s∗
2 ,d)

E
∥∥θ̃S0 − θ∗

S0

∥∥
2 ≥ 2C7σ

√
s∗

2 log(d − s∗
2 )

n
≥ C7σ

√
s∗

2 logd

n
,

where C7 is a generic constant and the last inequality comes from the fact s∗
2 � d .

Combining two scenarios, we have

inf
θ̂

sup
θ∈�(s∗

1 ,s∗
2 ,d)

E
∥∥θ̂ − θ∗∥∥

2

≥ max
{

inf
θ̃S1

sup
θ∈�(s∗

1 ,s∗
2 ,d)

E
∥∥θ̃S1 − θ∗

S1

∥∥
2, inf

θ̃S0

sup
θ∈�(s∗

1 ,s∗
2 ,d)

E
∥∥θ̃S0 − θ∗

S0

∥∥
2

}

≥ 1

2
inf
θ̃S1

sup
θ∈�(s∗

1 ,s∗
2 ,d)

E
∥∥θ̃S1 − θ∗

S1

∥∥
2 + 1

2
inf
θ̃S0

sup
θ∈�(s∗

1 ,s∗
2 ,d)

E
∥∥θ̃S0 − θ∗

S0

∥∥
2

≥ C6

2
σ

√
s∗

1

n
+ C7

2
σ

√
s∗

2 logd

n
≥ C4

(
σ

√
s∗

1

n
+ σ

√
s∗

2 logd

n

)
,

where C4 = min{C6
2 , C7

2 }. �
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7.5. Proof of Theorem 3.17.

PROOF. For notational simplicity, we denote λN , θ̂ {N}, and θ
λN by λ, θ̂ , and

θ
λ
, respectively. Before we proceed, we introduce the following lemmas.

LEMMA 7.10. Suppose ε ∼ N(0, σ 2In) and ‖X∗j‖2 = √
n for j = 1, . . . , d .

Then we have

P

(
1

n

∥∥X�ε
∥∥∞ ≥ 2σ

√
logd

n

)
≤ 2d−2.

LEMMA 7.11. Suppose Assumptions 3.1 and 3.5, and the following event

E1 =
{

1

n

∥∥X�ε
∥∥∞ ≥ 2σ

√
logd

n

}
hold. We have

1

n
X∗S

(
y − Xθ̂o) + ∇SHλ

(
θ̂o) + λ∇∥∥θ̂o

S
∥∥

1 = 0.

LEMMA 7.12. Suppose Assumptions 3.1 and 3.5 and the following event

E2 =
{

1

n

∥∥U�ε
∥∥∞ ≥ 2σ

√
logd

n

}
hold, where U = X�(In − X∗S(X�∗SX∗S)−1X�∗S). There exists some ξ̂o

S ∈ ∂‖θ̂o
S‖1

such that
1

n
X�

∗S
(
y − Xθ̂o) + ∇SHλ

(
θ̂o) + λξ̂o

S = 0.

The proof of Lemma 7.10 is provided in Negahban et al. (2012), therefore, is
omitted. The proofs of Lemmas 7.11 and 7.12 are presented in the supplementary
materials [Zhao, Liu and Zhang (2018)]. Lemmas 7.11 and 7.12 imply that θ̂o

satisfies the KKT condition of (1.1) over S and S , respectively. Note that the above
results only depend on Conditions E1 and E2. Meanwhile, we also have

‖U∗j‖2 = ∥∥X�∗j

(
In − X∗S

(
X�∗SX∗S

)−1
X�∗S

)∥∥
2

≤ ∥∥In − X∗S
(
X�∗SX∗S

)−1
X�∗S

∥∥
2‖X∗j‖2

≤ ‖X∗j‖2 = √
n,

(7.10)

where the last inequality comes from ‖In − X∗S(X�∗SX∗S)−1X�∗S‖2 ≤ 1. Thus,
(7.10) implies that Lemma 7.10 is also applicable to E2. Moreover, since both θ̂ {N}
and θ̂o are sparse local optima, by Lemma C.1 of the supplementary materials, we
further have P(θ̂o = θ

λ
) ≥ 1 − 4d−2.
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Moreover, since θ̂ converges to θ
λ
, given a sufficiently small δN , we have∥∥∇L̃λ

(
θ

λ) − ∇L̃λ(θ̂)
∥∥∞ ≤ ∥∥L̃λ

(
θ

λ) − L̃λ(θ̂)
∥∥

2 ≤ ρ+
(
s∗)∥∥θλ − θ̂

∥∥
2 ≤ ω � λ

4
.

Since we have proved ‖∇SL̃λ(θ
λ
)‖∞ ≤ λ/4 in Lemma 7.12, we have∥∥L̃λ(θ̂)

∥∥∞ ≤ ∥∥∇SL̃λ

(
θ

λ)∥∥∞ + ∥∥∇L̃λ

(
θ

λ) − ∇L̃λ(θ̂)
∥∥∞ ≤ λ

4
+ ω.

Since θ̂ also satisfies the approximate KKT condition and δ ≤ 1/8, then we must
have θ̂S = 0. Moreover, since we have also proved that there exists some constant
C8 such that minj∈S |θλ

j | ≥ C8σ
√

logd/n in Lemma 7.11, then for ω/ρ−(s∗) �
C8σ

√
logd/n, we have

min
j∈S |θ̂j | = min

j∈S
∣∣θλ

j

∣∣ − ω ≥ C8σ

√
logd

n
> 0.

Combining with the fact θ̂S = 0, we have supp(θ̂) = supp(θ
λ
) = supp(θ∗). Mean-

while, since all signals are strong enough, then by Theorem 3.14, we also have

‖θ̂ − θ∗‖2 ≤ C3σ
√

s∗
n

. �
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The R package PICASSO implementing the proposed algorithm is available
on the Comprehensive R Archive Network http://cran.r-project.org/web/packages/
picasso/.

SUPPLEMENTARY MATERIAL

Supplement to “Pathwise coordinate optimization for sparse learning: Al-
gorithm and theory” (DOI: 10.1214/17-AOS1547SUPP; .pdf). The supplemen-
tary materials contain the supplementary proofs of the theoretical lemmas in the
paper “Pathwise coordinate optimization for nonconvex sparse learning: Algo-
rithm and theory.”
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