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University of Minnesota∗ and Columbia University†

The asymptotic efficiency of a generalized likelihood ratio test proposed
by Cox is studied under the large deviations framework for error probabil-
ities developed by Chernoff. In particular, two separate parametric families
of hypotheses are considered [In Proc. 4th Berkeley Sympos. Math. Statist.
and Prob. (1961) 105–123; J. Roy. Statist. Soc. Ser. B 24 (1962) 406–424].
The significance level is set such that the maximal type I and type II error
probabilities for the generalized likelihood ratio test decay exponentially fast
with the same rate. We derive the analytic form of such a rate that is also
known as the Chernoff index [Ann. Math. Stat. 23 (1952) 493–507], a rela-
tive efficiency measure when there is no preference between the null and the
alternative hypotheses. We further extend the analysis to approximate error
probabilities when the two families are not completely separated. Discus-
sions are provided concerning the implications of the present result on model
selection.

1. Introduction. Cox (1961, 1962) introduced the problem of testing two
separate parametric families. Let X1, . . . ,Xn be independent and identically dis-
tributed real-valued observations from a population with density f with respect
to some baseline measure μ. Let {gθ , θ ∈ �} and {hγ , γ ∈ �} denote two sepa-
rate parametric families of density functions with respect to the same measure μ.
Consider testing H0: f ∈ {gθ , θ ∈ �} against H1: f ∈ {hγ , γ ∈ �}. To avoid sin-
gularity, we assume that all the distributions in the families gθ and hγ are mutually
absolutely continuous so that the likelihood ratio stays away from zero and infinity.
Furthermore, we assume that the model is correctly specified, that is, f belongs to
either the g-family or the h-family.

Recently revisiting this problem, Cox (2013) mentioned several applications
such as the one-hit and two-hit models of binary dose-response and testing of inter-
actions in a balanced 2k factorial experiment. Furthermore, this problem has been
studied in econometrics [Vuong (1989), White (1982a, 1982b), Pesaran (1974),
Pesaran and Deaton (1978), Davidson and MacKinnon (1981)]. For more applica-
tions of testing separate families of hypotheses, see Berrington de González and
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Cox (2007) and Braganca Pereira (2005), and the references therein. Furthermore,
there is a discussion of model misspecification, that is, f belongs to neither the
g-family nor the h-family, which is beyond the current discussion. For semipara-
metric models, Fine (2002) proposed a similar test for nonnested hypotheses under
the Cox proportional hazards model assumption.

Cox (1962) considers the test statistic l = lg(θ̂ ) − lh(γ̂ ) − Eg
θ̂
{lg(θ̂ ) − lh(γ̂ )},

where lg(θ) and lh(γ ) are the log-likelihood functions under the g-family and the
h-family, respectively, and θ̂ and γ̂ are the corresponding maximum likelihood es-
timators. Rigorous distributional derivations of statistic l can be found in Huber
(1967) and White (1982a, 1982b). In this paper, we consider the generalized like-
lihood ratio statistic

(1) LRn = maxγ∈�

∏n
i=1 hγ (Xi)

maxθ∈�

∏n
i=1 gθ (Xi)

= elh(γ̂ )−lg(θ̂ )

that is slightly different from Cox’s approach. We are interested in the Chernoff ef-
ficiency, whose definition is provided in Section 2.1, of the generalized likelihood
ratio test.

In the hypothesis testing literature, there are several measures of asymptotic
relative efficiency for simple null hypothesis against simple alternative hypothesis.
Let n1 and n2 be the necessary sample sizes for each of two testing procedures
to perform equivalently in the sense that they admit the same type I and type II
error probabilities. Then the limit of ratio n1/n2 in the regime that both sample
sizes tend to infinity represents the asymptotic relative efficiency between these
two procedures.

Relative efficiency depends on the asymptotic manner of the two types of er-
ror probabilities with large samples. Under different asymptotic regimes, several
asymptotic efficiency measures are proposed and they are summarized in Chap-
ter 10 of Serfling (1980). Under the regime of Pitman efficiency, several asymp-
totically equivalent tests to the Cox test exist. Furthermore, Pesaran (1984) and
Rukhin (1993) applied Bahadur’s criterion of asymptotic comparison [Bahadur
(1960, 1967)] to tests for separate families and compared different tests for lognor-
mal against exponential distribution and for nonnested linear regressions. There
are other efficiency measures that are frequently considered, such as Kallenberg
efficiency [Kallenberg (1983)].

In the context of testing a simple null hypothesis against a fixed simple alter-
native hypothesis, Chernoff (1952) introduces a measure of asymptotic efficiency
for tests based on sum of independent and identically distributed observations,
a special case of which is the likelihood ratio test. This efficiency is introduced by
showing no preference between the null hypothesis and the alternative hypothesis.
The rejection region is setup such that the two types of error probabilities decay
at the same exponential rate ρ. The rate ρ is later known as the Chernoff index.
A brief summary of the Chernoff index is provided in Section 2.1.
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The basic strategy of Chernoff (1952) is to apply large deviations techniques to
the log-likelihood ratio statistic and compute/approximate the probabilities of the
two types of errors. Under the situation when either the null hypothesis or the alter-
native hypothesis is composite, one naturally considers the generalized likelihood
ratio test. To the authors’ best knowledge, the asymptotic behavior of the gener-
alized likelihood ratio test under the Chernoff’s regime remains an open problem.
This is mostly because large deviations results are not directly applicable as the test
statistic is the ratio of the supremums of two random functions. This paper fills in
this void and provides a definitive conclusion of the asymptotic efficiency of the
generalized likelihood ratio test under Chernoff’s asymptotic regime. We define
the Chernoff index via the asymptotic decay rate of the maximal type I and type II
error probabilities that is also the minimax risk corresponding to the zero-one loss
function.

We compute the generalized Chernoff index of the generalized likelihood ratio
test for two separate parametric families that keep a certain distance away from
each other. That is, the Kullback–Leibler distance between gθ and hγ are bounded
away from zero for all θ ∈ � and γ ∈ �. We use ρθγ to denote the Chernoff index
of the likelihood ratio test for the simple null H0 : f = gθ against simple alterna-
tive H1 : f = hγ . Under mild moment conditions, we show that the exponential
decay rate of the maximal error probabilities is simply the minimum of the one-
to-one Chernoff index ρθγ over the parameter space, that is, ρ = minθ,γ ρθγ . This
result suggests that the generalized likelihood ratio test is asymptotically the min-
imax strategy in the sense that with the same sample size it achieves the optimal
exponential decay rate of the maximal type I and type II error probabilities when
they decay equally fast. The present result can also be generalized to asymptotic
analysis of Bayesian model selection among two or more families of distributions.
A key technical component is to deal with the excursion probabilities of the like-
lihood functions, for which random field and nonexponential change of measure
techniques are applied. This paper also in part corresponds to the conjecture in
Cox (2013) “formal discussion of possible optimality properties of the test statis-
tics would, I think, require large deviation theory” though we consider a slightly
different statistic.

We further extend the analysis to the cases when the two families may not be
completely separate, that is, one may find two sequences of distributions in each
family and the two sequences converge to each other, or the two families may sim-
ply overlap, but not nested, as in the case of the Weibull family versus the gamma
family. For this case, the generalized Chernoff index as described above is zero.
An alternative and more meaningful formulation is to consider the asymptotic de-
cay rate of the type I error probability under a fixed distribution gθ0 which belongs
to H0, but is bounded away from H1. Since the roles of H0 and H1 are switchable,
it also gives the decay rate for the type II error. This formulation is clearly appli-
cable to both separated and nonseparated families, and thus it provides a means
to approximate the error probabilities of the generalized likelihood ratio test for
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general parametric families. The results established under this setting will have
important theoretical as well as practical implications in hypothesis testing, model
selection and other areas where maximum likelihood is employed. In particular, we
show how the results are applied to selecting a set of covariates among competing
sets in generalized linear models.

The rest of this paper is organized as follows. We present our main results for
separate families of hypotheses in Section 2. Further extension to more than two
families and Bayesian model selection is discussed in Section 3. Results for possi-
bly nonseparate families are presented in Section 4. Numerical examples are pro-
vided in Section 5. Finally, a concluding remark is given in Section 6.

2. Main results.

2.1. Simple null against simple alternative—a review of Chernoff index. In
this section, we state the main results and their implications. To start with, we pro-
vide a brief review of Chernoff index for simple null versus simple alternative; then
we proceed to the case of simple null versus composite alternative; furthermore,
we present the generalized Chernoff index for the composite null versus composite
alternative.

Under the context of simple null hypothesis versus simple alternative hy-
pothesis, we have the null hypothesis H0: f = g and the alternative hypothe-
sis H1: f = h. We write the log-likelihood ratio of each observation as li =
logh(Xi) − logg(Xi). Then the likelihood ratio is LRn = exp(

∑n
i=1 li). We use

l to denote the generic random variable equal in distribution to li . We define
the moment generating function of l under distribution g as Mg(z) = Eg(e

zl) =∫ {h(x)/g(x)}zg(x)μ(dx), which must be finite for z ∈ [0,1] by the Hölder in-
equality. Furthermore, we define the rate function mg(t) = maxz[zt − log{Mg(z)}].
The following large deviations result is established in Chernoff (1952).

PROPOSITION 1. If t < Eg(l), then logPg(LRn < ent ) ∼ −n × mg(t); if t >

Eg(l), then logPg(LRn > ent ) ∼ −n × mg(t).

We write an ∼ bn if an/bn → 1 as n → ∞. The above proposition provides
an asymptotic decay rate of the type I error probability: for any t > Eg(l),
Pg(LRn > ent ) = e−{1+o(1)}n×mg(t), as n → ∞. Similarly, we switch the roles of
g and h and define Mh(z) and mh(t) by flipping the sign of the log-likelihood ra-
tio l = logg(X) − logh(X) and computing the expectations under h. One further
defines ρ(t) = min{mg(t),mh(−t)} that is the slower rate among the type I and
type II error probabilities. A measure of efficiency is given by

(2) ρ = max
Eg(l)<t<Eh(l)

ρ(t)

that is known as the Chernoff index between g and h.
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In the decision framework, we consider the zero-one loss function

(3) L(C,f,X1, . . . ,Xn) =

⎧⎪⎪⎨⎪⎪⎩
1 if f = g and (X1, . . . ,Xn) ∈ C,

1 if f = h and (X1, . . . ,Xn) /∈ C,

0 otherwise,

where C ⊂ Rn and f is a density function. Then the risk function is

(4) R(C,f ) = Ef

{
L(C,f,X1, . . . ,Xn)

}=
{
Pg(C) if f = g,

Ph

(
Cc) if f = h.

The Chernoff index is the asymptotic exponential decay rate of the minimax risk
minC maxf R(C,f ) within the family of tests. In the following section, we will
generalize the Chernoff efficiency following the minimaxity definition.

Using the fact that Mg(z) = Mh(1 − z), one can show that the optimization
in (2) is solved at t = 0 and

(5) ρ = ρ(0).

Both mg(t) and mh(−t) are monotone functions of t and (5) suggests that ρ =
mg(0) = mh(0). To achieve the Chernoff index, we reject the null hypothesis if the
likelihood ratio statistic is greater than 1 and the type I and type II error probabili-
ties have identical exponential decay rate ρ.

To have a more concrete idea of the above calculations, Figure 1 in the supple-
mentary material [Li, Liu and Ying (2017)] shows one particular − log{Mg(z)} as
a function of z where g(x) is lognormal and h(x) is exponential. There are several
useful facts. First, − log{Mg(z)} is a concave function of z and − log{Mg(0)} =
− log{Mg(1)} = 0. There are several useful facts. First, − log{Mg(z)} is a con-
cave function of z and − log{Mg(0)} = − log{Mg(1)} = 0. The maximization
maxz[zt − log{Mg(z)}] is solved at d log{Mg(z)}/dz = t . Furthermore, the Cher-
noff index is achieved at t = 0. We insert t = 0 into the maximization and the
Chernoff index is ρ = maxz[− log{Mg(z)}].

2.2. Generalized Chernoff index for testing composite hypothesis. In this sub-
section, we develop the corresponding results for testing composite hypotheses.
Some technical conditions are required as follows:

A1 Complete separation: minθ∈�,γ∈� Egθ {loggθ (X) − loghγ (X)} > 0.
A2 The parameter spaces � and � are compact subsets of Rdg and Rdh with

continuously differentiable boundaries ∂� and ∂�, respectively.
A3 Define lθγ = loghγ (X) − loggθ (X), S1 = supθ,γ |∇θ lθγ |, and S2 =

supθ,γ |∇γ lθγ |. There exists some η, x0 > 0, that are independent with θ

and γ , such that for x > x0

(6) sup
θ∈�,γ∈�

max
{
Pgθ (Si > x),Phγ (Si > x)

}≤ e−(logx)1+η

(i = 1,2).
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REMARK 2. Condition A3 requires certain tail conditions of Si . It excludes
some singularity cases. This condition is satisfied by most parametric families.
For instance, if gθ (x) = g0(x)eθx−ϕg(θ) and hγ = h0(x)eγ x−ϕh(γ ) are exponential
families, then |∇θ lθγ | = |x − ϕ′

g(θ)| ≤ |x| + O(1). Thus (6) is satisfied if |x| has a
finite moment generating function.

If gθ = g(x − θ) is the location family, then |∇θ lθγ | = |g′(x−θ)
g(x−θ)

| usually has a fi-
nite moment generating function for light-tailed distributions (Gaussian, exponen-
tial, etc.) and is usually bounded for heavy-tailed distributions (e.g., t-distribution).
Similarly, one may verify (6) for scale families. Thus, A3 is a weak condition and
is applicable to most parametric families practically in use.

We start the discussion for a simple null hypothesis against a composite alter-
native hypothesis

(7) H0 : f = g and H1 : f ∈ {hγ : γ ∈ �}.
In this case, the likelihood ratio takes the following form:

(8) LRn = maxγ∈�

∏n
i=1 hγ (Xi)∏n

i=1 g(Xi)
.

For each distribution hγ in the alternative family, let ργ be the Chernoff index of
the likelihood ratio test for H0 : f = g against H1 : f = hγ , whose form is given
as in (2). The first result is given as follows.

LEMMA 3. Consider the hypothesis testing problem given as in (7) and the
generalized likelihood ratio test with rejection region Cλ = {(x1, . . . , xn) : LRn >

λ} where LRn is given by (8). If conditions A1–3 are satisfied and we choose λ = 1,
then the asymptotic decay rate of the type I and maximal type II error probabilities
are identical, more precisely,

logPg(C1) ∼ sup
γ∈�

logPhγ

(
Cc

1
)∼ −n × min

γ
ργ .

For composite null versus composite alternative

(9) H0 : f ∈ {gθ : θ ∈ �} against H1 : f ∈ {hγ : γ ∈ �},
similar results can be obtained. The generalized likelihood ratio statistic is given
by (1). For each single pair (gθ , hγ ), we let ρθγ denote the corresponding Chernoff
index of the likelihood ratio test for H0 : f = gθ and H1 : f = hγ . The following
theorem states the main result.

THEOREM 4. Consider a composite null hypothesis against a composite al-
ternative hypothesis given as in (9) and the generalized likelihood ratio test with
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rejection region Cλ = {(x1, . . . , xn) : LRn > λ} where LRn is given by (1). If con-
ditions A1–3 are satisfied and we choose λ = 1, then the asymptotic decay rate of
the maximal type I and type II error probabilities are identical, more precisely,

(10) sup
θ∈�

logPgθ (C1) ∼ sup
γ∈�

logPhγ

(
Cc

1
)∼ −n × min

θ∈�,γ∈�
ρθγ .

We call ρ = minθ,γ ρθγ the generalized Chernoff index between the two fam-
ilies {gθ } and {hγ } that is the exponential decay rate of the maximal type I and
type II error probabilities for the generalized likelihood ratio test. We would like
to make a few remarks. Suppose that ρθγ is minimized at θ∗ and γ∗. The maxi-
mal type I and type II error probabilities of C1 have identical exponential decay
rate as that of the error probabilities of the likelihood ratio test for the simple null
H0 : f = gθ∗ versus simple alternative H1 : f = hγ∗ problem. Then, according to
the Neyman–Pearson lemma, we have the following statement. Among all the tests
for (9) that admit maximal type I error probabilities that decays exponentially at
least at rate ρ, their maximal type II error probabilities decay at most at rate ρ.
This asymptotic efficiency can only be obtained at the particular threshold λ = 1,
at which the maximal type I and the type II error probabilities decay exponentially
equally fast. Consider the loss function as in (3) and the risk function is

(11) R(C,f ) =
{
Pf (C) if f ∈ {gθ : θ ∈ �},
Pf

(
Cc) if f ∈ {hγ : γ ∈ �}.

According to the above discussion, the maximum risk of the rejection region C1 =
{LRn > 1} achieves the same asymptotic decay rate as that of the minimax risk
that is minC⊂Rn maxf ∈{gθ }∪{hγ } log{R(C,f )}/n → −ρ.

Upon considering the exponential decay rate of the two types of error prob-
abilities, one can simply reduce the problem to testing H0 : f = gθ∗ against
H1 : f = hγ∗ . Each of these two distributions can be viewed as the least favor-
able distribution if its own family is chosen to be the null family. The results in
Lemma 3 and Theorem 4 along with their proofs suggest that the maximal type
I and type II error probabilities are achieved at f = gθ∗ and f = hγ∗ . In addi-
tion, under the distribution gθ∗ and conditional on the event C1, in which H0 is
rejected, the maximum likelihood estimator γ̂ converges to γ∗; vice versa, under
the distribution f = hγ∗ , if H0 is not rejected, the maximum likelihood estimator
θ̂ converges to θ∗.

2.3. Relaxation of technical conditions. The results of Lemma 3 and Theo-
rem 4 require three technical conditions. Condition A1 ensures that the two fam-
ilies are separated and it is crucial for the exponential decay of the error prob-
abilities. Condition A2, though important for the proof, can be relaxed for most
parametric families. They can be replaced by certain localization conditions for
the maximum likelihood estimator. We present one as follows:
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A4 There exist parameter-dependent compact sets Aθ, Ãγ ⊂ � and Bγ , B̃θ ⊂ �

such that for all θ and γ

lim inf
n→∞

1

n
logPgθ

(
θ̂ ∈ B̃c

θ or γ̂ ∈ Ac
θ

)
< −ρ,

(12)

lim inf
n→∞

1

n
logPhγ

(
θ̂ ∈ Bc

γ or γ̂ ∈ Ãc
γ

)
< −ρ,

where θ̂ and γ̂ are the maximum likelihood estimators under the two families.
Condition A3 is satisfied if the maximization in the definition of Si is taken on
the set Aθ and B̃θ when the tail is computed under gθ and is taken on the set
Ãγ and Bγ when the tail is computed under hγ .

REMARK 5. Assumption A4 can be verified by means of large deviations of
the maximum likelihood estimator; see Arcones (2006). Under regularity condi-
tions, the probability that the maximum likelihood estimator deviates from the
true parameter by a constant decreases exponentially. One can choose the constant
large enough so that it decays at a faster rate than ρ and thus Assumption 4 is
satisfied.

Consider the first probability in (12) under gθ . We typically choose B̃θ to
be a reasonably large compact set containing θ , and thus Pgθ (θ̂ ∈ B̃c

θ ) decays
exponentially fast at a higher rate than ρ. For the choice of Aθ , we first de-
fine γθ = arg maxγ∈� Egθ {loghγ (X)} that is the limit of γ̂ under gθ . Then we
choose Aθ be a sufficiently large compact set containing γθ so that the decay
rate of Pgθ (γ̂ ∈ Ac

θ ) is higher than ρ. Similarly, we can choose Bγ and Ãγ .
Furthermore, the maximum score function for a single observation over a com-
pact set usually has a sufficiently light tail to satisfy condition A4, for instance,
Pgθ (sup

θ∈B̃θ ,γ∈Aθ
|∇θ lθγ | > x) ≤ e−(logx)1+η

.

COROLLARY 6. Consider a composite null hypothesis against composite al-
ternative hypothesis given as in (9). Suppose that conditions A1 and A4 are satis-
fied. Then the asymptotic decay rates of the maximal type I and type II error proba-
bilities are identical, more precisely, supθ∈� logPgθ (C1) ∼ supγ∈� logPhγ (Cc

1) ∼
−n × minθ,γ ρθγ .

The proof of this corollary is very similar to that of Theorem 4 and, therefore,
is included in the supplementary material.

3. Extensions.

3.1. On asymptotic behavior of Bayes factor. The result in Theorem 4 can be
further extended to the study of Bayesian model selection. Consider the two fami-
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lies in (9) each of which is endowed with a prior distribution on its own parameter
space, denoted by φ(θ) and ϕ(γ ). We use M to denote the family membership:
M = 0 for the g-family and M = 1 for the h-family. Then the Bayes factor is

(13) BF = p(X1, . . . ,Xn|M = 1)

p(X1, . . . ,Xn|M = 0)
=
∫
γ∈� ϕ(γ )

∏n
i=1 hγ (Xi) dγ∫

θ∈� φ(θ)
∏n

i=1 gθ (Xi) dθ
.

With a similar derivation as that of Bayesian information criterion [Schwarz
(1978)], the marginalized likelihood p(X1, . . . ,Xn|M = i) is the maximized like-
lihood multiplied by a polynomial prefactor depending on the dimension of the
parameter space. Therefore, we can approximate the Bayesian factor by the gener-
alized likelihood ratio statistic as follows:

(14) κ−1n−β ≤ BF

LRn

≤ κnβ

for some κ and β sufficiently large. Therefore, log BF = log LRn +O(logn). Since
the expectation of log LRn is of order n, the O(logn) term does not affect the
exponential rate. Therefore, we have the following result.

THEOREM 7. Consider two families of distributions given as in (9) satisfying
conditions A1–3. The prior densities ϕ and φ are positive and Lipschitz continu-
ous. We select M = 1 if BF > 1 and M = 0 otherwise where BF is given by (13).
Then the asymptotic decay rate of selecting the wrong model are identical under
each of the two families. More precisely,

log
∫
θ∈�

Pgθ (BF > 1)φ(θ) dθ ∼ sup
θ∈�

logPgθ (BF > 1)

∼ log
∫
γ∈�

Phγ (BF ≤ 1)ϕ(γ ) dγ

∼ sup
γ∈�

logPhγ (BF ≤ 1)

∼ −n × min
θ,γ

ρθγ .

The proof of the above theorem is an application of Theorem 4 and (14), and
thus we omit it. The above result does not rely on the validity of the prior distribu-
tions. Therefore, model selection based on Bayes factor is asymptotically efficient
even if the prior distribution is misspecified. That is, the Bayes factor is calculated
based on the probability measures with density functions ϕ and φ that are different
from the true prior probability measures under which θ and γ are generated.

3.2. Extensions to more than two families. Suppose that there are K nonover-
lapping families {gk,θk

: θk ∈ �k} for k = 1, . . . ,K , among which we would
like to select the true family to which the distribution f belongs. Let Lk(θk) =
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i=1 gk,θk

(Xi) be the likelihood of family k. A natural decision is to select the
family that has the highest likelihood, that is, k̂ = arg maxk=1,...,K supθk

Lk(θk).

According to the results in Theorem 4, we obtain that supk,θk
logPgk,θk

(k̂ �= k) ∼
−nρ, where ρ is the smallest generalized Chernoff indices, defined as in Theo-
rem 4, among all the (K − 1)K/2 pairs of families. To obtain the above limit, one
simply considers each family k as the null hypothesis and the union of the rest
K − 1 altogether as the alternative hypothesis.

With the same argument as in Section 3.1, we consider Bayesian model
selection among the K families each of which is endowed with a prior
φk(θk). Consider the marginalized maximum likelihood estimator k̂B =
arg maxk

∫
Lk(θk)φk(θk) dθk that admits the same misclassification rate

supk,θk
logPgk,θk

(k̂B �= k) ∼ supk log
∫

Pgk,θk
(k̂B �= k)φk(θk) dθk ∼ −nρ.

4. Results for possibly nonseparated families.

4.1. The asymptotic approximation of error probabilities. We extend the re-
sults to the cases when the g-family and the h-family are not necessarily separated,
that is,

(15) min
θ∈�,γ∈�

Egθ

{
loggθ (X) − loghγ (X)

}= 0.

In the case of (15), the Chernoff index is trivially zero. We instead derive the
asymptotic decay rate of the following error probabilities. For some θ0 ∈ � such
that minγ Egθ0

{loggθ0(X) − loghγ (X)} > 0, we consider the type I error proba-

bility Pgθ0
(LRn > enb) as n → ∞ where LRn is the generalized likelihood ratio

statistic as in (1). For b, we require that

(16) sup
γ∈�

Egθ0

{
loghγ (X) − loggθ0(X)

}
< b

ensuring that Pgθ0
(LRn > enb) eventually converges to zero.

The statement of the theorem requires the following construction. For each θ

and γ , we first define the moment generating function of loghγ (X)− loggθ (X)−
b as Mgθ0

(θ, γ, λ) = Egθ0
[exp{λ(loghγ (X) − loggθ (X) − b)}] and consider the

optimization problem

(17) M†
gθ0

� inf
θ∈�

sup
γ∈�

inf
λ≥0

Mgθ0
(θ, γ, λ).

Under Assumption A2, there exists at least one solution to the above optimization
and let (θ†, γ †, λ†) denote one of them. Furthermore, we define a measure Q† that
is absolutely continuous with respect to Pgθ0

:

(18)
dQ†

dPgθ0

= exp
{
λ†(loghγ †(X) − loggθ†(X) − b

)}
/M†

gθ0
.
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REMARK 8. The inner most optimization of the rate function (17) has a
close connection to the Kullback–Leibler divergence. In particular, for each θ

and γ , infλ≥0 Mgθ0
(θ, γ, λ) has the following representation. Define a family

of measure dQλ/dPgθ0
= exp{λ(loghγ (X) − loggθ (X) − b)}/Mgθ0

(θ, γ, λ) and

the Kullback–Leibler divergence D(Qλ|Pgθ0
) = EQλ{log(dQλ/dPgθ0

)}. Then we
have the following representation:

− inf
λ≥0

logMgθ0
(θ, γ, λ) = inf

λ:EQλ {loghγ (X)−loggθ (X)}≥b
D(Qλ|Pgθ0

).

It is straightforward to verify that the optimization on the right-hand side is solved
on the boundary. Let λ∗ solve EQλ∗ {loghγ (X) − loggθ (X)} = b. Thus, the rate
function is − infλ≥0 logMgθ0

(θ, γ, λ) = D(Qλ∗ |Pgθ0
).

DEFINITION 9 (Solid tangent cone). For a set A ⊂ Rd and x ∈ A, the solid
tangent cone TxA is defined as TxA = {y ∈ Rd : ∃ ym and λm such that ym →
y, λm → 0 as m → ∞, and x + λmym ∈ A}.

If A has continuously differentiable boundary and x ∈ ∂A, then TxA consists
of all the vectors in Rd that have negative inner products with the normal vector
to ∂A at x pointing outside of A; if x is in the interior of A, then TxA = Rd . We
consider the following technical conditions for the main theorem in this section:

A5 The moment generating function Mgθ0
is twice differentiable at (θ†, γ †, λ†).

A6 Under Q†, the solution to the Euler condition is unique, that is, the equation
with respect to θ and γ

EQ†{
y�∇θ loggθ (X)

}≤ 0 for all y ∈ Tθ�,

EQ†{
y�∇γ loghγ (X)

}≤ 0 for all y ∈ Tγ �

has a unique solution (θ̄ , γ̄ ). In addition, EQ†{supθ∈� |∇2
θ loggθ (X)|} <

∞ and EQ†{supγ∈� |∇2
γ loghγ (X)|} < ∞. We also assume that under Q†,√

n(θ̂ − θ̄ ) = OQ†(1) and
√

n(γ̂ − γ̄ ) = OQ†(1) as n → ∞, where θ̂ and

γ̂ are maximum likelihood estimators θ̂ = arg supθ

∑n
i=1 loggθ (Xi) and γ̂ =

arg supγ

∑n
i=1 loghγ (Xi). A random sequence an = OQ†(1) if it is tight under

measure Q†.
A7 We assume that gθ0 does not belong to the closure of the family of distributions

{hγ : γ ∈ �}, that is, infγ∈� D(gθ0‖hγ ) > 0.

Assumption A6 requires n−1/2 convergence of θ̂ and γ̂ under Q†. It also re-
quires the local maximum of the function EQ†{loggθ (X)} and EQ†{loghγ (X)}
to be unique. We elaborate the Euler condition for θ ∈ int(�) and θ ∈ ∂� sep-
arately. If θ ∈ int (�), then Tθ� = Rdg . The Euler condition is equivalent to
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EQ†{∇θ loggθ (X)} = 0, which is the usual first-order condition for a local maxi-
mum. If θ ∈ ∂�, then the Euler condition requires that the directional derivative of
EQ†{loggθ (X)} along a vector pointing toward inside � is nonpositive. Assump-
tion A7 guarantees that the probability limn→∞ Pgθ0

(LRn > enb) = 0 for some b.
Unlike other conditions, it is not symmetric between hγ and gθ . This is because
we are interested in computing the type I error under gθ0 . In the case of type II
error computation, we need to switch their roles.

THEOREM 10. Under Assumptions A2–A3 and A5–A7, for each b satisfy-
ing (16), we have logPgθ0

(LRn > enb) ∼ −n × ρ†
gθ0

, where ρ†
gθ0

= − logM†
gθ0

and

M†
gθ0

is defined in (17).

The following corollary illustrates how the result of the above theorem is ap-
plied to the special case in which b = 0, the most common choice of threshold in
model selection between two parametric families.

COROLLARY 11. Let Cn = {LRn > 1} be the critical region corresponding
to b = 0 in Theorem 10. For all g-family, h-family and the underlying true dis-
tribution f satisfying the assumptions of Theorem 10, we have logPf (Cn) ∼
n log(M

†
f ), where log(M

†
f ) < 0 is defined similarly as in (17) for f in the g-family.

REMARK 12. Corollary 11 suggests that the probability of selecting the
wrong model decays to zero exponentially fast if the true data generating distri-
bution f stays away from the family that it does not belong to. In the case that
f lies precisely on the boundary between the two families, the model selection or
testing of hypothesis is an ill-posed problem.

Theorem 10 provides a means to approximate the type I and type II error prob-
abilities for general parametric families. The above results are applicable to both
cases that the two families are separated or not separated.

According to standard large deviations calculation for random walk, we have
that for each θ ∈ � and γ ∈ �, logPgθ0

(
∑n

i=1 loghγ (Xi) − loggθ (Xi) − nb >

0) ∼ n infλ logMgθ0
(θ, γ, λ). This fact together with Theorem 10 imply that

logPgθ0
(LRn > 1) ∼ infθ supγ logPgθ0

(
∑n

i=1 loghγ (Xi) − loggθ (Xi) > nb) ∼
logPgθ0

(
∑n

i=1 loghγ †(Xi) − loggθ†(Xi) > nb). The exponential decay rate of the
error probabilities under gθ0 is the same as the exponential decay rate of the prob-
ability that hγ † is preferred to gθ† . Furthermore, compared with the results in
Lemma 3 that is the simple versus the composite case, the exponential decay rate
obtained in Theorem 10 involves one additional minimization with respect to θ , ac-
counting for the maximization of the likelihood over the null hypothesis; see (17).

One application of Theorem 10 is to compute the power function asymptoti-
cally. Consider the fixed type I error α and the critical region of the generalized
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likelihood ratio test is determined by the quantile of a χ2 distribution, that is,
{LRn > eλα } where 2λα is the (1−α)th quantile of the χ2 distribution. This corre-
spond to choosing b = o(1). For a given alternative distribution hγ , one can com-
pute the type II error probability asymptotically by means of Theorem 10 switching
the role of the null and the alternative families. Thus, the power function can be
computed asymptotically.

4.2. Application to variable selection in generalized linear models. We dis-
cuss the application of Theorem 10 to model selection for generalized linear mod-
els [McCullagh and Nelder (1989)]. Let Yi be the response of the ith observation
and X(i) = (Xi1, . . . ,Xip)T and Z(i) = (Zi1, . . . ,Ziq)

T be two sets of predictors,
i = 1, . . . , n. Consider a generalized linear model with canonical link function and
the true conditional distribution of Yi is

gi

(
yi, β

0)= exp
{(

β0)T X(i)yi − b
((

β0)T X(i))+ c(yi)
}
,

(19)
i = 1,2, . . . , n,

where f (y) = ec(y) is the base-line density, b(·) is the logarithm of the mo-
ment generating function, β0 = (β0

1 , . . . , β0
p)T is the vector of true regression

coefficients, and X is the set of true predictors. Let the null hypothesis be H0 :
gi(yi, β) = exp{βT X(i)yi − b(βT X(i)) + c(yi)}, i = 1,2, . . . , n, and the alter-
native hypothesis be H1 : hi(yi, γ ) = exp{γ T Z(i)yi − b(γ T Z(i)) + c(yi)}, i =
1,2, . . . , n. We further assume that H1 does not contain (19). Conditional on the
covariates X and Z, we consider the asymptotic decay rate of the type I error prob-

ability Pβ0(LRn ≥ 1), where LRn = supγ

∏n
i=1 hi(Yi ,γ )

supβ

∏n
i=1 gi(Yi ,β)

is the generalized likelihood

ratio.
We present the construction of the rate function as follows. For each β ∈ Rp ,

γ ∈ Rq and λ ∈ R, define ρ̃n(β, γ,λ) = 1
n

∑n
i=1{λ[b(γ T Z(i)) − b(βT X(i))] +

b((β0)T X(i)) − b((β0)T X(i) + λ(γ T Z(i) − βT X(i)))}. Taking derivative with
respect to λ, we have ∂

∂λ
ρ̃n(β, γ,λ) = 1

n

∑n
i=1{b(γ T Z(i)) − b(βT X(i)) −

b′((β0)T X(i) + λ(γ T Z(i) − βT X(i)))(γ T Z(i) − βT X(i))}. From the fact that b(·)
is a convex function, we have lim supλ→+∞ ∂

∂λ
ρ̃n(β, γ,λ) < 0, provided that

βT X(i) �= γ T Z(i) for some i. Define the set

Bn =
{
β : inf

γ

∂

∂λ
ρ̃n(β, γ,0) ≥ 0

}
.

Then for β ∈ Bn and γ ∈ Rq , there is a λ ≥ 0 such that ∂
∂λ

ρ̃n(β, γ,0) = 0. Since b

is convex, β0 ∈ Bn, implying that Bn is never empty. Now,

∂2

(∂λ)2 ρ̃n(β, γ,λ)

= −1

n

n∑
i=1

b′′((β0)T X(i) + λ
(
γ T Z(i) − βT X(i)))(γ T Z(i) − βT X(i))2 < 0,



14 X. LI, J. LIU AND Z. YING

if βT X(i) �= γ T Z(i) for some i. Therefore, there is a unique solution to the maxi-
mization supλ ρ̃n(β, γ,λ). We further consider the optimization:

(20) ρ̃†
n = sup

β∈Bn

inf
γ

sup
λ≥0

ρ̃n(β, γ,λ).

We consider the following technical conditions:

A8 For each n, the solution to (20) exists, denoted by (β†
n, γ †

n , λ†
n). There exists

a constant κ1 such that ‖β†
n‖ ≤ κ1, ‖γ †

n ‖ ≤ κ1, and λ†
n ≤ κ1 for all n. Here,

‖ · ‖ is the Euclidean norm.
A9 There exists a constant δ1 > 0 such that infγ supλ ρ̃n(β

0, γ, λ) > δ1 for all n.
A10 There exists a constant κ2 such that ‖X(i)‖ ≤ κ2 and ‖Z(i)‖ ≤ κ2 for all i.

Additionally, there exits δ2 > 0 such that for all n the smallest eigenvalue of
1
n

∑n
i=1 X(i)X(i)T is bounded below by δ2.

A11 For any compact set K ⊂ R, infu∈K b′′(u) > 0. In addition, b(·) is four-time
continuously differentiable.

Assumption A8 requires that the solution of the optimization (20) does not tend
to infinity as n increases, which is a mild condition. In particular, if the Kullback–
Leibler divergence D(gi(·, β0)|gi(·, β)) tend to infinity uniformly for all i as ‖β‖
goes to infinity, then Bn is a bounded subset of Rp and ‖β†

n‖ is also bounded.
Similar checkable sufficient conditions can be obtained for γ †

n and λ†
n.

THEOREM 13. Under Assumptions A8–A11, conditional on the covariates
X(i) and Z(i), i = 1, . . . , n, we have logPβ0(LRn ≥ 1) ∼ −n × ρ̃†

n , where ρ̃†
n is

defined in (20).

For generalized linear models, the moment generating function of likelihood
ratio is Eβ0(exp{λ∑n

i=1[loghi(Yi, γ )− loggi(Yi, β)]}) = e−nρ̃n(β,γ,λ). Therefore,
ρ̃†

n is a natural generalization of ρ†
gθ0

for the nonidentically distributed case.
Theorem 13 provides the asymptotic rate of selecting the wrong model by max-

imizing the likelihood. The asymptotic rate as a function of the true regression
coefficients β0 quantifies the strength of the signals. The larger the rate is, the eas-
ier it is to select the correct variables. The rate also depends on covariates. If Z

is highly correlated with X, then the rate is small. Overall, the rate serves as an
efficiency measure of selecting the true model from families that misspecifies the
model.

5. Numerical examples. In this section, we present numerical examples to
illustrate the asymptotic behavior of the maximal type I and type II error probabil-
ities and the sample size tends to infinity. The first one is an example of continuous
distributions and the second one is an example of discrete distributions. The third
one is an example of linear regression models where the null hypotheses and al-
ternative are not separated. In these examples, we compute the error probabilities
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using importance sampling corresponding to the change of measure in the proof
with sufficiently large number of Monte Carlo replications to ensure that our esti-
mates are sufficiently accurate.

EXAMPLE 14. Consider the case of lognormal versus exponential distribu-

tions. For x > 0, let gθ (x) = 1
x(2πθ)1/2 e

− (logx)2

2θ , � = (0,+∞) and hγ (x) = 1
γ
e
− x

γ ,
� = (0,+∞) be the density functions of the lognormal and the exponential distri-
butions.

For each θ and γ , we compute ρθγ numerically. Figure 1(a) shows the con-
tour plot of ρθ,γ . The minimum of ρθγ is 0.020 and is obtained at (θ∗, γ ∗) =
(1.28,1.72). From the theoretical analysis, the maximal type I and type II error
probabilities for the test decay at rate e−nρθ∗γ ∗ .

Figure 1(b) is the plot of the maximal type I and type II error probabili-
ties as a function of the sample size for the composite versus composite test
H0 : f ∈ {gθ ; θ ∈ �} against H1 : f ∈ {hγ ;γ ∈ �} and simple versus simple test
H0 : f = gθ∗ against H1 : f = hγ∗ . We also fit a straight line to the logarithm of
error probabilities against the sample sizes using least squares and the slope is
−0.022. This confirms the theoretical findings. The error probabilities shown in
Figure 1(b) range from 7 × 10−5 to 0.12 and the range for sample size is from 50
to 370.

EXAMPLE 15. We next consider the case of Poisson versus geometric distri-
butions. Let gθ (x) = e−θ θx

x! , � = [1,+∞), and hγ (x) = γ x

(1+γ )x+1 , � = [0.5,+∞),

for x ∈ Z
+. The parameter γ is the failure to success odds. The minimum Chernoff

FIG. 1. Contour plots of ργ,θ and decay of error probabilities.
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index without constraint is attained at θ = γ = 0 and ρ00 = 0. Thus we truncate
the parameter spaces away from zero to separate the two families.

The Chernoff index ρθ,γ can be computed numerically and is minimized at
(θ∗, γ ∗) = (1,0.93), with ρθ∗,γ ∗ = 0.023. Figure 1(c) shows the contour plot of
ρθ,γ . Same as in the previous example, we compute the maximal type I and type II
error probabilities of the composite versus composite test and simple versus simple
test. Figure 1(d) shows the maximal type I and type II error probabilities as a
function of the sample size. The error probabilities appeared in Figure 1(d) range
from 1.0 × 10−4 to 0.10 with the sample sizes range from 40 to 400. We also fit a
straight line to the logarithm of error probabilities against the sample sizes and the
slope is −0.025. This numerical analysis confirms our theorems.

EXAMPLE 16. We now consider two linear regression models with different
covariates, H0 : Y = β1X1 +β2X2 +ε1 against H1 : Y = β1X1 + ζ1Z1 +ε2, where
(X1,X2,Z1) jointly follows the multivariate Gaussian distribution with the mean
(0,0,0)T and the covariance matrix �. The random noises ε1 and ε2 follow the
normal distributions N(0, σ 2

1 ) and N(0, σ 2
2 ), respectively, and are independent of

(X1,X2,Z1). We assume the true model to be Y = β0
1X1 + β0

2X2 + ε, with the
following parameters:

β0
1 = 1, β0

2 = 2, ε ∼ N(0,1), and � =
⎡⎣ 1 0.1 0.1

0.1 1 0.1
0.1 0.1 1

⎤⎦ .

Let (Xi1,Xi2,Zi1, Yi)
T be i.i.d. copies of (X1,X2,Z1, Y ) generated under the true

model, for i = 1, . . . , n. Let θ = (β1, β2) and γ = (β1, ζ1) be the regression coeffi-
cients for the null and the alternative hypotheses, respectively. The maximum like-
lihood estimators for θ and γ are the least square estimators θ̂ = (X̃�X̃)−1X̃�Ỹ

and γ̂ = (Z̃�Z̃)−1Z̃�Ỹ , where Ỹ = (Y1, . . . , Yn)
T and X̃ and Z̃ are n×2 matrices

with respective row vectors (Xi1,Xi2) and (Xi1,Zi1), i = 1, . . . , n. We consider
the error probability that the maximized log-likelihood of H0 is smaller than that of
H1, equivalently, the residual sum of squares under H0 is larger than that under H1,
that is, Pβ0,�(‖Ỹ − X̃θ̂‖2 > ‖Ỹ − Z̃γ̂ ‖2). From the theoretical analysis, the above

probability decays at rate e
−nρ

†
gθ0 as n → ∞, where the definition of ρ†

gθ0
is given

in Theorem 10. We solve the optimization problem (17) numerically and obtain
ρ†

gθ0
= 0.45. We simulate the probability Pβ0,�(‖Ỹ − X̃θ̂‖2 > ‖Ỹ − Z̃γ̂ ‖2) of dif-

ferent sample sizes and fit straight lines for logPβ0,�(‖Ỹ − X̃θ̂‖2 > ‖Ỹ − Z̃γ̂ ‖2)

against n using least square. The range of error probabilities is from 10−4 to 0.25
with sample size from 3 to 18. The range of error probabilities is from 1.2 × 10−8

to 4.0 × 10−6 with the sample size from 24 to 36. The fitted slope in the former
case is −0.52 and the fitted slope in the latter case is −0.47. This confirms our
theoretical results.
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6. Concluding remarks. The generalized likelihood ratio test of separate
parametric families that was put forth by Cox in his two seminal papers has re-
ceived a great deal of attention in the statistics and econometrics literature. The
present investigation takes the viewpoint of an early work by Chernoff (1952)
where testing a simple null versus a simple alternative is considered. By impos-
ing that the two types of error probabilities decay at the same rate, we extend the
Chernoff index to the case of the Cox test.

When the two families are not completely separated, we derive the rate of ex-
ponential decay (type I) error probability of the Cox test under the true model-
parameter specification. This formulation covers more broadly the model selection
problem, including selection of covariates among competing sets of covariates for
generalized linear models.

Our results are under the basic assumption that the data come from one of the
parametric families under consideration. It is often the case that none is the true
model. The finite sample deviation and large deviations bound of quasi-MLE under
model misspecification is discussed in Spokoiny (2012). Similar results for semi-
parametric models are presented in Andresen and Spokoiny (2014). An interesting
future development is the exact large deviations rate under this setting.

An initial motivation that led to the Cox formulation of the problem comes from
the survival analysis where different models are used to fit failure time data. The
econometrics literature also contains much subsequent development. Semipara-
metric models that contain infinite dimensional nuisance parameters are widely
used in both econometrics and survival analysis. It would be of interest to develop
parallel results for testing separate semiparametric models.

7. Proof of Lemma 3. Throughout the proof, we adopt the following no-
tation an

∼= bn if logan ∼ logbn. Also, we use E(X;A) = E{XI (ω ∈ A)} to
denote expectation of X on the set A. We define the log-likelihood ratio as
lγ (x) = loghγ (x) − logg(x). The generalized log-likelihood ratio statistic is de-
fined as l = supγ

∑n
i=1 liγ where liγ = lγ (Xi). The generalized likelihood ratio test

admits the rejection region Cλ = {el > λ}. We consider the case that λ = 1 and
show that for this particular choice of λ the maximal type I and type II error prob-
abilities decay exponentially fast with the same rate. We let γ∗ = arg infργ , and
thus ρ = ργ∗ .

Based on Chernoff’s calculation of large deviations for the log-likelihood ratio
statistic, we proceed to the calculation of the type I error probability Pg(l > 0) =
Pg(supγ

∑n
i=1 liγ > 0). We now provide an approximation to it by establishing a

lower bound and an upper bound. We start with the lower bound by noticing that
Pg(supγ

∑n
i=1 liγ > 0) ≥ supγ Pg(

∑n
i=1 liγ > 0). This is further bounded bounded

below by e−{1+o(1)}nρ , according to Proposition 1. where ρ = minργ . For the up-
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per bound, we split the probability, with some β > 0,

Pg

(
sup
γ

n∑
i=1

liγ > 0

)
≤ Pg

(
sup
γ

n∑
i=1

liγ > 0, sup
γ

∣∣∣∣∣
n∑

i=1

∇liγ

∣∣∣∣∣< en1−β

)
(21)

+ Pg

(
sup
γ

∣∣∣∣∣
n∑

i=1

∇liγ

∣∣∣∣∣≥ en1−β

)
.

The first term on the right-hand side is bounded by Lemma 17.

LEMMA 17. Consider a random function ηn(θ) living on a d-dimensional
compact domain θ ∈ D, where n is an asymptotic parameter that will be send
to infinity. Suppose that ηn(θ) is almost surely differentiable with respect to θ

and for each θ , there exists a rate ρ(θ) such that P {ηn(θ) > ζn} ∼= e−nρ(θ)

for all ζn/n → 0 as n → ∞. This convergence is uniform in θ . Then we have the
following approximation for all β > 0:

lim inf
n→∞ −1

n
logP

{
sup
θ∈D

ηn(θ) > 0, sup
θ∈D

∣∣∇ηn(θ)
∣∣< en1−β

}
≥ min

θ
ρ(θ).

The proof of this lemma is in the supplementary materials. It employs a change
of measure defined on the continuous sample space. Similar techniques are used
for the extreme analysis of stochastic systems driven by Gaussian processes [Liu
and Xu (2012), Adler, Blanchet and Liu (2012), Li and Liu (2015), Liu, Lu and
Zhou (2015), Liu and Xu (2014a, 2014b)].

With the aid of Proposition 1, we have that the random function
∑n

i=1 liγ satis-
fies the assumption in Lemma 17 with ρ(γ ) = ργ . Then the first term in (21) is
bounded from the above by e−{1+o(1)}nρ . For the second term in (21), according to
condition A3, we choose β sufficiently small such that

Pg

(
sup
γ

∣∣∣∣∣
n∑

i=1

∇liγ

∣∣∣∣∣≥ en1−β

)
≤ nPg

(
sup
γ

∣∣∇liγ
∣∣> n−1en1−β

)
= o

(
e−nρ).

Thus, we obtain an upper bound Pg(supγ

∑n
i=1 liγ > 0) ≤ e−n{ρ+o(1)}. Then the

type I error probability is approximated by

(22) e−nρ ∼= sup
γ

Pg

(
n∑

i=1

liγ > 0

)
≤ Pg

(
sup
γ

n∑
i=1

liγ > 0

)
≤ e−n{ρ+o(1)}.

We now consider the type II error probability α2 = supγ Phγ (l < 0). For each γ ,
note that Phγ (l < 0) = Phγ (supγ1

∑n
i=1 liγ1

< 0) ≤ Phγ (
∑n

i=1 liγ < 0). Note that the
right-hand side is the type II error probability of the likelihood ratio test. According
to Chernoff’s calculation, we have that Phγ (l < 0) ≤ Phγ (

∑n
i=1 liγ < 0) ∼= e−nργ
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for all γ . We take maximum with respect to γ on both sides and obtain that

(23) sup
γ

Phγ (l < 0) ≤ sup
γ

Pg

(
n∑

i=1

liγ > 0

)
∼= e−nminγ ργ .

Thus, the maximal type II error probability has an asymptotic upper bound that
decays at the rate of the Chernoff index.

In what follows, we show that this asymptotic upper bound is attained. Choose
λn so that Pg(supγ

∑n
i=1 liγ > 0) = Pg(

∑n
i=1 liγ∗ > nλn). Note that g is fixed, λn

depends on g, and the probabilities on both sides of the above identity decay at
the rate e−nρ . Together with the continuity of the large deviations rate function, it
must be true that λn → 0−. We apply Neyman–Pearson lemma to the simple null
H0 : f = g versus simple alternative H1 : f = hγ∗ . Note that {∑n

i=1 liγ∗ > nλn} is a
uniformly most powerful test and {supγ

∑n
i=1 liγ > 0} is a test with the same type

I error probability. Then we have that

(24) Phγ∗

(
sup
γ

n∑
i=1

liγ < 0

)
≥ Phγ∗

(
n∑

i=1

liγ∗ < nλn

)
.

That is, the type II error probability of the generalized likelihood ratio test must be
greater than that of the likelihood ratio test under the simple alternative hγ∗ . Note
that λn → 0−. Thanks to the the continuity of the large deviations rate function,
we have that

(25) Phγ∗

(
n∑

i=1

liγ∗ < nλn

)
∼= Phγ∗

(
n∑

i=1

liγ∗ < 0

)
∼= e−nρ.

Combining (23), (24) and (25), we have supγ Phγ (l < 0) ∼= e−nρ concluding the
proof.

8. Proof of Theorem 4. The one-to-one log-likelihood ratio is lθγ (x) =
loghγ (x) − loggθ (x). The generalized log-likelihood ratio statistic is

l = sup
γ

n∑
i=1

loghγ (Xi) − sup
θ

n∑
i=1

loggθ (Xi) = inf
θ

sup
γ

n∑
i=1

liθγ ,

where liθγ = lθγ (Xi) and the rejection region is Cλ = {el > λ}. We define that
γ (θ) = arg infγ ρθγ , and θ(γ ) = arg infθ ρθγ , and (θ∗, γ∗) = arg infθ,γ ρθγ . Note
that the null and the alternative are now symmetric, thus we only need to consider
one of the two types of error probabilities. We consider the type II error probability.
We now define kθ = supγ

∑n
i=1 liθγ . For each given θ and γ , we have a simple

upper bound

(26) Phγ (kθ < 0) ≤ Phγ

(
n∑

i=1

liθγ < 0

)
∼= e−nρθγ .
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We now proceed to the type II error probability when hγ is the true distribution,
that is,

Phγ

(
inf
θ

kθ < 0
)

≤ Phγ

(
inf
θ

kθ < 0, sup
θ

|∇kθ | < en1−β
)

+ Phγ

(
sup
θ

|∇kθ | ≥ en1−β
)
.

For the first term on the right-hand side, we have, in view of Lemma 17 and (26),
Phγ (infθ kθ < 0, supθ |∇kθ | < en1−β

) ≤ e−n{infθ ρθγ +o(1)}. For the second term, ac-

cording to condition A3, Phγ {supθ |∇(supγ

∑n
i=1 liθγ )| ≥ en1−β } = o(e−nρ). Thus,

Phγ (infθ kθ < 0) = Phγ (l < 0) ≤ e−n{infθ ρθγ +o(1)}, which provides an upper bound
for the type II error probability supγ Phγ (l < 0) ≤ e−n{infθ,γ ρθγ +o(1)}. We now
provide a lower bound. For a given θ and γ (θ) = arg infγ ρθγ , applying proof
of Lemma 3 for the type II error probability by considering H0 : f = gθ and
H1 : f ∈ {hγ : γ ∈ �}, we have Phγ(θ)

(kθ < 0) ∼= e−nρθγ (θ) . Thus, Phγ(θ)
(infθ kθ <

0) ≥ Phγ(θ)
(kθ < 0) ∼= e−nρθγ (θ) . By setting θ = θ∗ in the above asymptotic identity,

we conclude the proof.

9. Proof of Theorem 10. The proof of the theorem consists of
establishing upper and lower bounds for the probability Pgθ0

(LRn > enb) =
Pgθ0

(supγ∈� infθ∈�

∑n
i=1[loghγ (Xi) − loggθ (Xi)] > nb).

Upper bound. The event {supγ∈� infθ∈�

∑n
i=1 loghγ (Xi) − loggθ (Xi) > nb}

implies {supγ∈�

∑n
i=1 loghγ (Xi) − loggθ†(Xi) > nb}. Therefore, we have an up-

per bound:

(27) Pgθ0

(
LRn > enb)≤ Pgθ0

(
sup
γ

n∑
i=1

loghγ (Xi) − loggθ†(Xi) > nb

)
.

We split the probability

Pgθ0

(
sup
γ

n∑
i=1

[
loghγ (Xi) − loggθ†(Xi)

]
> nb

)

≤ Pgθ0

(
sup
γ

n∑
i=1

[
loghγ (Xi) − loggθ†(Xi)

]
> nb,

sup
γ

∣∣∣∣∣
n∑

i=1

∇ loghγ (Xi)

∣∣∣∣∣< en1−β

)

+ Pgθ0

(
sup
γ

n∑
i=1

∣∣∇γ loghγ (Xi)
∣∣≥ en1−β

)
.

(28)

We establish upper bounds of the first and second terms in (28) separately. For
the first term, let ηn(γ ) =∑n

i=1[loghγ (Xi) − loggθ†(Xi)] − nb. For each γ , the
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exponential decay rate of the probability

(29) logPgθ0

(
ηn(γ ) ≥ 0

)≤ n log inf
λ≥0

Mgθ0

(
λ,γ, θ†)

is established with standard large deviations calculation. By Lemma 17 and
(29), the first term in (28) is bounded by supγ infλ≥0{Mgθ0

(θ†, λ, γ )}(1+o(1))n =
e
−(1+o(1))nρ

†
gθ0 . For the second term, according to Assumption A3,

Pgθ0

(
sup
γ

n∑
i=1

∣∣∇γ loghγ (Xi)
∣∣≥ en1−β

)

≤ nPgθ0

(
sup
γ

∣∣∇γ loghγ (Xi)
∣∣> n−1en1−β

)
= o

(
e
−nρ

†
gθ0
)
.

Combining the analyses for both the first and the second terms, we arrive at an

upper bound Pgθ0
(LRn > enb) ≤ e

−(1+o(1))nρ
†
gθ0 .

Lower bound. Recall dQ†

dPgθ0
= exp{λ†(loghγ †(X) − loggθ†(X)) − nb}/M†

gθ0
.

Then the probability can be written as

Pgθ0

(
LRn > enb)= EQ†

{
dPgθ0

dQ† ;
n∑

i=1

[
loghγ̂ (Xi) − logg

θ̂
(Xi)

]
> nb

}
,

where γ̂ and θ̂ are the maximum likelihood estimators for the h-family and the g-
family, respectively. According to the definition of Q†, the above display is equal
to

e
−nρ

†
gθ0 EQ†

{
e
−λ†[∑n

i=1 logh
γ † (Xi)−logg

θ† (Xi)−nb];
(30)

×
n∑

i=1

loghγ̂ (Xi) − logg
θ̂
(Xi) > nb

}
,

where ρ†
gθ0

= − logM†
gθ0

. We now establish a lower bound for

I � EQ†

{
e
−λ†[∑n

i=1 logh
γ † (Xi)−logg

θ† (Xi)−nb];
n∑

i=1

loghγ̂ (Xi) − logg
θ̂
(Xi) > nb

}
.

Because e
−λ†[∑n

i=1 logh
γ † (Xi)−logg

θ† (Xi)−nb] is positive, I is lower bounded by

EQ†

{
e
−λ†[∑n

i=1 logh
γ † (Xi)−logg

θ† (Xi)−nb];
(31)

n∑
i=1

loghγ̂ (Xi) − logg
θ̂
(Xi) > nb,E1

}
,
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where E1 = {|∑n
i=1 loghγ †(Xi) − loggθ†(Xi) − nb| ≤ √

n}. On the set E1, we

have an inequality of the integrand e
−λ†[∑n

i=1 logh
γ † (Xi)−logg

θ† (Xi)−nb] ≥ e−λ†√n.
We plug this inequality back to (31) and obtain a lower bound for

(32) I ≥ e−λ†√nQ†

({
n∑

i=1

loghγ̂ (Xi) − logg
θ̂
(Xi) > nb

}
∩ E1

)
.

For the rest of the proof, we develop a lower bound for the probability
Q†({∑n

i=1 loghγ̂ (Xi) − logg
θ̂
(Xi) > nb} ∩ E1). The maximum likelihood esti-

mator γ̂ satisfies the inequality

(33)
n∑

i=1

{
loghγ̂ (Xi) − loghγ †(Xi)

}≥ 0.

Furthermore, with the aid of Rolle’s theorem, there exists θ̃ such that
n∑

i=1

{
logg

θ̂
(Xi) − loggθ†(Xi)

}
(34)

= (
θ̂ − θ†)� n∑

i=1

∇θ loggθ†(Xi) + 1

2

(
θ̂ − θ†)� n∑

i=1

∇2
θ gθ̃ (Xi)

(
θ̂ − θ†),

where “∇2
θ ” denotes the Hessian matrices with respect to θ and “·” denotes the

inner product between vectors. (33) and (34) together give

n∑
i=1

{
loghγ̂ (Xi) − logg

θ̂
(Xi)

}−
n∑

i=1

{
loghγ †(Xi) − gθ†(Xi)

}
(35)

≥ −(θ̂ − θ†)� n∑
i=1

∇θ loggθ†(Xi) − 1

2

(
θ̂ − θ†)� n∑

i=1

∇2
θ gθ̃ (Xi)

(
θ̂ − θ†).

We define E2 = {(θ̂ − θ†)�∑n
i=1 ∇θ loggθ†(Xi) ≤

√
n

4 }, E3 = {1
2 |θ̂ − θ†|2 ×

supθ

∑n
i=1 |∇2

θ loggθ (Xi)| ≤
√

n
4 }, and E4 = {

√
n

2 <
∑n

i=1[loghγ †(Xi) −
loggθ†(Xi)] − nb ≤ √

n}. Based on (35), we have that (E2 ∩ E3 ∩ E4) ⊂
{∑n

i=1 loghγ̂ (Xi) − logg
θ̂
(Xi) > nb} ∩ E1. We insert this to (31), and obtain that

(36) I ≥ e−λ†√nQ†(E2 ∩ E3 ∩ E4) ≥ e−λ†√n{Q†(E4) − Q†(Ec
2
)− Q†(Ec

3
)}

.

For the rest of the proof, we develop upper bounds for Q†(Ec
2) and Q†(Ec

3)

and a lower bound for Q†(E4). Because λ† = arg infλ Mgθ0
(θ†, γ †, λ), we have

∂
∂λ

Mgθ0
(θ†, γ †, λ†) = 0. Consequently,

EQ†(
loghγ †(X) − loggθ†(X) − b

)= (
M†

gθ0

)−1 ∂

∂λ
Mgθ0

(
θ†, γ †, λ†)= 0.
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By the central limit theorem, there exists ε0 > 0 such that lim infQ†(E4) > ε0,
a lower bound for Q†(E4). We need the following lemma, whose proof is given in
the supplementary materials.

LEMMA 18. Under settings of Theorem 10, we have γ † = γ̄ and θ† = θ̄ .

We now proceed to an upper bound of Q†(Ec
2). We split the sum

(
θ̂ − θ†)� n∑

i=1

∇θ loggθ†(Xi)

= (
θ̂ − θ†)� n∑

i=1

[∇θ loggθ†(Xi) − EQ†∇θgθ†(Xi)
]

(37)

+ n
(
θ̂ − θ†)�EQ†∇θgθ†(X).

Note that θ̂ ∈ Tθ†�. According to Assumption A6 and Lemma 18, we have that

(θ̂ − θ†)�EQ†{∇θgθ†(X)} ≤ 0. Therefore, (37) implies

(
θ̂ − θ†)� n∑

i=1

∇θ loggθ†(Xi)

(38)

≤ (
θ̂ − θ†)� n∑

i=1

[∇θ loggθ†(Xi) − EQ†∇θgθ†(Xi)
]
.

By the Chebyshev inequality and the fact E(|∇θ loggθ†(X)|2) < ∞, we have

n− 3
4
∑n

i=1[∇θ loggθ†(Xi) − EQ†∇θgθ†(Xi)] → 0 in probability Q†. By Slutsky’s
theorem and

√
n(θ̂ − θ†) = OQ†(1), we have

√
n
(
θ̂ − θ†)�n− 3

4

n∑
i=1

∇θ loggθ†(Xi) → 0 in probability Q†.

Thus, limn→∞ Q†{(θ̂ − θ†)�∑n
i=1[∇θ loggθ†(Xi) − EQ†∇θgθ†(Xi)] >

√
n

4 } = 0,
which, together with (38), implies

lim
n→∞Q†

((
θ̂ − θ†)� n∑

i=1

∇θ loggθ†(Xi) >

√
n

4

)
= 0.

Hence, Q†(Ec
2) → 0 as n → ∞. We establish an upper bound of Q†(Ec

3) using a
similar method. Again by the Chebyshev inequality we have

n− 5
4

n∑
i=1

sup
θ

∣∣∇2
θ loggθ (Xi)

∣∣→0 in probability Q†.
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According to Slutsky’s theorem and
√

n(θ̂ − θ†) = OQ†(1), we have

n
∣∣θ̂ − θ†∣∣2 × n− 5

4

n∑
i=1

sup
θ

∣∣∇2
θ loggθ (Xi)

∣∣ d→ 0.

Consequently,

lim
n→∞Q†

(∣∣θ̂ − θ†∣∣2 sup
θ

n∑
i=1

∣∣∇2
θ loggθ (Xi)

∣∣> √
n

4

)

≤ lim
n→∞Q†

(∣∣θ̂ − θ†∣∣2 n∑
i=1

sup
θ

∣∣∇2
θ loggθ (Xi)

∣∣> √
n

4

)
= 0.

Therefore, Q†(Ec
3) → 0 as n → ∞. We combine the results for Q†(Ec

2),Q
†(Ec

3),

Q†(E4) and (36) to get I ≥ ε0
2 e−λ†√n for n sufficiently large. Combining this

with (30), we arrive at Pgθ0
(LRn > enb) ≥ e

−n(1+o(1))ρ
†
gθ0 . We complete the proof

by combining the lower bound and upper bound for Pgθ0
(LRn > 1).

10. Proof of Theorem 13. The proof is similar to that of Theorem 10.
Throughout the proof, we will use κ as a generic notation to denote large and
not-so-important constants whose value may vary from place to place. Simi-
larly, we use ε as a generic notation for small positive constants. The proof of
the theorem consists of establishing upper and lower bounds for the probability
Pβ0(LRn ≥ 1) = Pβ0(supγ infβ

∑n
i=1[loghi(Yi, γ ) − loggi(Yi, β)] ≥ 0).

Upper bound. Similar to (27),

Pβ0(LRn ≥ 1) ≤ Pβ0

{
sup
γ

n∑
i=1

[
loghi(Yi, γ ) − loggi

(
Yi, β

†
n

)]≥ 0

}
.

By definitions of hi and gi , we have

loghi(Yi, γ ) − loggi

(
Yi, β

†
n

)
= [

γ T Z(i)Yi − b
(
γ T Z(i))]− [

β†T
n X(i)Yi − b

(
β†T

n X(i))].
Consequently, we have

(39) Pβ0(LRn ≥ 1) ≤ Pβ0

((
1

n

n∑
i=1

Z(i)Yi,
1

n

n∑
i=1

X(i)Yi

)
∈ An

)
,
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where An = {(s1, s2) ∈ Rp × Rq : supγ [γ T s2 − 1
n

∑n
i=1 b(γ T Z(i))] ≥ [β†T

n s1 −
1
n

∑n
i=1 b(β†T

n X(i))]}. We consider the change of measure

dQ†

dP
= exp

{
λ†

n

n∑
i=1

(
γ †T
n Z(i)Yi − β†T

n X(i)Yi

)

−
n∑

i=1

[
b
((

β0)T X(i) + λ†
n

{
γ †T
n Z(i) − β†T

n X(i)})− b
((

β0)T X(i))]}.

(40)

From (39), Pβ0(LRn ≥ 1) ≤ EQ†[ dP
dQ† ; ( 1

n

∑n
i=1 Z(i)Yi,

1
n

∑n
i=1 X(i)Yi) ∈ An].

This inequality, together with (40), gives

Pβ0(LRn ≥ 1) ≤ e
∑n

i=1{b[(β0)
T
X(i)+λ

†
n{γ †T

n Z(i)−β
†T
n X(i)}]−b[(β0)

T
X(i)]}

× EQ†

[
e−λ

†
n
∑n

i=1(γ
†T
n Z(i)Yi−β

†T
n X(i)Yi);(41)

(
1

n

n∑
i=1

Z(i)Yi,
1

n

n∑
i=1

X(i)Yi

)
∈ An

]
.

The next lemma, whose proof is in the supplementary materials, shows a property
of β†

n and An.

LEMMA 19. For all (s1, s2) ∈ An, γ †T s2 − 1
n

∑n
i=1 b(γ †T Z(i)) ≥ β†T

n s1 −
1
n

∑n
i=1 b(β†T

n X(i)).

By Lemma 19, the right-hand side of (41) is further bounded above by

Pβ0(LRn ≥ 1)

≤ exp

{
n∑

i=1

[
b
((

β0)T X(i) + λ†
n

{
γ †T
n Z(i) − β†T

n X(i)})− b
((

β0)T X(i))]
(42)

− λ†
n

n∑
i=1

[
b
(
γ †T
n Z(i))− b

(
β†T

n X(i))]}

× Q†

[(
1

n

n∑
i=1

Z(i)Yi,
1

n

n∑
i=1

X(i)Yi

)
∈ An

]
.

Because Q†[( 1
n

∑n
i=1 Z(i)Yi,

1
n

∑n
i=1 X(i)Yi) ∈ An] ≤ 1, we arrive at

Pβ0(LRn ≥ 1)

≤ exp

{
n∑

i=1

[
b
((

β0)T X(i) + λ†
n

{
γ †T
n Z(i) − β†T

n X(i)})− b
((

β0)T X(i))]
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− λ†
n

n∑
i=1

[
b
(
γ †T
n Z(i))− b

(
β†T

n X(i))]},

which, by definition of ρ̃†
n , equals e−nρ̃

†
n . Thus, Pβ0(LRn ≥ 1) ≤ e−nρ̃

†
n .

Lower bound. First,
∑n

i=1 loghi(Yi, γ
†
n ) ≥ supβ

∑n
i=1 loggi(Yi, β) implies

supγ

∑n
i=1 loghi(Yi, γ ) ≥ supβ

∑n
i=1 loggi(Yi, β). Thus, a lower bound for

Pβ0(LRn ≥ 1) is Pβ0(
∑n

i=1 loghi(Yi, γ
†
n ) − supβ

∑n
i=1 loggi(Yi, β) ≥ 0), which,

by the definition of Q† in (40), equals

exp

{
n∑

i=1

[
b
((

β0)T X(i) + λ†
n

{
γ †T
n Z(i) − β†T

n X(i)})− b
((

β0)T X(i))]}
(43)

× EQ†[
e−λ

†
n
∑n

i=1(γ
†T
n Z(i)Yi−β

†T
n X(i)Yi);E],

where E = {∑n
i=1 γ †T

n Z(i)Yi − β̂T
n X(i)Yi − b(γ †T

n X(i)) + b(β̂T
n X(i)) ≥ 0} and

β̂n = arg supβ{∑n
i=1 βT X(i)Yi − b(βX(i))}. Because exp{∑n

i=1[b((β0)
T
X(i) +

λ†
n{γ †T

n Z(i) − β†T
n X(i)}) − b((β0)

T
X(i))] − λ†

n[b(γ †T
n Z(i)) − b(β†T

n X(i))]} =
e−nρ̃

†
n , we have

(44) Pβ0(LRn ≥ 1) ≥ e−nρ̃n × J,

where J = EQ†[e−λ
†
n[∑n

i=1 γ
†T
n Z(i)Yi−β

†T
n X(i)Yi−b(γ

†T
n X(i))+b(β

†T
n X(i))];E]. We pro-

ceed to establishing a lower bound of J . We consider two events E1 = {
√

n
2 <∑n

i=1 γ †T
n Z(i)Yi − β†T

n X(i)Yi − b(γ †T
n X(i)) + b(β†T

n X(i)) ≤ √
n} and E2 =

{∑n
i=1[β̂T

n X(i)Yi − β†T
n X(i)Yi − b(β̂T

n X(i)) + b(β†T
n X(i))] ≤

√
n

2 }. Because E1 to-
gether with E2 implies E, we have E ⊃ E1 ∩ E2. Consequently, J ≥
EQ†[e−λ

†
n[∑n

i=1 γ
†T
n Z(i)Yi−β

†T
n X(i)Yi−b(γ

†T
n X(i))+b(β

†T
n X(i))];E1 ∩ E2]. Notice that on

the set E1,
∑n

i=1 γ †T
n Z(i)Yi −β†T

n X(i)Yi −b(γ †T
n X(i))+b(β†T

n X(i)) ≤ √
n. There-

fore,

(45) J ≥ e−λ
†
n
√

nQ†(E1 ∩ E2) ≥ e−λ
†
n
√

n(Q†(E1) − Q†(Ec
2
))

.

We provide an upper bound for Q†(E1) and a lower bound for Q†(Ec
2).

LEMMA 20. Let vn = VarQ
†
(
∑n

i=1 γ †T
n Z(i)Yi − β†T

n X(i)Yi − b(γ †T
n X(i)) +

b(β†T
n X(i))), then vn = O(n) as n → ∞. Furthermore, we have

L
(
v

− 1
2

n

[
n∑

i=1

γ †T
n Z(i)Yi − β†T

n X(i)Yi − b
(
γ †T
n X(i))+ b

(
β†T

n X(i))])→ N(0,1).

Here, L(·) denotes the law of random variables and N(0,1) is the distribution of
standard normal.
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This lemma, to be proved in the supplementary materials, shows that there exists
a constant ε > 0 such that

(46) Q†(E1) ≥ ε.

For Q†(E2), let u(μ,β) = (β − β†
n)T μ − ∑n

i=1[b(βT X(i)) − b(β†
nX(i))] and

v(μ) = supβ u(μ,β).

LEMMA 21. Let μ† = ∑n
i=1 b′(λ†

n(γ
†T
n Z(i) − β†

nX(i)) + (β0)
T
X(i))X(i),

then v(μ) is twice continuously differentiable around μ†, with v(μ†) = 0 and
∇v(μ†) = 0. Moreover, ∇2v(μ) = {∑n

i=1 b′′[β(μ)T X(i)]X(i)X(i)T }−1, where
β(μ) = arg supβ u(μ,β).

The proof of this lemma is in the supplementary materials. According to
Lemma 21 and Taylor expansion of v(μ) around μ†, we have

(47)
{
v(μ) ≥

√
n

2

}
⊂
{

1

2

∥∥μ − μ†∥∥2∥∥∇2v
(
μ†)∥∥

2 ≥
√

n

2

}
,

where ‖ · ‖2 is the spectral norm of matrices. By Lemma 21 and Assumptions

A10 and A11, ‖∇2v(μ†)‖2 = O(n−1). Therefore, (47) implies {v(μ) ≥
√

n
2 } ⊂

{‖μ − μ†‖ ≥ εn
3
4 }. Since Ec

2 = {v(
∑n

i=1 X(i)Yi) ≥
√

n
2 }, we have Q†(Ec

2) ≤
Q†(‖∑n

i=1 X(i)Yi − μ†‖ ≥ εn
3
4 ). This, together with Chebyshev’s

inequality, implies Q†(Ec
2) ≤ (ε−2n− 3

2 )EQ†‖∑n
i=1 X(i)Yi − μ†‖2. Because

EQ†‖∑n
i=1 X(i)Yi − μ†‖2 = O(n), we have Q†(Ec

2) → 0 as n → ∞. Combining

this result with (45) and (46), we arrive at a lower bound J ≥ ε
2e−λ

†
n
√

n. This lower

bound of J together with (44) give a lower bound P(LRn ≥ 1) ≥ ε
2e−nρ̃

†
n−λ

†
n
√

n.
Under Assumption A9, ρ̃†

n ≥ infγ supλ ρ̃n(β
0, γ, λ) ≥ δ1, so λ†

n

√
n = o(1)nρ̃†

n .

Thus, we have Pβ0(LRn ≥ 1) ≥ e−nρ̃
†
n(1+o(1)). We complete the proof by combin-

ing the lower and upper bounds for Pβ0(LRn ≥ 1).
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SUPPLEMENTARY MATERIAL

Supplement to “Chernoff index for Cox test of separate parametric fam-
ilies” (DOI: 10.1214/16-AOS1532SUPP; .pdf). In the supplement [Li, Liu and
Ying (2017)], we present proofs of Corollary 6, Lemmas 17, 18 19, 20 and 21.
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